1
|
Li MK, Yu RJ, Chen KL, Zhao Y, Yang C, Wan YJ, Long YT, Ying YL. Long-Term Real-Time Tracking of Morphology and Migration of Neuronal Cells under Oxidative Stress. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:191-198. [PMID: 40151819 PMCID: PMC11938163 DOI: 10.1021/cbmi.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 03/29/2025]
Abstract
Neuronal cells exhibit diverse morphologies that are crucial for their function within the neuronal network. Long-term quantitative analysis of both neuronal cell morphology and migration is essential in neuroscience research but remains challenging. Sodium arsenite, a known inducer of oxidative stress in neurons, affects both cell morphology and migration. To rapidly assess oxidative stress in HT22 neuronal cells, we developed a method for tracking key morphological features and migration trajectories of the individual cells. Three time-dependent parameters-velocity, circularity increment, and turn angle-are identified as rapid, direct indicators of the early stages of oxidative stress in neuronal cells. This method is then applied to investigate the effects of arsenite exposure on neuronal cells. Our approach provides a valuable tool for the rapid, label-free, and long-term real-time tracking of oxidative stress in neuronal cells, offering potential insights into cellular responses under stress conditions.
Collapse
Affiliation(s)
- Ming-Kang Li
- School
of Chemistry and Chemical Engineering, Molecular Sensing and Imaging
Center (MSIC), Nanjing University, Nanjing 210023, People’s Republic of China
| | - Ru-Jia Yu
- School
of Chemistry and Chemical Engineering, Molecular Sensing and Imaging
Center (MSIC), Nanjing University, Nanjing 210023, People’s Republic of China
| | - Ke-Le Chen
- School
of Chemistry and Chemical Engineering, Molecular Sensing and Imaging
Center (MSIC), Nanjing University, Nanjing 210023, People’s Republic of China
| | - Yan Zhao
- School
of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Cheng Yang
- School
of Electronic Sciences and Engineering, Nanjing University, Nanjing 210023, People’s
Republic of China
| | - Yong-Jing Wan
- School
of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yi-Tao Long
- School
of Chemistry and Chemical Engineering, Molecular Sensing and Imaging
Center (MSIC), Nanjing University, Nanjing 210023, People’s Republic of China
| | - Yi-Lun Ying
- School
of Chemistry and Chemical Engineering, Molecular Sensing and Imaging
Center (MSIC), Nanjing University, Nanjing 210023, People’s Republic of China
- Chemistry
and Biomedicine Innovation Center, Nanjing
University, Nanjing 210023, People’s
Republic of China
| |
Collapse
|
2
|
Litschel T, Vavylonis D, Weitz DA. 3D printing cytoskeletal networks: ROS-induced filament severing leads to surge in actin polymerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644260. [PMID: 40166186 PMCID: PMC11957145 DOI: 10.1101/2025.03.19.644260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The cytoskeletal protein actin forms a spatially organized biopolymer network that plays a central role in many cellular processes. Actin filaments continuously assemble and disassemble, enabling cells to rapidly reorganize their cytoskeleton. Filament severing accelerates actin turnover, as both polymerization and depolymerization rates depend on the number of free filament ends - which severing increases. Here, we use light to control actin severing in vitro by locally generating reactive oxygen species (ROS) with photosensitive molecules such as fluorophores. We see that ROS sever actin filaments, which increases actin polymerization in our experiments. However, beyond a certain threshold, excessive severing leads to the disassembly of actin networks. Our experimental data is supported by simulations using a kinetic model of actin polymerization, which helps us understand the underlying dynamics. In cells, ROS are known to regulate the actin cytoskeleton, but the molecular mechanisms are poorly understood. Here we show that, in vitro, ROS directly affect actin reorganization.
Collapse
Affiliation(s)
- Thomas Litschel
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - David A. Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
3
|
Pajares MA, Pérez-Sala D. Type III intermediate filaments in redox interplay: key role of the conserved cysteine residue. Biochem Soc Trans 2024; 52:849-860. [PMID: 38451193 PMCID: PMC11088922 DOI: 10.1042/bst20231059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Intermediate filaments (IFs) are cytoskeletal elements involved in mechanotransduction and in the integration of cellular responses. They are versatile structures and their assembly and organization are finely tuned by posttranslational modifications. Among them, type III IFs, mainly vimentin, have been identified as targets of multiple oxidative and electrophilic modifications. A characteristic of most type III IF proteins is the presence in their sequence of a single, conserved cysteine residue (C328 in vimentin), that is a hot spot for these modifications and appears to play a key role in the ability of the filament network to respond to oxidative stress. Current structural models and experimental evidence indicate that this cysteine residue may occupy a strategic position in the filaments in such a way that perturbations at this site, due to chemical modification or mutation, impact filament assembly or organization in a structure-dependent manner. Cysteine-dependent regulation of vimentin can be modulated by interaction with divalent cations, such as zinc, and by pH. Importantly, vimentin remodeling induced by C328 modification may affect its interaction with cellular organelles, as well as the cross-talk between cytoskeletal networks, as seems to be the case for the reorganization of actin filaments in response to oxidants and electrophiles. In summary, the evidence herein reviewed delineates a complex interplay in which type III IFs emerge both as targets and modulators of redox signaling.
Collapse
Affiliation(s)
- María A. Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
4
|
Scalise S, Zannino C, Lucchino V, Lo Conte M, Abbonante V, Benedetto GL, Scalise M, Gambardella A, Parrotta EI, Cuda G. Ascorbic acid mitigates the impact of oxidative stress in a human model of febrile seizure and mesial temporal lobe epilepsy. Sci Rep 2024; 14:5941. [PMID: 38467734 PMCID: PMC10928078 DOI: 10.1038/s41598-024-56680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/09/2024] [Indexed: 03/13/2024] Open
Abstract
Prolonged febrile seizures (FS) in children are linked to the development of temporal lobe epilepsy (MTLE). The association between these two pathologies may be ascribed to the long-term effects that FS exert on neural stem cells, negatively affecting the generation of new neurons. Among the insults associated with FS, oxidative stress is noteworthy. Here, we investigated the consequences of exposure to hydrogen peroxide (H2O2) in an induced pluripotent stem cell-derived neural stem cells (iNSCs) model of a patient affected by FS and MTLE. In our study, we compare the findings from the MTLE patient with those derived from iNSCs of a sibling exhibiting a milder phenotype defined only by FS, as well as a healthy individual. In response to H2O2 treatment, iNSCs derived from MTLE patients demonstrated an elevated production of reactive oxygen species and increased apoptosis, despite the higher expression levels of antioxidant genes and proteins compared to other cell lines analysed. Among the potential causative mechanisms of enhanced vulnerability of MTLE patient iNSCs to oxidative stress, we found that these cells express low levels of the heat shock protein HSPB1 and of the autophagy adaptor SQSTM1/p62. Pre-treatment of diseased iNSCs with the antioxidant molecule ascorbic acid restored HSBP1 and p62 expression and simultaneously reduced the levels of ROS and apoptosis. Our findings suggest the potential for rescuing the impaired oxidative stress response in diseased iNSCs through antioxidant treatment, offering a promising mechanism to prevent FS degeneration in MTLE.
Collapse
Affiliation(s)
- Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Vittorio Abbonante
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giorgia Lucia Benedetto
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
5
|
Nakipoglu M, Özkabadayı Y, Karahan S, Tezcaner A. Bilayer wound dressing composed of asymmetric polycaprolactone membrane and chitosan-carrageenan hydrogel incorporating storax balsam. Int J Biol Macromol 2024; 254:128020. [PMID: 37956814 DOI: 10.1016/j.ijbiomac.2023.128020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
A comprehensive approach is needed to develop multifunctional wound dressing that is simple yet efficient. In this work, Liquidambar orientalis Mill. storax loaded hydroxyethyl chitosan (HECS)-carrageenan (kC) based hydrogel (HECS-kC) and polydopamine coated asymmetric polycaprolactone membrane (PCL-DOP) were used to develop a multifunctional and modular bilayer wound dressing. Asymmetric PCL-DOP membrane was prepared by non-solvent induced phase separation (NIPS) followed by polydopamine coating and demonstrated an excellent barrier against bacteria while allowing permeability for 5.45 ppm dissolved‑oxygen and 2130 g/m2 water vapor transmission in 24 h in addition to 805 kPa tensile strength. Storax loaded HECS-kC hydrogel, on the other hand, demonstrated a pH-responsive degradation and swelling to provide necessary conditions to facilitate wound healing. The hydrogels showed stretchability above 140 %, mild adhesive strength on sheep skin and PCL-DOP membrane, while the storax incorporation enhanced antibacterial and antioxidant activity. Furthermore, rat full-thickness skin defect model showed that the developed bilayer wound dressing could significantly facilitate wound healing compared to Tegaderm™ and control groups. This study shows that the bilayered wound dressing has the potential to be used as a simple and effective wound care system.
Collapse
Affiliation(s)
- Mustafa Nakipoglu
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Molecular Biology and Genetics, Bartin University, Bartin 74100, Turkey.
| | - Yasin Özkabadayı
- Department of Histology, Kırıkkale University, Kırıkkale 71450, Turkey.
| | - Siyami Karahan
- Department of Histology, Kırıkkale University, Kırıkkale 71450, Turkey.
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey.
| |
Collapse
|
6
|
Fanfarillo F, Ferraguti G, Lucarelli M, Francati S, Barbato C, Minni A, Ceccanti M, Tarani L, Petrella C, Fiore M. The Impact of ROS and NGF in the Gliomagenesis and their Emerging Implications in the Glioma Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:449-462. [PMID: 37016521 DOI: 10.2174/1871527322666230403105438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
7
|
Pfefferlé M, Vallelian F. Transcription Factor NRF2 in Shaping Myeloid Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:159-195. [PMID: 39017844 DOI: 10.1007/978-3-031-62731-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
NFE2-related factor 2 (NRF2) is a master transcription factor (TF) that coordinates key cellular homeostatic processes including antioxidative responses, autophagy, proteostasis, and metabolism. The emerging evidence underscores its significant role in modulating inflammatory and immune processes. This chapter delves into the role of NRF2 in myeloid cell differentiation and function and its implication in myeloid cell-driven diseases. In macrophages, NRF2 modulates cytokine production, phagocytosis, pathogen clearance, and metabolic adaptations. In dendritic cells (DCs), it affects maturation, cytokine production, and antigen presentation capabilities, while in neutrophils, NRF2 is involved in activation, migration, cytokine production, and NETosis. The discussion extends to how NRF2's regulatory actions pertain to a wide array of diseases, such as sepsis, various infectious diseases, cancer, wound healing, atherosclerosis, hemolytic conditions, pulmonary disorders, hemorrhagic events, and autoimmune diseases. The activation of NRF2 typically reduces inflammation, thereby modifying disease outcomes. This highlights the therapeutic potential of NRF2 modulation in treating myeloid cell-driven pathologies.
Collapse
Affiliation(s)
- Marc Pfefferlé
- Department of Internal Medicine, Spital Limmattal, Schlieren, Switzerland
| | - Florence Vallelian
- Department of Internal Medicine, University of Zurich and University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Marková S, Lanier HC, Escalante MA, da Cruz MOR, Horníková M, Konczal M, Weider LJ, Searle JB, Kotlík P. Local adaptation and future climate vulnerability in a wild rodent. Nat Commun 2023; 14:7840. [PMID: 38030627 PMCID: PMC10686993 DOI: 10.1038/s41467-023-43383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
As climate change continues, species pushed outside their physiological tolerance limits must adapt or face extinction. When change is rapid, adaptation will largely harness ancestral variation, making the availability and characteristics of that variation of critical importance. Here, we used whole-genome sequencing and genetic-environment association analyses to identify adaptive variation and its significance in the context of future climates in a small Palearctic mammal, the bank vole (Clethrionomys glareolus). We found that peripheral populations of bank vole in Britain are already at the extreme bounds of potential genetic adaptation and may require an influx of adaptive variation in order to respond. Analyses of adaptive loci suggest regional differences in climate variables select for variants that influence patterns of population adaptive resilience, including genes associated with antioxidant defense, and support a pattern of thermal/hypoxic cross-adaptation. Our findings indicate that understanding potential shifts in genomic composition in response to climate change may be key to predicting species' fate under future climates.
Collapse
Affiliation(s)
- Silvia Marková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Hayley C Lanier
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
- Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Ave, Norman, OK, 73072, USA
| | - Marco A Escalante
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Marcos O R da Cruz
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
- Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Ave, Norman, OK, 73072, USA
| | - Michaela Horníková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Mateusz Konczal
- Faculty of Biology, Evolutionary Biology Group, Adam Mickiewicz University, Poznań, Poland
| | - Lawrence J Weider
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic.
| |
Collapse
|
9
|
Sudakov NP, Chang HM, Renn TY, Klimenkov IV. Degenerative and Regenerative Actin Cytoskeleton Rearrangements, Cell Death, and Paradoxical Proliferation in the Gills of Pearl Gourami ( Trichogaster leerii) Exposed to Suspended Soot Microparticles. Int J Mol Sci 2023; 24:15146. [PMID: 37894826 PMCID: PMC10607021 DOI: 10.3390/ijms242015146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The effect is studied of water-suspended soot microparticles on the actin cytoskeleton, apoptosis, and proliferation in the gill epithelium of pearl gourami. To this end, the fish are kept in aquariums with 0.005 g/L of soot for 5 and 14 days. Laser confocal microscopy is used to find that at the analyzed times of exposure to the pollutant zones appear in the gill epithelium, where the actin framework of adhesion belts dissociates and F-actin either forms clumps or concentrates perinuclearly. It is shown that the exposure to soot microparticles enhances apoptosis. On day 5, suppression of the proliferation of cells occurs, but the proliferation increases to the control values on day 14. Such a paradoxical increase in proliferation may be a compensatory process, maintaining the necessary level of gill function under the exposure to toxic soot. This process may occur until the gills' recovery reserve is exhausted. In general, soot microparticles cause profound changes in the actin cytoskeleton in gill cells, greatly enhance cell death, and influence cell proliferation as described. Together, these processes may cause gill dysfunction and affect the viability of fish.
Collapse
Affiliation(s)
- Nikolay P. Sudakov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Ting-Yi Renn
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Igor V. Klimenkov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| |
Collapse
|
10
|
Gregory CD. Hijacking homeostasis: Regulation of the tumor microenvironment by apoptosis. Immunol Rev 2023; 319:100-127. [PMID: 37553811 PMCID: PMC10952466 DOI: 10.1111/imr.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Cancers are genetically driven, rogue tissues which generate dysfunctional, obdurate organs by hijacking normal, homeostatic programs. Apoptosis is an evolutionarily conserved regulated cell death program and a profoundly important homeostatic mechanism that is common (alongside tumor cell proliferation) in actively growing cancers, as well as in tumors responding to cytotoxic anti-cancer therapies. Although well known for its cell-autonomous tumor-suppressive qualities, apoptosis harbors pro-oncogenic properties which are deployed through non-cell-autonomous mechanisms and which generally remain poorly defined. Here, the roles of apoptosis in tumor biology are reviewed, with particular focus on the secreted and fragmentation products of apoptotic tumor cells and their effects on tumor-associated macrophages, key supportive cells in the aberrant homeostasis of the tumor microenvironment. Historical aspects of cell loss in tumor growth kinetics are considered and the impact (and potential impact) on tumor growth of apoptotic-cell clearance (efferocytosis) as well as released soluble and extracellular vesicle-associated factors are discussed from the perspectives of inflammation, tissue repair, and regeneration programs. An "apoptosis-centric" view is proposed in which dying tumor cells provide an important platform for intricate intercellular communication networks in growing cancers. The perspective has implications for future research and for improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Christopher D. Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarterEdinburghUK
| |
Collapse
|
11
|
González-Jiménez P, Duarte S, Martínez AE, Navarro-Carrasco E, Lalioti V, Pajares MA, Pérez-Sala D. Vimentin single cysteine residue acts as a tunable sensor for network organization and as a key for actin remodeling in response to oxidants and electrophiles. Redox Biol 2023; 64:102756. [PMID: 37285743 DOI: 10.1016/j.redox.2023.102756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Cysteine residues can undergo multiple posttranslational modifications with diverse functional consequences, potentially behaving as tunable sensors. The intermediate filament protein vimentin has important implications in pathophysiology, including cancer progression, infection, and fibrosis, and maintains a close interplay with other cytoskeletal structures, such as actin filaments and microtubules. We previously showed that the single vimentin cysteine, C328, is a key target for oxidants and electrophiles. Here, we demonstrate that structurally diverse cysteine-reactive agents, including electrophilic mediators, oxidants and drug-related compounds, disrupt the vimentin network eliciting morphologically distinct reorganizations. As most of these agents display broad reactivity, we pinpointed the importance of C328 by confirming that local perturbations introduced through mutagenesis provoke structure-dependent vimentin rearrangements. Thus, GFP-vimentin wild type (wt) forms squiggles and short filaments in vimentin-deficient cells, the C328F, C328W, and C328H mutants generate diverse filamentous assemblies, and the C328A and C328D constructs fail to elongate yielding dots. Remarkably, vimentin C328H structures resemble the wt, but are strongly resistant to electrophile-elicited disruption. Therefore, the C328H mutant allows elucidating whether cysteine-dependent vimentin reorganization influences other cellular responses to reactive agents. Electrophiles such as 1,4-dinitro-1H-imidazole and 4-hydroxynonenal induce robust actin stress fibers in cells expressing vimentin wt. Strikingly, under these conditions, vimentin C328H expression blunts electrophile-elicited stress fiber formation, apparently acting upstream of RhoA. Analysis of additional vimentin C328 mutants shows that electrophile-sensitive and assembly-defective vimentin variants permit induction of stress fibers by reactive species, whereas electrophile-resistant filamentous vimentin structures prevent it. Together, our results suggest that vimentin acts as a break for actin stress fibers formation, which would be released by C328-aided disruption, thus allowing full actin remodeling in response to oxidants and electrophiles. These observations postulate C328 as a "sensor" transducing structurally diverse modifications into fine-tuned vimentin network rearrangements, and a gatekeeper for certain electrophiles in the interplay with actin.
Collapse
Affiliation(s)
- Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Alma E Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Elena Navarro-Carrasco
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Vasiliki Lalioti
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| |
Collapse
|
12
|
Puente-Cobacho B, Varela-López A, Quiles JL, Vera-Ramirez L. Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev 2023; 42:49-85. [PMID: 36701089 PMCID: PMC10014738 DOI: 10.1007/s10555-022-10077-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023]
Abstract
Decades of research on oncogene-driven carcinogenesis and gene-expression regulatory networks only started to unveil the complexity of tumour cellular and molecular biology. This knowledge has been successfully implemented in the clinical practice to treat primary tumours. In contrast, much less progress has been made in the development of new therapies against metastasis, which are the main cause of cancer-related deaths. More recently, the role of epigenetic and microenviromental factors has been shown to play a key role in tumour progression. Free radicals are known to communicate the intracellular and extracellular compartments, acting as second messengers and exerting a decisive modulatory effect on tumour cell signalling. Depending on the cellular and molecular context, as well as the intracellular concentration of free radicals and the activation status of the antioxidant system of the cell, the signalling equilibrium can be tilted either towards tumour cell survival and progression or cell death. In this regard, recent advances in tumour cell biology and metastasis indicate that redox signalling is at the base of many cell-intrinsic and microenvironmental mechanisms that control disseminated tumour cell fate and metastasis. In this manuscript, we will review the current knowledge about redox signalling along the different phases of the metastatic cascade, including tumour cell dormancy, making emphasis on metabolism and the establishment of supportive microenvironmental connections, from a redox perspective.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain. .,Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
13
|
Jiang S, Wan F, Lian H, Lu Z, Li X, Cao D, Jiang Y, Li J. Friend or foe? The dual role of triptolide in the liver, kidney, and heart. Biomed Pharmacother 2023; 161:114470. [PMID: 36868013 DOI: 10.1016/j.biopha.2023.114470] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Triptolide, a controversial natural compound due to its significant pharmacological activities and multiorgan toxicity, has gained much attention since it was isolated from the traditional Chinese herb Tripterygium wilfordii Hook F. However, in addition to its severe toxicity, triptolide also presents powerful therapeutic potency in the same organs, such as the liver, kidney, and heart, which corresponds to the Chinese medicine theory of You Gu Wu Yun (anti-fire with fire) and deeply interested us. To determine the possible mechanisms involved in the dual role of triptolide, we reviewed related articles about the application of triptolide in both physiological and pathological conditions. Inflammation and oxidative stress are the two main ways triptolide exerts different roles, and the cross-talk between NF-κB and Nrf2 may be one of the mechanisms responsible for the dual role of triptolide and may represent the scientific connotation of You Gu Wu Yun. For the first time, we present a review of the dual role of triptolide in the same organ and propose the possible scientific connotation of the Chinese medicine theory of You Gu Wu Yun, hoping to promote the safe and efficient use of triptolide and other controversial medicines.
Collapse
Affiliation(s)
- Shiyuan Jiang
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Wan
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hui Lian
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihao Lu
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueming Li
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dan Cao
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yangyu Jiang
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Li
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
14
|
Kaynak A, N’Guessan KF, Patel PH, Lee JH, Kogan AB, Narmoneva DA, Qi X. Electric Fields Regulate In Vitro Surface Phosphatidylserine Exposure of Cancer Cells via a Calcium-Dependent Pathway. Biomedicines 2023; 11:biomedicines11020466. [PMID: 36831002 PMCID: PMC9953458 DOI: 10.3390/biomedicines11020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Cancer is the second leading cause of death worldwide after heart disease. The current treatment options to fight cancer are limited, and there is a critical need for better treatment strategies. During the last several decades, several electric field (EF)-based approaches for anti-cancer therapies have been introduced, such as electroporation and tumor-treating fields; still, they are far from optimal due to their invasive nature, limited efficacy and significant side effects. In this study, we developed a non-contact EF stimulation system to investigate the in vitro effects of a novel EF modality on cancer biomarkers in normal (human astrocytes, human pancreatic ductal epithelial -HDPE-cells) and cancer cell lines (glioblastoma U87-GBM, human pancreatic cancer cfPac-1, and MiaPaCa-2). Our results demonstrate that this EF modality can successfully modulate an important cancer cell biomarker-cell surface phosphatidylserine (PS). Our results further suggest that moderate, but not low, amplitude EF induces p38 mitogen-activated protein kinase (MAPK), actin polymerization, and cell cycle arrest in cancer cell lines. Based on our results, we propose a mechanism for EF-mediated PS exposure in cancer cells, where the magnitude of induced EF on the cell surface can differentially regulate intracellular calcium (Ca2+) levels, thereby modulating surface PS exposure.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kombo F. N’Guessan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Priyankaben H. Patel
- Department of Biomedical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jing-Huei Lee
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Andrei B. Kogan
- Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Daria A. Narmoneva
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Xiaoyang Qi
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-513-558-4025
| |
Collapse
|
15
|
Abstract
Reduced glutathione (GSH) is an essential non-enzymatic antioxidant in mammalian cells. GSH can act directly as an antioxidant to protect cells against free radicals and pro-oxidants, and as a cofactor for antioxidant and detoxification enzymes such as glutathione peroxidases, glutathione S-transferases, and glyoxalases. Glutathione peroxidases detoxify peroxides by a reaction that is coupled to GSH oxidation to glutathione disulfide (GSSG). GSSG is converted back to GSH by glutathione reductase and cofactor NADPH. GSH can regenerate vitamin E following detoxification reactions of vitamin E with lipid peroxyl radicals (LOO). GSH is a cofactor for GST during detoxification of electrophilic substances and xenobiotics. Dicarbonyl stress induced by methylglyoxal and glyoxal is alleviated by glyoxalase enzymes and GSH. GSH regulates redox signaling through reversible oxidation of critical protein cysteine residues by S-glutathionylation. GSH is involved in other cellular processes such as protein folding, protecting protein thiols from oxidation and crosslinking, degradation of proteins with disulfide bonds, cell cycle regulation and proliferation, ascorbate metabolism, apoptosis and ferroptosis.
Collapse
|
16
|
Ivaldo C, Passalacqua M, Furfaro AL, d’Abramo C, Ruiz S, Chatterjee PK, Metz CN, Nitti M, Marambaud P. Oxidative stress-induced MMP- and γ-secretase-dependent VE-cadherin processing is modulated by the proteasome and BMP9/10. Sci Rep 2023; 13:597. [PMID: 36631513 PMCID: PMC9834263 DOI: 10.1038/s41598-022-27308-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Classical cadherins, including vascular endothelial (VE)-cadherin, are targeted by matrix metalloproteinases (MMPs) and γ-secretase during adherens junction (AJ) disassembly, a mechanism that might have relevance for endothelial cell (EC) integrity and vascular homeostasis. Here, we show that oxidative stress triggered by H2O2 exposure induced efficient VE-cadherin proteolysis by MMPs and γ-secretase in human umbilical endothelial cells (HUVECs). The cytoplasmic domain of VE-cadherin produced by γ-secretase, VE-Cad/CTF2-a fragment that has eluded identification so far-could readily be detected after H2O2 treatment. VE-Cad/CTF2, released into the cytosol, was tightly regulated by proteasomal degradation and was sequentially produced from an ADAM10/17-generated C-terminal fragment, VE-Cad/CTF1. Interestingly, BMP9 and BMP10, two circulating ligands critically involved in vascular maintenance, significantly reduced VE-Cad/CTF2 levels during H2O2 challenge, as well as mitigated H2O2-mediated actin cytoskeleton disassembly during VE-cadherin processing. Notably, BMP9/10 pretreatments efficiently reduced apoptosis induced by H2O2, favoring endothelial cell recovery. Thus, oxidative stress is a trigger of MMP- and γ-secretase-mediated endoproteolysis of VE-cadherin and AJ disassembly from the cytoskeleton in ECs, a mechanism that is negatively controlled by the EC quiescence factors, BMP9 and BMP10.
Collapse
Affiliation(s)
- Caterina Ivaldo
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132 Genova, Italy ,grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Mario Passalacqua
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132 Genova, Italy
| | - Anna Lisa Furfaro
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132 Genova, Italy
| | - Cristina d’Abramo
- grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Santiago Ruiz
- grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Prodyot K. Chatterjee
- grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Christine N. Metz
- grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.512756.20000 0004 0370 4759Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York USA
| | - Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132, Genova, Italy.
| | - Philippe Marambaud
- grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.512756.20000 0004 0370 4759Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York USA
| |
Collapse
|
17
|
Niemietz I, Brown KL. Hyaluronan promotes intracellular ROS production and apoptosis in TNFα-stimulated neutrophils. Front Immunol 2023; 14:1032469. [PMID: 36814915 PMCID: PMC9939446 DOI: 10.3389/fimmu.2023.1032469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Background Hyaluronan (HA) is an important structural component of the extracellular matrix and has well-described roles in maintaining tissue integrity and homeostasis. With inflammation, HA metabolism (synthesis and degradation) increases and results in higher concentrations of soluble HA. Previously, we demonstrated that (soluble) HA primed resting neutrophils for the oxidative burst in response to a secondary stimulus. Notably, HA-mediated priming was not dependent on degranulation, which is a hallmark of priming by classical agents such as TNFα. In this study, we queried the ability of HA to prime neutrophils to different stimuli and its capacity to modulate neutrophil function in the presence of TNFα. Methods Blood neutrophils from healthy donors were stimulated ex vivo with HA in the absence and presence of classic neutrophil agonists, inclusive of TNFα. Western blotting was used to assess the activation (phosphorylation) of p38 MAPK, and key neutrophil functions associated with priming and activation, such as intracellular and extracellular ROS production, degranulation, and apoptosis, were evaluated by standard chemiluminescence assays (ROS) and flow cytometry. Results Hyaluronan is capable of atypical priming and, with TNFα, co-priming neutrophils for an enhanced (rate and/or magnitude) oxidative burst to various secondary stimuli. In addition, HA can augment intracellular ROS production that is directly induced by TNFα in resting neutrophils, which coincided with the activation of p38 MAPK and apoptosis. Conclusions These data demonstrate that the extracellular matrix component HA is a key modulator of neutrophil function(s) in the presence of inflammatory agents such as TNFα. Moreover, it provides additional evidence for the diversity and complexity of neutrophil priming and activation during inflammation.
Collapse
Affiliation(s)
- Iwona Niemietz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kelly L Brown
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Matsumoto T, Yoshioka M, Yamada A, Taguchi K, Kobayashi T. Mechanisms underlying the methylglyoxal-induced enhancement of uridine diphosphate-mediated contraction in rat femoral artery. J Pharmacol Sci 2022; 150:100-109. [DOI: 10.1016/j.jphs.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
|
19
|
Simicic D, Cudalbu C, Pierzchala K. Overview of oxidative stress findings in hepatic encephalopathy: From cellular and ammonium-based animal models to human data. Anal Biochem 2022; 654:114795. [PMID: 35753389 DOI: 10.1016/j.ab.2022.114795] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Oxidative stress is a natural phenomenon in the body. Under physiological conditions intracellular reactive oxygen species (ROS) are normal components of signal transduction cascades, and their levels are maintained by a complex antioxidants systems participating in the in-vivo redox homeostasis. Increased oxidative stress is present in several chronic diseases and interferes with phagocytic and nervous cell functions, causing an up-regulation of cytokines and inflammation. Hepatic encephalopathy (HE) occurs in both acute liver failure (ALF) and chronic liver disease. Increased blood and brain ammonium has been considered as an important factor in pathogenesis of HE and has been associated with inflammation, neurotoxicity, and oxidative stress. The relationship between ROS and the pathophysiology of HE is still poorly understood. Therefore, sensing ROS production for a better understanding of the relationship between oxidative stress and functional outcome in HE pathophysiology is critical for determining the disease mechanisms, as well as to improve the management of patients. This review is emphasizing the important role of oxidative stress in HE development and documents the changes occurring as a consequence of oxidative stress augmentation based on cellular and ammonium-based animal models to human data.
Collapse
Affiliation(s)
- D Simicic
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland
| | - C Cudalbu
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - K Pierzchala
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland.
| |
Collapse
|
20
|
Rouyère C, Serrano T, Frémont S, Echard A. Oxidation and reduction of actin: Origin, impact in vitro and functional consequences in vivo. Eur J Cell Biol 2022; 101:151249. [PMID: 35716426 DOI: 10.1016/j.ejcb.2022.151249] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Actin is among the most abundant proteins in eukaryotic cells and assembles into dynamic filamentous networks regulated by many actin binding proteins. The actin cytoskeleton must be finely tuned, both in space and time, to fulfill key cellular functions such as cell division, cell shape changes, phagocytosis and cell migration. While actin oxidation by reactive oxygen species (ROS) at non-physiological levels are known for long to impact on actin polymerization and on the cellular actin cytoskeleton, growing evidence shows that direct and reversible oxidation/reduction of specific actin amino acids plays an important and physiological role in regulating the actin cytoskeleton. In this review, we describe which actin amino acid residues can be selectively oxidized and reduced in many different ways (e.g. disulfide bond formation, glutathionylation, carbonylation, nitration, nitrosylation and other oxidations), the cellular enzymes at the origin of these post-translational modifications, and the impact of actin redox modifications both in vitro and in vivo. We show that the regulated balance of oxidation and reduction of key actin amino acid residues contributes to the control of actin filament polymerization and disassembly at the subcellular scale and highlight how improper redox modifications of actin can lead to pathological conditions.
Collapse
Affiliation(s)
- Clémentine Rouyère
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Thomas Serrano
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
| | - Stéphane Frémont
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France.
| |
Collapse
|
21
|
Insights into the cytoprotective potential of Bergenia ligulata against oxalate-induced oxidative stress and epithelial-mesenchymal transition (EMT) via TGFβ1/p38MAPK pathway in human renal epithelial cells. Urolithiasis 2022; 50:259-278. [PMID: 35174397 DOI: 10.1007/s00240-022-01315-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
Oxalate exposure to human renal epithelial cells triggers a vicious cycle of oxidative stress leading to cellular injury and deposition of calcium oxalate crystals on the injured cells. This results in further oxidative damage causing inflammation and loss of cell-cell adhesion factors, ultimately leading to irreparable kidney damage. However, these events can be attenuated or prevented by plants rich in antioxidants used in the traditional system of medicine for treatment of kidney stones. To delineate the mechanism by which Bergenia ligulata extract exerts its cytoprotective role in oxalate-induced injury we designed this study. Our results revealed that oxalate-injured HK2 cells cotreated with ethanolic extract of Bergenia ligulata displayed increased viability, reduced oxidative stress due to lowered production of intracellular reactive oxygen species (ROS) and decreased apoptosis. We also observed lowered markers of inflammation, along with increased expression of epithelial marker E-cadherin and decreased expression of mesenchymal markers Vimentin, F-actin, Transforming growth factor beta 1 (TGF-β1) and EMT-related proteins in renal tubular epithelial cells through immunocytochemistry, real-time PCR and western blotting. Our findings collectively suggest that by reducing oxidative stress, modulating crystal structure and preventing crystal-cell adhesion, B. ligulata inhibits the EMT pathway by downregulating the various mediators and thereby exerts its cytoprotective effect.
Collapse
|
22
|
Causer AJ, Khalaf M, Klein Rot E, Brand K, Smith J, Bailey SJ, Cummings MH, Shepherd AI, Saynor ZL, Shute JK. CFTR limits F-actin formation and promotes morphological alignment with flow in human lung microvascular endothelial cells. Physiol Rep 2021; 9:e15128. [PMID: 34851051 PMCID: PMC8634629 DOI: 10.14814/phy2.15128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Micro- and macrovascular endothelial dysfunction in response to shear stress has been observed in cystic fibrosis (CF), and has been associated with inflammation and oxidative stress. We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) regulates endothelial actin cytoskeleton dynamics and cellular alignment in response to flow. Human lung microvascular endothelial cells (HLMVEC) were cultured with either the CFTR inhibitor GlyH-101 (20 µM) or CFTRinh-172 (20 µM), tumor necrosis factor (TNF)-α (10 ng/ml) or a vehicle control (0.1% dimethyl sulfoxide) during 24 and 48 h of exposure to shear stress (11.1 dynes/cm2 ) or under static control conditions. Cellular morphology and filamentous actin (F-actin) were assessed using immunocytochemistry. [Nitrite] and endothelin-1 ([ET-1]) were determined in cell culture supernatant by ozone-based chemiluminescence and ELISA, respectively. Treatment of HLMVECs with both CFTR inhibitors prevented alignment of HLMVEC in the direction of flow after 24 and 48 h of shear stress, compared to vehicle control (both p < 0.05). Treatment with TNF-α significantly increased total F-actin after 24 h versus control (p < 0.05), an effect that was independent of shear stress. GlyH-101 significantly increased F-actin after 24 h of shear stress versus control (p < 0.05), with a significant (p < 0.05) reduction in cortical F-actin under both static and flow conditions. Shear stress decreased [ET-1] after 24 h (p < 0.05) and increased [nitrite] after 48 h (p < 0.05), but neither [nitrite] nor [ET-1] was affected by GlyH-101 (p > 0.05). CFTR appears to limit cytosolic actin polymerization, while maintaining a cortical rim actin distribution that is important for maintaining barrier integrity and promoting alignment with flow, without effects on endothelial nitrite or ET-1 production.
Collapse
Affiliation(s)
- Adam J. Causer
- Department for HealthUniversity of BathBathUK
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
- School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Maha Khalaf
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Emily Klein Rot
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
- School of Life Science, Engineering & DesignSaxion UniversityEnschedeThe Netherlands
| | - Kimberly Brand
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
- School of Life Science, Engineering & DesignSaxion UniversityEnschedeThe Netherlands
| | - James Smith
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Stephen J. Bailey
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Michael H. Cummings
- Department of Diabetes and EndocrinologyQueen Alexandra HospitalPortsmouthUK
| | - Anthony I. Shepherd
- School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Zoe L. Saynor
- School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Janis K. Shute
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
23
|
CCL4 induces inflammatory signalling and barrier disruption in the neurovascular endothelium. Brain Behav Immun Health 2021; 18:100370. [PMID: 34755124 PMCID: PMC8560974 DOI: 10.1016/j.bbih.2021.100370] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022] Open
Abstract
Background During neuroinflammation many chemokines alter the function of the blood-brain barrier (BBB) that regulates the entry of macromolecules and immune cells into the brain. As the milieu of the brain is altered, biochemical and structural changes contribute to the pathogenesis of neuroinflammation and may impact on neurogenesis. The chemokine CCL4, previously known as MIP-1β, is upregulated in a wide variety of central nervous system disorders, including multiple sclerosis, where it is thought to play a key role in the neuroinflammatory process. However, the effect of CCL4 on BBB endothelial cells (ECs) is unknown. Materials and methods Expression and distribution of CCR5, phosphorylated p38, F-actin, zonula occludens-1 (ZO-1) and vascular endothelial cadherin (VE-cadherin) were analysed in the human BBB EC line hCMEC/D3 by Western blot and/or immunofluorescence in the presence and absence of CCL4. Barrier modulation in response to CCL4 using hCMEC/D3 monolayers was assessed by measuring molecular flux of 70 kDa RITC-dextran and transendothelial lymphocyte migration. Permeability changes in response to CCL4 in vivo were measured by an occlusion technique in pial microvessels of Wistar rats and by fluorescein angiography in mouse retinae. Results CCR5, the receptor for CCL4, was expressed in hCMEC/D3 cells. CCL4 stimulation led to phosphorylation of p38 and the formation of actin stress fibres, both indicative of intracellular chemokine signalling. The distribution of junctional proteins was also altered in response to CCL4: junctional ZO-1 was reduced by circa 60% within 60 min. In addition, surface VE-cadherin was redistributed through internalisation. Consistent with these changes, CCL4 induced hyperpermeability in vitro and in vivo and increased transmigration of lymphocytes across monolayers of hCMEC/D3 cells. Conclusion These results show that CCL4 can modify BBB function and may contribute to disease pathogenesis. The chemokine CCL4 induced phosphorylation of P38 in an in vitro model of the blood-brain barrier (BBB). CCL4 treatment resulted in reduction of plasma membrane VE-cadherin and junctional ZO-1. CCL4 induced neurovascular barrier breakdown in vitro and in vivo.
Collapse
|
24
|
Braun NJ, Galaska RM, Jewett ME, Krupa KA. Implementation of a Dynamic Co-Culture Model Abated Silver Nanoparticle Interactions and Nanotoxicological Outcomes In Vitro. NANOMATERIALS 2021; 11:nano11071807. [PMID: 34361193 PMCID: PMC8308404 DOI: 10.3390/nano11071807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/21/2022]
Abstract
The incorporation of engineered nanoparticles (NPs) into everyday consumer goods, products, and applications has given rise to the field of nanotoxicology, which evaluates the safety of NPs within biological environments. The unique physicochemical properties of NPs have made this an insurmountable challenge, as their reactivity and variable behavior have given rise to discrepancies between standard cell-based in vitro and animal in vivo models. In this study, enhanced in vitro models were generated that retained the advantages of traditional cell cultures, but incorporated the modifications of (1) inclusion of an activated immune element and (2) the presence of physiologically-relevant dynamic flow. Following verification that the human alveolar epithelial and macrophage (A549/U937) co-culture could be successfully sustained under both static and dynamic conditions, these cultures, in addition to a standard A549 static model, were challenged with 10 nm citrate coated silver NPs (AgNPs). This work identified a reshaping of the AgNP-cellular interface and differential biological responses following exposure. The presence of dynamic flow modified cellular morphology and reduced AgNP deposition by approximately 20% over the static exposure environments. Cellular toxicity and stress endpoints, including reactive oxygen species, heat shock protein 70, and secretion of pro-inflammatory cytokines, were found to vary as a function of both cellular composition and flow conditions; with activated macrophages and fluid flow both mitigating the severity of AgNP-dependent bioeffects. This work highlights the possibility of enhanced in vitro systems to assess the safety of engineered NPs and demonstrates their effectiveness in elucidating novel NP-cellular interactions and toxicological profiles.
Collapse
Affiliation(s)
- Nicholas J. Braun
- Molecular Bioeffects Branch, Human Effectiveness Directorate, Wright Patterson Air Force Base, Dayton, OH 45433, USA;
| | - Rachel M. Galaska
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469-0256, USA; (R.M.G.); (M.E.J.)
| | - Maggie E. Jewett
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469-0256, USA; (R.M.G.); (M.E.J.)
| | - Kristen A. Krupa
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469-0256, USA; (R.M.G.); (M.E.J.)
- Correspondence: ; Tel.: +1-937-229-2627
| |
Collapse
|
25
|
High stretch induces endothelial dysfunction accompanied by oxidative stress and actin remodeling in human saphenous vein endothelial cells. Sci Rep 2021; 11:13493. [PMID: 34188159 PMCID: PMC8242094 DOI: 10.1038/s41598-021-93081-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The rate of the remodeling of the arterialized saphenous vein conduit limits the outcomes of coronary artery bypass graft surgery (CABG), which may be influenced by endothelial dysfunction. We tested the hypothesis that high stretch (HS) induces human saphenous vein endothelial cell (hSVEC) dysfunction and examined candidate underlying mechanisms. Our results showed that in vitro HS reduces NO bioavailability, increases inflammatory adhesion molecule expression (E-selectin and VCAM1) and THP-1 cell adhesion. HS decreases F-actin in hSVECs, but not in human arterial endothelial cells, and is accompanied by G-actin and cofilin’s nuclear shuttling and increased reactive oxidative species (ROS). Pre-treatment with the broad-acting antioxidant N-acetylcysteine (NAC) supported this observation and diminished stretch-induced actin remodeling and inflammatory adhesive molecule expression. Altogether, we provide evidence that increased oxidative stress and actin cytoskeleton remodeling play a role in HS-induced saphenous vein endothelial cell dysfunction, which may contribute to predisposing saphenous vein graft to failure.
Collapse
|
26
|
Bayir E, Sendemir A. Role of Intermediate Filaments in Blood-Brain Barrier in Health and Disease. Cells 2021; 10:cells10061400. [PMID: 34198868 PMCID: PMC8226756 DOI: 10.3390/cells10061400] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
The blood–brain barrier (BBB) is a highly selective cellular monolayer unique to the microvasculature of the central nervous system (CNS), and it mediates the communication of the CNS with the rest of the body by regulating the passage of molecules into the CNS microenvironment. Limitation of passage of substances through the BBB is mainly due to tight junctions (TJ) and adherens junctions (AJ) between brain microvascular endothelial cells. The importance of actin filaments and microtubules in establishing and maintaining TJs and AJs has been indicated; however, recent studies have shown that intermediate filaments are also important in the formation and function of cell–cell junctions. The most common intermediate filament protein in endothelial cells is vimentin. Vimentin plays a role in blood–brain barrier permeability in both cell–cell and cell–matrix interactions by affecting the actin and microtubule reorganization and by binding directly to VE-cadherin or integrin proteins. The BBB permeability increases due to the formation of stress fibers and the disruption of VE–cadherin interactions between two neighboring cells in various diseases, disrupting the fiber network of intermediate filament vimentin in different ways. Intermediate filaments may be long ignored key targets in regulation of BBB permeability in health and disease.
Collapse
Affiliation(s)
- Ece Bayir
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, 35100 Izmir, Turkey;
| | - Aylin Sendemir
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Science, Ege University, 35100 Izmir, Turkey
- Correspondence: ; Tel.: +90-232-3114817
| |
Collapse
|
27
|
Zong Q, Jing P, Sun S, Wang H, Wu S, Bao W. Effects of HSP27 gene expression on the resistance to Escherichia coli infection in piglets. Gene 2021; 773:145415. [PMID: 33444678 DOI: 10.1016/j.gene.2021.145415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Heat shock protein 27 (HSP27) plays an important role in protecting cells from various stress factors. This study aimed to investigate the function of HSP27 gene and its regulatory mechanism as infected by Escherichia coli (E. coli) at the tissue and cellular levels. Real-time PCR was used to detect the differential expression of HSP27 gene in F18 resistant and sensitive Sutai pigs and the differential expression upon E. coli F18ab, F18ac, K88ac bacterial supernatant, thallus infection and LPS induction in IPEC-J2. In addition, the HSP27 gene overexpression vector was constructed to detect the effect of the HSP27 gene overexpression on the adhesion of E. coli F18 to IPEC-J2, secretion of pro-inflammatory factors, and the expression of the upstream key genes in Mitogen-activated protein kinase (MAPK) pathway. Ribosomal S6 kinase (RSK2) is an important protein in the MAPK pathway. Therefore, the RSK2 gene overexpression vector was constructed and the number of colonies was counted after co-transfection of HSP27 and RSK2 gene. Results revealed that the expression level of HSP27 gene in resistant individuals in 11 tissues was higher than sensitive type. At the cellular level, the relative expression levels of HSP27 gene were increased after F18ab, F18ac bacterial supernatant, F18ab thallus infection, and LPS induction for 4 h (P < 0.01). The adhesion ability of E. coli F18ab to IPEC-J2 was significantly reduced after HSP27 gene overexpression (P < 0.01), and the concentration of pro-inflammatory factors in the HSP27 gene overexpression group was significantly reduced compared with the control group after F18ab infection (P < 0.05). Furthermore, the expression of RSK2 was significantly increased in HSP27 overexpression group upon F18ab infection (P < 0.01). The colonies quantitative results also showed that the number of colonies was significantly reduced after co-transfection of HSP27 and RSK2 gene. We indicated that the high expression of HSP27 gene may resist the inflammatory response caused by exogenous stress and enhance the ability of IPEC-J2 to resist E. coli F18 infection. RSK2 gene in the MAPK pathway may cooperate with HSP27 gene to participate in the immune response of the organism, which provides a theoretical basis for the study of the mechanism of anti-E. coli infection in piglets.
Collapse
Affiliation(s)
- Qiufang Zong
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Pengfei Jing
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Shouyong Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
28
|
The influence of hypoxia and energy depletion on the response of endothelial cells to the vascular disrupting agent combretastatin A-4-phosphate. Sci Rep 2020; 10:9926. [PMID: 32555222 PMCID: PMC7303175 DOI: 10.1038/s41598-020-66568-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Combretastatin A-4 phosphate (CA4P) is a microtubule-disrupting tumour-selective vascular disrupting agent (VDA). CA4P activates the actin-regulating RhoA-GTPase/ ROCK pathway, which is required for full vascular disruption. While hypoxia renders tumours resistant to many conventional therapies, little is known about its influence on VDA activity. Here, we found that active RhoA and ROCK effector phospho-myosin light chain (pMLC) were downregulated in endothelial cells by severe hypoxia. CA4P failed to activate RhoA/ROCK/pMLC but its activity was restored upon reoxygenation. Hypoxia also inhibited CA4P-mediated actinomyosin contractility, VE-cadherin junction disruption and permeability rise. Glucose withdrawal downregulated pMLC, and coupled with hypoxia, reduced pMLC faster and more profoundly than hypoxia alone. Concurrent inhibition of glycolysis (2-deoxy-D-glucose, 2DG) and mitochondrial respiration (rotenone) caused profound actin filament loss, blocked RhoA/ROCK signalling and rendered microtubules CA4P-resistant. Withdrawal of the metabolism inhibitors restored the cytoskeleton and CA4P activity. The AMP-activated kinase AMPK was investigated as a potential mediator of pMLC downregulation. Pharmacological AMPK activators that generate AMP, unlike allosteric activators, downregulated pMLC but only when combined with 2DG and/or rotenone. Altogether, our results suggest that Rho/ROCK and actinomyosin contractility are regulated by AMP/ATP levels independently of AMPK, and point to hypoxia/energy depletion as potential modifiers of CA4P response.
Collapse
|
29
|
Legøy TA, Ghila L, Vethe H, Abadpour S, Mathisen AF, Paulo JA, Scholz H, Ræder H, Chera S. In vivo hyperglycaemia exposure elicits distinct period-dependent effects on human pancreatic progenitor differentiation, conveyed by oxidative stress. Acta Physiol (Oxf) 2020; 228:e13433. [PMID: 31872528 DOI: 10.1111/apha.13433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/02/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
AIM The loss of insulin-secreting β-cells, ultimately characterizing most diabetes forms, demands the development of cell replacement therapies. The common endpoint for all ex vivo strategies is transplantation into diabetic patients. However, the effects of hyperglycaemia environment on the transplanted cells were not yet properly assessed. Thus, the main goal of this study was to characterize global effect of brief and prolonged in vivo hyperglycaemia exposure on the cell fate acquisition and maintenance of transplanted human pancreatic progenitors. METHODS To rigorously study the effect of hyperglycaemia, in vitro differentiated human-induced pluripotent stem cells (hiPSC)-derived pancreatic progenitors were xenotransplanted in normoglycaemic and diabetic NSG rat insulin promoter (RIP)-diphtheria toxin receptor (DTR) mice. The transplants were retrieved after 1-week or 1-month exposure to overt hyperglycaemia and analysed by large-scale microscopy or global proteomics. For this study we pioneer the use of the NSG RIP-DTR system in the transplantation of hiPSC, making use of its highly reproducible specific and absolute β-cell ablation property in the absence of inflammation or other organ toxicity. RESULTS Here we show for the first time that besides the presence of an induced oxidative stress signature, the cell fate and proteome landscape response to hyperglycaemia was different, involving largely different mechanisms, according to the period spent in the hyperglycaemic environment. Surprisingly, brief hyperglycaemia exposure increased the bihormonal cell number by impeding the activity of specific islet lineage determinants. Moreover, it activated antioxidant and inflammation protection mechanisms signatures in the transplanted cells. In contrast, the prolonged exposure was characterized by decreased numbers of hormone + cells, low/absent detoxification signature, augmented production of oxygen reactive species and increased apoptosis. CONCLUSION Hyperglycaemia exposure induced distinct, period-dependent, negative effects on xenotransplanted human pancreatic progenitor, affecting their energy homeostasis, cell fate acquisition and survival.
Collapse
Affiliation(s)
- Thomas A. Legøy
- Department of Clinical Science University of Bergen Bergen Norway
| | - Luiza Ghila
- Department of Clinical Science University of Bergen Bergen Norway
| | - Heidrun Vethe
- Department of Clinical Science University of Bergen Bergen Norway
| | - Shadab Abadpour
- Hybrid Technology Hub‐Centre of Excellence Faculty of Medicine University of Oslo Oslo Norway
- Institute for Surgical Research and Department of Transplant Medicine Oslo University Hospital Oslo Norway
| | | | - Joao A. Paulo
- Department of Cell Biology Harvard Medical School Boston MA USA
| | - Hanne Scholz
- Hybrid Technology Hub‐Centre of Excellence Faculty of Medicine University of Oslo Oslo Norway
- Institute for Surgical Research and Department of Transplant Medicine Oslo University Hospital Oslo Norway
| | - Helge Ræder
- Department of Clinical Science University of Bergen Bergen Norway
- Department of Pediatrics Haukeland University Hospital Bergen Norway
| | - Simona Chera
- Department of Clinical Science University of Bergen Bergen Norway
| |
Collapse
|
30
|
Chandra Rajan K, Vengatesen T. Molecular adaptation of molluscan biomineralisation to high-CO 2 oceans - The known and the unknown. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104883. [PMID: 32072987 DOI: 10.1016/j.marenvres.2020.104883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/11/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
High-CO2 induced ocean acidification (OA) reduces the calcium carbonate (CaCO3) saturation level (Ω) and the pH of oceans. Consequently, OA is causing a serious threat to several ecologically and economically important biomineralising molluscs. Biomineralisation is a highly controlled biochemical process by which molluscs deposit their calcareous structures. In this process, shell matrix proteins aid the nucleation, growth and assemblage of the CaCO3 crystals in the shell. These molluscan shell proteins (MSPs) are, ultimately, responsible for determination of the diverse shell microstructures and mechanical strength. Recent studies have attempted to integrate gene and protein expression data of MSPs with shell structure and mechanical properties. These advances made in understanding the molecular mechanism of biomineralisation suggest that molluscs either succumb or adapt to OA stress. In this review, we discuss the fate of biomineralisation process in future high-CO2 oceans and its ultimate impact on the mineralised shell's structure and mechanical properties from the perspectives of limited substrate availability theory, proton flux limitation model and the omega myth theory. Furthermore, studying the interplay of energy availability and differential gene expression is an essential first step towards understanding adaptation of molluscan biomineralisation to OA, because if there is a need to change gene expression under stressors, any living system would require more energy than usual. To conclude, we have listed, four important future research directions for molecular adaptation of molluscan biomineralisation in high-CO2 oceans: 1) Including an energy budgeting factor while understanding differential gene expression of MSPs and ion transporters under OA. 2) Unraveling the genetic or epigenetic changes related to biomineralisation under stressors to help solving a bigger picture about future evolution of molluscs, and 3) Understanding Post Translational Modifications of MSPs with and without stressors. 4) Understanding carbon uptake mechanisms across taxa with and without OA to clarify the OA theories on Ω.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, Hong Kong SAR, China.
| | - Thiyagarajan Vengatesen
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, Hong Kong SAR, China.
| |
Collapse
|
31
|
Comparative proteomic study reveals the enhanced immune response with the blockade of interleukin 10 with anti-IL-10 and anti-IL-10 receptor antibodies in human U937 cells. PLoS One 2019; 14:e0213813. [PMID: 30897137 PMCID: PMC6428271 DOI: 10.1371/journal.pone.0213813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/01/2019] [Indexed: 01/25/2023] Open
Abstract
Blocking cytokine interleukin 10 (IL-10) at the time of immunisation enhances vaccine induced T cell responses and improves control of tumour cell growth in vivo. However, the effect of an IL-10 blockade on the biological function of macrophages has not been explored. In the current paper, a macrophage precursor cell line, U937 cells, was selected to investigate the differential expression of proteins and relevant cell signalling pathway changes, when stimulated with lipopolysaccharide (LPS) in the presence of antibodies to IL-10 or IL-10 receptor. We used a quantitative proteomic strategy to investigate variations in protein profiles of U937 cells following the treatments with LPS, LPS plus human anti-IL10 antibody and anti-IL10R antibody in 24hrs, respectively. The LPS treatment significantly activated actin-related cell matrix formation and immune response pathways. The addition of anti-IL10 and anti-IL10R antibody further promoted the immune response and potentially effect macrophage survival through PI3K/AKT signalling; however, the latter appeared to also upregulated oncogene XRCC5 and Cajal body associated processes.
Collapse
|
32
|
Márquez-Garbán DC, Gorrín-Rivas M, Chen HW, Sterling C, Elashoff D, Hamilton N, Pietras RJ. Squalamine blocks tumor-associated angiogenesis and growth of human breast cancer cells with or without HER-2/neu overexpression. Cancer Lett 2019; 449:66-75. [PMID: 30771431 DOI: 10.1016/j.canlet.2019.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/07/2019] [Accepted: 02/10/2019] [Indexed: 12/22/2022]
Abstract
Angiogenesis is critical for breast cancer progression. Overexpression of HER-2/neu receptors occur in 25-30% of breast cancers, and treatment with trastuzumab inhibits HER-2-overexpressing tumor growth. Notably, HER-2-mediated signaling enhances vascular endothelial growth factor (VEGF) secretion to increase tumor-associated angiogenesis. Squalamine (aminosterol compound) suppresses VEGF-induced activation of kinases in vascular endothelial cells and inhibits tumor-associated angiogenesis. We assessed antitumor effects of squalamine either alone or with trastuzumab in nude mice bearing breast tumor xenografts without (MCF-7) or with HER2-overexpression (MCF-7/HER-2). Squalamine alone inhibited progression of MCF-7 tumors lacking HER2 overexpression, and squalamine combined with trastuzumab elicited marked inhibition of MCF-7/HER2 growth exceeding that of trastuzumab alone. MCF-7/HER-2 cells secrete higher levels of VEGF than MCF-7 cells, but squalamine elicited no growth inhibition of either MCF-7/HER-2 or MCF-7 cells in vitro. However, squalamine did stop growth of human umbilical vein endothelial cells (HUVECs) and reduced VEGF-induced endothelial tube-like formations in vitro. These effects correlated with blockade of focal adhesion kinase phosphorylation and stress fiber assembly in HUVECs. Thus, squalamine effectively inhibits growth of breast cancers with or without HER-2-overexpression, an effect due in part to blockade of tumor-associated angiogenesis.
Collapse
Affiliation(s)
- Diana C Márquez-Garbán
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA.
| | - Manuel Gorrín-Rivas
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA.
| | - Hsiao-Wang Chen
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA.
| | - Colin Sterling
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - David Elashoff
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA; Department of Medicine, Division of General Internal Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| | - Nalo Hamilton
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA; UCLA School of Nursing, Los Angeles, CA, 90095, USA.
| | - Richard J Pietras
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA.
| |
Collapse
|
33
|
Labrador-Rached CJ, Browning RT, Braydich-Stolle LK, Comfort KK. Toxicological Implications of Platinum Nanoparticle Exposure: Stimulation of Intracellular Stress, Inflammatory Response, and Akt Signaling In Vitro. J Toxicol 2018; 2018:1367801. [PMID: 30364051 PMCID: PMC6188585 DOI: 10.1155/2018/1367801] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022] Open
Abstract
Due to their distinctive physicochemical properties, platinum nanoparticles (PtNPs) have emerged as a material of interest for a number of biomedical therapeutics. However, in some instances NP exposure has been correlated to health and safety concerns, including cytotoxicity, activation of cellular stress, and modification to normal cell functionality. As PtNPs have induced differential cellular responses in vitro, the goal of this study was to further characterize the behavior and toxicological potential of PtNPs within a HepG2 liver model. This study identified that a high PtNP dosage induced HepG2 cytotoxicity. However, lower, subtoxic PtNP concentrations were able to elicit multiple stress responses, secretion of proinflammatory cytokines, and modulation of insulin-like growth factor-1 dependent signal transduction. Taken together, this work suggests that PtNPs would not be overtly toxic for acute exposures, but sustained cellular interactions might produce long term health consequences.
Collapse
Affiliation(s)
| | - Rebecca T. Browning
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
- Molecular Bioeffects Branch, Bioeffects Division, Airmen Systems Directorate, Wright-Patterson Air Force Base, OH 45433, USA
| | - Laura K. Braydich-Stolle
- Molecular Bioeffects Branch, Bioeffects Division, Airmen Systems Directorate, Wright-Patterson Air Force Base, OH 45433, USA
| | - Kristen K. Comfort
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
- Integrative Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
34
|
Gatsiou A, Vlachogiannis N, Lunella FF, Sachse M, Stellos K. Adenosine-to-Inosine RNA Editing in Health and Disease. Antioxid Redox Signal 2018; 29:846-863. [PMID: 28762759 DOI: 10.1089/ars.2017.7295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Adenosine deamination in transcriptome results in the formation of inosine, a process that is called A-to-I RNA editing. Adenosine deamination is one of the more than 140 described RNA modifications. A-to-I RNA editing is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes and is essential for life. Recent Advances: Accumulating evidence supports a critical role of RNA editing in all aspects of RNA metabolism, including mRNA stability, splicing, nuclear export, and localization, as well as in recoding of proteins. These advances have significantly enhanced the understanding of mechanisms involved in development and in homeostasis. Furthermore, recent studies have indicated that RNA editing may be critically involved in cancer, aging, neurological, autoimmune, or cardiovascular diseases. CRITICAL ISSUES This review summarizes recent and significant achievements in the field of A-to-I RNA editing and discusses the importance and translational value of this RNA modification for gene expression, cellular, and organ function, as well as for disease development. FUTURE DIRECTIONS Elucidation of the exact RNA editing-dependent mechanisms in a single-nucleotide level may pave the path toward the development of novel therapeutic strategies focusing on modulation of ADAR function in the disease context. Antioxid. Redox Signal. 29, 846-863.
Collapse
Affiliation(s)
- Aikaterini Gatsiou
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Nikolaos Vlachogiannis
- 5 Rheumatology Unit, First Department of Propaedeutic Internal Medicine and Joint Rheumatology Academic Program, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - Federica Francesca Lunella
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Marco Sachse
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Konstantinos Stellos
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| |
Collapse
|
35
|
Sajda T, Sinha AA. Autoantibody Signaling in Pemphigus Vulgaris: Development of an Integrated Model. Front Immunol 2018; 9:692. [PMID: 29755451 PMCID: PMC5932349 DOI: 10.3389/fimmu.2018.00692] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune skin blistering disease effecting both cutaneous and mucosal epithelia. Blister formation in PV is known to result from the binding of autoantibodies (autoAbs) to keratinocyte antigens. The primary antigenic targets of pathogenic autoAbs are known to be desmoglein 3, and to a lesser extent, desmoglein 1, cadherin family proteins that partially comprise the desmosome, a protein structure responsible for maintaining cell adhesion, although additional autoAbs, whose role in blister formation is still unclear, are also known to be present in PV patients. Nevertheless, there remain large gaps in knowledge concerning the precise mechanisms through which autoAb binding induces blister formation. Consequently, the primary therapeutic interventions for PV focus on systemic immunosuppression, whose side effects represent a significant health risk to patients. In an effort to identify novel, disease-specific therapeutic targets, a multitude of studies attempting to elucidate the pathogenic mechanisms downstream of autoAb binding, have led to significant advancements in the understanding of autoAb-mediated blister formation. Despite this enhanced characterization of disease processes, a satisfactory explanation of autoAb-induced acantholysis still does not exist. Here, we carefully review the literature investigating the pathogenic disease mechanisms in PV and, taking into account the full scope of results from these studies, provide a novel, comprehensive theory of blister formation in PV.
Collapse
Affiliation(s)
- Thomas Sajda
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
36
|
Zhong L, Simoneau B, Huot J, Simard MJ. p38 and JNK pathways control E-selectin-dependent extravasation of colon cancer cells by modulating miR-31 transcription. Oncotarget 2018; 8:1678-1687. [PMID: 27926494 PMCID: PMC5352088 DOI: 10.18632/oncotarget.13779] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022] Open
Abstract
Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by the adhesion of cancer cells to vascular endothelial cells. It requires the interaction between adhesion receptors such as E-selectin present on endothelial cells and their ligands on cancer cells. Notably, E-selectin influences the metastatic potential of breast, bladder, gastric, pancreatic, and colorectal carcinoma as well as of leukemia and lymphoma. Here, we show that E-selectin expression induced by the pro-inflammatory cytokine IL-1β is directly and negatively regulated by miR-31. The transcription of miR-31 is activated by IL-1β. This activation depends on p38 and JNK MAP kinases, and their downstream transcription factors GATA2, c-Fos and c-Jun. The miR-31-mediated repression of E-selectin impairs the metastatic potential of colon cancer cells by decreasing their adhesion to, and migration through, the endothelium. These results highlight for the first time that microRNA mediates E-selectin-dependent extravasation of colon cancer cells.
Collapse
Affiliation(s)
- Liang Zhong
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Laval University Cancer Research Centre, Quebec City, Québec, G1R 2J6, Canada
| | - Bryan Simoneau
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Laval University Cancer Research Centre, Quebec City, Québec, G1R 2J6, Canada
| | - Jacques Huot
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Laval University Cancer Research Centre, Quebec City, Québec, G1R 2J6, Canada
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, CHU de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Laval University Cancer Research Centre, Quebec City, Québec, G1R 2J6, Canada
| |
Collapse
|
37
|
Miller VJ, Villamena FA, Volek JS. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J Nutr Metab 2018; 2018:5157645. [PMID: 29607218 PMCID: PMC5828461 DOI: 10.1155/2018/5157645] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations.
Collapse
Affiliation(s)
- Vincent J. Miller
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Frederick A. Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeff S. Volek
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
38
|
p38 activation induces production of miR-146a and miR-31 to repress E-selectin expression and inhibit transendothelial migration of colon cancer cells. Sci Rep 2018; 8:2334. [PMID: 29402939 PMCID: PMC5799178 DOI: 10.1038/s41598-018-20837-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/25/2018] [Indexed: 12/15/2022] Open
Abstract
Extravasation of circulating cancer cells determines their metastatic potential. This process is initiated by the adhesion of cancer cells to vascular endothelial cells through specific interactions between endothelial adhesion receptors such as E-selectin and their ligands on cancer cells. In the present study, we show that miR-146a and miR-181b impede the expression of E-selectin by repressing the activity of its transcription factor NF-κB, thereby impairing the metastatic potentials of colon cancer cells by decreasing their adhesion to, and migration through, the endothelium. Among the two microRNAs, only miR-146a is activated by IL-1β, through the activation of p38, ERK and JNK MAP kinases, as well as their downstream transcription factors GATA2, c-Fos and c-Jun. Inhibiting p38 MAP kinase increases NF-κB activity, at least partially via miR-146a. Inhibiting p38 also increases the expression of E-selectin at the post-transcriptional level via decreasing miR-31, which targets E-selectin mRNA and also depends on p38 for its expression. In response to IL-1β, p38 MAP kinase hence represses the expression of E-selectin at the transcriptional and the post-transcriptional levels, via miR-146a and miR-31, respectively. These results highlight novel mechanisms by which p38 downregulates the expression of E-selectin through different microRNAs following inflammatory stimuli associated to cancer progression.
Collapse
|
39
|
Favero GM, Paz JL, Otake AH, Maria DA, Caldini EG, de Medeiros RSS, Deus DF, Chammas R, Maranhão RC, Bydlowski SP. Cell internalization of 7-ketocholesterol-containing nanoemulsion through LDL receptor reduces melanoma growth in vitro and in vivo: a preliminary report. Oncotarget 2018; 9:14160-14174. [PMID: 29581835 PMCID: PMC5865661 DOI: 10.18632/oncotarget.24389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/25/2018] [Indexed: 01/01/2023] Open
Abstract
Oxysterols are cholesterol oxygenated derivatives which possess several biological actions. Among oxysterols, 7-ketocholesterol (7KC) is known to induce cell death. Here, we hypothesized that 7KC cytotoxicity could be applied in cancer therapeutics. 7KC was incorporated into a lipid core nanoemulsion. As a cellular model the murine melanoma cell line B16F10 was used. The nanoparticle (7KCLDE) uptake into tumor cells was displaced by increasing amounts of low-density-lipoproteins (LDL) suggesting a LDL-receptor-mediated cell internalization. 7KCLDE was mainly cytostatic, which led to an accumulation of polyploid cells. Nevertheless, a single dose of 7KCLDE killed roughly 10% of melanoma cells. In addition, it was observed dissipation of the transmembrane potential, evidenced with flow cytometry; presence of autophagic vacuoles, visualized and quantified with flow cytometry and acridine orange; and presence of myelin figures, observed with ultrastructural microscopy. 7KCLDE impaired cytokenesis was accompanied by changes in cellular morphology into a fibroblastoid shape which is supported by cytoskeletal rearrangements, as shown by the increased actin polymerization. 7KCLDE was injected into B16 melanoma tumor-bearing mice. 7KCLDE accumulated in the liver and tumor. In melanoma tumor 7KCLDE promoted a >50% size reduction, enlarged the necrotic area, and reduced intratumoral vasculature. 7KCLDE increased the survival rates of animals, without hematologic or liver toxicity. Although more pre-clinical studies should be performed, our preliminary results suggested that 7KCLDE is a promising novel preparation for cancer chemotherapy.
Collapse
Affiliation(s)
- Giovani M Favero
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Department of General Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Jessica L Paz
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Andréia H Otake
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Instituto do Cancer do Estado de Sao Paulo (ICESP), SP, Brazil
| | - Durvanei A Maria
- Biochemistry and Biophysics Laboratories, Instituto Butantan, Sao Paulo, SP, Brazil
| | - Elia G Caldini
- Laboratory for Cell Biology, Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Raphael S S de Medeiros
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Instituto do Cancer do Estado de Sao Paulo (ICESP), SP, Brazil
| | - Debora F Deus
- Laboratory of Metabolism and Lipids, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Instituto do Cancer do Estado de Sao Paulo (ICESP), SP, Brazil
| | - Raul C Maranhão
- Laboratory of Metabolism and Lipids, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sergio P Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
40
|
hsa-miR-9 controls the mobility behavior of glioblastoma cells via regulation of MAPK14 signaling elements. Oncotarget 2018; 7:23170-81. [PMID: 27036038 PMCID: PMC5029618 DOI: 10.18632/oncotarget.6687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/05/2015] [Indexed: 12/19/2022] Open
Abstract
Background Glioblastoma Multiforme (GBM) is the most common and lethal primary tumor of the brain. GBM is associated with one of the worst 5-year survival rates among all human cancers, despite much effort in different modes of treatment. Results Here, we demonstrate specific GBM cancer phenotypes that are governed by modifications to the MAPAKAP network. We then demonstrate a novel regulation mode by which a set of five key factors of the MAPKAP pathway are regulated by the same microRNA, hsa-miR-9. We demonstrate that hsa-miR-9 overexpression leads to MAPKAP signaling inhibition, partially by interfering with the MAPK14/MAPKAP3 complex. Further, hsa-miR-9 overexpression initiates re-arrangement of actin filaments, which leads us to hypothesize a mechanism for the observed phenotypic shift. Conclusion The work presented here exposes novel microRNA features and situates hsa-miR-9 as a therapeutic target, which governs metastasis and thus determines prognosis in GBM through MAPKAP signaling.
Collapse
|
41
|
Parthasarathi K. The Pulmonary Vascular Barrier: Insights into Structure, Function, and Regulatory Mechanisms. MOLECULAR AND FUNCTIONAL INSIGHTS INTO THE PULMONARY VASCULATURE 2018; 228:41-61. [DOI: 10.1007/978-3-319-68483-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Quesada-Gómez JM, Santiago-Mora R, Durán-Prado M, Dorado G, Pereira-Caro G, Moreno-Rojas JM, Casado-Díaz A. β-Cryptoxanthin Inhibits Angiogenesis in Human Umbilical Vein Endothelial Cells Through Retinoic Acid Receptor. Mol Nutr Food Res 2017; 62. [PMID: 29131551 DOI: 10.1002/mnfr.201700489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/02/2017] [Indexed: 01/03/2023]
Abstract
SCOPE β-Cryptoxanthin is an abundant carotenoid in fruits and vegetables that can be quantified in human blood serum. Yet, contrary to other carotenoids, its effects on endothelial cells and angiogenesis remain unknown. METHODS AND RESULTS Human umbilical vein endothelial cells (HUVEC) are treated with 0.01, 0.1, or 1 μm of β-cryptoxanthin. Antioxidant activity is determined by its free radical scavenging and oxygen-radical absorbance capacity. The effect on migration and formation of tubular structures is studied. Additionally, effect on angiogenesis is also analyzed using an in vivo model. β-Cryptoxanthin exhibits scavenging ability, having an antioxidant effect on HUVEC. Interestingly, β-cryptoxanthin reduces their migration and angiogenesis, even in the presence of vascular endothelial growth factor (VEGF). Additionally, such carotenoid inhibits in vivo angiogenesis induced by VEGF. In addition, treatment of HUVEC with LE540 (retinoic acid receptor [RAR] panantagonist) inhibits β-cryptoxanthin antiangiogenic effect on HUVEC. CONCLUSION β-Cryptoxanthin inhibits angiogenesis through RAR. Thus, this carotenoid and food containing it may be useful for the prevention and treatment of angiogenic pathologies. That includes tumoral growth and wet macular degeneration associated with aging. To the best of our knowledge, this is the first report of the antioxidant effect and antiangiogenic activity of this carotenoid on HUVEC, both in vitro and in vivo.
Collapse
Affiliation(s)
- José Manuel Quesada-Gómez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.,RETICEF & CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Raquel Santiago-Mora
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.,Ciencias Médicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mario Durán-Prado
- Ciencias Médicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Gabriel Dorado
- RETICEF & CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | - Gema Pereira-Caro
- Department of Food Science and Health, IFAPA-Alameda del Obispo, Córdoba, Spain
| | | | - Antonio Casado-Díaz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.,RETICEF & CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
43
|
D'Anna C, Cigna D, Di Sano C, Di Vincenzo S, Dino P, Ferraro M, Bini L, Bianchi L, Di Gaudio F, Gjomarkaj M, Pace E. Exposure to cigarette smoke extract and lipopolysaccharide modifies cytoskeleton organization in bronchial epithelial cells. Exp Lung Res 2017; 43:347-358. [PMID: 29199880 DOI: 10.1080/01902148.2017.1377784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The integrity of the respiratory epithelium is crucial for airway homeostasis. Tobacco smoke exposure and recurrent infections of the airways play a crucial role in the progression and in the decline of the respiratory function in chronic obstructive pulmonary disease (COPD). The aim of this study was to detect differentially expressed proteins in a bronchial epithelial cell line (16-HBE) stimulated with cigarette smoke extract (CSE) and lipopolysaccharide (LPS), a constituent of gram-negative bacteria, alone and/or in combination, by using two-dimensional electrophoresis (2DE) analysis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Western blot analysis was applied to confirm the expression of significantly modulated proteins. Flow cytometry and immunofluorescence were used to assess F-actin polimerization by phalloidin method. Fourteen proteins, with significant (p < 0.05) changes in intensity, were identified at various experimental points: 6 were up-regulated and 8 were down-regulated. As expected, bioinformatic analysis revealed that most of these proteins are involved in anti-oxidant and immune responses and in cytoskeleton stability. Western blot analysis confirmed that: Proteasome activator complex subunit 2 (PSME2), Peroxiredoxin-6 (PRDX6), Annexin A5 (ANXA5) and Heat shock protein beta-1 (HSPB1) were reduced and Coactosin-like protein (COTL-1) was increased by co-exposure of CSE and LPS. Furthermore, LPS and CSE increased actin polimerization. In conclusion, although further validation studies are needed, our findings suggest that, CSE and LPS could contribute to the progressive deterioration of lung function, altering the expression of proteins involved in metabolic processes and cytoskeleton rearrangement in bronchial epithelial cells.
Collapse
Affiliation(s)
- Claudia D'Anna
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Diego Cigna
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Caterina Di Sano
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Serena Di Vincenzo
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Paola Dino
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Maria Ferraro
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Luca Bini
- b Molecular Biology Department , Laboratory of Functional Proteomics, Università degli Studi di Siena , Siena , Italy
| | - Laura Bianchi
- b Molecular Biology Department , Laboratory of Functional Proteomics, Università degli Studi di Siena , Siena , Italy
| | - Francesca Di Gaudio
- c DiBiMeF (Biopatologia e Biotecnologie Mediche e Forensi) - Università degli Studi di Palermo - Italy
| | - Mark Gjomarkaj
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Elisabetta Pace
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| |
Collapse
|
44
|
Waters L, Padula MP, Marks DC, Johnson L. Cryopreserved platelets demonstrate reduced activation responses and impaired signaling after agonist stimulation. Transfusion 2017; 57:2845-2857. [PMID: 28905392 DOI: 10.1111/trf.14310] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Room temperature-stored (20-24°C) platelets (PLTs) have a shelf life of 5 days, making it logistically challenging to supply remote medical centers with PLT products. Cryopreservation of PLTs in dimethyl sulfoxide (DMSO) and storage at -80°C enables an extended shelf life up to 2 years. Although cryopreserved PLTs have been widely characterized under resting conditions, their ability to undergo agonist-induced activation is yet to be fully explored. STUDY DESIGN AND METHODS Buffy coat PLTs were cryopreserved at -80°C with 5% to 6% DMSO and sampled before freezing and after thawing. PLTs were analyzed under resting conditions and after agonist stimulation with adenosine diphosphate, collagen, or thrombin receptor-activating peptide-6. The expression of activation markers, microparticle formation, and calcium mobilization were analyzed by flow cytometry. Soluble PLT proteins present in the PLT supernatant were examined by enzyme-linked immunosorbent assay. Protein phosphorylation was investigated with Western blotting. RESULTS After cryopreservation, PLTs displayed increased surface activation markers and higher basal calcium levels. Cryopreserved PLTs demonstrated diminished aggregation responses. Additionally, cryopreserved PLTs showed a limited ability to become activated (as measured by CD62P and phosphatidylserine exposure and cytokine release) after agonist stimulation. A reduction in the abundance and phosphorylation of key signaling proteins (Akt, Src, Lyn, ERK, and p38) was seen in cryopreserved PLTs. CONCLUSIONS Cryopreservation of PLTs induces dramatic changes to the basal PLT phenotype and renders them largely nonresponsive to agonist stimulation, likely due to the alterations in signal transduction. Therefore, further efforts are required to understand how cryopreserved PLTs achieve their hemostatic effect once transfused.
Collapse
Affiliation(s)
- Lauren Waters
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| |
Collapse
|
45
|
Hoffman L, Jensen CC, Yoshigi M, Beckerle M. Mechanical signals activate p38 MAPK pathway-dependent reinforcement of actin via mechanosensitive HspB1. Mol Biol Cell 2017; 28:2661-2675. [PMID: 28768826 PMCID: PMC5620374 DOI: 10.1091/mbc.e17-02-0087] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/12/2023] Open
Abstract
Mechanical force induces protein phosphorylations, subcellular redistributions, and actin remodeling. We show that mechanical activation of the p38 MAPK pathway leads to phosphorylation of HspB1 (hsp25/27), which redistributes to cytoskeletal structures, and contributes to the actin cytoskeletal remodeling induced by mechanical stimulation. Despite the importance of a cell’s ability to sense and respond to mechanical force, the molecular mechanisms by which physical cues are converted to cell-instructive chemical information to influence cell behaviors remain to be elucidated. Exposure of cultured fibroblasts to uniaxial cyclic stretch results in an actin stress fiber reinforcement response that stabilizes the actin cytoskeleton. p38 MAPK signaling is activated in response to stretch, and inhibition of p38 MAPK abrogates stretch-induced cytoskeletal reorganization. Here we show that the small heat shock protein HspB1 (hsp25/27) is phosphorylated in stretch-stimulated mouse fibroblasts via a p38 MAPK-dependent mechanism. Phosphorylated HspB1 is recruited to the actin cytoskeleton, displaying prominent accumulation on actin “comet tails” that emanate from focal adhesions in stretch-stimulated cells. Site-directed mutagenesis to block HspB1 phosphorylation inhibits the protein’s cytoskeletal recruitment in response to mechanical stimulation. HspB1-null cells, generated by CRISPR/Cas9 nuclease genome editing, display an abrogated stretch-stimulated actin reinforcement response and increased cell migration. HspB1 is recruited to sites of increased traction force in cells geometrically constrained on micropatterned substrates. Our findings elucidate a molecular pathway by which a mechanical signal is transduced via activation of p38 MAPK to influence actin remodeling and cell migration via a zyxin-independent process.
Collapse
Affiliation(s)
- Laura Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Masaaki Yoshigi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Mary Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 .,Department of Biology, University of Utah, Salt Lake City, UT 84112.,Department of Pediatrics, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
46
|
Wang Y, Zhou Z, Diao Y, Strappe P, Blanchard C. The potential role of p53 and MAPK pathways in the hepatotoxicity of deep‐fried oil and in resistant starch‐induced protection. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuyang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of EducationTianjin University of Science and TechnologyTianjinP. R. China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of EducationTianjin University of Science and TechnologyTianjinP. R. China
- ARC Industrial Transformation Training Centre for Functional GrainsCharles Sturt UniversityWagga, WaggaAustralia
| | - Yongjia Diao
- Key Laboratory of Food Nutrition and Safety, Ministry of EducationTianjin University of Science and TechnologyTianjinP. R. China
| | - Padraig Strappe
- ARC Industrial Transformation Training Centre for Functional GrainsCharles Sturt UniversityWagga, WaggaAustralia
| | - Chris Blanchard
- ARC Industrial Transformation Training Centre for Functional GrainsCharles Sturt UniversityWagga, WaggaAustralia
| |
Collapse
|
47
|
N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells. Nutrients 2017; 9:nu9070654. [PMID: 28672788 PMCID: PMC5537774 DOI: 10.3390/nu9070654] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
N-3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n-3 PUFAs, increased in n-3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n-3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n-3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n-3 PUFAs may contribute to their cardio-protective effect.
Collapse
|
48
|
Corre I, Paris F, Huot J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells. Oncotarget 2017; 8:55684-55714. [PMID: 28903453 PMCID: PMC5589692 DOI: 10.18632/oncotarget.18264] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022] Open
Abstract
By gating the traffic of molecules and cells across the vessel wall, endothelial cells play a central role in regulating cardiovascular functions and systemic homeostasis and in modulating pathophysiological processes such as inflammation and immunity. Accordingly, the loss of endothelial cell integrity is associated with pathological disorders that include atherosclerosis and cancer. The p38 mitogen-activated protein kinase (MAPK) cascades are major signaling pathways that regulate several functions of endothelial cells in response to exogenous and endogenous stimuli including growth factors, stress and cytokines. The p38 MAPK family contains four isoforms p38α, p38β, p38γ and p38δ that are encoded by four different genes. They are all widely expressed although to different levels in almost all human tissues. p38α/MAPK14, that is ubiquitously expressed is the prototype member of the family and is referred here as p38. It regulates the production of inflammatory mediators, and controls cell proliferation, differentiation, migration and survival. Its activation in endothelial cells leads to actin remodeling, angiogenesis, DNA damage response and thereby has major impact on cardiovascular homeostasis, and on cancer progression. In this manuscript, we review the biology of p38 in regulating endothelial functions especially in response to oxidative stress and during the metastatic process.
Collapse
Affiliation(s)
- Isabelle Corre
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - François Paris
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Jacques Huot
- Le Centre de Recherche du CHU de Québec-Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
| |
Collapse
|
49
|
Khajah MA, Mathew PM, Luqmani YA. Inhibitors of PI3K/ERK1/2/p38 MAPK Show Preferential Activity Against Endocrine-Resistant Breast Cancer Cells. Oncol Res 2017; 25:1283-1295. [PMID: 28276317 PMCID: PMC7841054 DOI: 10.3727/096504017x14883245308282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current mainstream pharmacological options for the treatment of endocrine-resistant breast cancer have limitations in terms of their side effect profile and lack of discrimination between normal and cancer cells. In the current study, we assessed the responses of normal breast epithelial cells MCF10A, estrogen receptor-positive (ER+) MCF-7, and ER-silenced pII breast cancer cells to inhibitors (either individually or in combination) of downstream signaling molecules. The expression/activity of ERK1/2, p38 MAPK, and Akt was determined by Western blotting. Cell proliferation, motility, and invasion were determined using MTT, wound healing, and Matrigel assays, respectively. Morphological changes in response to variation in external pH were assessed by light microscopy. Our results demonstrated that the inhibitors of ERK1/2 (PD0325901), p38 MAPK (SB203580), and PI3K (LY294002) preferentially reduce breast cancer cell proliferation. In pII cells, they also reduced motility, invasion, and bleb formation induced by alkaline conditions. Combination treatment with lower concentrations of inhibitors was significantly more effective than single agents and was more effective against the cancer cell lines than the normal MCF10A. In contrast, the commonly used cytotoxic agent paclitaxel did not sufficiently discriminate between the MCF10A and the cancer cells. We concluded that combination therapy using ERK1/2 inhibitor and either p38 MAPK or PI3K inhibitor may provide a greater therapeutic benefit in treating breast cancer by specifically targeting cancer cells with lower doses of each drug than needed individually, potentially reducing unwanted side effects.
Collapse
|
50
|
Escue R, Kandasamy K, Parthasarathi K. Thrombin Induces Inositol Trisphosphate-Mediated Spatially Extensive Responses in Lung Microvessels. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:921-935. [PMID: 28188112 DOI: 10.1016/j.ajpath.2016.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
Activation of plasma membrane receptors initiates compartmentalized second messenger signaling. Whether this compartmentalization facilitates the preferential intercellular diffusion of specific second messengers is unclear. Toward this, the receptor-mediated agonist, thrombin, was instilled into microvessels in a restricted region of isolated blood-perfused mouse lungs. Subsequently, the thrombin-induced increase in endothelial F-actin was determined using confocal fluorescence microscopy. Increased F-actin was evident in microvessels directly treated with thrombin and in those located in adjoining thrombin-free regions. This increase was abrogated by inhibiting inositol trisphosphate-mediated calcium release with Xestospongin C (XeC). XeC also inhibited the thrombin-induced increase in the amplitude of endothelial cytosolic Ca2+ oscillations. Instillation of thrombin and XeC into adjacent restricted regions increased F-actin in microvessels in the thrombin-treated and adjacent regions but not in those in the XeC-treated region. Thus, inositol trisphosphate, and not calcium, diffused interendothelially to the spatially remote thrombin-free microvessels. Thus, activation of plasma membrane receptors increased the ambit of inflammatory responses via a second messenger different from that used by stimuli that induce cell-wide increases in second messengers. Thrombin however failed to induce the spatially extensive response in microvessels of mice lacking endothelial connexin43, suggesting a role for connexin43 gap junctions. Compartmental second messenger signaling and interendothelial communication define the specific second messenger involved in exacerbating proinflammatory responses to receptor-mediated agonists.
Collapse
Affiliation(s)
- Rachel Escue
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Kathirvel Kandasamy
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Kaushik Parthasarathi
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|