1
|
Kumar K, Singh N, Yadav HN, Maslov L, Jaggi AS. Endless Journey of Adenosine Signaling in Cardioprotective Mechanism of Conditioning Techniques: Clinical Evidence. Curr Cardiol Rev 2023; 19:56-71. [PMID: 37309766 PMCID: PMC10636797 DOI: 10.2174/1573403x19666230612112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
Myocardial ischemic injury is a primary cause of death among various cardiovascular disorders. The condition occurs due to an interrupted supply of blood and vital nutrients (necessary for normal cellular activities and viability) to the myocardium, eventually leading to damage. Restoration of blood supply to ischemic tissue is noted to cause even more lethal reperfusion injury. Various strategies, including some conditioning techniques, like preconditioning and postconditioning, have been developed to check the detrimental effects of reperfusion injury. Many endogenous substances have been proposed to act as initiators, mediators, and end effectors of these conditioning techniques. Substances, like adenosine, bradykinin, acetylcholine, angiotensin, norepinephrine, opioids, etc., have been reported to mediate cardioprotective activity. Among these agents, adenosine has been widely studied and suggested to have the most pronounced cardioprotective effects. The current review article highlights the role of adenosine signaling in the cardioprotective mechanism of conditioning techniques. The article also provides an insight into various clinical studies that substantiate the applicability of adenosine as a cardioprotective agent in myocardial reperfusion injury.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leonid Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| |
Collapse
|
2
|
Precipitation of Inorganic Salts in Mitochondrial Matrix. MEMBRANES 2020; 10:membranes10050081. [PMID: 32349446 PMCID: PMC7281443 DOI: 10.3390/membranes10050081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022]
Abstract
In the mitochondrial matrix, there are insoluble, osmotically inactive complexes that maintain a constant pH and calcium concentration. In the present paper, we examine the properties of insoluble calcium and magnesium salts, such as phosphates, carbonates and polyphosphates, which might play this role. We find that non-stoichiometric, magnesium-rich carbonated apatite, with very low crystallinity, precipitates in the matrix under physiological conditions. Precipitated salt acts as pH buffer, and, hence, can contribute in maintaining ATP production in ischemic conditions, which delays irreversible damage to heart and brain cells after stroke.
Collapse
|
3
|
Dolowy K. Calcium phosphate buffer formed in the mitochondrial matrix during preconditioning supports ΔpH formation and ischemic ATP production and prolongs cell survival -A hypothesis. Mitochondrion 2018; 47:210-217. [PMID: 30448366 DOI: 10.1016/j.mito.2018.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/06/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Ischemic preconditioning makes cells less sensitive to oxygen deprivation. A similar effect can be achieved by increasing the calcium concentration and applying potassium channel openers. A hypothetical mechanism of preconditioning is presented. In the mitochondrial matrix, there is a calcium hydroxide buffer consisting of a few insoluble calcium phosphate minerals. During ischemia, calcium ions stored in the matrix buffer start to leak out, forming an electric potential difference, while hydroxyl ions remain in the matrix, maintaining its pH and the matrix volume. Preconditioning factors increase the matrix buffer capacity. Production of ATP during ischemia might be the relic of a pre-endosymbiotic past.
Collapse
Affiliation(s)
- Krzysztof Dolowy
- Department of Biophysics, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, Warszawa 02-776, Poland.
| |
Collapse
|
4
|
Jovanović A. Cardioprotective signalling: Past, present and future. Eur J Pharmacol 2018; 833:314-319. [PMID: 29935170 DOI: 10.1016/j.ejphar.2018.06.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 11/29/2022]
Abstract
A few decades ago, cardiac muscle was discovered to possess signalling pathways that, when activated, protect the myocardium against the damage induced by ischaemia-reperfusion. The ability of cardiac muscle to protect itself against injury has been termed 'cardioprotection'. Many compounds and procedures can trigger cardioprotection including conditionings (exposure to brief episodes of ischaemia-reperfusion to protect against sustained ischaemia-reperfusion), hypoxia, adenosine, acetylcholine, adrenomedullin, angiotensin, bradykinin, catecholamines, endothelin, estrogens, phenylephrine, opioids, testosterone, and many more. These triggers activate many intracellular signalling factors including protein kinases, different enzymes, transcription factors and defined signalling pathways to target structures in mitochondria, sarcoplasmic reticulum, nucleus and sarcolemma to mediate cardioprotection. Although a lot of information about cardioprotection has been acquired, there are still two major outstanding issues to be addressed in the future 1) better understanding of spatio-temporal relationships between signalling elements, and; 2) devising therapeutic strategies against myocardial diseases based on cardioprotective signalling. Further research is required to paint integral picture of cardioprotective signalling and more clinical studies are required to properly test clinical efficacy and safety of potential cardioprotective strategies. Therapies against cardiac diseases based on cardioprotective strategies would be a perfect adjunct to current therapeutic strategies based on restitution of coronary blood flow and regulation of myocardial metabolic demands.
Collapse
Affiliation(s)
- Aleksandar Jovanović
- University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, CY-1700 Nicosia, Cyprus.
| |
Collapse
|
5
|
Simonovic N, Jeremic J. Role of Calcium Channel Blockers in Myocardial Preconditioning. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2017. [DOI: 10.1515/sjecr-2016-0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Coronary heart disease is the leading cause of mortality and morbidity worldwide. The effects of coronary heart disease are usually attributable to the detrimental effects of acute myocardial ischaemia-reperfusion injury. Newer strategies such as ischaemic or pharmacological preconditioning have been shown to condition the myocardium to ischaemia-reperfusion injury and thus reduce the final infarct size. This review investigates the role of calcium channel blockers in myocardial preconditioning. Additionally, special attention is given to nicorandil whose mechanism of action may be associated with the cardioprotective effects of preconditioning. There are still many uncertainties in understanding the role of these agents in preconditioning, but future research in this direction will certainly help reduce coronary heart disease.
Collapse
Affiliation(s)
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| |
Collapse
|
6
|
Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits. Redox Biol 2017; 13:235-243. [PMID: 28595161 PMCID: PMC5460745 DOI: 10.1016/j.redox.2017.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Finite disarrangements of important (vital) physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term “mirror J-shaped curves” for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise). Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents.
Collapse
|
7
|
Abstract
We showed that exercise induces early and late myocardial preconditioning in dogs and that these effects are mediated through nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase activation. As the intracoronary administration of calcium induces preconditioning and exercise enhances the calcium inflow to the cell, we studied if this effect of exercise triggers exercise preconditioning independently of its hemodynamic effects. We analyzed in 81 dogs the effect of blocking sarcolemmal L-type Ca channels with a low dose of verapamil on early and late preconditioning by exercise, and in other 50 dogs, we studied the effect of verapamil on NADPH oxidase activation in early exercise preconditioning. Exercise reduced myocardial infarct size by 76% and 52% (early and late windows respectively; P < 0.001 both), and these effects were abolished by a single low dose of verapamil given before exercise. This dose of verapamil did not modify the effect of exercise on metabolic and hemodynamic parameters. In addition, verapamil blocked the activation of NADPH oxidase during early preconditioning. The protective effect of exercise preconditioning on myocardial infarct size is triggered, at least in part, by calcium inflow increase to the cell during exercise and, during the early window, is mediated by NADPH oxidase activation.
Collapse
|
8
|
Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. J Neurosci 2013; 33:7513-25. [PMID: 23616556 DOI: 10.1523/jneurosci.4559-12.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intracellular Ca(2+) is a key regulator of life or death decisions in cultured neurons and sensory cells. The role of Ca(2+) in these processes is less clear in vivo, as the location of these cells often impedes visualization of intracellular Ca(2+) dynamics. We generated transgenic zebrafish lines that express the genetically encoded Ca(2+) indicator GCaMP in mechanosensory hair cells of the lateral line. These lines allow us to monitor intracellular Ca(2+) dynamics in real time during aminoglycoside-induced hair cell death. After exposure of live larvae to aminoglycosides, dying hair cells undergo a transient increase in intracellular Ca(2+) that occurs shortly after mitochondrial membrane potential collapse. Inhibition of intracellular Ca(2+) elevation through either caged chelators or pharmacological inhibitors of Ca(2+) effectors mitigates toxic effects of aminoglycoside exposure. Conversely, artificial elevation of intracellular Ca(2+) by caged Ca(2+) release agents sensitizes hair cells to the toxic effects of aminoglycosides. These data suggest that alterations in intracellular Ca(2+) homeostasis play an essential role in aminoglycoside-induced hair cell death, and indicate several potential therapeutic targets to stem ototoxicity.
Collapse
|
9
|
Lu G, Ashraf M, Haider KH. Insulin-like growth factor-1 preconditioning accentuates intrinsic survival mechanism in stem cells to resist ischemic injury by orchestrating protein kinase cα-erk1/2 activation. Antioxid Redox Signal 2012; 16:217-27. [PMID: 21923556 PMCID: PMC3263485 DOI: 10.1089/ars.2011.4112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS To test our hypothesis that the intrinsic molecular mechanism in stem cells for adaptation to ischemia is accentuated by preconditioning with insulin-like growth factor (IGF-1). RESULTS Bone marrow Sca-1(+) cells were exposed to oxygen and glucose deprivation (OGD) for up to 12 h. Erk1/2 was activated in Sca-1(+) cells under OGD which was blocked by MEK inhibitor (PD98059) and resulted in accelerated cell death. Moreover, elevated intracellular calcium with concomitant activation of protein kinase C (PKC) was observed under OGD. Pretreatment with nifedipine or dantrolene reduced cellular calcium, abrogated PKC and Erk1/2 activation, and increased cytotoxicity. Treatment with phorbol 12-myristate 13-acetate (PMA) for 30 min (short-term) activated Erk1/2, whereas 12 h (long-term) PMA treatment abrogated PKCα, reduced Erk1/2 activation and significantly increased cell death under OGD. These results were confirmed by loss-of-function studies using PKCα and Erk1/2 specific small interfering RNA. Gain-of-function studies with PKCα plasmid transfection improved cell survival under OGD. Preconditioning with 100 nM IGF-1 accentuated the intrinsic mechanism of resistance of the cells to ischemia via Erk1/2 activation and improved their survival under OGD as well as post-transplantation in an experimentally infarcted heart. INNOVATION Strategies to target intrinsic survival mechanism in stem cells by growth factor preconditioning to enhance their survival via activation of PKCα and Erk1/2 are innovative. CONCLUSIONS Intracellular calcium elevation under OGD activated PKCα and Erk1/2 as a part of the intrinsic prosurvival mechanism that was accentuated during preconditioning with IGF-1 to protect Sca-1(+) cells from ischemic injury.
Collapse
Affiliation(s)
- Gang Lu
- Department of Pathology, University of Cincinnati, Ohio, USA
| | | | | |
Collapse
|
10
|
Beharier O, Dror S, Levy S, Kahn J, Mor M, Etzion S, Gitler D, Katz A, Muslin AJ, Moran A, Etzion Y. ZnT-1 protects HL-1 cells from simulated ischemia–reperfusion through activation of Ras–ERK signaling. J Mol Med (Berl) 2011; 90:127-38. [DOI: 10.1007/s00109-011-0845-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 12/04/2011] [Accepted: 12/06/2011] [Indexed: 01/19/2023]
|
11
|
Lasukova TV, Maslov LN, Nizkodubova SW, Gorbunov AS, Zibulnikov SY. Role of Intracellular Calcium and Cyclic Nucleotides in Realization of Cardioprotective Effects of δ(1)- and κ(1)-Opioid Receptor Agonists. Bull Exp Biol Med 2011; 148:877-80. [PMID: 21116495 DOI: 10.1007/s10517-010-0840-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The role of cyclic nucleotides (cAMP, cGMP) and Ca(2+)-ATPase of the sarcoplasmic reticulum in the mechanism of cardioprotective effects of selective δ(1)- and κ(1)-opioid receptor agonists DPDPE and U-50488 was studied under conditions of global ischemia and reperfusion of isolated and perfused rat heart. Activation of both types of opioid receptors 2-fold reduced the reperfusion release of creatine phosphokinase. The cardioprotective effect of U-50488 was paralleled by a 2-fold decrease in cAMP content in the myocardium, while DPDPE did not modify the content of cAMP throughout the experiment. None of these substances changed the content of cGMP in the myocardium. The cardioprotective effect of DPDPE was not observed after inhibition of sarcoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid. The cardioprotective effect of U-50488 was associated with reduction of cAMP level in the myocardium, while the cytoprotective effect of DPDPE was mediated by opioidergic modulation of Ca(2+) transport at the level of the sarcoplasmic reticulum.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Calcium/metabolism
- Cyclic AMP/metabolism
- Cyclic GMP/metabolism
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Heart/drug effects
- Indoles/pharmacology
- Male
- Myocardium/metabolism
- Nucleotides, Cyclic/metabolism
- Rats
- Rats, Wistar
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Sarcoplasmic Reticulum/drug effects
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
Collapse
Affiliation(s)
- T V Lasukova
- Department of Biomedical Disciplines, Tomsk State Pedagogical University, Russia.
| | | | | | | | | |
Collapse
|
12
|
González G, Zaldívar D, Carrillo E, Hernández A, García M, Sánchez J. Pharmacological preconditioning by diazoxide downregulates cardiac L-type Ca(2+) channels. Br J Pharmacol 2010; 161:1172-85. [PMID: 20636393 PMCID: PMC2998696 DOI: 10.1111/j.1476-5381.2010.00960.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 05/18/2010] [Accepted: 06/29/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological preconditioning (PPC) with mitochondrial ATP-sensitive K(+) (mitoK(ATP) ) channel openers such as diazoxide, leads to cardioprotection against ischaemia. However, effects on Ca(2+) homeostasis during PPC, particularly changes in Ca(2+) channel activity, are poorly understood. We investigated the effects of PPC on cardiac L-type Ca(2+) channels. EXPERIMENTAL APPROACH PPC was induced in isolated hearts and enzymatically dissociated cardiomyocytes from adult rats by preincubation with diazoxide. We measured reactive oxygen species (ROS) production and Ca(2+) signals associated with action potentials using fluorescent probes, and L-type currents using a whole-cell patch-clamp technique. Levels of the α(1c) subunit of L-type channels in the cellular membrane were measured by Western blot. KEY RESULTS PPC was accompanied by a 50% reduction in α(1c) subunit levels, and by a reversible fall in L-type current amplitude and Ca(2+) transients. These effects were prevented by the ROS scavenger N-acetyl-L-cysteine (NAC), or by the mitoK(ATP) channel blocker 5-hydroxydecanoate (5-HD). PPC significantly reduced infarct size, an effect blocked by NAC and 5-HD. Nifedipine also conferred protection against infarction when applied during the reperfusion period. Downregulation of the α(1c) subunit and Ca(2+) channel function were prevented in part by the protease inhibitor leupeptin. CONCLUSIONS AND IMPLICATIONS PPC downregulated the α(1c) subunit, possibly through ROS. Downregulation involved increased degradation of the Ca(2+) channel, which in turn reduced Ca(2+) influx, which may attenuate Ca(2+) overload during reperfusion.
Collapse
Affiliation(s)
- G González
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N. México, México
| | | | | | | | | | | |
Collapse
|
13
|
Saklani R, Jaggi A, Singh N. Pharmacological preconditioning by milrinone: Memory preserving and neuroprotective effect in ischemia-reperfusion injury in mice. Arch Pharm Res 2010; 33:1049-57. [DOI: 10.1007/s12272-010-0711-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/05/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
|
14
|
The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int J Cell Biol 2010; 2010:546163. [PMID: 20300548 PMCID: PMC2838366 DOI: 10.1155/2010/546163] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/15/2009] [Accepted: 01/06/2010] [Indexed: 02/07/2023] Open
Abstract
Ca(2+) is an important second messenger participating in many cellular activities; when physicochemical insults deregulate its delicate homeostasis, it acts as an intrinsic stressor, producing/increasing cell damage. Damage elicits both repair and death responses; intriguingly, in those responses Ca(2+) also participates as second messenger. This delineates a dual role for Ca(2+) in cell stress, making difficult to separate the different and multiple mechanisms required for Ca(2+)-mediated control of cell survival and apoptosis. Here we attempt to disentangle the two scenarios, examining on the one side, the events implicated in deregulated Ca(2+) toxicity and the mechanisms through which this elicits reparative or death pathways; on the other, reviewing the role of Ca(2+) as a messenger in the transduction of these same signaling events.
Collapse
|
15
|
KAUR S, REHNI AK, SINGH N, JAGGI AS. Studies on Cerebral Protection of Digoxin against Ischemia/Reperfusion Injury in Mice. YAKUGAKU ZASSHI 2009; 129:435-43. [DOI: 10.1248/yakushi.129.435] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shaminder KAUR
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University
| | - Ashish K. REHNI
- Chitkara College of Pharmacy, Chandigarh-Patiala National Highway
| | - Nirmal SINGH
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University
| | - Amteshwar S. JAGGI
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University
| |
Collapse
|
16
|
Kashihara T, Nakayama K, Matsuda T, Baba A, Ishikawa T. Role of Na+/Ca2+ Exchanger–Mediated Ca2+ Entry in Pressure-Induced Myogenic Constriction in Rat Posterior Cerebral Arteries. J Pharmacol Sci 2009; 110:218-22. [DOI: 10.1254/jphs.09054sc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Li H, Shi S, Sun YH, Zhao YJ, Li QF, Li HZ, Wang R, Xu CQ. Dopamine D2 receptor stimulation inhibits angiotensin II-induced hypertrophy in cultured neonatal rat ventricular myocytes. Clin Exp Pharmacol Physiol 2008; 36:312-8. [PMID: 18986329 DOI: 10.1111/j.1440-1681.2008.05064.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Myocardial hypertrophy is a common pathological change that accompanies cardiovascular disease. Dopamine D2 receptors have been demonstrated in cardiovascular tissues. However, the pathophysiological involvement of D2 receptors in myocardial hypertrophy is unclear. Therefore, the effects of the D2 receptor agonist bromocriptine and the D2 receptor antagonist haloperidol on angiotensin (Ang) II- or endothelin (ET)-1-induced hypertrophy of cultured neonatal rat ventricular myocytes were investigated in the present study. 2. Protein content and protein synthesis, determined by examining [(3)H]-leucine uptake, were used as estimates of cardiomyocyte hypertrophy. The expression of D2 receptor protein in neonatal rat ventricular myocytes was determined using western blotting. Changes in [Ca(2+)](i) in cardiomyocytes were observed by laser scanning confocal microscopy. 3. Angiotensin II and ET-1, both at 10 nmol/L, induced myocyte hypertrophy, as demonstrated by increased protein content and synthesis, [Ca(2+)](i) levels, protein kinase C (PKC) activity and phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase and mitogen-activated protein kinase (MAPK) p38 (p38). Concomitant treatment of cells with 10 nmol/L AngII plus 10 micromol/L bromocriptine significantly inhibited cardiomyocyte hypertrophy, MAPK phosphorylation and PKC activity in the membrane, as well as [Ca(2+)](i) signalling pathways, compared with the effects of AngII alone. In addition, 10 micromol/L bromocriptine significantly inhibited cardiomyocyte hypertrophy induced by 10 nmol/L ET-1. However, pretreatment with haloperidol (10 micromol/L) had no significant effects on cardiomyocyte hypertrophy induced by either AngII or ET-1. 4. In conclusion, D2 receptor stimulation inhibits AngII-induced hypertrophy of cultured neonatal rat ventricular myocytes via inhibition of MAPK, PKC and [Ca(2+)](i) signalling pathways.
Collapse
Affiliation(s)
- Hong Li
- Department of Pathophysiology, Second Affiliated Hospital of Harbin Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gong B, Bell B, Boor PJ, Albrecht TB, Asimakis GK, Motamedi M. Cardiac Preconditioning With Local Laser-Induced Hyperthermia. J Surg Res 2008; 149:177-83. [DOI: 10.1016/j.jss.2008.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 02/05/2008] [Accepted: 02/17/2008] [Indexed: 11/29/2022]
|
19
|
du Toit EF, Genis A, Opie LH, Pollesello P, Lochner A. A role for the RISK pathway and K(ATP) channels in pre- and post-conditioning induced by levosimendan in the isolated guinea pig heart. Br J Pharmacol 2008; 154:41-50. [PMID: 18297097 DOI: 10.1038/bjp.2008.52] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Myocardial reperfusion injury prevents optimal salvage of the ischaemic myocardium, and adjunct therapy that would significantly reduce reperfusion injury is still lacking. We investigated whether (1) the heart could be pre- and/or post-conditioned using levosimendan (levosimendan pre-conditioning (LPC) and levosimendan post-conditioning (LPostC)) and (2) the prosurvival kinases and/or the sarcolemmal or mitochondrial K(ATP) channels are involved. EXPERIMENTAL APPROACH Isolated guinea pig hearts were treated with two 5 min cycles of levosimendan (0.1 microM) interspersed with vehicle perfusion, or two 5 min cycles of ischaemia/reperfusion, before coronary artery ligation (CAL) for 40 min at 36.5 degrees C. Hearts were treated with mitochondrial or sarcolemmal K(ATP) channel blockers before LPC or LPostC. For post-conditioning, hearts received three 30 s cycles of ischaemia/reperfusion or levosimendan/vehicle. Hearts were pretreated with levosimendan immediately before CAL (without washout). Cardiac function, infarct size and reperfusion injury salvage kinase activity was assessed. KEY RESULTS LPC and LPostC halved the infarct size compared with controls (P<0.05). Treatment with K(ATP) channel blockers before LPC or LPostC reversed this decrease. Pretreating hearts with levosimendan increased activity of extracellular signal-regulated kinase (ERK) 42/44 on reperfusion and had the most marked infarct-lowering effect (P<0.05). CONCLUSIONS AND IMPLICATIONS (1) Hearts could be pharmacologically pre- and post-conditioned with levosimendan; (2) levosimendan pretreatment is the most effective way to reduce infarct size, possibly by increasing ERK 42/44 activity; (3) benefits of LPC and LPostC were abolished by both K(ATP) channel blockers and (4) LPC may be useful before elective cardiac surgery, whereas LPostC may be used after acute coronary artery events.
Collapse
Affiliation(s)
- E F du Toit
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Stellenbosch, Western Cape, South Africa.
| | | | | | | | | |
Collapse
|
20
|
Bouwman RA, Musters RJP, van Beek-Harmsen BJ, de Lange JJ, Lamberts RR, Loer SA, Boer C. Sevoflurane-induced cardioprotection depends on PKC-alpha activation via production of reactive oxygen species. Br J Anaesth 2007; 99:639-45. [PMID: 17905752 DOI: 10.1093/bja/aem202] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We previously demonstrated the involvement of the Ca2+-independent protein kinase C-delta (PKC-delta) isoform in sevoflurane-induced cardioprotection against ischaemia and reperfusion (I/R) injury. Since sevoflurane is known to modulate myocardial Ca2+-handling directly, in this study we investigated the role of the Ca2+-dependent PKC-alpha isoform in sevoflurane-induced cardioprotective signalling in relation to reactive oxygen species (ROS), adenosine triphosphate-sensitive mitochondrial K+ (mitoK+(ATP)) channels, and PKC-delta. METHODS Preconditioned (15 min 3.8 vol% sevoflurane) isolated rat right ventricular trabeculae were subjected to I/R, consisting of 40 min superfusion with hypoxic, glucose-free buffer, followed by normoxic glucose-containing buffer for 60 min. After reperfusion, contractile recovery was expressed as percentage of force development before I/R. The role of PKC-alpha, ROS, mitoK+(ATP) channels, and PKC-delta was established using the following pharmacological inhibitors: Go6976 (GO; 50 nM), n-(2-mercaptopropionyl)-glycine (MPG; 300 microM), 5-hydroxydecanoic acid sodium (5HD; 100 microM), and rottlerin (ROT; 1 microM). RESULTS Preconditioning of trabeculae with sevoflurane improved contractile recovery after I/R [65 (3)% (I/R + SEVO) vs 47 (3)% (I/R); n = 8; P < 0.05]. This cardioprotective effect was attenuated in trabeculae treated with GO [42 (4)% (I/R + SEVO + GO); P > 0.05 vs (I/R)]. In sevoflurane-treated trabeculae, PKC-alpha translocated towards mitochondria, as shown by immunofluorescent co-localization analysis. GO and MPG, but not 5HD or ROT, abolished this translocation. CONCLUSIONS Sevoflurane improves post-ischaemic contractile recovery via activation of PKC-alpha. ROS production, but not opening of mitoK+(ATP) channels, precedes PKC-alpha translocation towards mitochondria. This study shows the involvement of Ca2+-dependent PKC-alpha in addition to the well-established role of Ca2+-independent PKC isoforms in sevoflurane-induced cardioprotection.
Collapse
Affiliation(s)
- R A Bouwman
- VU University Medical Center (VUMC), Department of Anaesthesiology, Institute for Cardiovascular Research Vrije Universiteit (ICaR-VU), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang WH, Lu FH, Zhao YJ, Wang LN, Tian Y, Pan ZW, Lv YJ, Wang YL, Du LJ, Sun ZR, Yang BF, Wang R, Xu CQ. Post-conditioning protects rat cardiomyocytes via PKCε-mediated calcium-sensing receptors. Biochem Biophys Res Commun 2007; 361:659-64. [PMID: 17673178 DOI: 10.1016/j.bbrc.2007.07.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 07/15/2007] [Indexed: 02/02/2023]
Abstract
Protein kinase C (PKC) plays a role in cardioprotection through reduction of intracellular Ca(2+) concentration [Ca(2+)](i) during ischemic preconditioning (IPC). Cardioprotection against ischemic post-conditioning (PC) could be associated with reduced [Ca(2+)](i) through PKC. The calcium-sensing receptor (CaR), G protein-coupled receptor, causes accumulation of inositol phosphate (IP) to increase the release of intracellular Ca(2+). However, this phenomenon can be negatively regulated by PKC through phosphorylation of Thr-888 of the CaR. This study tested the hypothesis that the prevention of cardiomyocyte damage by PC is associated with [Ca(2+)](i) reduction through an interaction of PKC with the CaR. Isolated rat hearts were subjected to 40min of ischemia followed by 90min of reperfusion. The hearts were post-conditioned after the 40min of ischemia by three cycles of 30s of reperfusion and 30s of re-ischemia applied before the 90min of reperfusion. Immunolocalization of PKCepsilon in the cell membrane was observed with IPC and PC, and in hearts exposed to GdCl(3) during PC. CaR was expressed in cardiac cell membrane and interacted with PKC in IPC, PC, and exposure to GdCl(3) during PC groups. On laser confocal microscopy, intracellular Ca(2+) was significantly decreased with IPC, PC, and exposure to GdCl(3) during PC compared with the I/R and PKC inhibitor groups, and cell structure was better preserved and promoted the recovery of cardiac function after reperfusion in the same groups. These results suggested that PKC is involved in cardioprotection against PC through negative feedback of a CaR-mediated reduction in [Ca(2+)](i).
Collapse
Affiliation(s)
- Wei-Hua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Khaliulin I, Clarke SJ, Lin H, Parker J, Suleiman MS, Halestrap AP. Temperature preconditioning of isolated rat hearts--a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore. J Physiol 2007; 581:1147-61. [PMID: 17395631 PMCID: PMC1976396 DOI: 10.1113/jphysiol.2007.130369] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 03/27/2007] [Indexed: 01/29/2023] Open
Abstract
We investigate whether temperature preconditioning (TP), induced by short-term hypothermic perfusion and rewarming, may protect hearts against ischaemic/reperfusion injury like ischaemic preconditioning (IP). Isolated rat hearts were perfused for 40 min, followed by 25 min global ischaemia and 60 min reperfusion (37 degrees C). During pre-ischaemia, IP hearts underwent three cycles of 2 min global ischaemia and 3 min reperfusion at 37 degrees C, whereas TP hearts received three cycles of 2 min hypothermic perfusion (26 degrees C) interspersed by 3 min normothermic perfusion. Other hearts received a single 6 min hypothermic perfusion (SHP) before ischaemia. Both IP and TP protocols increased levels of high energy phosphates in the pre-ischaemic heart. During reperfusion, TP improved haemodynamic recovery, decreased arrhythmias and reduced necrotic damage (lactate dehydrogenase release) more than IP or SHP. Measurements of tissue NAD+ levels and calcium-induced swelling of mitochondria isolated at 3 min reperfusion were consistent with greater inhibition of the mitochondrial permeability transition at reperfusion by TP than IP; this correlated with decreased protein carbonylation, a surrogate marker for oxidative stress. TP increased protein kinase Cepsilon (PKCepsilon) translocation to the particulate fraction and pretreatment with chelerythrine (PKC inhibitor) blocked the protective effect of TP. TP also increased phosphorylation of AMP-activated protein kinase (AMPK) after 5 min index ischaemia, but not before ischaemia. Compound C (AMPK inhibitor) partially blocked cardioprotection by TP, suggesting that both PKC and AMPK may mediate the effects of TP. The presence of N-(2-mercaptopropionyl) glycine during TP also abolished cardioprotection, indicating an involvement of free radicals in the signalling mechanism.
Collapse
Affiliation(s)
- Igor Khaliulin
- Department of Biochemistry, Bristol Heart Institute, University of Bristol, UK
| | | | | | | | | | | |
Collapse
|
23
|
Minguet G, Joris J, Lamy M. Preconditioning and protection against ischaemia-reperfusion in non-cardiac organs: a place for volatile anaesthetics? Eur J Anaesthesiol 2007; 24:733-45. [PMID: 17555610 DOI: 10.1017/s0265021507000531] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is an increasing body of evidence that volatile anaesthetics protect myocardium against ischaemic insult by a mechanism termed 'anaesthetic preconditioning'. Anaesthetic preconditioning and ischaemic preconditioning share several common mechanisms of action. Since ischaemic preconditioning has been demonstrated in organs other than the heart, anaesthetic preconditioning might also apply in these organs and have significant clinical applications in surgical procedures carrying a high risk of ischaemia-reperfusion injury. After a brief review on myocardial preconditioning, experimental and clinical data on preconditioning in non-cardiac tissues will be presented. Potential benefits of anaesthetic preconditioning during non-cardiac surgery will be addressed.
Collapse
Affiliation(s)
- G Minguet
- University of Liège, Department of Anaesthesia and Intensive Care Medicine, Belgium.
| | | | | |
Collapse
|
24
|
Dhalla NS, Saini HK, Tappia PS, Sethi R, Mengi SA, Gupta SK. Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J Cardiovasc Med (Hagerstown) 2007; 8:238-50. [PMID: 17413299 DOI: 10.2459/01.jcm.0000263489.13479.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several studies have revealed varying degrees of changes in sarcoplasmic reticular and myofibrillar activities, protein content, gene expression and intracellular Ca-handling during cardiac dysfunction due to ischemia-reperfusion (I/R); however, relatively little is known about the sarcolemmal and mitochondrial alterations, as well as their mechanisms in the I/R hearts. Because I/R is associated with oxidative stress and intracellular Ca-overload, it has been indicated that changes in subcellular activities, protein content and gene expression due to I/R are related to both oxidative stress and Ca-overload. Intracellular Ca-overload appears to induce changes in subcellular activities, protein contents and gene expression (subcellular remodeling) by activation of proteases and phospholipases, as well as by affecting the genetic apparatus, whereas oxidative stress is considered to cause oxidation of functional groups of different subcellular proteins in addition to modifying the genetic machinery. Ischemic preconditioning, which is known to depress the development of both intracellular Ca-overload and oxidative stress due to I/R, was observed to attenuate the I/R-induced subcellular remodeling and improve cardiac performance. It is suggested that a combination therapy with antioxidants and interventions, which reduce the development of intracellular Ca-overload, may improve cardiac function by preventing or attenuating the occurrence of subcellular remodeling due to ischemic heart disease. It is proposed that defects in the activities of subcellular organelles may serve as underlying mechanisms for I/R-induced cardiac dysfunction under acute conditions, whereas subcellular remodeling due to alterations in gene expression may explain the impaired cardiac performance under chronic conditions of I/R.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, and Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | |
Collapse
|
25
|
Hofgaard JP, Sigurdardottir KS, Treiman M. Protection by 6-aminonicotinamide against oxidative stress in cardiac cells. Pharmacol Res 2006; 54:303-10. [PMID: 16879976 DOI: 10.1016/j.phrs.2006.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 05/18/2006] [Accepted: 06/13/2006] [Indexed: 11/18/2022]
Abstract
Oxidative stress at the time of reperfusion is a major aspect of ischemia-reperfusion injury in heart as well as in other organs. There is a continuing interest in development of pharmacological approaches to alleviate this injury. 6-Aminonicotinamide (6AN) has been shown to diminish myocardial necrosis following global ischemia in an isolated rat heart, apparently by limiting the oxidative injury component. We therefore explored the antioxidative potential of 6AN in a model using H9C2(2-1) rat cardiac myoblasts exposed to H2O2 stress. Dependent on the specific protocol, 6AN pretreatment for 6-23 h resulted in a strongly increased cell survival: from 11% to 16% in untreated cells to 56-75% following 6AN treatment. This 6AN-mediated protection was associated with a modest increase (up to 55%) of the cytosolic free Ca2+, and was blocked by ryanodine, but not by verapamil or nifedipine. The protective effect of 6AN was associated with a decrease in total cell content of the reduced glutathione (GSH) by 15-44%, indicative of an oxidative shift in the GSH/GSSG system redox potential. We propose that this redox shift caused an increased Ca2+ leak through ryanodine receptors, reflecting their known sensitivity to redox modulation. In turn, this Ca2+ redistribution appeared to trigger a state of an enhanced antioxidative resistance, somewhat analogous to the phenomenon of Ca2+ preconditioning. Similar to some of the cases of Ca2+ preconditioning, this protected state involved the activity of Ca2+ -independent, but not of Ca2+ -dependent, isoform(s) of protein kinase C.
Collapse
Affiliation(s)
- Johannes P Hofgaard
- Department of Medical Physiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, The Panum Institute 12.5, Blegdamsvej 3, Copenhagen N, Denmark
| | | | | |
Collapse
|
26
|
Garlid KD, Puddu PE, Pasdois P, Costa ADT, Beauvoit B, Criniti A, Tariosse L, Diolez P, Dos Santos P. Inhibition of cardiac contractility by 5-hydroxydecanoate and tetraphenylphosphonium ion: a possible role of mitoKATP in response to inotropic stress. Am J Physiol Heart Circ Physiol 2006; 291:H152-60. [PMID: 16473956 DOI: 10.1152/ajpheart.01233.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study investigates the role of the mitochondrial ATP-sensitive K+ channel (mitoKATP) in response to positive inotropic stress. In Langendorff-perfused rat hearts, inotropy was induced by increasing perfusate calcium to 4 mM, by adding 80 microM ouabain or 0.25 microM dobutamine. Each of these treatments resulted in a sustained increase in rate-pressure product (RPP) of approximately 60%. Inhibition of mitoKATP by perfusion of 5-hydroxydecanoate (5-HD) or tetraphenylphosphonium before induction of inotropic stress resulted in a marked attenuation of RPP. Inhibition of mitoKATP after induction of stress caused the inability of the heart to maintain a high-work state. In human atrial fibers, the increase in contractility induced by dobutamine was inhibited 60% by 5-HD. In permeabilized fibers from the Langendorff-perfused rat hearts, inhibition of mitoKATP resulted, in all cases, in an alteration of adenine nucleotide compartmentation, as reflected by a 60% decrease in the half-saturation constant for ADP [K1/2 (ADP)]. We conclude that opening of cardiac mitoKATP is essential for an appropriate response to positive inotropic stress and propose that its involvement proceeds through the prevention of stress-induced decrease in mitochondrial matrix volume. These results indicate a physiological role for mitoKATP in inotropy and, by extension, in heart failure.
Collapse
|
27
|
Tepperman BL, Soper BD, Chang Q. Effect of protein kinase C activation on intracellular Ca2+ signaling and integrity of intestinal epithelial cells. Eur J Pharmacol 2005; 518:1-9. [PMID: 16005455 DOI: 10.1016/j.ejphar.2005.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 11/22/2022]
Abstract
Protein kinase C (PKC) activation and increases in cytosolic Ca(2+) cause intestinal injury. Since PKC activation can alter Ca(2+) homeostasis and increase Ca(2+) levels, we examined the effects of PKC activation on intestinal cellular integrity and the role of Ca(2+) signaling in this response. The epithelial cell line, IEC-18 was incubated with the PKC activator phorbol myristate acetate (PMA; 0.1-1.0 microM). In some experiments, cells were incubated in Ca(2+)-free medium. PMA treatment produced a concentration-dependent increase in cell injury and PKC activity. This response was attenuated by addition of the pan-specific PKC inhibitor, GF 109203X. Furthermore, cell viability was maintained in cells preincubated with PKC isoform-specific inhibitors to PKCalpha, PKCdelta and PKCepsilon. Cell injury was also reduced if cells were incubated in Ca(2+)-free medium or in the presence of the Ca(2+) channel antagonist, verapamil or the intracellular chelator BAPTA-AM. PMA, but not the inactive phorbol ester, 4alphaPMA, induced a dose-dependent increase in cellular Ca(2+) that was characterized by a rapid, transient spike followed by a tonic plateau phase which approximated control levels. These responses were eliminated by the addition of BAPTA-AM. Furthermore the increase in the Ca(2+) spike was reduced or eliminated by co-incubation with the PKCdelta antagonist, rottlerin. Inhibition of PKCalpha or PKCepsilon was less effective or ineffective in this regard. These data suggest that PKC activation via PMA challenge affects the integrity of rat intestinal epithelial cells. PKCdelta, but not PKCepsilon or PKCalpha activation appears to mediate this effect via an increase in cellular Ca(2+).
Collapse
Affiliation(s)
- Barry L Tepperman
- Department of Physiology and Pharmacology, University of Western Ontario, London Ontario, Canada N6A 5C1.
| | | | | |
Collapse
|
28
|
Wang Y, Haider HK, Ahmad N, Ashraf M. Mechanisms by which KATP channel openers produce acute and delayed cardioprotection. Vascul Pharmacol 2005; 42:253-64. [PMID: 15922258 DOI: 10.1016/j.vph.2005.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mitochondria are being increasingly studied for their critical role in cell survival. Multiple diverse signaling pathways have been shown to converge on the K+-sensitive ATP channels as the effectors of cytoprotection against necrosis and apoptosis. The role of potassium channel openers in regulation and transformation of cell membrane excitability, action potential and electrolyte transfer has been extensively studied. Cardiac mitoK(ATP) channels are the key effectors in cardioprotection during ischemic preconditioning, as yet with an undefined mechanism. They have been hypothesized to couple myocardial metabolism with membrane electrical activity and provide an excellent target for drug therapy. A number of K(ATP) channel openers have been characterized for their beneficial effects on the myocardium against ischemic injury. This review updates recent progress in understanding the physiological role of K(ATP) channels in cardiac protection induced by preconditioning and highlights relevant questions and controversies in the light of published data.
Collapse
Affiliation(s)
- Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | | | | | | |
Collapse
|
29
|
Pastukh V, Wu S, Ricci C, Mozaffari M, Schaffer S. Reversal of hyperglycemic preconditioning by angiotensin II: role of calcium transport. Am J Physiol Heart Circ Physiol 2004; 288:H1965-75. [PMID: 15604129 DOI: 10.1152/ajpheart.00855.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myocardial cell death is an important contributor to the development of diabetic cardiomyopathy. It has been proposed that diabetes-mediated upregulation of the renin-angiotensin system leads to oxidative stress, the trigger for cardiomyocyte death and contractile dysfunction. However, the adverse effect of ANG II on the diabetic heart may extend beyond the development of the cardiomyopathy. ANG II also alters specific modulators of ischemic injury, such as PKC and calcium transport. Therefore, the present study examined the effect of ANG II on hyperglycemic preconditioning, a glucose-mediated condition associated with the elevation of PKC activity and alterations in calcium transport that render the cell resistant to hypoxia. Exposure of the glucose-treated cell to ANG II during the prehypoxic period blocked glucose-mediated cardioprotection. The reversal of hyperglycemic preconditioning was associated with enhanced accumulation of Ca(2+) during hypoxia, an effect prevented by inhibition of the Na(+)/ H(+) exchanger and the T-type Ca(2+) channel. The inhibitors of hypoxia-mediated Ca(2+) accumulation also blocked the reversal of hyperglycemic preconditioning by ANG II. Thus ANG II and glucose treatment exert opposite actions on the Na(+)/ H(+) exchanger and the T-type Ca(2+) channel. Because those transporters are involved in hypoxia-mediated apoptosis, they are logical candidates for the beneficial effects of high glucose and the adverse effects of ANG II on the hypoxic cardiomyocyte.
Collapse
Affiliation(s)
- Viktor Pastukh
- Dept. of Pharmacology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | | | | | |
Collapse
|
30
|
Ding HL, Zhu HF, Dong JW, Zhu WZ, Zhou ZN. Intermittent hypoxia protects the rat heart against ischemia/reperfusion injury by activating protein kinase C. Life Sci 2004; 75:2587-603. [PMID: 15363663 DOI: 10.1016/j.lfs.2004.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 07/21/2004] [Indexed: 11/15/2022]
Abstract
The aim of this study was to investigate whether and how protein kinase C (PKC) was involved in the protection afforded by intermittent hypoxia (IH) and the subcellular distribution of different PKC isozymes in rat left ventricle. Post-ischemic recovery of left ventricular developed pressure and +/-dP/dtmax in IH hearts were higher than those of normoxic hearts. Chelerythrine (CHE, 5 microM), a PKC antagonist, significantly inhibited the protective effects of IH, but had no influence on normoxic hearts. CHE significantly reduced the effect of IH on the time to maximal contracture (Tmc), but had no significant effect on the amplitude of maximal contracture (Amc) in IH group. In isolated normoxic cardiomyocytes, [Ca(2+)](i), measured as arbitrary units of fluorescence ratio (340 nm/380 nm) of fura-2, gradually increased during 20 min simulated ischemia and kept at high level during 30 min reperfusion. However, [Ca(2+)](i) kept at normal level during simulated ischemia and reperfusion in isolated IH cardiomyocytes. In normoxic myocytes, [Na(+)](i), indicated as actual concentration undergone calibration, gradually increased during 20 min simulated ischemia and quickly declined to almost the same level as that of pre-ischemia during 30 min simulated reperfusion. However, in IH myocytes, [Na(+)](i) increased to a level lower than the corresponding of normoxic myocytes during simulated ischemia and gradually reduced to the similar level as that of normoxic myocytes after simulated reperfusion. 5 microM CHE greatly increased the levels of [Ca(2+)](i) and [Na(+)](i) during ischemia and reperfusion in normoxic and IH myocytes. In addition, we demonstrated that IH up-regulated the baseline protein expression of particulate fraction of PKC-alpha, epsilon, delta isozymes. There is no significant difference of protein expression of PKC-alpha, epsilon, delta isozymes in cytosolic fraction between IH and normoxic group. The above results suggested that PKC contributed to the cardioprotection afforded by IH against ischemia/reperfusion (I/R) injury; the basal up-regulation of the particulate fraction of PKC-alpha, epsilon, delta isozymes in IH rat hearts and the contribution of PKC to the elimination of calcium and sodium overload might underlie the mechanisms of cardioprotection by IH.
Collapse
Affiliation(s)
- Hai-Lei Ding
- Laboratory of Hypoxic Cardiovascular Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320# YueYang Road, Shanghai 200031, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Garlid KD, Dos Santos P, Xie ZJ, Costa ADT, Paucek P. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:1-21. [PMID: 14507424 DOI: 10.1016/s0005-2728(03)00109-9] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion injury if it was first preconditioned by brief ischemia or by administering a potassium channel opener. Both of these preconditioning strategies were found to require opening of a K(ATP) channel, and in 1997 we showed that this pivotal role was mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). This paper will review the evidence showing that opening mitoK(ATP) is cardioprotective against ischemia-reperfusion injury and, moreover, that mitoK(ATP) plays this role during all three phases of the natural history of ischemia-reperfusion injury preconditioning, ischemia, and reperfusion. We discuss two distinct mechanisms by which mitoK(ATP) opening protects the heart-increased mitochondrial production of reactive oxygen species (ROS) during the preconditioning phase and regulation of intermembrane space (IMS) volume during the ischemic and reperfusion phases. It is likely that cardioprotection by ischemic preconditioning (IPC) and K(ATP) channel openers (KCOs) arises from utilization of normal physiological processes. Accordingly, we summarize the results of new studies that focus on the role of mitoK(ATP) in normal cardiomyocyte physiology. Here, we observe the same two mechanisms at work. In low-energy states, mitoK(ATP) opening triggers increased mitochondrial ROS production, thereby amplifying a cell signaling pathway leading to gene transcription and cell growth. In high-energy states, mitoK(ATP) opening prevents the matrix contraction that would otherwise occur during high rates of electron transport. MitoK(ATP)-mediated volume regulation, in turn, prevents disruption of the structure-function of the IMS and facilitates efficient energy transfers between mitochondria and myofibrillar ATPases.
Collapse
Affiliation(s)
- Keith D Garlid
- Department of Biology, Portland State University, 1719 SW 10th Avenue, PO Box 751, Portland, OR 97207, USA.
| | | | | | | | | |
Collapse
|
32
|
Zaugg M, Lucchinetti E, Uecker M, Pasch T, Schaub MC. Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth 2003; 91:551-65. [PMID: 14504159 DOI: 10.1093/bja/aeg205] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiac preconditioning represents the most potent and consistently reproducible method of rescuing heart tissue from undergoing irreversible ischaemic damage. Major milestones regarding the elucidation of this phenomenon have been passed in the last two decades. The signalling and amplification cascades from the preconditioning stimulus, be it ischaemic or pharmacological, to the putative end-effectors, including the mechanisms involved in cellular protection, are discussed in this review. Volatile anaesthetics and opioids effectively elicit pharmacological preconditioning. Anaesthetic-induced preconditioning and ischaemic preconditioning share many fundamental steps, including activation of G-protein-coupled receptors, multiple protein kinases and ATP-sensitive potassium channels (K(ATP) channels). Volatile anaesthetics prime the activation of the sarcolemmal and mitochondrial K(ATP) channels, the putative end-effectors of preconditioning, by stimulation of adenosine receptors and subsequent activation of protein kinase C (PKC) and by increased formation of nitric oxide and free oxygen radicals. In the case of desflurane, stimulation of alpha- and beta-adrenergic receptors may also be of importance. Similarly, opioids activate delta- and kappa-opioid receptors, and this also leads to PKC activation. Activated PKC acts as an amplifier of the preconditioning stimulus and stabilizes, by phosphorylation, the open state of the mitochondrial K(ATP) channel (the main end-effector in anaesthetic preconditioning) and the sarcolemmal K(ATP) channel. The opening of K(ATP) channels ultimately elicits cytoprotection by decreasing cytosolic and mitochondrial Ca(2+) overload.
Collapse
Affiliation(s)
- M Zaugg
- Institute of Anaesthesiology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
33
|
Yellon DM, Downey JM. Preconditioning the Myocardium: From Cellular Physiology to Clinical Cardiology. Physiol Rev 2003; 83:1113-51. [PMID: 14506302 DOI: 10.1152/physrev.00009.2003] [Citation(s) in RCA: 704] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Yellon, Derek M., and James M. Downey. Preconditioning the Myocardium: From Cellular Physiology to Clinical Cardiology. Physiol Rev 83: 1113-1151, 2003; 10.1152/physrev.00009.2003.—The phenomenon of ischemic preconditioning, in which a period of sublethal ischemia can profoundly protect the cell from infarction during a subsequent ischemic insult, has been responsible for an enormous amount of research over the last 15 years. Ischemic preconditioning is associated with two forms of protection: a classical form lasting ∼2 h after the preconditioning ischemia followed a day later by a second window of protection lasting ∼3 days. Both types of preconditioning share similarities in that the preconditioning ischemia provokes the release of several autacoids that trigger protection by occupying cell surface receptors. Receptor occupancy activates complex signaling cascades which during the lethal ischemia converge on one or more end-effectors to mediate the protection. The end-effectors so far have eluded identification, although a number have been proposed. A range of different pharmacological agents that activate the signaling cascades at the various levels can mimic ischemic preconditioning leading to the hope that specific therapeutic agents can be designed to exploit the profound protection seen with ischemic preconditioning. This review examines, in detail, the complex mechanisms associated with both forms of preconditioning as well as discusses the possibility to exploit this phenomenon in the clinical setting. As our understanding of the mechanisms associated with preconditioning are unravelled, we believe we can look forward to the development of new therapeutic agents with novel mechanisms of action that can supplement current treatment options for patients threatened with acute myocardial infarction.
Collapse
Affiliation(s)
- Derek M Yellon
- The Hatter Institute for Cardiovascular Studies, Centre for Cardiology, University College London Hospital and Medical School, Grafton Way, London, UK.
| | | |
Collapse
|
34
|
Chang Q, Tepperman BL. Effect of selective PKC isoform activation and inhibition on TNF-alpha-induced injury and apoptosis in human intestinal epithelial cells. Br J Pharmacol 2003; 140:41-52. [PMID: 12967933 PMCID: PMC1573997 DOI: 10.1038/sj.bjp.0705398] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
(1) We have investigated the effects of specific PKC isoforms in TNF-alpha mediated cellular damage using a human intestinal cell line (SCBN). (2) TNF-alpha treatment induced a decrease in the extent of intestinal cellular viability as determined by a formazan-based assay and an increase in the apoptotic index as assessed by immunohistology. These changes in cellular integrity were found to be related to the degradation of I-kappaBalpha, mobilization of NF-kappaB and release of mitochondrial cytochrome c. (3) TNF-alpha treatment also induced the activation of selective PKC isoforms which were associated with the decrease in cellular viability and an increase of cellular apoptosis. (4) Nonselective PKC antagonists, such as GF109203X and Gö6976 as well as isoform-selective PKC-inhibiting peptides would reverse the cellular injury as well as reduce the degradation of I-kappaBalpha and mitochondrial cytochrome c release. These effects were most highly correlated with changes in PKCdelta and epsilon primarily. (5) Intestinal cellular injury could be induced by treating cells with agonists selective for PKCdelta and epsilon mainly. (6) In conclusion, this study has shown that TNF-alpha treatment can induce the activation of PKCdelta and epsilon in the human intestinal cell line, SCBN, and this response is closely associated with an increase in cellular damage and apoptosis. PKCdelta and epsilon primarily mediate the release of mitochondrial cytochrome c and degradation of I-kappaBalpha and hence mobilization of NF-kappaB, which are responsible for the pathway leading to cell injury.
Collapse
Affiliation(s)
- Q Chang
- Department of Physiology and Pharmacology, University of Western Ontario, Medical Sciences Building, Room M226, London Ontario, Canada N6A 5C1
| | - B L Tepperman
- Department of Physiology and Pharmacology, University of Western Ontario, Medical Sciences Building, Room M226, London Ontario, Canada N6A 5C1
- Author for correspondence:
| |
Collapse
|
35
|
Rosa A, Maury JP, Terrand J, Lyon X, Kucera P, Kappenberger L, Raddatz E. Ectopic pacing at physiological rate improves postanoxic recovery of the developing heart. Am J Physiol Heart Circ Physiol 2003; 284:H2384-92. [PMID: 12742835 DOI: 10.1152/ajpheart.00758.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.
Collapse
Affiliation(s)
- A Rosa
- Institute of Physiology, Faculty of Medicine, University Hospital, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Frances C, Nazeyrollas P, Prevost A, Moreau F, Pisani J, Davani S, Kantelip JP, Millart H. Role of beta 1- and beta 2-adrenoceptor subtypes in preconditioning against myocardial dysfunction after ischemia and reperfusion. J Cardiovasc Pharmacol 2003; 41:396-405. [PMID: 12605018 DOI: 10.1097/00005344-200303000-00008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Using an isolated nonworking rat heart model, this study investigated the role of beta-adrenergic preconditioning (beta-PC) to attenuate myocardial dysfunction after an ischemia/reperfusion injury. After a 20-min stabilization period, the noradrenaline depleted hearts were perfused for 5 min with isoproterenol (ISO) before 40-min global ischemia (I) followed by 30-min reperfusion (R). ISO 0.02 microM provided significant protection versus unconditioned in vivo reserpinized IR control, causing a decrease of creatine kinase (CK) release (mIU/min/g wet weight) on reperfusion in coronary effluent, a preservation of the mean coronary flow (MCF) and preservation of left ventricular function assessed by the rate-pressure product (RPP). These beneficial effects were similar to those of ischemic preconditioning (I-PC) in both nonreserpinized and reserpinized rats. Propranolol (1 microM) and atenolol (10 microM) completely suppressed the ISO preconditioning. In contrast, ICI 118551 (2 microM) a highly selective beta -blocker, did not blunt the salutary effects of ISO on CK release and MCF preservation. These results indicate that ISO pretreatment provides a significant cardioprotection against prolonged ischemic myocardial injury. Although endogenous catecholamines are not necessary for I-PC in isolated rat hearts, cardioprotection provided by beta-adrenergic stimulation is quite similar to I-PC. This significant cardioprotection is mediated less by beta -adrenoceptor than by beta -adrenoceptor activation, which seems to play a crucial role in the beta-PC mechanism.
Collapse
Affiliation(s)
- Carole Frances
- Department of Pharmacology, Reims University Hospital, Reims cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang HY, McPherson BC, Liu H, Baman T, McPherson SS, Rock P, Yao Z. Role of nitric-oxide synthase, free radicals, and protein kinase C delta in opioid-induced cardioprotection. J Pharmacol Exp Ther 2002; 301:1012-9. [PMID: 12023532 DOI: 10.1124/jpet.301.3.1012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioids generate free radicals that mediate protection in isolated cultured cardiomyocytes. We hypothesize that the nature of these radicals is nitric oxide, and that nitric oxide activates the protein kinase C (PKC) delta isoform. Through this signal transduction pathway, opiates protect cardiomyocytes during hypoxia and reoxygenation. Cell viability was quantified in chick embryonic ventricular myocytes with propidium iodide. Oxygen radicals were quantified using a molecular probe, 2',7'-dichlorofluorescin diacetate (DCFH-DA). After a 10-min infusion of the opioid delta receptor agonist BW373U86 (BW; 2 or 20 pM) and a 10-min drug-free period, cells were subjected to hypoxia for 1 h followed by reoxygenation for 3 h. BW produced a concentration-dependent reduction in cardiomyocyte death (2 pM, 35.3 +/- 3.9%, n = 5; 20 pM, 21.5 +/- 4.0%, n = 8, p < 0.05 versus controls) and attenuated oxidant stress compared with controls (43.3 +/- 4.2%, n = 8). The increase in DCFH-DA oxidation with BW before hypoxia was abolished by the specific nitric-oxide synthase inhibitors nitro-L-arginine methyl ester (L-NAME) or N(G)-monomethyl-L-arginine (L-NMMA) (100 microM each). L-NAME or L-NMMA blocked the protective effects of BW. BW selectively increased the activity of PKC delta isoform in the particulate fraction, and its protection was abolished by the selective PKC delta inhibitor rottlerin (1 microM). Similar to BW, infusion with 5 microM of the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) reduced cardiomyocyte death (24.6 +/- 3.7, n = 8), and this protection was blocked by chelerythrine or rottlerin. Chelerythrine and rottlerin had no effect on BW-generated oxygen radicals before hypoxia, but they abolished the protection of SNAP. The nature of DCFH oxidation produced by opioid delta receptor stimulation is nitric oxide. Nitric oxide mediates cardioprotection via activating PKC delta in isolated myocytes.
Collapse
Affiliation(s)
- Hong Yan Zhang
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Fryer RM, Wang Y, Hsu AK, Gross GJ. Essential activation of PKC-delta in opioid-initiated cardioprotection. Am J Physiol Heart Circ Physiol 2001; 280:H1346-53. [PMID: 11179083 DOI: 10.1152/ajpheart.2001.280.3.h1346] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of the delta(1)-opioid receptor confers cardioprotection to the ischemic myocardium. We examined the role of protein kinase C (PKC) after delta-opioid receptor stimulation with TAN-67 or D-Ala(2)-D-Leu(5)-enkephalin (DADLE) in a rat model of myocardial infarction induced by a 30-min coronary artery occlusion and 2-h reperfusion. Infarct size (IS) was determined by tetrazolium staining and expressed as a percentage of the area at risk (IS/AAR). Control animals, subjected to ischemia and reperfusion, had an IS/AAR of 59.9 +/- 1.8. DADLE and TAN-67 administered before ischemia significantly reduced IS/AAR (36.9 +/- 3.9 and 36.7 +/- 4.7, respectively). The delta(1)-selective opioid antagonist 7-benzylidenenaltrexone (BNTX) abolished TAN-67-induced cardioprotection (54.4 +/- 1.3). Treatment with the PKC antagonist chelerythrine completely abolished DADLE- (61.8 +/- 3.2) and TAN-67-induced cardioprotection (55.4 +/- 4.0). Similarly, the PKC antagonist GF 109203X completely abolished TAN-67-induced cardioprotection (54.6 +/- 6.6). Immunofluorescent staining with antibodies directed against specific PKC isoforms was performed in myocardial biopsies obtained after 15 min of treatment with saline, chelerythrine, BNTX, or TAN-67 and chelerythrine or BNTX in the presence of TAN-67. TAN-67 induced the translocation of PKC-alpha to the sarcolemma, PKC-beta(1) to the nucleus, PKC-delta to the mitochondria, and PKC-epsilon to the intercalated disk and mitochondria. PKC translocation was abolished by chelerythrine and BNTX in TAN-67-treated rats. To more closely examine the role of these isoforms in cardioprotection, we utilized the PKC-delta selective antagonist rottlerin. Rottlerin abolished opioid-induced cardioprotection (48.9 +/- 4.8) and PKC-delta translocation without affecting the translocation of PKC-alpha, -beta(1), or -epsilon. These results suggest that PKC-delta is a key second messenger in the cardioprotective effects of delta(1)-opioid receptor stimulation in rats.
Collapse
Affiliation(s)
- R M Fryer
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
39
|
Xu M, Wang Y, Hirai K, Ayub A, Ashraf M. Calcium preconditioning inhibits mitochondrial permeability transition and apoptosis. Am J Physiol Heart Circ Physiol 2001; 280:H899-908. [PMID: 11158992 DOI: 10.1152/ajpheart.2001.280.2.h899] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis whether calcium preconditioning (CPC) reduces reoxygenation injury by inhibiting mitochondrial permeability transition (MPT). Cultured myocytes were preconditioned by a brief exposure to 1.5 mM calcium (CPC) and subjected to 3 h of anoxia followed by 2 h of reoxygenation (A-R). Myocytes were also treated with 0.2 microM/l cyclosporin A (CsA), an inhibitor of MPT, before A-R. A significant increase of viable cells and reduced lactate dehydrogenase release was observed both in CPC- and CsA-treated myocytes compared with the A-R group. Cytochrome c release was predominantly observed in the cytoplasm of myocytes in the A-R group in contrast with CPC- or CsA-treated groups, where it was restricted only to mitochondria. Similarly, the cell death by apoptosis was also markedly attenuated in these groups. Electron-dense Ca(2+) deposits in mitochondria were also less frequent. Atractyloside (20 microM/l), an adenine nucleotide translocase inhibitor, caused changes similar to those in the A-R group, suggesting a role of MPT in A-R injury. Protection by inhibition of MPT by CsA and CPC suggests that MPT plays an important role in reoxygenation/reperfusion injury. The data further suggest that preconditioning inhibits MPT by inhibiting Ca(2+) accumulation by mitochondria.
Collapse
Affiliation(s)
- M Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0529, USA
| | | | | | | | | |
Collapse
|
40
|
Wang S, Cone J, Liu Y. Dual roles of mitochondrial K(ATP) channels in diazoxide-mediated protection in isolated rabbit hearts. Am J Physiol Heart Circ Physiol 2001; 280:H246-55. [PMID: 11123239 DOI: 10.1152/ajpheart.2001.280.1.h246] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whether the mitochondrial ATP-dependent potassium (mK(ATP)) channel is the trigger or the mediator of cardioprotection is controversial. We investigated the critical time sequences of mK(ATP) channel opening for cardioprotection in isolated rabbit hearts. Pretreatment with diazoxide (100 microM), a selective mK(ATP) channel opener, for 5 min followed by 10 min washout before the 30-min ischemia and 2-h reperfusion significantly reduced infarct size (9 +/- 3 vs. 35 +/- 3% in control), indicating a role of mK(ATP) channels as a trigger of protection. The protection was blocked by coadministration of the L-type Ca(2+) channel blockers nifedipine (100 nM) or 5-hydroxydecanoic acid (5-HD; 50 microM) or by the protein kinase C (PKC) inhibitor chelerythrine (5 microM). The protection of diazoxide was not blocked by 50 microM 5-HD but was blocked by 200 microM 5-HD or 10 microM glybenclamide administrated 5 min before and throughout the 30 min of ischemia, indicating a role of mK(ATP) opening as a mediator of protection. Giving diazoxide throughout the 30 min of ischemia also protected the heart, and the protection was not blocked by chelerythrine. Nifedipine did not affect the ability of diazoxide to open mK(ATP) channels assessed by mitochondrial redox state. In electrically stimulated rabbit ventricular myocytes, diazoxide significantly increased Ca(2+) transient but had no effect on L-type Ca(2+) currents. Our results suggest that opening of mK(ATP) channels can trigger cardioprotection. The trigger phase may be induced by elevation of intracellular Ca(2+) and activation of PKC. During the lethal ischemia, mK(ATP) channel opening mediates the protection, independent of PKC, by yet unknown mechanisms.
Collapse
Affiliation(s)
- S Wang
- Maryland Research Laboratories, Otsuka America Pharmaceutical Incorporated, Rockville, Maryland 20850, USA
| | | | | |
Collapse
|
41
|
Lu K, Otani H, Yamamura T, Nakao Y, Hattori R, Ninomiya H, Osako M, Imamura H. Protein kinase C isoform-dependent myocardial protection by ischemic preconditioning and potassium cardioplegia. J Thorac Cardiovasc Surg 2001; 121:137-48. [PMID: 11135170 DOI: 10.1067/mtc.2001.111210] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Ischemic preconditioning combined with potassium cardioplegia does not always confer additive myocardial protection. This study tested the hypothesis that the efficacy of ischemic preconditioning under potassium cardioplegia is dependent on protein kinase C isoform. METHODS Isolated and crystalloid-perfused rat hearts underwent 5 cycles of 1 minute of ischemia and 5 minutes of reperfusion (low-grade ischemic preconditioning) or 3 cycles of 5 minutes of ischemia and 5 minutes of reperfusion (high-grade ischemic preconditioning) or time-matched continuous perfusion. These hearts received a further 5 minutes of infusion of normal buffer or oxygenated potassium cardioplegic solution. The isoform nonselective protein kinase C inhibitor chelerythrine (5 micromol/L) was administered throughout the preischemic period. All hearts underwent 35 minutes of normothermic global ischemia followed by 30 minutes of reperfusion. Isovolumic left ventricular function and creatine kinase release were measured as the end points of myocardial protection. Distribution of protein kinase C alpha, delta, and epsilon in the cytosol and the membrane fractions were analyzed by Western blotting and quantified by a densitometric assay. RESULTS Low-grade ischemic preconditioning was almost as beneficial as potassium cardioplegia in improving functional recovery; left ventricular developed pressure 30 minutes after reperfusion was 70 +/- 15 mm Hg (P <.01) in low-grade ischemic preconditioning and 77 +/- 14 mm Hg (P <.001) in potassium cardioplegia compared with values found in unprotected control hearts (39 +/- 12 mm Hg). Creatine kinase release during reperfusion was also equally inhibited by low-grade ischemic preconditioning (18.2 +/- 10.6 IU/g dry weight, P <.05) and potassium cardioplegia (17.6 +/- 6.7 IU/g, P <.01) compared with control values. However, low-grade ischemic preconditioning in combination with potassium cardioplegia conferred no significant additional myocardial protection; left ventricular developed pressure was 80 +/- 17 mm Hg, and creatine kinase release was 14.8 +/- 11.0 IU/g. In contrast, high-grade ischemic preconditioning with potassium cardioplegia conferred better myocardial protection than potassium cardioplegia alone; left ventricular developed pressure was 121 +/- 16 mm Hg (P <.001), and creatine kinase release was 8.3 +/- 5.8 IU/g (P <.05). Chelerythrine itself had no significant effect on functional recovery and creatine kinase release in the control hearts, but it did inhibit the salutary effects not only of low-grade and high-grade ischemic preconditioning but also those of potassium cardioplegia. Low-grade ischemic preconditioning and potassium cardioplegia enhanced translocation of protein kinase C alpha to the membrane, whereas high-grade ischemic preconditioning also enhanced translocation of protein kinase C delta and epsilon. Chelerythrine inhibited translocation of all 3 protein kinase C isoforms. CONCLUSIONS These results suggest that myocardial protection by low-grade ischemic preconditioning and potassium cardioplegia are mediated through enhanced translocation of protein kinase C alpha to the membrane. It is therefore suggested that activation of the novel protein kinase C isoforms is necessary to potentiate myocardial protection under potassium cardioplegia.
Collapse
Affiliation(s)
- K Lu
- Department of Thoracic and Cardiovascular Surgery, Kansai Medical University, Moriguchi City, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hu K, Mochly-Rosen D, Boutjdir M. Evidence for functional role of epsilonPKC isozyme in the regulation of cardiac Ca(2+) channels. Am J Physiol Heart Circ Physiol 2000; 279:H2658-64. [PMID: 11087218 DOI: 10.1152/ajpheart.2000.279.6.h2658] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Limited information is available regarding the effects of protein kinase C (PKC) isozyme(s) in the regulation of L-type Ca(2+) channels due to lack of isozyme-selective modulators. To dissect the role of individual PKC isozymes in the regulation of cardiac Ca(2+) channels, we used the recently developed novel peptide activator of the epsilonPKC, epsilonV1-7, to assess the role of epsilonPKC in the modulation of L-type Ca(2+) current (I(Ca,L)). Whole cell I(Ca,L) was recorded using patch-clamp technique from rat ventricular myocytes. Intracellular application of epsilonV1-7 (0.1 microM) resulted in a significant inhibition of I(Ca,L) by 27.9 +/- 2.2% (P < 0.01, n = 8) in a voltage-independent manner. The inhibitory effect of epsilonV1-7 on I(Ca,L) was completely prevented by the peptide inhibitor of epsilonPKC, epsilonV1-2 [5.2 +/- 1.7%, not significant (NS), n = 5] but not by the peptide inhibitors of cPKC, alphaC2-4 (31.3 +/- 2.9%, P < 0.01, n = 6) or betaC2-2 plus betaC2-4 (26.1 +/- 2.9%, P < 0.01, n = 5). In addition, the use of a general inhibitor (GF-109203X, 10 microM) of the catalytic activity of PKC also prevented the inhibitory effect of epsilonV1-7 on I(Ca,L) (7.5 +/- 2.1%, NS, n = 6). In conclusion, we show that selective activation of epsilonPKC inhibits the L-type Ca channel in the heart.
Collapse
Affiliation(s)
- K Hu
- Molecular and Cellular Cardiology Program, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York 11209, USA
| | | | | |
Collapse
|
43
|
Abstract
Results obtained by experimental studies of the ischemic heart have been of tremendous importance for the understanding of physiology, biochemistry and lately also the molecular genetics of the heart. Experimental models in use for the study of the ischemic heart involve studies on the integrated organism, experiments with isolated hearts or multicellular preparation, and also studies of cells isolated from the heart. Regional ischemia in the anaesthetized animal has been a standard model. Knowledge about infarct size limitation as well as heart function in acute and chronic ischemia has been obtained based on experiments in a wide variety of species. The isolated perfused heart has been subjected to extensive use. As a result, the understanding of intracellular processes is constantly developing. Cell models and transgenic-mice models represent promising additions. Each model and each species has certain advantages and disadvantages. Variability in susceptibility towards ischemia and reperfusion is also present. The consequences of ischemia can be described as contractile dysfunction and stunning, arrhythmia and infarction each representing different endpoints of injury. The experimental model is also heavily dependent on the endpoint that is chosen for the study. Results obtained in one experimental model can, therefore, not be generalized into universal conclusions about the ischemic heart. With respect to the human and the disease caused by myocardial ischemia, fragments of knowledge put together from different types of experimental models create the background for successful design of potential treatment.
Collapse
Affiliation(s)
- K Ytrehus
- Department of Medical Physiology, Faculty of Medicine, University of Tromso, Norway.
| |
Collapse
|
44
|
Solem M, Almas J, Rubin E, Thomas A. Changes in Activity and Regulation of the Cardiac Ca2+ Channel (L-Type) by Protein Kinase C in Chronic Alcohol-Exposed Rats. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb02077.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Nakano A, Cohen MV, Downey JM. Ischemic preconditioning: from basic mechanisms to clinical applications. Pharmacol Ther 2000; 86:263-75. [PMID: 10882811 DOI: 10.1016/s0163-7258(00)00058-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
When the heart is subjected to a transient nonlethal period of ischemia, it quickly adapts itself to become resistant to infarction from a subsequent ischemic insult. This adaptation is called preconditioning. This cardioprotection has been shown to be mediated by stimulation of receptors linked to protein kinase C (PKC) (adenosine, bradykinin, opioids, etc.), and these receptors protect by activating PKC. PKC appears to be the first element of a complex kinase cascade that is activated during the prolonged ischemia in the preconditioned heart. Recent studies imply that p38 mitogen-activated protein kinase carries the signal from PKC to the mitochondrial K(ATP) channels, causing them to open and thus protect the heart. The cardioprotection of preconditioning occurs in all species tested to date, and possibly also humans. It is expected that as the mechanism of preconditioning is more thoroughly understood, pharmacological preconditioning will become practical for clinical use.
Collapse
Affiliation(s)
- A Nakano
- Department of Physiology, MSB 3024, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | |
Collapse
|
46
|
Osada M, Netticadan T, Kawabata K, Tamura K, Dhalla NS. Ischemic preconditioning prevents I/R-induced alterations in SR calcium-calmodulin protein kinase II. Am J Physiol Heart Circ Physiol 2000; 278:H1791-8. [PMID: 10843874 DOI: 10.1152/ajpheart.2000.278.6.h1791] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) is known to modulate the function of cardiac sarcoplasmic reticulum (SR) under physiological conditions, the status of SR CaMK II in ischemic preconditioning (IP) of the heart is not known. IP was induced by subjecting the isolated perfused rat hearts to three cycles of brief ischemia-reperfusion (I/R; 5 min ischemia and 5 min reperfusion), whereas the control hearts were perfused for 30 min with oxygenated medium. Sustained I/R in control and IP groups was induced by 30 min of global ischemia followed by 30 min of reperfusion. The left ventricular developed pressure, rate of the left ventricular pressure, as well as SR Ca(2+)-uptake activity and SR Ca(2+)-pump ATPase activity were depressed in the control I/R hearts; these changes were prevented upon subjecting the hearts to IP. The beneficial effects of IP on the I/R-induced changes in contractile activity and SR Ca(2+) pump were lost upon treating the hearts with KN-93, a specific CaMK II inhibitor. IP also prevented the I/R-induced depression in Ca(2+)/calmodulin-dependent SR Ca(2+)-uptake activity and the I/R-induced decrease in the SR CaMK II activity; these effects of IP were blocked by KN-93. The results indicate that IP may prevent the I/R-induced alterations in SR Ca(2+) handling abilities by preserving the SR CaMK II activity, and it is suggested that CaMK II may play a role in mediating the beneficial effects of IP on heart function.
Collapse
Affiliation(s)
- M Osada
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
47
|
Oh J, So HS, Park R, Ryu DK, Moon BS, Park OK, Chung YT. The water extract of Jagamchotang protects the ischemia/reperfusion-induced cytotoxicity of rat neonatal myocardial cells via generation of nitric oxide. Immunopharmacol Immunotoxicol 2000; 22:297-315. [PMID: 10952033 DOI: 10.3109/08923970009016422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Jagamchotang has been used for treatment of ischemic myocardial diseases in Chinese traditional medicine. However, little is known about the mechanism by which Jagamchotang rescues myocardial cells from ischemic damages. To elucidate the protective mechanisms, the effects of Jagamchotang on ischemia/reperfusion-induced cytotoxicity and generation of nitric oxide (NO) are investigated in primary neonatal myocardial cells. Ischemia/reperfusion itself induces severe myocardial cell death in vitro. However, treatment of the cells with Jagamchotang significantly reduces both ischemia/reperfusion-induced myocardial cell death and LDH release. In addition, pretreatment of Jagamchotang before reperfusion recovers the lose of beating rates after ischemia/reperfusion. For a while, the water extract of Jagamchotang stimulates myocardial cells in ischemic condition to produce nitric oxide (NO) in a dose dependent manner and it protects the damage of myocardial cells. Furthermore, the protective effects of the water extract of Jagamchotang is mimicked by treatment of sodium nitroprusside, an exogenous NO donor. NG-monomethyi-L-argine (NGMMA), a specific inhibitor of nitric oxide synthase (NOS), significantly blocks the protective effects of Jagamchotang on the cells after ischemia/reperfusion. Taken together, we suggest that the protective effects of Jagamchotang against ischemia/reperfusion-induced myocardial damages may be mediated by NO production during ischemic condition.
Collapse
Affiliation(s)
- J Oh
- Department of Anatomy, Wonkwang University School of Medicine, Iksan, Chonbuk, South Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Hong K, Kusano KF, Morita H, Fujimoto Y, Nakamura K, Yamanari H, Ohe T. Involvement of Ca(2+) in antiarrhythmic effect of ischemic preconditioning in isolated rat heart. THE JAPANESE JOURNAL OF PHYSIOLOGY 2000; 50:207-13. [PMID: 10880877 DOI: 10.2170/jjphysiol.50.207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We investigated the relationship between the effects of ischemic preconditioning (IPC) and Ca(2+) preconditioning (CPC) on reperfusion-induced arrhythmias. In the control group (noPC), Langendorff-perfused rat hearts were subjected to 5-min zero-flow global ischemia (I) followed by 15-min reperfusion (I/R). In ischemic preconditioning groups (IPC), the hearts were subjected to three cycles of 3-min global ischemia and 5-min reperfusion. In the CPC group, the hearts were exposed to three cycles of 3-min perfusion of higher Ca(2+) (2.3 mmol/l Ca(2+)) followed by 5-min perfusion of normal 1.3 mmol/l Ca(2+), and the hearts were then subjected to I/R. Verapamil was administered in several hearts of the IPC group (VR+IPC). Ventricular arrhythmias upon reperfusion were less frequently seen in the IPC and CPC groups than in the noPC and VR+IPC groups. IPC and CPC could attenuate conduction delay and enhance shortening of the monophasic action potential duration during ischemia. The ventricular fibrillation threshold measured at 1-min reperfusion was significantly higher in the IPC and CPC groups than in the noPC and VR+IPC groups. Verapamil completely abolished the salutary effects of IPC. These results demonstrate that Ca(2+) plays an important role in the antiarrhythmic effect of IPC during reperfusion.
Collapse
Affiliation(s)
- K Hong
- Department of Cardiovascular Medicine, Okayama University Medical School, Okayama, 700-8558 Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
ATP-sensitive potassium channels (K(ATP)) have been thought to be a mediator of cardioprotection for the last ten years. Significant progress has been made in learning the pharmacology of this channel as well as its molecular regulation with regard to cardioprotection. K(ATP)openers as a class protect ischemic/reperfused myocardium and appear to do so by conservation of energy. The reduced rate of ATP hydrolysis during ischemia exerted by these openers is not due to a cardioplegic effect and is independent of action potential shortening. Compounds have been synthesized which retain the cardioprotective effects of first generation K(ATP)openers, but are devoid of vasodilator and cardiac sarcolemmal potassium outward currents. These results suggest receptor or channel subtypes. Recent pharmacologic and molecular biology studies suggest the activation of mitochondrial K(ATP)as the relevant cardioprotective site. Implications of these results for future drug discovery and preconditioning are discussed.
Collapse
Affiliation(s)
- G J Grover
- Cardiovascular and Metabolic Diseases Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, N.J 08543-4000, USA
| | | |
Collapse
|
50
|
Kim SO, Baines CP, Critz SD, Pelech SL, Katz S, Downey JM, Cohen MV. Ischemia induced activation of heat shock protein 27 kinases and casein kinase 2 in the preconditioned rabbit heart. Biochem Cell Biol 1999. [DOI: 10.1139/o99-065] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein kinase C (PKC), p38 MAP kinase, and mitogen-activated protein kinase-activated kinases 2 and 3 (MAPKAPK2 and MAPKAPK3) have been implicated in ischemic preconditioning (PC) of the heart to reduce damage following a myocardial infarct. This study examined whether extracellular signal-regulated kinase (Erk) 1, p70 ribosomal S6 kinase (p70 S6K), casein kinase 2 (CK2), and other hsp27 kinases are also activated by PC, and if they are required for protection in rabbit hearts. CK2 and hsp27 kinase activities declined during global ischemia in control hearts, whereas PC with 5 min ischemia and 10 min reperfusion increased their activities during global ischemia. Resource Q chromatography resolved two distinct peaks of hsp27 phosphotransferase activities; the first peak (at 0.36 M NaCl) appeared to correspond to the 55-kDa MAPKAPK2. Erk1 activity was elevated in both control and PC hearts after post-ischemic reperfusion, but no change was observed in p70 S6K activity. Infarct size (measured by triphenyltetrazolium staining) in isolated rabbit hearts subjected to 30 min regional ischemia and 2 h reperfusion was 31.0 ± 2.6% of the risk zone in controls and was 10.3 ± 2.2% in PC hearts (p < 0.001). Neither the CK2 inhibitor 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) nor the Mek1/2 inhibitor PD98059 infused during ischemia blocked protection by PC. The activation of CK2 and Erk1 in ischemic preconditioned hearts appear to be epiphenomena and not required for the reduction of infarction from myocardial ischemia.Key words: Erk1, MAPKAPK2, PD98059, p38 MAPK.
Collapse
|