1
|
Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020; 9:cells9091956. [PMID: 32854241 PMCID: PMC7565333 DOI: 10.3390/cells9091956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility-a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.
Collapse
|
2
|
Araújo AV, Andrade FA, Paulo M, de Paula TD, Potje SR, Pereira AC, Bendhack LM. NO donors induce vascular relaxation by different cellular mechanisms in hypertensive and normotensive rats. Nitric Oxide 2019; 86:12-20. [DOI: 10.1016/j.niox.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 12/25/2022]
|
3
|
Goto K, Ohtsubo T, Kitazono T. Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels. Int J Mol Sci 2018; 19:E315. [PMID: 29361737 PMCID: PMC5796258 DOI: 10.3390/ijms19010315] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/28/2022] Open
Abstract
Upon stimulation with agonists and shear stress, the vascular endothelium of different vessels selectively releases several vasodilator factors such as nitric oxide and prostacyclin. In addition, vascular endothelial cells of many vessels regulate the contractility of the vascular smooth muscle cells through the generation of endothelium-dependent hyperpolarization (EDH). There is a general consensus that the opening of small- and intermediate-conductance Ca2+-activated K⁺ channels (SKCa and IKCa) is the initial mechanistic step for the generation of EDH. In animal models and humans, EDH and EDH-mediated relaxations are impaired during hypertension, and anti-hypertensive treatments restore such impairments. However, the underlying mechanisms of reduced EDH and its improvement by lowering blood pressure are poorly understood. Emerging evidence suggests that alterations of endothelial ion channels such as SKCa channels, inward rectifier K⁺ channels, Ca2+-activated Cl- channels, and transient receptor potential vanilloid type 4 channels contribute to the impaired EDH during hypertension. In this review, we attempt to summarize the accumulating evidence regarding the pathophysiological role of endothelial ion channels, focusing on their relationship with EDH during hypertension.
Collapse
Affiliation(s)
- Kenichi Goto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Toshio Ohtsubo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
4
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
6
|
Khammy MM, Angus JA, Wright CE. Vascular reactivity of rabbit isolated renal and femoral resistance arteries in renal wrap hypertension. Eur J Pharmacol 2016; 773:32-41. [PMID: 26806799 DOI: 10.1016/j.ejphar.2016.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/22/2015] [Accepted: 01/21/2016] [Indexed: 11/24/2022]
Abstract
In rabbits with cellophane renal wrap hypertension, hindquarter and total vascular resistance changes to pressor and depressor agents are amplified compared to those of normotensive rabbits. The aim of the present study was to evaluate the in vitro pharmacodynamics of hypertensive and normotensive rabbit small artery segments isolated from the renal and hindquarter vascular beds. Using wire myography, the full range (Emax) and sensitivity (EC50) to a range of agonists of segments of renal interlobar (≈ 600 µm i.d.), renal arcuate (≈ 250 µm i.d.) and deep femoral branch (≈ 250 µm i.d.) arteries were assessed under normalised conditions of passive tension. Interlobar arteries from hypertensive rabbits were more sensitive (EC50) than those from normotensive rabbits to noradrenaline (6-fold), methoxamine (3-fold) and angiotensin II (3-fold). Arcuate artery reactivity was largely unaffected by hypertension. Deep femoral arteries from hypertensive rabbits had enhanced sensitivity only to noradrenaline (2-fold) and methoxamine (4-fold). Sensitivity to relaxation by acetylcholine was unaffected by hypertension in all arteries. Deep femoral arteries from hypertensive rabbits were more sensitive to sodium nitroprusside than normotensive counterparts. Adenosine caused little relaxation in renal arteries, but full relaxation in deep femoral arteries, unaltered by hypertension. This study found substantial heterogeneity in the pharmacodynamic profile of vessels isolated from different vascular beds and between arterial segments within the kidney. These profiles were differentially affected by hypertension suggesting that hypertension per se is not a resultant of general vascular dysfunction.
Collapse
Affiliation(s)
- Makhala M Khammy
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - James A Angus
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Christine E Wright
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
7
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 PMCID: PMC3973613 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Endothelium-derived hyperpolarizing factors (EDHFs) regulate vascular tone by contributing to the vasorelaxations to shear stress and endothelial agonists such as bradykinin and acetylcholine. 15(S)-Hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-EETA) and 11(R),12(S),15(S)-trihydroxyeicosatrienoic acid (11,12,15-THETA) are endothelial metabolites of the 15-lipoxygenase (15-LO) pathway of arachidonic acid metabolism and are EDHFs. 11,12,15-THETA activates small conductance, calcium-activated potassium channels on smooth muscle cells causing membrane hyperpolarization, and relaxation. Expression levels of 15-LO in the endothelium regulate the activity of the 15-LO/15-H-11,12-EETA/11,12,15-THETA pathway and its contribution to vascular tone. Regulation of its expression is by transcriptional, translational, and epigenetic mechanisms. Hypoxia, hypercholesterolemia, atherosclerosis, anemia, estrogen, interleukins, and possibly other hormones increase 15-LO expression. An increase in 15-LO results in increased synthesis of 15-H-11,12-EETA and 11,12,15-THETA, increased membrane hyperpolarization, and enhanced contribution to relaxation by endothelial agonists. Thus, the 15-LO pathway represents the first example of an inducible EDHF. In addition to 15-LO metabolites, a number of chemicals have been identified as EDHFs and their contributions to vascular tone vary with species and vascular bed. The reason for multiple EDHFs has evaded explanation. However, EDHF functioning as constitutive EDHFs or inducible EDHFs may explain the need for chemically and biochemically distinct pathways for EDHF activity and the variation in EDHFs between species and vascular beds. This new EDHF classification provides a framework for understanding EDHF activity in physiological and pathological conditions.
Collapse
|
9
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
|
11
|
Single-nucleotide polymorphisms in vascular Ca2+-activated K+-channel genes and cardiovascular disease. Pflugers Arch 2009; 460:343-51. [PMID: 20043229 DOI: 10.1007/s00424-009-0768-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/27/2009] [Indexed: 12/24/2022]
Abstract
In the cardiovascular system, Ca2+-activated K+-channels (KCa) are considered crucial mediators in the control of vascular tone and blood pressure by modulating the membrane potential and shaping Ca2+-dependent contraction. Vascular smooth muscle cells express the BKCa channel which fine-tunes contractility by providing a negative feedback on Ca2+-elevations. BKCa channel's ion-conducting alpha-subunit is encoded by the KCa1.1 gene, and the accessory and Ca2+-sensitivity modulating beta1-subunit is encoded by the KCNMB1 gene. Vascular endothelial cells express the calmodulin-gated KCa channels IKCa (encoded by the KCa3.1 gene) and SKCa (encoded by the KCa2.3 gene). These two channels mediate endothelial hyperpolarization and initiate the endothelium-derived hyperpolarizing factor-dilator response. Considering these essential roles of KCa in arterial function, mutations in KCa genes have been suspected to contribute to cardiovascular disease in humans. So far, DNA sequence analysis in the population and patient cohorts has identified single-nucleotide polymorphisms (SNPs) in the BKCa beta1-subunit gene as well as in the alpha-subunit gene (KCa1.1). Some of these SNPs produce amino acid exchanges and evoke alterations of channel functions ("gain-of-function" as well as "loss-of-function"). Moreover, the epidemiological studies showed that the presence of the E65K polymorphism in, e.g., BKCa beta1-subunit gene (producing a "gain-of-function") lowers the prevalence for severe hypertension and myocardial infarction. Other SNPs in the BKCa alpha-subunit gene and also in the KCa3.1 gene expressed in the endothelium have been suggested to increase the risk of cardiovascular disease. These findings from sequence analysis of human KCa genes, and epidemiological studies thus provide evidence that genetic variations and mutations in KCa channel genes contribute to human cardiovascular disease.
Collapse
|
12
|
|
13
|
Investigation of the relaxant effects of pancuronium, rocuronium, vecuronium and mivacurium on rat thoracic aorta. Eur J Anaesthesiol 2009; 26:155-9. [PMID: 19142091 DOI: 10.1097/eja.0b013e32831a461f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Pancuronium, vecuronium, mivacurium and rocuronium are nondepolarizing neuromuscular blocking agents, which are competitive antagonists against acetylcholine at nicotinic receptors, and considered to have no direct actions on vascular smooth muscle. We aimed to investigate the relaxant effects and possible underlying mechanisms of these agents on isolated rat thoracic aorta. METHODS The preparations were precontracted with prostaglandin F2alpha (10(-7) mol l(-1)) and pancuronium (10(-7)-10(-4) mol l(-1)), rocuronium (10(-7)-10(-4) mol l(-1)), vecuronium (10(-7)-10(-4) mol l(-1)) and mivacurium (10(-7)-10(-4) mol l(-1)) added at cumulative concentrations in the presence or absence of a prostaglandin synthesis inhibitor, indomethacin (10(-6) M), and a nitric oxide synthesis inhibitor, N(omega)-nitro-L-arginine methylester (3 x 10(-5)). The same protocol was applied to both endothelia (+) and endothelia (-) aortic rings. The preparations precontracted with prostaglandin F2alpha (10(-7) mol l(-1)) were stimulated with electrical field stimulation at a frequency of 10 Hz as square-wave pulses of 50 V (0.2 ms) in the presence of a noradrenaline reuptake inhibitor desipramine (10(-7) mol l(-1)) and a nonselective beta-blocker propranolol (10(-6) mol l(-1)). Drugs were added at ineffective concentration of 10(-7) mol l(-1). Tetrodotoxin (10(-7) mol l(-1)) was added to test whether the changes were dependent on the neuronal response. RESULTS Pancuronium and rocuronium relaxed aortic rings precontracted by prostaglandin F2alpha in a dose-dependent manner, but vecuronium and mivacurium did not. The relaxation effect of pancuronium and rocuronium was endothelium independent because there was not a significant response difference from the endothelium-denuded group. CONCLUSION In conclusion, their relaxation effect may be due to an increase in prostaglandin synthesis. The increased relaxation effect of these agents at electrical field stimulation may be by the decreasing effect of noradrenaline reuptake from nerve endings because a noradrenaline reuptake inhibitor desipramine did not change this effect. Also, these neuromuscular agents may affect beta-receptors, because a nonselective beta-blocker agent, propranolol, decreased their electrical field stimulation-induced relaxations.
Collapse
|
14
|
Abstract
The vascular endothelium plays a fundamental role in the basal and dynamic regulation of the circulation. Thus, it has a crucial role in the pathogenesis of hypertension. A spectrum of vasoactive substances is synthesised in the endothelium; of these, nitric oxide (NO), prostacyclin (PGI2) and endothelin (ET)-1 are the most important. There is a continuous basal release of NO determining the tone of peripheral blood vessels. Systemic inhibition of NO synthesis or scavenging of NO through oxidative stress causes an increase in arterial blood pressure. Also, the renin-angiotensin-aldosterone system has a major role in hypertension as it has a direct vasoconstrictor effect and important interactions with oxygen free radicals and NO. Prostacyclin, in contrast to NO, does not contribute to the maintenance of basal vascular tone of conduit arteries, but its effect on platelets is most important. ET acts as the natural counterpart to endothelium-derived NO and has an arterial blood pressure-raising effect in man. Anti-hypertensive therapy lowers blood pressure and may influence these different mediators, thus influencing endothelial function. In summary, due to its position between the blood pressure and smooth muscle cells responsible for peripheral resistance, the endothelium is thought to be both victim and offender in arterial hypertension. The delicate balance of endothelium-derived factors is disturbed in hypertension. Specific anti-hypertensive and anti-oxidant treatment is able to restore this balance.
Collapse
Affiliation(s)
- L E Spieker
- Cardiovascular Centre, Cardiology, Dep. of Internal Medicine, University Hospital, 8091 Zürich, Switzerland
| | | | | |
Collapse
|
15
|
|
16
|
Goto K, Fujii K, Kansui Y, Iida M. Changes in endothelium-derived hyperpolarizing factor in hypertension and ageing: response to chronic treatment with renin-angiotensin system inhibitors. Clin Exp Pharmacol Physiol 2004; 31:650-5. [PMID: 15479174 DOI: 10.1111/j.1440-1681.2004.04054.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Endothelial function is impaired in hypertension and ageing and this may be associated with an increase in cardiovascular disease. Several clinical studies have shown that blocking the renin-angiotensin system (RAS) improves endothelial function not only in hypertensive patients, but also in normotensive patients with cardiovascular disease. 2. The aim of the present study was to test whether endothelium-derived hyperpolarizing factor (EDHF)-mediated smooth muscle hyperpolarization and relaxation are altered in hypertension and ageing and, if so, whether chronic treatment with RAS inhibitors (the angiotensin-converting enzyme inhibitor enalapril and the angiotensin AT1 receptor antagonist candesartan) would correct such changes. 3. Endothelium-derived hyperpolarizing factor-mediated responses were examined in mesenteric arteries from 12-month-old spontaneously hypertensive rats (SHR) and 3-, 6-, 12- and 24-month-old normotensive Wistar-Kyoto (WKY) rats. Furthermore, both strains were treated for 3 months with either RAS blockers or a conventional therapy with hydralazine and hydrochlorothiazide from 9 to 12 months of age. 4. In arteries of 12-month-old SHR, EDHF-mediated responses were impaired compared with age-matched WKY rats. In SHR, all antihypertensive treatments improved the impairment of EDHF-mediated responses; however, RAS inhibitors tended to improve these responses to a greater extent compared with conventional therapy with hydralazine and hydrochlorothiazide. 5. In arteries of WKY rats, EDHF-mediated responses were impaired at the age of 12 and 24 months compared with 3- and 6-month-old rats, with the response tending to be impaired to a greater extent in 24-month-old rats. 6. Three months of treatment of WKY rats, until 12 months of age, with RAS inhibitors, but not with conventional therapy with hydralazine and hydrochlorothiazide, improved the age-related impairment of EDHF-mediated responses, despite a similar reduction in blood pressure by both treatments. 7. These findings suggest that: (i) EDHF-mediated hyperpolarization and relaxation decline with hypertension and ageing in rat mesenteric arteries; (ii) antihypertensive treatment restores the impaired EDHF-mediated responses in hypertension; (iii) RAS inhibitors may be more efficacious in improving endothelial dysfunction associated with hypertension; and (iv) chronic treatment with RAS inhibitors improves the age-related impairment of EDHF-mediated responses, presumably through the blockade of RAS but not blood pressure lowering alone.
Collapse
Affiliation(s)
- Kenichi Goto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
17
|
Callera GE, Yeh E, Tostes RCA, Caperuto LC, Carvalho CRO, Bendhack LM. Changes in the vascular beta-adrenoceptor-activated signalling pathway in 2Kidney-1Clip hypertensive rats. Br J Pharmacol 2004; 141:1151-8. [PMID: 15006902 PMCID: PMC1574885 DOI: 10.1038/sj.bjp.0705717] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. beta-Adrenoceptor (beta-AR)-mediated vasodilation, which plays an important physiological role in the regulation of vascular tone, is decreased in two-kidney, one clip (2K-1C) renal hypertension. In this study, downstream pathways related to vascular beta-AR activation were evaluated in 2K-1C rats. 2. Relaxation responses to isoprenaline, forskolin and 8-Br-cAMP were diminished in aortas without endothelium from 2K-1C when compared to those in normotensive two kidney (2K). Basal adenosine-3',5'-monophosphate (cAMP), as well as isoprenaline-induced increase in cAMP levels, was not different between 2K and 2K-1C aortas. 3. Contractile responses to caffeine, after depletion and reloading of intracellular Ca(2+) stores, were greater in 2K-1C than in 2K. The presence of isoprenaline during the Ca(2+)-reloading period abolished the differences between groups by increasing caffeine contraction in 2K without changing this response in 2K-1C aortas. Inhibition of the sarcolemmal Ca(2+)ATPase with thapsigargin markedly attenuated isoprenaline vasodilation in both 2K and 2K-1C and abolished the differences between groups. 4. Blockade of ATP-sensitive K(+) channels (K(ATP)) channels with glibenclamide significantly decreased isoprenaline vasodilation in 2K-1C without affecting this response in 2K. Both vascular gene and protein expression of protein kinase A (PKA), as well as phosphoserine-containing proteins, were increased in 2K-1C vs 2K rats. 5. In conclusion, decreased isoprenaline vasodilation in 2K-1C hypertensive rats is related to impaired modulation of the sarcolemmal Ca(2+)ATPase activity. Moreover, K(ATP) channels may play a compensatory role on isoprenaline-induced relaxation in renal hypertension. Both Ca(2+)ATPase and K(ATP) channel functional alterations, associated with decreased beta-AR vasodilation, are paralleled by an upregulation of protein kinase A (PKA) and phosphoserine proteins expression.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Animals
- Aorta, Thoracic/chemistry
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/pathology
- Caffeine/pharmacology
- Calcium-Transporting ATPases/drug effects
- Calcium-Transporting ATPases/metabolism
- Colforsin/pharmacology
- Cyclic AMP/chemistry
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Disease Models, Animal
- Gene Expression/drug effects
- Glyburide/pharmacology
- Hypertension, Renovascular/physiopathology
- Isoproterenol/antagonists & inhibitors
- Isoproterenol/pharmacology
- Kidney/surgery
- Male
- Membrane Proteins/drug effects
- Membrane Proteins/physiology
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Phenylephrine/pharmacology
- Potassium Channels
- RNA, Messenger
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/physiology
- Sarcolemma/drug effects
- Sarcolemma/enzymology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Thapsigargin/pharmacology
- Vasoconstriction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Glaucia E Callera
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
18
|
Sandow SL, Goto K, Rummery NM, Hill CE. Developmental changes in myoendothelial gap junction mediated vasodilator activity in the rat saphenous artery. J Physiol 2004; 556:875-86. [PMID: 14766938 PMCID: PMC1665009 DOI: 10.1113/jphysiol.2003.058669] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A role for myoendothelial gap junctions (MEGJs) has been proposed in the action of the vasodilator endothelium-derived hyperpolarizing factor (EDHF). EDHF activity varies in disease and during ageing, but little is known of the role of EDHF during development when, in many organ systems, gap junctions are up-regulated. The aims of the present study were therefore to determine whether an up-regulation of heterocellular gap junctional coupling occurs during arterial development and whether this change is reflected functionally through an increased action of EDHF. Results demonstrated that in the saphenous artery of juvenile WKY rats, MEGJs were abundant and application of acetylcholine (ACh) evoked EDHF-mediated hyperpolarization and relaxation in the presence of N(omega)-nitro-l-arginine methyl ester (L-NAME) and indomethacin to inhibit nitric oxide and prostaglandins, respectively. Responses were blocked by a combination of charybdotoxin plus apamin, or 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) plus apamin, or by blockade of gap junctions with the connexin (Cx)-mimetic peptides, (43)Gap26, (40)Gap27 and (37,43)Gap27. On the other hand, we found no evidence for the involvement of the putative chemical mediators of EDHF, eicosanoids, L-NAME-insensitive nitric oxide, hydrogen peroxide or potassium ions, since 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), hydroxocobalamin, catalase or barium and ouabain were without effect. In contrast, in the adult saphenous artery, MEGJs were rare, EDHF-mediated relaxation was absent and hyperpolarizations were small and unstable. The present study demonstrates that MEGJs and EDHF are up-regulated during arterial development. Furthermore, the data show for the first time that this developmentally regulated EDHF is dependent on direct electrotonic coupling via MEGJs.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Acetylcholine/pharmacology
- Animals
- Apamin/pharmacology
- Arteries/drug effects
- Arteries/physiology
- Barium/pharmacology
- Biological Factors/physiology
- Catalase/pharmacology
- Charybdotoxin/pharmacology
- Connexin 26
- Connexins/chemistry
- Connexins/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Femoral Artery/drug effects
- Femoral Artery/physiology
- Gap Junctions/physiology
- Gap Junctions/ultrastructure
- Hydroxocobalamin/pharmacology
- Immunohistochemistry
- In Vitro Techniques
- Indomethacin/pharmacology
- Male
- Membrane Potentials/drug effects
- Microscopy, Electron
- Models, Biological
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- NG-Nitroarginine Methyl Ester/pharmacology
- Oligopeptides
- Ouabain/pharmacology
- Patch-Clamp Techniques
- Peptide Fragments/pharmacology
- Phenylephrine/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Inbred WKY
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Shaun L Sandow
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
19
|
Kähönen M, Näppi S, Jolma P, Hutri-Kähönen N, Tolvanen JP, Saha H, Koivisto P, Krogerus L, Kalliovalkama J, Pörsti I. Vascular influences of calcium supplementation and vitamin D-induced hypercalcemia in NaCl-hypertensive rats. J Cardiovasc Pharmacol 2003; 42:319-28. [PMID: 12960676 DOI: 10.1097/00005344-200309000-00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This 8-week study investigated the effects of increasing dietary Ca2+ content from 1.0% to 3.0% and hypercalcemia induced by oral 1alpha-OH vitamin D3 (1OH-D3, 1.2 microg/kg), on arterial tone in NaCl-hypertensive rats. The high-Ca2+ diet completely prevented the increase in blood pressure induced by the 6.0% NaCl chow, while plasma total Ca2+ and body weight were not different from controls. The 1OH-D3 treatment moderately elevated plasma total Ca2+ and attenuated the NaCl-induced rise in blood pressure, but also impaired weight gain. The tone of isolated mesenteric arterial rings was examined at the end of study. The endothelium-independent relaxations to nitroprusside, isoproterenol, and cromakalim were impaired in NaCl-hypertension. Experiments with NG-nitro-l-arginine methyl ester and tetraethylammonium in vitro suggested that both the nitric oxide- and hyperpolarization-mediated components of endothelium-dependent relaxation to acetylcholine were reduced in NaCl-hypertensive rats. All of the impaired relaxations in NaCl hypertension were normalized by concomitant Ca2+ supplementation. The 1OH-D3 treatment did not affect vascular relaxation, but it attenuated maximal contractile responses induced by norepinephrine and KCl by more than 50%. The reduced vasoconstrictor responses could not be explained by increased apoptosis in the vessel wall, but calcification may have played a role, since moderate signs of medial or adventitial calcification were observed in the aortic preparations after the 1OH-D3 treatment. In conclusion, a high-Ca2+ diet, which did not cause hypercalcemia, normalized blood pressure and endothelium-dependent and endothelium-independent vasorelaxation in NaCl-hypertensive rats. In contrast, chronic hypercalcemia induced by 1OH-D3 was associated with moderately lowered blood pressure, possibly because of reduced vasoconstrictor responses in arterial smooth muscle.
Collapse
Affiliation(s)
- Mika Kähönen
- Department of Pharmacological Sciences, Medical School, University of Tampere, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sunano S, Sekiguchi F. [Endothelium-derived factors in hypertensive blood vessels, especially nitric oxide and hypertension]. YAKUGAKU ZASSHI 2003; 123:495-515. [PMID: 12875234 DOI: 10.1248/yakushi.123.495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-dependent relaxation (EDR) in the blood vessels of spontaneously hypertensive rats (SHR) and the role of nitric oxide (NO) in the initiation of hypertension are reviewed. EDR was impaired in blood vessels of SHR depending on age and degree of hypertension when compared with those of normotensive rats. The cause of the impairment varied among the type of blood vessels: a decrease in the production of NO and endothelium-derived relaxing factor (EDRF) and an increase in the production of endothelium-derived contracting factor (EDCF) are the main causes of the impairment in large arteries, while a decrease in endothelium-dependent hyperpolarization and increased release of EDCF are the main causes of the impairment in small arteries. Interactions among these endothelium-derived factors and changes in the interactions are also causes of impairment. Superoxide may be involved in the impairment of EDR by destroying NO. The endothelium depresses smooth muscle contraction, including spontaneous tone developed in vascular smooth muscle, and the depressing effect of the endothelium is impaired in the preparations from SHR. The endothelium of blood vessels of SHR are structurally injured as demonstrated by scanning electron microscopy. Antihypertensive treatment prevented these functional and structural changes. Chronic treatment with inhibitors of NO production in normotensive rats impaired EDR and elevated blood pressure. The impairment of EDR is a secondary change due to continued hypertension, and early initiation of antihypertensive therapy is recommended.
Collapse
Affiliation(s)
- Satoru Sunano
- School of Pharmaceutical Sciences and Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | | |
Collapse
|
21
|
Yousif MH, Oriowo MA, Cherian A, Adeagbo AS. Histamine-induced vasodilatation in the perfused mesenteric arterial bed of diabetic rats. Vascul Pharmacol 2002; 39:287-92. [PMID: 14567066 DOI: 10.1016/s1537-1891(03)00004-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we have examined the contribution of endothelium-derived nitric oxide (EDNO) and endothelium-derived hyperpolarizing factor (EDHF) to histamine-induced endothelium-dependent relaxation in the perfused mesenteric arterial bed of rats treated with streptozotocin (STZ) to induce diabetes. Histamine (10(-10) to 5 x 10(-6) mol) produced dose-dependent vasodilator response in the perfused mesenteric arterial bed of both control and diabetic animals. In order to isolate the EDHF component of histamine-induced vasodilator response, NG-nitro-L-arginine-methyl ester hydrochloride (L-NAME) (10(-4) M) and indomethacin (10(-6) M) were added to the Krebs solution throughout the experiment. Histamine induced vasodilatation in the perfused mesenteric bed in preparations from both control and diabetic rats. The vasodilator response to histamine was slightly potentiated in the diabetic rat preparations. Sodium nitroprusside (SNP)-induced relaxation was similar in diabetic and control rats. The role of EDNO in histamine-induced vasodilatation was also examined. Vascular preparations were perfused with 20 mM K(+)-Krebs solution to inhibit the EDHF contribution to histamine-induced vasodilatation. Under this condition, histamine induced a vasodilator response in preparations from both control and diabetic rats. However, relative to nondiabetic control animals, histamine-induced maximal response was significantly reduced in preparations from diabetic animals. Pretreatment with L-NAME (10(-4) M) attenuated histamine-induced vasodilatation in both preparations, indicating an NO-mediated vasodilator response. There was a significant attenuation in histamine-induced vasodilatation in the vascular preparations from diabetic rats. The vasodilator effect of calcium ionophore A23187 was investigated in preparations from control and diabetic rats to investigate receptor dysfunction associated with diabetes. A23187 (10(-11) to 10(-7) mol)-induced vasodilator response was not significantly different in the preparations from control and diabetic animals. In conclusion, our results indicated that histamine-induced vasodilation in the perfused mesenteric arterial bed of the STZ-induced diabetic rats is mediated by two vasodilator components, namely EDHF and EDNO. Under diabetic conditions, the EDHF component was potentiated, while histamine-induced vasodilation mediated by the EDNO component was attenuated.
Collapse
Affiliation(s)
- Mariam H Yousif
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | | | | | | |
Collapse
|
22
|
Yousif MHM, Cherian A, Oriowo MA. Endothelium-dependent relaxation in isolated renal arteries of diabetic rabbits. AUTONOMIC & AUTACOID PHARMACOLOGY 2002; 22:73-82. [PMID: 12568124 DOI: 10.1046/j.1474-8673.2002.00244.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1 In this study, we have investigated the vasodilator response to acetylcholine under diabetes conditions in isolated renal arteries of rabbits. We have also examined the contribution of endothelium-derived nitric oxide (EDNO) and endothelium-derived hyperpolarizing factor (EDHF) to the endothelium-dependent relaxation caused by acetylcholine in the renal arteries of alloxan-induced diabetic rabbits. 2 Acetylcholine (10(-10) - 10(-4) M) produced cumulative concentration-response curve in the renal arteries of both control and diabetic rabbits. The EC50 values and maximal responses to acetylcholine were not significantly different relative to diabetic conditions. In order to isolate the EDHF component of acetylcholine-induced vasodilator response, L-nitro-methyl arginine ester (L-NAME, 10(-4) M) and indomethacin (10(-6) M) were added to the Krebs' solution throughout the experiment. Under these conditions, acetylcholine induced vasodilatation in the isolated renal arteries from both control and diabetic rabbits. The vasodilator response to acetylcholine was not affected under diabetic conditions. 3 Sodium nitroprusside (SNP)-induced relaxation was increased in the diabetic rabbits compared with the control animals. 4 Tetrabutyl ammonium (TBA, 0.5 mM) produced a significant reduction in acetylcholine-induced vasodilatation in both preparations from control and diabetic animals, consistent with involvement of K+ channels in mediating this response. Glibenclamide (1 microM) attenuated acetylcholine-induced vasodilatation in preparations from control animals only, while iberiotoxin (0.05 microM) significantly reduced the vasodilator response to acetylcholine in preparations from both control and diabetic animals. 5 The role of EDNO in mediating acetylcholine-induced vasodilatation was examined. The vascular preparations were incubated with 20 mM K(+)-Krebs' solution to inhibit the EDHF contribution to acetylcholine-induced vasodilatation. Under this condition, acetylcholine induced a vasodilator response in both preparations from control and diabetic rats. Pretreatment with L-NAME (10(-4) M) attenuated acetylcholine-induced vasodilatation in both preparations, indicating an nitric oxide-mediated vasodilator response. 6 Our results indicated that acetylcholine-induced vasodilatation in the isolated renal arteries of alloxan-induced diabetic rabbits was not affected under diabetic conditions. Acetylcholine-induced vasodilatation is mediated by two vasodilator components; namely, EDHF and EDNO. The contribution of EDHF and EDNO to acetylcholine-induced vasodilatation was not affected under diabetic conditions and there was no indication of endothelial dysfunction associated with diabetes. EDHF component was found to act mainly through high conductance Ca(2+)-activated K+ channels under normal and diabetic conditions, while the adenosine triphosphate-dependent K+ channels were involved in mediating acetylcholine vasodilator response in the control preparations only.
Collapse
Affiliation(s)
- M H M Yousif
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110, Kuwait
| | | | | |
Collapse
|
23
|
De Vriese AS, Van de Voorde J, Lameire NH. Effects of connexin-mimetic peptides on nitric oxide synthase- and cyclooxygenase-independent renal vasodilation. Kidney Int 2002; 61:177-85. [PMID: 11786099 DOI: 10.1046/j.1523-1755.2002.00122.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Research on the physiological role of endothelium-derived hyperpolarizing factor (EDHF) is hampered by the persistent controversy on its nature and mechanisms of action, as well as by the lack of specific inhibitors that are suitable for in vivo use. Recent in vitro studies support a role for gap junctions in EDHF-mediated signal transmission. The present study examines the contribution of gap junctional communication to the EDHF-mediated responses in the rat renal microcirculation in vivo and addresses the physiological role of EDHF. METHODS The effects of intrarenal administration of connexin-mimetic peptides on the L-NAME- and indomethacin-resistant renal blood flow (RBF) response to acetylcholine, on basal RBF and on systemic blood pressure were examined. RESULTS 43Gap 27, a peptide homologous to the second extracellular loop of connexin 43, partially inhibited the L-NAME- and indomethacin-resistant RBF response to acetylcholine, whereas 40Gap 27, homologous to the second extracellular loop of connexin 40, abolished the response. A control peptide, with a replacement of two amino acids in the motif SRPTEK present in the second extracellular loop of connexins 40 and 43, was without effect. None of the peptides affected the response to DETA-NONOate, pinacidil or papaverine. Intrarenal infusion of 43Gap 27 or 40Gap 27 decreased basal RBF and increased mean arterial blood pressure, both in the presence and absence of systemic infusion of L-NAME and indomethacin. CONCLUSIONS Inhibition of gap junctional communication with connexin-mimetic peptides blocks EDHF-mediated signal transmission in vivo, as suggested by the abolishment of L-NAME- and indomethacin-resistant renal vasodilation. The peptides also decrease basal RBF and increase blood pressure, supporting a role for tonic EDHF release in the control of tissue perfusion and vascular resistance.
Collapse
Affiliation(s)
- An S De Vriese
- Renal Unit and the Department of Physiology, University Hospital, Gent, Belgium.
| | | | | |
Collapse
|
24
|
Köhler R, Kreutz R, Grundig A, Rothermund L, Yagil C, Yagil Y, Pries AR, Hoyer J. Impaired function of endothelial pressure-activated cation channel in salt-sensitive genetic hypertension. J Am Soc Nephrol 2001; 12:1624-1629. [PMID: 11461934 DOI: 10.1681/asn.v1281624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mechanosensitive ion channels have been suggested to act as endothelial mechanosensors for hemodynamic forces. The present study tested the hypothesis that the pressure-activated cation channel (PAC), a novel type of endothelial mechanosensitive ion channel, is involved in salt sensitivity in the Sabra rat model of hypertension. Groups of Sabra salt-sensitive (SBH/y) and salt-resistant (SBN/y) rats were loaded with deoxycorticosterone-acetate (DOCA)-salt for 8 wk or were fed a regular diet. Single channel function of PAC in SBH/y and SBN/y rats was investigated in intact endothelium of mesenteric artery using the patch-clamp technique. After DOCA-salt treatment, the SBH/y rats showed a full hypertensive response, whereas SBN/y rats were normotensive. Rats of both strains that received a regular diet were normotensive. In endothelium of both Sabra rats, Ca(2+) permeable PAC that was activated by positive pipette pressures was identified. Apparent PAC density (percentage of patches with PAC activity) was reduced in hypertensive SBH/y rats that were loaded with DOCA-salt compared with salt-loaded normotensive SBN/y rats (6 +/- 2% versus 24 +/- 8%, respectively; P < 0.05). In normotensive SBH/y and SBN/y rats that received a regular diet, PAC density was not altered. Mechanosensitivity and unitary conductance of endothelial PAC were similar in both strains under a regular diet as well as salt loading with DOCA-salt. In conclusion, the decreased density of PAC in mesenteric endothelium from hypertensive SBH/y rats indicates an impaired ion channel regulation. The defective PAC function presumably leads to an impaired mechanosensitive Ca(2+) entry and might contribute to endothelial dysfunction and high BP in this type of salt-sensitive genetic hypertension.
Collapse
Affiliation(s)
- Ralf Köhler
- Department of Nephrology, Freie Universität Berlin, Berlin, Germany
| | - Reinhold Kreutz
- Department of Nephrology, Freie Universität Berlin, Berlin, Germany
- Department of Clinical Pharmacology and Toxicology, Benjamin Franklin Hospital, Freie Universität Berlin, Berlin, Germany
| | | | - Lars Rothermund
- Department of Clinical Pharmacology and Toxicology, Benjamin Franklin Hospital, Freie Universität Berlin, Berlin, Germany
| | - Chana Yagil
- Laboratory for Molecular Medicine and Department of Nephrology and Hypertension, Faculty of Health Sciences, Ben-Gurion University, Barzilai Medical Center Campus, Ashkelon, Israel
| | - Yoram Yagil
- Laboratory for Molecular Medicine and Department of Nephrology and Hypertension, Faculty of Health Sciences, Ben-Gurion University, Barzilai Medical Center Campus, Ashkelon, Israel
| | - Axel R Pries
- Institute for Physiology, Freie Universität Berlin, Berlin, Germany
| | - Joachim Hoyer
- Department of Nephrology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Støen R, Lossius K, Persson AA, Karlsson JO. Relative significance of the nitric oxide (NO)/cGMP pathway and K+ channel activation in endothelium-dependent vasodilation in the femoral artery of developing piglets. ACTA ACUST UNITED AC 2001; 171:29-35. [PMID: 11350260 DOI: 10.1046/j.1365-201x.2001.00783.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mechanisms mediating endothelium-dependent vasodilation were investigated in femoral artery rings from <2-day-old (newborn) and 2-week-old piglets. Based on previous results we hypothesized an age difference in the relative contribution of nitric oxide(NO)-cyclic 3',5'-guanosine monophosphate (cGMP) and K+ channel-activation to acetylcholine (ACh)-induced vasodilation. Changes in vascular tone were studied in organ baths in the absence or presence of NO synthase(NOS) inhibition or K+ channel blockade and the intra-arterial accumulation of cGMP in response to ACh was measured with radioimmunoassay (RIA). In control experiments, relaxant responses to ACh were equal in the two age groups. In the presence of the NOS-inhibitors N G-monomethyl-L-arginine acetate (L-NMMA; 100 microM) or NG-nitro-L-arginine (L-NOARG; 1-100 microM), however, relaxation was significantly more reduced in femoral artery rings from 2-week-old than from newborn, with lower pD2 values in the older age group. Inhibition of large (BKCa) conductance calcium-sensitive K+ channels with tetraethylammonium chloride (TEA; 1 mM), gave a significant rightward shift in the concentration-response curves to ACh which was of the same magnitude in both age groups. The ACh-induced vasodilation was abolished in both age groups by high K+ (20 mM) in combination with L-NOARG (100 microM). The relative increase in cGMP levels after addition of ACh (10 nM) was significantly larger in rings from newborn compared with 2-week-old piglets (12- vs. four-fold). In summary, sensitivity to NOS inhibition increased with age while the effect of K+ channel blockade with TEA was the same in femoral artery rings from newborn to 2-week-old piglets. Lower sensitivity to NOS inhibition and a larger increase in cGMP in response to ACh could indicate a higher efficacy of the NO/cGMP pathway in this vessel in the newborn piglet.
Collapse
Affiliation(s)
- R Støen
- Department of Pediatrics, University Hospital, 7006 Trondheim, Norway
| | | | | | | |
Collapse
|
26
|
Dora KA, Garland CJ, Kwan HY, Yao X. Endothelial cell protein kinase G inhibits release of EDHF through a PKG-sensitive cation channel. Am J Physiol Heart Circ Physiol 2001; 280:H1272-7. [PMID: 11179073 DOI: 10.1152/ajpheart.2001.280.3.h1272] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The release of dilator agents from vascular endothelial cells is modulated by changes in cytosolic Ca(2+) concentration ([Ca(2+)](i)). In this study, we demonstrate the presence of a Ca(2+)-permeable cation channel in inside-out membrane patches of endothelial cells isolated from small mesenteric arteries. The activity of the channel is increased by KT-5823, a highly selective inhibitor of protein kinase G (PKG), while it is decreased by direct application of active PKG. Application of KT-5823 induces Ca(2+) influx in the endothelial cells isolated from small mesenteric arteries, and it also causes endothelium-dependent relaxations in isolated small mesenteric arteries. KT-5823-induced relaxations in small mesenteric arteries are greatly reduced by 35 mM K(+) or 50 nM charybdotoxin + 50 nM apamin, suggesting that endothelium-derived hyperpolarizing factor (EDHF) is the participating dilator. The involvement of EDHF is further supported by experiments in which the relaxations of small mesenteric arteries are shown to be accompanied by membrane repolarization. These data strongly argue for a major role of a PKG-sensitive cation channel in modulating the release of EDHF from endothelial cells in rat small mesenteric arteries.
Collapse
Affiliation(s)
- K A Dora
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | |
Collapse
|
27
|
Pratt PF, Li P, Hillard CJ, Kurian J, Campbell WB. Endothelium-independent, ouabain-sensitive relaxation of bovine coronary arteries by EETs. Am J Physiol Heart Circ Physiol 2001; 280:H1113-21. [PMID: 11179054 DOI: 10.1152/ajpheart.2001.280.3.h1113] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-derived hyperpolarizing factor (EDHF) is released in response to agonists such as ACh and bradykinin and regulates vascular smooth muscle tone. Several studies have indicated that ouabain blocks agonist-induced, endothelium-dependent hyperpolarization of smooth muscle. We have demonstrated that epoxyeicosatrienoic acids (EETs), cytochrome P-450 metabolites of arachidonic acid, function as EDHFs. To further test the hypothesis that EETs represent EDHFs, we have examined the effects of ouabain on the electrical and mechanical effects of 14,15- and 11,12-EET in bovine coronary arteries. These arteries are relaxed in a concentration-dependent manner to 14,15- and 11,12-EET (EC(50) = 6 x 10(-7) M), bradykinin (EC(50) = 1 x 10(-9) M), sodium nitroprusside (SNP; EC(50) = 2 x 10(-7) M), and bimakalim (BMK; EC(50) = 1 x 10(-7) M). 11,12-EET-induced relaxations were identical in vessels with and without an endothelium. Potassium chloride (1-15 x 10(-3) M) inhibited [(3)H]ouabain binding to smooth muscle cells but failed to relax the arteries. Ouabain (10(-5) to 10(-4) M) increased basal tone and inhibited the relaxations to bradykinin, 11,12-EET, and 14,15-EET, but not to SNP or BMK. Barium (3 x 10(-5) M) did not alter EET-induced relaxations and ouabain plus barium was similar to ouabain alone. Resting membrane potential (E(m)) of isolated smooth muscle cells was -50.2 +/- 0.5 mV. Ouabain (3 x 10(-5) and 1 x 10(-4) M) decreased E(m) (-48.4 +/- 0.2 mV), whereas 11,12-EET (10(-7) M) increased E(m) (-59.2 +/- 2.2 mV). Ouabain inhibited the 11,12-EET-induced increase in E(m). In cell-attached patch clamp studies, 11,12-EET significantly increased the open-state probability (NP(o)) of a calcium-activated potassium channel compared with control cells (0.26 +/- 0.06 vs. 0.02 +/- 0.01). Ouabain did not change NP(o) but blocked the 14,15-EET-induced increase in NP(o). These results indicate that: 1) EETs relax coronary arteries in an endothelium-independent manner, 2) unlike EETs, potassium chloride does not relax the coronary artery, and 3) ouabain inhibits bradykinin- and EET-induced relaxations as has been reported for EDHF. These findings provide further evidence that EETs are EDHFs.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Benzopyrans/pharmacology
- Biological Factors/metabolism
- Bradykinin/metabolism
- Cardiotonic Agents/metabolism
- Cardiotonic Agents/pharmacology
- Cattle
- Coronary Vessels/cytology
- Dihydropyridines/pharmacology
- Electrophysiology
- Endothelium, Vascular/physiology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitroprusside/pharmacology
- Ouabain/metabolism
- Ouabain/pharmacology
- Peptides/pharmacology
- Potassium/pharmacokinetics
- Potassium Channels/metabolism
- Tritium
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilation/physiology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- P F Pratt
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
The spontaneous variation of blood pressure is defined as "blood pressure variability" (BPV). The chronic sinoaortic-denervated (SAD) rat is a model of high BPV without sustained hypertension. Little is known about vascular remodeling in this model. In the present study, we examined blood pressure, vascular remodeling, and aortic angiotensin II concentration in chronic SAD rats in separate experiments. In experiment 1, intra-arterial blood pressure was continuously recorded in conscious unrestrained rats. The 16-week SAD rats had a significant increase in BPV and no change in the mean level of blood pressure over a 24-h period. In experiment 2, we measured structural changes of seven kinds of arteries by histologic method and computer image analysis and functional changes of thoracic aortas by isolated artery preparation. Structural remodeling after 16-week sinoaortic denervation was characterized by increase in wall thickness, wall area, and ratio of wall thickness to internal diameter, with different changes in internal diameter and external diameter in different arteries, indicating that arterial structural remodeling expresses itself mainly as vascular growth. This vascular growth might be caused by medial smooth muscle cell growth and collagen accumulation. Aortic contraction induced by norepinephrine was potentiated, whereas aortic relaxation induced by acetylcholine was attenuated after sinoaortic denervation. In experiment 3, plasma and aortic angiotensin II concentrations were determined by radioimmunoassay. The former remained unchanged, whereas the latter was significantly increased in 10-week SAD rats. It is concluded that in rats chronic sinoaortic denervation can produce vascular remodeling that might be related to increased BPV and an activated tissue renin-angiotensin system.
Collapse
Affiliation(s)
- C Y Miao
- Department of Pharmacology, Basic Medical College, Second Military Medical University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
29
|
Stoen R, Lossius K, Persson A, Karlsson J. Relative significance of the nitric oxide (NO)/cGMP pathway and K+ channel activation in endothelium-dependent vasodilation in the femoral artery of developing piglets. ACTA ACUST UNITED AC 2001. [DOI: 10.1046/j.1365-201x.2001.171001029.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Jolma P, Kalliovalkama J, Tolvanen JP, Kööbi P, Kähönen M, Hutri-Kähönen N, Wu X, Pörsti I. High-calcium diet enhances vasorelaxation in nitric oxide-deficient hypertension. Am J Physiol Heart Circ Physiol 2000; 279:H1036-43. [PMID: 10993766 DOI: 10.1152/ajpheart.2000.279.3.h1036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because the effects of calcium supplementation on arterial tone in nitric oxide-deficient hypertension are unknown, we investigated the influence of elevating dietary calcium from 1.1 to 3.0% in Wistar rats treated with N(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg. kg(-1). day(-1)) for 8 wk. A high-calcium diet attenuated the development of hypertension induced by L-NAME and abrogated the associated impairments of endothelium-independent mesenteric arterial relaxations to nitroprusside, isoproterenol, and cromakalim. Endothelium-dependent relaxations to acetylcholine during nitric oxide synthase inhibition in vitro were decreased in L-NAME rats and improved by calcium supplementation. The inhibition of cyclooxygenase by diclofenac augmented the responses to acetylcholine in L-NAME rats but not in calcium + L-NAME rats. When hyperpolarization of smooth muscle was prevented by KCl precontraction, the responses to acetylcholine during combined nitric oxide synthase and cyclooxygenase inhibition were similar in all groups. Furthermore, superoxide dismutase enhanced the acetylcholine-induced relaxations in L-NAME rats but not in calcium + L-NAME rats. In conclusion, calcium supplementation reduced blood pressure during chronic nitric oxide synthase inhibition and abrogated the associated impairments in endothelium-dependent and -independent arterial relaxation. The augmented vasorelaxation after increased calcium intake in L-NAME hypertension may be explained by enhanced hyperpolarization and increased sensitivity to nitric oxide in arterial smooth muscle and decreased vascular production of superoxide and vasoconstrictor prostanoids.
Collapse
Affiliation(s)
- P Jolma
- Department of Pharmacological Sciences, University of Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Callera GE, Varanda WA, Bendhack LM. Impaired relaxation to acetylcholine in 2K-1C hypertensive rat aortas involves changes in membrane hyperpolarization instead of an abnormal contribution of endothelial factors. GENERAL PHARMACOLOGY 2000; 34:379-89. [PMID: 11483287 DOI: 10.1016/s0306-3623(01)00075-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The contribution of endothelial factors and mechanisms underlying decreased acetylcholine-induced relaxation and endothelial inhibitory action on phenylephrine-induced contraction were evaluated in aortas of two-kidney, one-clip hypertensive (2K-1C) and normotensive (2K) rats. Relaxation induced by acetylcholine in 2K-1C precontracted by phenylephrine was lower [Maximum Effect (ME): 71.33+/-3.36%; pD(2): 7.050+/-0.03] than in 2K (ME: 95.26+/-1.59%; pD(2): 7.31+/-0.07). This response was abolished by N(G)-nitro-L-arginine (L-NNA) in 2K-1C, but was only reduced in 2K (ME: 29.21+/-9.28%). Indomethacin had no effect in 2K-1C, and slightly attenuated acetylcholine-induced relaxation in 2K. The combination of L-NNA and indomethacin almost abolished acetylcholine-induced relaxation in 2K-1C, while in 2K, the inhibition (ME: 56.61+/-8.95%) was lower than the effect of L-NNA alone. During the KCl-induced precontraction, 2K and 2K-1C aortas showed similar acetylcholine-induced relaxation (43.50+/-5.64% vs. 41.60+/-4.36%), which was abolished by L-NNA. The levels of cGMP produced in response to acetylcholine were not different between 2K and 2K-1C. The sensitivity to sodium nitroprusside was lower in phenylephrine-precontracted aortas from 2K-1C than 2K, as showed by the pD(2) values (7.72+/-0.20 vs. 8.59+/-0.17), and this difference was abolished in aortas precontracted by KCl. The membrane potential was less negative in 2K-1C than in 2K (-41.57+/-1.19 vs. -51.00+/-1.13 mV) and hyperpolarization induced by acetylcholine was lower in 2K-1C than in 2K aortas (6.00+/-0.66 vs. 13.27+/-1.61 mV). Phenylephrine-induced contraction in aortas with endothelium was similar in both groups, and increased by the endothelium removal. This increase was lower in 2K-1C (from 1.32+/-0.06 to 1.90+/-0.21 g) than 2K (from 1.49+/-0.07 to 2.83+/-0.18 g). L-NNA and the endothelium removal had similar effect in 2K-1C (1.85+/-0.18 g) and were lower in 2K (2.18+/-0.20 g). Indomethacin decreased phenylephrine-induced contraction only in 2K. In conclusion, our major finding was a selective defect in smooth muscle membrane hyperpolarization, which could explain the decreased relaxation to acetylcholine and the attenuated inhibitory effect of endothelium on the contractile function in 2K-1C aortas.
Collapse
Affiliation(s)
- G E Callera
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences of Ribeirão Prêto, University of São Paulo, Av. do Café s/no, SP 14040-903, Ribeirão Prêto, Brazil
| | | | | |
Collapse
|
32
|
Quignard JF, Félétou M, Edwards G, Duhault J, Weston AH, Vanhoutte PM. Role of endothelial cell hyperpolarization in EDHF-mediated responses in the guinea-pig carotid artery. Br J Pharmacol 2000; 129:1103-12. [PMID: 10725258 PMCID: PMC1571951 DOI: 10.1038/sj.bjp.0703175] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Experiments were performed to identify the potassium channels involved in the acetylcholine-induced endothelium-dependent hyperpolarization of the guinea-pig internal carotid artery. Smooth muscle and endothelial cell membrane potentials were recorded in isolated arteries with intracellular microelectrodes. Potassium currents were recorded in freshly-dissociated smooth muscle cells using patch clamp techniques. 2. In single myocytes, iberiotoxin (0.1 microM)-, charybdotoxin (0.1 microM)-, apamin (0.5 microM)- and 4-aminopyridine (5 mM)-sensitive potassium currents were identified indicating the presence of large- and small-conductance calcium-sensitive potassium channels (BK(Ca) and SK(Ca)) as well as voltage-dependent potassium channels (K(V)). Charybdotoxin and iberiotoxin inhibited the same population of BK(Ca) but a conductance specifically sensitive to the combination of charybdotoxin plus apamin could not be detected. 4-aminopyridine (0. 1 - 25 mM) induced a concentration-dependent inhibition of K(V) without affecting the iberiotoxin- or the apamin-sensitive currents. 3. In isolated arteries, both the endothelium-dependent hyperpolarization of smooth muscle and the hyperpolarization of endothelial cells induced by acetylcholine or by substance P were inhibited by 5 mM 4-aminopyridine. 4. These results indicate that in the vascular smooth muscle cells of the guinea-pig carotid artery, a conductance specifically sensitive to the combination of charybdotoxin plus apamin could not be detected, comforting the hypothesis that the combination of these two toxins should act on the endothelial cells. Furthermore, the inhibition by 4-aminopyridine of both smooth muscle and endothelial hyperpolarizations, suggests that in order to observe an endothelium-dependent hyperpolarization of the vascular smooth muscle cells, the activation of endothelial potassium channels is likely to be required.
Collapse
Affiliation(s)
- J -F Quignard
- Département de Diabétologie, Institut de Recherches Servier, 92150 Suresnes, France
| | - M Félétou
- Département de Diabétologie, Institut de Recherches Servier, 92150 Suresnes, France
- Author for correspondence:
| | - G Edwards
- Division of Physiology, Pharmacology & Toxicology, School of Biological Sciences, University of Manchester, Manchester M13 9PT
| | - J Duhault
- Département de Diabétologie, Institut de Recherches Servier, 92150 Suresnes, France
| | - A H Weston
- Division of Physiology, Pharmacology & Toxicology, School of Biological Sciences, University of Manchester, Manchester M13 9PT
| | - P M Vanhoutte
- Institut de Recherches Internationales Servier, 92410 Courbevoie, France
| |
Collapse
|
33
|
Shimamura K, Sekiguchi F, Matsuda K, Ozaki M, Noguchi K, Yamamoto K, Shibano T, Tanaka M, Sunano S. Effect of chronic treatment with perindopril on endothelium-dependent relaxation of aorta and carotid artery in SHRSP. J Smooth Muscle Res 2000; 36:33-46. [PMID: 10830476 DOI: 10.1540/jsmr.36.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endothelium-dependent relaxation of aorta and carotid artery from stroke-prone spontaneously hypertensive rats (SHRSP) and the effect of chronic treatment of SHRSP with perindopril, an angiotensin converting enzyme inhibitor, on endothelium-dependent relaxation were studied. Endothelium-dependent relaxation was induced by acetylcholine (ACh) in preparations of SHRSP and normotensive Wistar Kyoto rats (WKY) precontracted with noradrenaline. The ACh-induced relaxation in both preparations was abolished by L-nitroarginine. The ACh-induced relaxation was impaired in preparations from SHRSP and contraction was observed at high concentrations of ACh. In the presence of indomethacin, impairment of endothelium-dependent relaxation in SHRSP was minimized and the contraction was inhibited. The relaxation with sodium nitroprusside did not differ between the preparations from WKY and SHRSP. Treatment of SHRSP with perindopril (2 mg/kg/day) for 6 weeks decreased systolic blood pressure and improved the ACh-induced relaxation of aorta and carotid artery. The treatment inhibited the contraction by higher concentrations of ACh in the presence of L-nitroarginine. These results indicate that the impairment of endothelium-dependent relaxation in aorta and carotid artery of SHRSP may be caused by the reduced availability of nitric oxide. The perindopril-treatment may prevent these changes in SHRSP.
Collapse
Affiliation(s)
- K Shimamura
- Research Institute of Hypertension, Kinki University, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ghisdal P, Godfraind T, Morel N. Effect of nitro-L-arginine on electrical and mechanical responses to acetylcholine in the superior mesenteric artery from stroke-prone hypertensive rat. Br J Pharmacol 1999; 128:1513-23. [PMID: 10602331 PMCID: PMC1571789 DOI: 10.1038/sj.bjp.0702947] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/1999] [Revised: 09/14/1999] [Accepted: 09/17/1999] [Indexed: 11/08/2022] Open
Abstract
1. High salt diet is known to aggravate the vascular pathology in spontaneously hypertensive stroke-prone rats (SHR-SP). The aim of the present study was to assess the involvement of endothelial dysfunction in this effect. Contractile tension and membrane potential were simultaneously recorded in superior mesenteric artery rings of untreated and NaCl-loaded (1% NaCl in the drinking water) SHR-SP and normotensive Wistar Kyoto rats (WKY). 2. In unstimulated artery, hyperpolarization evoked by acetylcholine was not different in WKY and in NaCl-loaded WKY; it was reduced in SHR-SP and further reduced in NaCl-loaded SHR-SP. Hyperpolarization was unaffected by N(omega)-nitro-L-arginine (L-NA) but was abolished in high-KCl solution. 3. In noradrenaline-stimulated artery, ACh-evoked hyperpolarization and relaxation were not different in WKY and in SHR-SP. NaCl-treatment did not affect the responses to ACh in WKY but decreased maximum relaxation in SHR-SP from 93+/-2% to 72+/-7% of the contraction. In WKY, in NaCl-loaded WKY and in SHR-SP, L-NA similarly shifted the concentration-relaxation curve to ACh to the right and depressed its maximum but L-NA did not affect the hyperpolarization to ACh. In NaCl-loaded SHR-SP, L-NA blunted the effects of ACh on membrane potential and on contraction. 4. The NO donor SNAP abolished the depolarization and the contraction evoked by noradrenaline with the same potency in WKY and in untreated SHR-SP but was more potent in NaCl-loaded SHR-SP. 5. In KCl-contracted arteries the relaxations to ACh were not different in WKY and SHR-SP but NaCl-loaded SHR-SP were more sensitive to ACh. 6. The results showed that NaCl-rich diet markedly reduced the L-NA-resistant responses to ACh and increased the sensitivity to NO in SHR-SP.
Collapse
Affiliation(s)
- Philippe Ghisdal
- Laboratoire de Pharmacologie, Université Catholique de Louvain, UCL 5410, Avenue Hippocrate, 54-B 1200 Bruxelles, Belgium
| | - Théophile Godfraind
- Laboratoire de Pharmacologie, Université Catholique de Louvain, UCL 5410, Avenue Hippocrate, 54-B 1200 Bruxelles, Belgium
| | - Nicole Morel
- Laboratoire de Pharmacologie, Université Catholique de Louvain, UCL 5410, Avenue Hippocrate, 54-B 1200 Bruxelles, Belgium
| |
Collapse
|
35
|
Kimura K, Tsuda K, Sasajima H, Shiotani M, Baba A, Hano T, Nishio I. Arterial relaxation mediated by endothelium-derived hyperpolarizing factor in hypertension induced by chronic inhibition of nitric oxide synthesis. Clin Exp Hypertens 1999; 21:1203-21. [PMID: 10513837 DOI: 10.3109/10641969909052198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to evaluate arterial relaxation mediated by endothelium-derived hyperpolarizing factor (EDHF) during chronic inhibition of nitric oxide (NO) synthase. We measured the isometric tension of isolated mesenteric arteries of Wistar rats administered Nomega-nitro-L-arginine methyl ester (L-NAME, 100 mg/Kg/day) for 3 weeks. Relaxation to acetylcholine (ACh) was reduced in L-NAME treated rats (maximum relaxation, 52% versus 79% ). After acute superfusion of 1x10(-4) M L-NAME, half the relaxation was inhibited in controls, while the relaxation was not changed in L-NAME treated rats. In contrast, relaxation to nitroprusside was normal in L-NAME treated rats. Superfusion of 1x10(-6) M apamin, which inhibits the effects of EDHF, reduced the relaxation. The relaxation inhibited by apamin was not significantly different between the two groups. These findings suggested that in endothelial cells, the synthesis of EDHF is unchanged during a chronic deficiency of relaxation influence of NO.
Collapse
Affiliation(s)
- K Kimura
- Department of Medicine, Wakayama Medical College, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Kagota S, Tamashiro A, Yamaguchi Y, Nakamura K, Kunitomo M. Excessive salt or cholesterol intake alters the balance among endothelium-derived factors released from renal arteries in spontaneously hypertensive rats. J Cardiovasc Pharmacol 1999; 34:533-9. [PMID: 10511128 DOI: 10.1097/00005344-199910000-00009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the vasorelaxation in renal arteries isolated from spontaneously hypertensive rats (SHRs) fed a basal, a high-salt, or a high-cholesterol diet for 8 weeks. In renal arterial rings from the control group, acetylcholine (ACh)-induced endothelium-dependent relaxations were markedly increased by indomethacin (IND) and ONO-3708, a prostaglandin H2/thromboxane A2-receptor antagonist, but not affected by OKY-046, a thromboxane A2 synthetase inhibitor. These increased relaxations were partially inhibited by either NG-nitro-L-arginine methyl ester (L-NAME) or charybdotoxin (CTX), and almost completely abolished by the combination of L-NAME plus CTX. The ACh-induced endothelium-dependent relaxations in the absence of IND were significantly attenuated by the high-salt intake but not affected by the high-cholesterol intake. The degrees of relaxations in the presence of IND were approximately equal among the three diet groups. On the other hand, the relaxations in the presence of IND plus L-NAME were significantly augmented by a high-cholesterol intake and abolished by a high-salt intake, and the relaxations in the presence of IND plus CTX were slightly reduced by a high-cholesterol intake and significantly augmented by a high-salt intake. The production of cyclic guanosine monophosphate (cGMP) in response to ACh was significantly decreased by a high-cholesterol intake and tended to be increased by a high-salt intake. These findings indicate that in the renal artery of SHRs, ACh causes production of a sufficient amount of nitric oxide (NO), together with a relaxing factor resembling endothelium-derived hyperpolarizing factors (EDHFs) and also endothelium-derived contracting factors (EDCFs), probably prostaglandin H2. Our results also suggest that excessive salt intake increases the release of EDCF and NO and decreases that of an EDHF-like factor, whereas excessive cholesterol intake increases release of an EDHF-like factor and decreases that of NO.
Collapse
Affiliation(s)
- S Kagota
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | | | | | | | | |
Collapse
|
37
|
Vanheel B, Calders P, Van den Bossche I, Van de Voorde J. Influence of some phospholipase A2 and cytochrome P450 inhibitors on rat arterial smooth muscle K+ currents. Can J Physiol Pharmacol 1999. [DOI: 10.1139/y99-050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hyperpolarizing factor that is liberated by vascular endothelial cells in response to various agonists, and known to induce relaxation by opening of smooth muscle K+ channels, has been suggested to be a product of cytochrome P450 dependent arachidonic acid metabolism. In this study, the direct influence of two phospholipase A2 inhibitors and of five structurally and mechanistically different cytochrome P450 inhibitors on K+ currents in freshly isolated vascular smooth muscle cells from the rat aorta was investigated. On stepping the cell membrane potential from -70 mV to a series of depolarized test potentials, a noisy outward current developed at test potentials > +10 mV, which showed no appreciable inactivation during the voltage pulse. It was largely abolished by 3 mM external tetraethylammonium chloride (TEA), suggesting that it predominantly consisted of current through large-conductance Ca2+-activated K+ channels. The phospholipase A2 inhibitor quinacrine considerably inhibited this TEA-sensitive current, while 4-bromophenacylbromide exerted no effect. The cytochrome P450 inhibitors proadifen and miconazole reversibly decreased the amplitude of IK, while clotrimazole and 1-aminobenzotriazole had no effect. Conversely, 17-octadecynoic acid increased whole-cell IK. These results show that some phospholipase A2 and cytochrome P450 inhibitors may interfere with K+ channel activation in the rat arterial smooth muscle cell. The relevance of these findings to studies on the involvement of cytochrome P450 dependent metabolism in the generation of the endothelium-derived hyperpolarizing factor in intact arteries is discussed.Key words: endothelial factors, smooth muscle, membrane currents, vasodilation, endothelium-derived hyperpolarizing factor (EDHF), arachidonic acid.
Collapse
|
38
|
Quignard JF, Félétou M, Thollon C, Vilaine JP, Duhault J, Vanhoutte PM. Potassium ions and endothelium-derived hyperpolarizing factor in guinea-pig carotid and porcine coronary arteries. Br J Pharmacol 1999; 127:27-34. [PMID: 10369452 PMCID: PMC1565980 DOI: 10.1038/sj.bjp.0702493] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Experiments were designed to determine in two arteries (the guinea-pig carotid and the porcine coronary arteries) whether or not the endothelium-derived hyperpolarizing factor (EDHF) can be identified as potassium ions, and to determine whether or not the inwardly rectifying potassium current and the Na+/K+ pump are involved in the hyperpolarization mediated by EDHF. The membrane potential of vascular smooth muscle cells was recorded with intracellular microelectrodes in the presence of N(omega)-L-nitro-arginine (L-NA) and indomethacin. In vascular smooth muscle cells of guinea-pig carotid and porcine coronary arteries, acetylcholine and bradykinin induced endothelium-dependent hyperpolarizations (-18+/-1 mV, n = 39 and -19+/-1 mV, n = 7, respectively). The hyperpolarizations were not affected significantly by ouabain (1 microM), barium chloride (up to 100 microM) or the combination of ouabain plus barium. In both arteries, increasing extracellular potassium concentration by 5 or 10 mM induced either depolarization or in a very few cases small hyperpolarizations which never exceeded 2 mV. In isolated smooth muscle cells of the guinea-pig carotid artery, patch-clamp experiments shows that only 20% of the vascular smooth muscle cells expressed inwardly rectifying potassium channels. The current density recorded was low (0.5+/-0.1 pA pF(-1), n = 8). These results indicate that, in two different vascular preparations, barium sensitive-inwardly rectifying potassium conductance and the ouabain sensitive-Na+/K+ pump are not involved in the EDHF-mediated hyperpolarization. Furthermore, potassium did not mimic the effect of EDHF pointing out that potassium and EDHF are not the same entity in those arteries.
Collapse
Affiliation(s)
| | - Michel Félétou
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150, Suresnes, France
- Author for correspondence:
| | - Catherine Thollon
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150, Suresnes, France
| | - Jean-Paul Vilaine
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150, Suresnes, France
| | - Jacques Duhault
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150, Suresnes, France
| | - Paul M Vanhoutte
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150, Suresnes, France
| |
Collapse
|
39
|
Kimura K, Nishio I. Impaired endothelium-dependent relaxation in mesenteric arteries of reduced renal mass hypertensive rats. Scand J Clin Lab Invest 1999; 59:199-204. [PMID: 10400164 DOI: 10.1080/00365519950185724] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endothelium-dependent relaxation is not fully understood in volume-dependent models of hypertension. This study investigated the relaxation mediated by endothelium-derived nitric oxide (EDNO) and hyperpolarizing factor (EDHF) in superior mesenteric arteries from reduced renal mass hypertensive rats, an experimental model for volume-dependent hypertension. Hypertension was induced in male Wistar rats by subtotal nephrectomy and salt-loading (hypertensive group). The control group comprised rats that drank tap water after subtotal nephrectomy. Relaxation of isolated superior mesenteric arterial rings was investigated at the end of the 2-week study. In high K+-precontracted arterial rings, relaxation caused by acetylcholine (ACh) was markedly reduced in the hypertensive group compared with the findings for the control group (34+/-4% vs. 54+/-5% decrease in tension). In both groups, the relaxation was abolished by N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase. In phenylephrine-precontracted arterial rings, relaxation caused by ACh was also small in the hypertensive group, while it was large in the control group (49 +/- 5% vs. 96 +/- 2%). Superfusion of L-NAME inhibited most of the relaxation caused by ACh, but the arteries still exhibited relaxation. Apamin, a blocker of Ca-dependent K+ channel, together with L-NAME further inhibited the residual relaxation. The relaxation inhibited by apamin was also reduced in the hypertensive group. We conclude that the relaxation inhibited by L-NAME was mediated by EDNO, while that inhibited by apamin was mediated by EDHF. Endothelium-independent relaxation caused by nitroprusside and diazoxide was normal in the hypertensive group. The relaxation mediated by both EDNO and EDHF was depressed in the arteries of reduced renal mass hypertensive rats as the result of an arterial endothelial abnormality.
Collapse
Affiliation(s)
- K Kimura
- Department of Medicine, Wakayama Medical College, Wakayama City, Japan
| | | |
Collapse
|
40
|
Hui C, Goto A, Yamada K, Yagi N, Nagoshi H, Sasabe M, Omata M, Sugimoto T. Relations of vascular calcium channels with blood pressure and endothelium in hypertension and with aging. JAPANESE HEART JOURNAL 1999; 40:209-25. [PMID: 10420882 DOI: 10.1536/jhj.40.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To investigate the relationships between the activity in potential operated Ca2+ channels (POC), blood pressure, and endothelium in hypertension, we tested the contractile responses to a Ca2+ channel agonist Bay K 8644 (BAY K) in aorta from deoxycorticosterone-acetate-saline (DOCA-S) and reduced renal mass-saline (RRM-S) hypertensive rats. The effects of mechanical rubbing, N omega-Nitro-L-Arginine Methyl Ester (l-NAME) and indomethacin were also examined. Sensitivity to BAY K increased in experimental rats before they became hypertensive and contractile responses were enhanced as hypertension developed. Force development to BAY K was correlated with blood pressure levels. Endothelium removal enhanced the contractile response to BAY K. L-NAME, but not indomethacin, potentiated the response to BAY K. Contractile response to BAY K was negatively correlated with relaxation to acetylcholine. An enhanced contractile response to BAY K was observed also in aged rats. Enhanced activation of vascular POC in hypertension results from elevated blood pressure and partly from diminished inhibitory action of endothelium. Senescence also enhances vascular POC activity.
Collapse
Affiliation(s)
- C Hui
- Second Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hayabuchi Y, Nakaya Y, Matsuoka S, Kuroda Y. Endothelium-derived hyperpolarizing factor activates Ca2+-activated K+ channels in porcine coronary artery smooth muscle cells. J Cardiovasc Pharmacol 1998; 32:642-9. [PMID: 9781934 DOI: 10.1097/00005344-199810000-00018] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although endothelium-derived hyperpolarizing factor (EDHF) activity has been demonstrated in arteries from various species, EDHF has not been chemically identified, nor its mechanism of action characterized. To elucidate this mechanism, we tested the effect of EDHF on large-conductance Ca2+-activated K+ (K(Ca)) channels in porcine coronary artery smooth muscle cells. By using a patch-clamp technique, single-channel currents were recorded in cultured smooth muscle cells; the organ bath also contained a strip of porcine coronary with endothelium, which served as the source of endothelium-derived relaxing factor(s) including EDHF. Exposure of endothelium to 10(-6) M bradykinin activated K(Ca) channels in cultured smooth muscle cells in cell-attached patches. When the experiment was performed in the presence of 10 microM indomethacin and 30 microM N(G)-nitro-L-arginine (L-NNA), which block the generation of prostaglandin I2 (PGI2) and NO, respectively, K(Ca) channel activity was stimulated by bradykinin, indicating the direct involvement of EDHF in K(Ca) channel stimulation. Neither 10 microM methylene blue nor 25 microM Rp-cAMPS inhibited bradykinin-induced K(Ca) channel activity. In inside-out patches, the addition of bradykinin to the solution was without effect on K(Ca) channel activation. However, in the presence of 0.5 mM guanosine triphosphate (GTP) and 1.0 mM adenosine triphosphate (ATP) in the bath solution, K(Ca) channels was activated by bradykinin. In outside-out patches, the addition of bradykinin also increased K(Ca) channel activity, when GTP and ATP were added to the pipette solution. The addition of GDP-beta-S (100 microM) in the cytosolic solution completely blocked the activation K(Ca) channels induced by bradykinin in inside-out and outside-out patches. Pretreatment with 30 microM quinacrine, a phospholipase A2 inhibitor, or 3 microM 17-octadecynoic acid (17-ODYA), a cytochrome P450 inhibitor, in addition to indomethacin and L-NNA, abolished bradykinin-stimulated K(Ca) channel activity in cell-attached patches. Both 14,15-epoxyeicosatrienoic acid (EET) and 11,12-EET increased the open probabilities of K(Ca) channels in cell-attached patches. These results suggest that EDHF, released from endothelial cells in response to bradykinin, hyperpolarizes smooth muscle cells by opening K(Ca) channels. Furthermore, our data suggest that EDHF is an endothelium-derived cytochrome P450 metabolite of arachidonic acid. The effect of EDHF on K(Ca) channels is not associated with an increase of cAMP and cGMP. The activation of K(Ca) channels appears to be due to the activation of GTP-binding protein.
Collapse
Affiliation(s)
- Y Hayabuchi
- Department of Pediatrics, School of Medicine, University of Tokushima, Japan
| | | | | | | |
Collapse
|
42
|
Randall MD, March JE. Characterization of endothelium-dependent relaxations in mesenteries from transgenic hypertensive rats. Eur J Pharmacol 1998; 358:31-40. [PMID: 9809866 DOI: 10.1016/s0014-2999(98)00584-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endothelial dysfunction has been reported to be a feature of hypertension. We have investigated the relative contributions of nitric oxide (NO) and the endothelium-derived hyperpolarizing factor (EDHF) to endothelium-dependent relaxations in isolated mesenteries from (mREN-2)-27 transgenic hypertensive (TGH) rats and their normotensive controls (Hannover Sprague-Dawley). Relaxation to the endothelium-dependent relaxant, carbachol, was unimpaired in mesenteries from TGH rats compared to the Hannover Sprague-Dawley controls. Inhibition of NO synthase (with 100 microM Nomega-nitro-L-arginine methyl ester) had greater inhibitory effects against these relaxations in the mesenteries from Hannover Sprague-Dawley compared to TGH. Inhibition of EDHF activity with high K+ also had greater inhibitory effects against endothelium-dependent relaxations in the mesenteries from the Hannover Sprague-Dawley compared to TGH. The present results show that, although endothelium-dependent relaxation is unimpaired in mesenteries from TGH rats, there are differences in the relative contributions of NO and EDHF, such that inhibition of either NO or EDHF alone in TGH mesenteries has less impact compared to Hannover Sprague-Dawley. It is suggested that the recently identified reciprocal relationship between NO and EDHF is upregulated in the mesenteries from the TGH rats.
Collapse
Affiliation(s)
- M D Randall
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, UK.
| | | |
Collapse
|
43
|
Abstract
The endothelium modulates the tone of the underlying vascular smooth muscle by releasing relaxing factors, including prostacyclin, nitric oxide (NO), and endothelium-derived hyperpolarizing factor (EDHF). In most types of hypertension, endothelium-dependent relaxations are impaired because of a reduced production and/or action of endothelium-derived NO and EDHF. In essential hypertension, endothelium-dependent relaxations are reduced because of a concomitant release of vasoconstrictor prostanoids (endoperoxides and thromboxane A2). These prostanoids may be produced in the vascular smooth muscle rather than in the endothelium. The endothelial dysfunction observed in hypertension is likely to be a consequence rather than a cause of the disease, representing premature aging of the blood vessels due to the chronic exposure to the high blood pressure. The endothelial dysfunction can be improved by antihypertensive therapy, favoring the prevention of the occurrence of vascular complications in hypertension.
Collapse
Affiliation(s)
- H Shimokawa
- The Research Institute of Angiocardiology and Cardiovascular Clinic, Kyushu University School of Medicine, Fukuoka, Japan
| |
Collapse
|
44
|
Prieto D, Simonsen U, Hernández M, García-Sacristán A. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Br J Pharmacol 1998; 123:1609-20. [PMID: 9605568 PMCID: PMC1565334 DOI: 10.1038/sj.bjp.0701780] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. Penile small arteries (effective internal lumen diameter of 300 600 microm) were isolated from the horse corpus cavernosum and mounted in microvascular myographs in order to investigate the mechanisms underlying the endothelium-dependent relaxations to acetylcholine (ACh) and bradykinin (BK). 2. In arteries preconstricted with the thromboxane analogue U46619 (3-30 nM), ACh and BK elicited concentration-dependent relaxations, pD2 and maximal responses being 7.71+/-0.09 and 91+/-1 % (n=23), and 8.80+/-0.07 and 89+/-2% (n=24) for ACh and BK, respectively. These relaxations were abolished by mechanical endothelial cell removal, attenuated by the nitric oxide (NO) synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG, 100 microM) and unchanged by indomethacin (3 microM). However, raising extracellular K+ to concentrations of 20-30 mM significantly inhibited the ACh and BK relaxant responses to 63+/-4% (P<0.01, n=7) and to 59+/-4% (P<0.01, n=6), respectively. ACh- and BK-elicited relaxations were abolished in arteries preconstricted with K+ in the presence of 100 microM L-NOARG. 3. In contrast to the inhibitor of ATP-sensitive K channels, the blockers of Ca2+-activated K+ (K(Ca)) channels, charybdotoxin (30 nM) and apamin (0.3 microM), each induced slight but significant rightward shifts of the relaxations to ACh and BK without affecting the maximal responses. Combination of charybdotoxin and apamin did not cause further inhibition of the relaxations compared to either toxin alone. In the presence of L-NOARG (100 microM), combined application of the two toxins resulted in the most effective inhibition of the relaxations to both ACh and BK. Thus, pD2 and maximal responses for ACh and BK were 7.65+/-0.08 and 98+/-1%, and 9.17+/-0.09 and 100+/-0%, respectively, in controls, and 5.87+/-0.09 (P<0.05, n=6) and 38+/-11% (P<0.05, n=6), and 8.09+/-0.14 (P<0.01, n=6) and 98+/-1% (n=6), respectively, after combined application of charybdotoxin plus apamin and L-NOARG. 4. The selective inhibitor of guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 microM) did not alter the maximal responses to either ACh or BK, but slightly decreased the sensitivity to both agonists, deltapD2 being 0.25+/-0.07 (P<0.05, n=6) and 0.62+/-0.12 (P< 0.01, n=6) for ACh and BK, respectively. Combined application of ODQ and charybdotoxin plus apamin produced further inhibition of the sensitivity to both ACh (deltapD2=1.39+/-0.09, P<0.01, n=6) and BK (1.29+/-0.11, P<0.01, n=6), compared to either ODQ or charybdotoxin plus apamin alone. 5. Exogenous nitric oxide (NO) present in acidified solutions of sodium nitrite (NaNO2) and S-nitrosocysteine (SNC) both concentration-dependently relaxed penile resistance arteries, pD2 and maximal responses being 4.84+/-0.06 and 82+/-3% (n=12), and 6.72+/-0.07 and 85+/-4% (n=19), respectively. Charybdotoxin displaced to the right the dose-relaxation curves for both NO (deltapD2 0.38+/-0.06, P<0.01, n=6) and SNC (deltapD2 0.50+/-0.10, P<0.01, n=5), whereas apamin only reduced sensitivity (deltapD2=0.35+/-0.12, P<0.05, n=5) and maximum response (65+/-9%, P<0.05, n=6) to SNC. ODQ shifted to the right the dose-relaxation curves to both NO and SNC. The relaxant responses to either NO or SNC were not further inhibited by a combination of ODQ and charybdotoxin or ODQ and charybdotoxin plus apamin, respectively, compared to either blocker alone. 6. In the presence of 3 microM phentolamine, 5 microM ouabain contracted penile resistance arteries by 50+/-6% (n=17) of K-PSS, but did not significantly change the relaxant responses to either ACh, BK or NO. However, in the presence of L-NOARG ouabain reduced the ACh- and BK-elicited relaxation from 94+/-3% to 16+/-5% (P<0.0001, n=6), and from 98+/-2% to 13+/-3% (P<0.0001, n=5), respectively. Combined application of ODQ and ouabain inhibited the relaxations to NO from 92+/-2% to 26+/-3% (P<0.0001, n=6). 7. The present results demonstrate that the endothelium-dependent relaxations of penile small arteries involve the release of NO and a non-NO non-prostanoid factor(s) which probably hyperpolarize(s) smooth muscle by two different mechanisms: an increased charybdotoxin and apamin-sensitive K+ conductance and an activation of the Na+-K+ATPase. These two mechanisms appear to be independent of guanylate cyclase stimulation, although NO itself can also activate charybdotoxin-sensitive K+ channels and the Na+-K+ pump through both cyclic GMP-dependent and independent mechanisms, respectively.
Collapse
Affiliation(s)
- D Prieto
- Departamento de Fisiologia, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
45
|
Miller AW, Hoenig ME, Ujhelyi MR. Mechanisms of Impaired Endothelial Function Associated With Insulin Resistance. J Cardiovasc Pharmacol Ther 1998; 3:125-134. [PMID: 10684490 DOI: 10.1177/107424849800300205] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND: The insulin-resistant (IR) syndrome is causally related to hypertension and cardiovascular events; however, the underlying mechanism remains elusive. The current study was designed to determine (1) whether the IR syndrome causes vascular dysfunction and (2) whether insulin resistance alters the activity of the individual endothelium-derived relaxing factors. METHODS AND RESULTS: Insulin resistance was induced in Sprague-Dawley rats by a 4-week fructose-rich diet. Subsequently, mesenteric arteries ( approximately 250 µM) were removed from control and IR rats, and intraluminal diameter was used to assess vascular response to pharmacological probes. Studies with sodium nitroprusside showed that vascular relaxation did not differ between IR and control groups. In contrast, maximal vascular relaxation to acetylcholine (10(-9) to 10(-4) mol/L) in phenylephrine preconstricted arteries was decreased in the IR group (44 +/- 4%) versus control (89 +/- 5%) (P <.01). N-nitro-L-arginine (LNNA) pretreatment further impaired acetylcholine-induced maximal relaxation in the IR group from 44 +/- 4% to 12 +/- 3%; P <.01. In control rats, maximal relaxation was only slightly impaired by the addition of LNNA (89 +/- 5% to 68 +/- 6%; P <.05). The addition of indomethacin to acetylcholine did not affect maximal relaxation in either group. When potassium chloride (KCl) was used fro preconstriction, relaxation to acetylcholine in the IR group was similar to that found with phenylephrine preconstriction (41 +/- 4% v 44 +/- 4%, respectively); however, KCl preconstriction significantly decreased acetyolcholine-induced relaxation in control rats (89 +/- 5% to 43 +/- 5%; P >.01). CONCLUSION: Insulin resistance impairs endothelium-dependent relaxation in small mesenteric arteries. It appears that insulin resistance transforms the primary relaxant factor from endothelial-derived hyperpolarizing factor to nitric oxide. These findings suggest that hypertension and atherosclerosis associated with the IR syndrome are caused, at least in part, by endothelial dysfunction.
Collapse
Affiliation(s)
- AW Miller
- University of Georgia Colleges of Pharmacy, Augusta VA Medical Center, Augusta, Georgia, USA
| | | | | |
Collapse
|
46
|
Vanheel B, Van de Voorde J. Nitric oxide induced membrane hyperpolarization in the rat aorta is not mediated by glibenclamide-sensitive potassium channels. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A. Alterations in endothelium-dependent hyperpolarization and relaxation in mesenteric arteries from streptozotocin-induced diabetic rats. Br J Pharmacol 1997; 121:1383-91. [PMID: 9257918 PMCID: PMC1564820 DOI: 10.1038/sj.bjp.0701258] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The aim of this study was to determine whether endothelium-dependent hyperpolarization and relaxation are altered during experimental diabetes mellitus. Membrane potentials were recorded in mesenteric arteries from rats with streptozotocin-induced diabetes and age-matched controls. The resting membrane potentials were not significantly different between control and diabetic mesenteric arteries (-55.3 +/- 0.5 vs -55.6 +/- 0.4 mV). However, endothelium-dependent hyperpolarization produced by acetylcholine (ACh; 10(-8)-10(-5) M) was significantly diminished in amplitude in diabetic arteries compared with that in controls (maximum -10.4 +/- 1.1 vs -17.2 +/- 0.8mV). Furthermore, the hyperpolarizing responses of diabetic arteries were more transient. 2. ACh-induced hyperpolarization observed in control and diabetic arteries remained unaltered even after treatment with 3 x 10(-4) M N(G)-nitro-L-arginine (L-NOARG), 10(-5) M indomethacin or 60 u ml (-1) superoxide dismutase. 3. Endothelium-dependent hyperpolarization with 10(-6) M A23187, a calcium ionophore, was also decreased in diabetic arteries compared to controls (-8.3 +/- 1.4 vs -18.0 +/- 1.9 mV). However, endothelium-independent hyperpolarizing responses to 10(-6) M pinacidil, a potassium channel opener, were similar in control and diabetic arteries (-20.0 +/- 1.4 vs - 19.2 +/- 1.1 mV). 4. The altered endothelium-dependent hyperpolarizations in diabetic arteries were almost completely prevented by insulin therapy. Endothelium-dependent relaxations by ACh in the presence of l0(-4) M L-NOARG and 10(-5) M indomethacin in diabetic arteries were also reduced and more transient compared to controls. 5. These data indicate that endothelium-dependent hyperpolarization is reduced by diabetes, and this would, in part, account for the impaired endothelium-dependent relaxations in mesenteric arteries from diabetic rats.
Collapse
Affiliation(s)
- M Fukao
- Department of Pharmacology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
48
|
Vanheel B, Van de Voorde J. Evidence against the involvement of cytochrome P450 metabolites in endothelium-dependent hyperpolarization of the rat main mesenteric artery. J Physiol 1997; 501 ( Pt 2):331-41. [PMID: 9192305 PMCID: PMC1159481 DOI: 10.1111/j.1469-7793.1997.331bn.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The influence of different inhibitors of cytochrome P450 mono-oxygenase on the endothelium-dependent and -independent hyperpolarization in the isolated rat main mesenteric artery was investigated. 2. Application of acetylcholine (ACh; 1 microM) for 10 min evoked an endothelium-dependent peak hyperpolarization of about 18 mV followed by a partial recovery to a level 7 mV more negative than the resting value (-50.2 +/- 0.5 mV). 3. Proadifen (30 microM) completely and reversibly inhibited the ACh-induced hyperpolarization. Conversely, the imidazole antimycotics clotrimazole (30 microM) and miconazole (100 microM) had less effect on the peak endothelium-dependent hyperpolarization. The suicide substrate inhibitors 17-octadecynoic acid (17-ODYA; 5 microM) and 1-aminobenzotriazole (1-ABT; 2 mM) did not significantly influence endothelium-dependent hyperpolarization. 4. The endothelium-independent hyperpolarization (16 mV) evoked by leveromakalim (300 nM) was completely inhibited by proadifen as well as by clotrimazole and miconazole but was not affected by 17-ODYA or 1-ABT. 5. These results do not support the view that the ACh-induced endothelium-dependent hyperpolarization in the rat mesenteric artery is mediated by cytochrome P450 mono-oxygenase metabolites. Proadifen and imidazole antimycotics impair the activation of ATP-regulated K+ channels in mesenteric artery cells, rendering non-specific inhibition of smooth muscle K+ channel activation an alternative explanation for the inhibitory influence of some (but not all) P450 inhibitors on endothelium-dependent hyperpolarization in this preparation.
Collapse
Affiliation(s)
- B Vanheel
- Department of Physiology and Physiopathology, University of Gent, Belgium.
| | | |
Collapse
|
49
|
Tyml K, Song H, Munoz P, Ouellette Y. Evidence for K+ channels involvement in capillary sensing and for bidirectionality in capillary communication. Microvasc Res 1997; 53:245-53. [PMID: 9211402 DOI: 10.1006/mvre.1997.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the capillary sensing and communication phenomenon has been characterized, its mechanism is not clear. It has been hypothesized that capillary sensing involves a membrane potential change in the capillary endothelium and/or pericyte and that communication represents an electrotonic spread of this change along the capillary. The goal of the present study was to address this hypothesis by examining the presence of K+ channels on the capillary and by determining bidirectionality of communication. Using intravital microscopy, we locally applied K+ (100 mM), acetylcholine (ACh; 3 mM), and norepinephrine (NE; 0.3 mM) on capillaries, 400-500 microns downstream from the arteriole, at the surface of the sartorius muscle in anesthetized frogs. Responses were measured in terms of red blood cell velocity (VRBC) changes in the stimulated capillary (control prestimulation VRBC ranged from 110 to 770 microns/sec). K+ and ACh caused significant 19 and 38% increases in VRBC, while NE caused a -46% decrease, respectively. The K+ response was blocked by local pretreatment with K+ channel blocker BaCl2 (1 microM) and by pretreatment with tetraethyl ammonium chloride (TEA; 5 mM). Responses to ACh and NE were attenuated by pretreatment with 1 microM BaCl2 (to 1%) and with 50 mM TEA (to -25%), respectively. In a separate experiment, NE (3 mM) application on the capillary 500 microns away from the draining venule (capillary occluded) caused a 19% venular constriction (i.e., similar to a reported 21% arteriolar constriction caused by the NE stimulus). We concluded that (i) K+ channels were present on the capillary and (ii) capillary communication was bidirectional. We interpreted these results to be consistent with the above hypothesis of membrane potential change and electrotonic spread.
Collapse
Affiliation(s)
- K Tyml
- Department of Medical Biophysics, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
50
|
Weidelt T, Boldt W, Markwardt F. Acetylcholine-induced K+ currents in smooth muscle cells of intact rat small arteries. J Physiol 1997; 500 ( Pt 3):617-30. [PMID: 9161980 PMCID: PMC1159413 DOI: 10.1113/jphysiol.1997.sp022047] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The mechanism of the sustained acetylcholine-induced endothelium-dependent hyperpolarization (EDH) in intact rat small mesenteric arteries prestimulated with noradrenaline (10(-6) M) was investigated by means of the single microelectrode voltage-clamp method. 2. The vascular smooth muscle cells (VSMCs) in this preparation are poorly or even not coupled for the reasons that: (1) the mean input resistance Rlnp of the clamped vascular smooth muscle increases from 120 M omega under control conditions to 440 M omega after application of K+ channel blocking drugs, (2) the voltage relaxation after injection of hyperpolarizing currents has a monoexponential time course and is linearly dependent on Rlnp, and (3) voltage steps induced by current-clamp steps are not transferred to locations in the vascular musculature 120 microns apart from the current injecting microelectrode. 3. Sustained (> 5 min) application of ACh (10(-5) M) hyperpolarized the VSMCs by induction of a hyperpolarizing current. This effect was completely blocked by the inhibitor of the nitric oxide (NO) synthase L-NAME (10(-3) M) but not by the inhibitor of the soluble guanylate cyclase (sGCl) Methylene Blue (MB, 10(-4) M). 4. Application of the NO donor sodium nitroprusside (SNP, 10(-6) M) for more than 5 min mimicked the induction of the endothelium-dependent hyperpolarizing current in vessels with destroyed endothelium. The reversal potential of this current is dependent on the extracellular K+ concentration. The effect of SNP could also not be blocked by MB. 5. The blockers of ATP-dependent and Ca(2+)-dependent K+ channels, glibenclamide (Glb, 10(-5) M) and charybdotoxin (CTX, 5 x 10(-8) M), respectively, blocked a hyperpolarizing current in the VSMCs similar to the ACh- or SNP-induced current. 6. The isolated application of either Glb or CTX did not block the activation of the hyperpolarizing current by SNP. Only the combined administration of Glb and CTX blocked the SNP-induced current completely. 7. Our results suggest that in rat small mesenteric artery, ACh hyperpolarizes the VSMCs tonically by activating both ATP- and Ca(2+)-dependent K+ currents, only via release of NO from the endothelium without need for activation of the sGCl.
Collapse
Affiliation(s)
- T Weidelt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University, Halle, Germany.
| | | | | |
Collapse
|