1
|
Karatug Kacar A. Exploring dual effects of dinutuximab beta on cell death and proliferation of insulinoma. Chem Biol Drug Des 2024; 103:e14368. [PMID: 37802653 DOI: 10.1111/cbdd.14368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Insulinoma INS-1 cells are pancreatic beta cell tumors. Dinutuximab beta (DB) is a monoclonal antibody used in the treatment of neuroblastoma. The aim of this study is to investigate the effects of DB on pancreatic beta cell tumors at the molecular level. DB (Qarziba®) was available from EUSA Pharma. Streptozotocin (STZ) was used induce to cell cytotoxicity. DB was applied to the cells before or after the STZ application. KCND3, KCNN4, KCNK1, and PTHrP gene expression levels were analyzed by q-RT-PCR, and protein levels were analyzed by Western blotting. Analysis of glucose-stimulated insulin secretion was performed. Ca+2 and CA19-9 levels were determined by the ELISA kit. PERK, CHOP, HSP90, p-c-Jun, p-Atf2, and p-Elk1 protein levels were analyzed by simple WES. Decreased KCND3, KCNK1, and PTHrP protein levels and increased KCND3, KCNN4, KCNK1, and PTHrP gene expression levels were observed with DB applied after STZ application. Cell dysfunction was detected with DB applied before and after STZ application. Ca19-9 and Ca+2 levels were increased with DB applied after STZ application. PERK, CHOP, and p-Elk1 levels decreased, while HSP90 levels increased with DB applied after STZ application. CHOP, p-Akt-2, and p-c-Jun levels increased in the DB group. As a result, INS-1 cells go to cell death via the ERK signaling pathway without ER stress and release insulin with the decrease of K+ channels and an increase in Ca+2 levels with DB applied after STZ application. Moreover, the cells proliferate via JNK signaling with DB application. DB holds promise for the treatment of insulinoma. The study should be supported by in vivo studies.
Collapse
Affiliation(s)
- Ayse Karatug Kacar
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Fan Z, Lv N, Luo X, Tan W. Isosteviol prevents the prolongation of action potential in hypertrophied cardiomyoctyes by regulating transient outward potassium and L-type calcium channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1872-1879. [DOI: 10.1016/j.bbamem.2017.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/24/2017] [Accepted: 04/14/2017] [Indexed: 01/31/2023]
|
3
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
4
|
Nguyen TP, Singh N, Xie Y, Qu Z, Weiss JN. Repolarization reserve evolves dynamically during the cardiac action potential: effects of transient outward currents on early afterdepolarizations. Circ Arrhythm Electrophysiol 2015; 8:694-702. [PMID: 25772542 DOI: 10.1161/circep.114.002451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/20/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transient outward K currents (Ito) have been reported both to suppress and to facilitate early afterdepolarizations (EADs) when repolarization reserve is reduced. Here, we used the dynamic clamp technique to analyze how Ito accounts for these paradoxical effects on EADs by influencing the dynamic evolution of repolarization reserve during the action potential. METHODS AND RESULTS Isolated patch-clamped rabbit ventricular myocytes were exposed to either oxidative stress (H2O2) or hypokalemia to induce bradycardia-dependent EADs at a long pacing cycle length of 6 s, when native rabbit Ito is substantial. EADs disappeared when the pacing cycle length was shortened to 1 s, when Ito becomes negligible because of incomplete recovery from inactivation. During 6-s pacing cycle length, EADs were blocked by the Ito blocker 4-aminopyridine, but reappeared when a virtual current with appropriate Ito-like properties was reintroduced using the dynamic clamp (n=141 trials). During 1-s pacing cycle length in the absence of 4-aminopyridine, adding a virtual Ito-like current (n=1113 trials) caused EADs to reappear over a wide range of Ito conductance (0.005-0.15 nS/pF), particularly when inactivation kinetics were slow (τinact≥20 ms) and the pedestal (noninactivating component) was small (<25% of peak Ito). Faster inactivation or larger pedestals tended to suppress EADs. CONCLUSIONS Repolarization reserve evolves dynamically during the cardiac action potential. Whereas sufficiently large Ito can suppress EADs, a wide range of intermediate Ito properties can promote EADs by influencing the temporal evolution of other currents affecting late repolarization reserve. These findings raise caution in targeting Ito as an antiarrhythmic strategy.
Collapse
Affiliation(s)
- Thao P Nguyen
- From the UCLA Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles.
| | - Neha Singh
- From the UCLA Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Yuanfang Xie
- From the UCLA Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Zhilin Qu
- From the UCLA Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - James N Weiss
- From the UCLA Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
5
|
Yunoki T, Takimoto K, Kita K, Funahashi Y, Takahashi R, Matsuyoshi H, Naito S, Yoshimura N. Differential contribution of Kv4-containing channels to A-type, voltage-gated potassium currents in somatic and visceral dorsal root ganglion neurons. J Neurophysiol 2014; 112:2492-504. [PMID: 25143545 DOI: 10.1152/jn.00054.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Little is known about electrophysiological differences of A-type transient K(+) (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. In whole-cell, patch-clamp recordings, phrixotoxin 2 (PaTx2), a voltage-gated K(+) (Kv)4 channel blocker, exhibits voltage-independent inhibition of the KA current in IB4 intensely stained cells but not the one in bladder-innervating cells. The toxin also shows voltage-independent inhibition of heterologously expressed Kv4.1 current, whereas its inhibition of Kv4.2 and Kv4.3 currents is voltage dependent. The swapping of four amino acids at the carboxyl portion of the S3 region between Kv4.1 and Kv4.2 transfers this characteristic. RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder.
Collapse
Affiliation(s)
- Takakazu Yunoki
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Koichi Takimoto
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania; Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Kaori Kita
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Yasuhito Funahashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ryosuke Takahashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Hiroko Matsuyoshi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Seiji Naito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;
| |
Collapse
|
6
|
Sun B, Sheng Y, Huo R, Hu CW, Lu J, Li SL, Liu X, Wang YC, Dong DL. Bone morphogenetic protein-4 contributes to the down-regulation of Kv4.3 K+ channels in pathological cardiac hypertrophy. Biochem Biophys Res Commun 2013; 436:591-4. [PMID: 23747723 DOI: 10.1016/j.bbrc.2013.05.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/16/2022]
Abstract
Kv4.3 K(+) channels contributing to Ito are involved in the repolarization of cardiac action potential. Kv4.3 K(+) channels decrease in pathological cardiac hypertrophy, but the mechanism remains unclear. Our previous study found that the expression of bone morphogenetic protein 4 (BMP4) increased in pressure-overload and Ang II constant infusion induced cardiac hypertrophy. Since the downregulation of Kv4.3 K(+) channels and the upregulation of BMP4 simultaneously occur in pathological cardiac hypertrophy, we hypothesize that the up-regulated BMP4 would contribute to the downregulation of Kv4.3 K(+) channels in cardiac hypertrophy. We found that BMP4 treatment reduced Kv4.3 but not Kv4.2 and Kv1.4 K(+) channel protein expression, and BMP4-induced decrease of Kv4.3 K(+) channel protein expression was reversed by BMP4 inhibitor noggin and DMH1 in cultured cardiomyocytes in vitro. BMP4-induced decrease of Kv4.3 K(+) channel protein expression was also reversed by the NADPH oxidase inhibitor apocynin and the radical scavenger tempol. In in vivo transverse aortic constriction (TAC)-induced cardiac hypertrophy, constant infusion of DMH1 completely rescued TAC-induced down-regulation of Kv4.3 K(+) channel protein expression. We conclude that BMP4 contributes to the downregulation of Kv4.3 K(+) channels in pathological cardiac hypertrophy and the underlying mechanism might be through increasing ROS production.
Collapse
Affiliation(s)
- Bo Sun
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin 150086, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Meng J, Zhu Q, Zhang L, Li C, Li L, She Z, Huang B, Zhang G. Genome and transcriptome analyses provide insight into the euryhaline adaptation mechanism of Crassostrea gigas. PLoS One 2013; 8:e58563. [PMID: 23554902 PMCID: PMC3595286 DOI: 10.1371/journal.pone.0058563] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/05/2013] [Indexed: 11/23/2022] Open
Abstract
Background The Pacific oyster, Crassostrea gigas, has developed special mechanisms to regulate its osmotic balance to adapt to fluctuations of salinities in coastal zones. To understand the oyster’s euryhaline adaptation, we analyzed salt stress effectors metabolism pathways under different salinities (salt 5, 10, 15, 20, 25, 30 and 40 for 7 days) using transcriptome data, physiology experiment and quantitative real-time PCR. Results Transcriptome data uncovered 189, 480, 207 and 80 marker genes for monitoring physiology status of oysters and the environment conditions. Three known salt stress effectors (involving ion channels, aquaporins and free amino acids) were examined. The analysis of ion channels and aquaporins indicated that 7 days long-term salt stress inhibited voltage-gated Na+/K+ channel and aquaporin but increased calcium-activated K+ channel and Ca2+ channel. As the most important category of osmotic stress effector, we analyzed the oyster FAAs metabolism pathways (including taurine, glycine, alanine, beta-alanine, proline and arginine) and explained FAAs functional mechanism for oyster low salinity adaptation. FAAs metabolism key enzyme genes displayed expression differentiation in low salinity adapted individuals comparing with control which further indicated that FAAs played important roles for oyster salinity adaptation. A global metabolic pathway analysis (iPath) of oyster expanded genes displayed a co-expansion of FAAs metabolism in C. gigas compared with seven other species, suggesting oyster’s powerful ability regarding FAAs metabolism, allowing it to adapt to fluctuating salinities, which may be one important mechanism underlying euryhaline adaption in oyster. Additionally, using transcriptome data analysis, we uncovered salt stress transduction networks in C. gigas. Conclusions Our results represented oyster salt stress effectors functional mechanisms under salt stress conditions and explained the expansion of FAAs metabolism pathways as the most important effectors for oyster euryhaline adaptation. This study was the first to explain oyster euryhaline adaptation at a genome-wide scale in C. gigas.
Collapse
Affiliation(s)
- Jie Meng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qihui Zhu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chunyan Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (GZ); (LL)
| | - Zhicai She
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baoyu Huang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofan Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (GZ); (LL)
| |
Collapse
|
8
|
Nerbonne JM. Molecular Analysis of Voltage‐Gated K
+
Channel Diversity and Functioning in the Mammalian Heart. Compr Physiol 2011. [DOI: 10.1002/cphy.cp020115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Molecular and functional remodeling of Ito by angiotensin II in the mouse left ventricle. J Mol Cell Cardiol 2010; 48:140-51. [DOI: 10.1016/j.yjmcc.2009.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 08/20/2009] [Accepted: 08/27/2009] [Indexed: 11/18/2022]
|
10
|
Gao L, Li Y, Schultz HD, Wang WZ, Wang W, Finch M, Smith LM, Zucker IH. Downregulated Kv4.3 expression in the RVLM as a potential mechanism for sympathoexcitation in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 2009; 298:H945-55. [PMID: 20044444 DOI: 10.1152/ajpheart.00145.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Elevated central angiotensin II (ANG II) plays a critical role in the sympathoexcitation of chronic heart failure (CHF) by stimulating upregulated ANG II type 1 receptors (AT(1)R) in the rostral ventrolateral medulla (RVLM). However, the link between enhanced ANG II signaling and alterations in the electrophysiological characteristics of neurons in the RVLM remains unclear. In the present experiments, we screened for potentially altered genes in the medulla of rats with CHF that are directly related to neuronal membrane conductance using the Rat Genome 230 2.0 Array GeneChip. We found that CHF rats exhibited a 2.1-fold reduction in Kv4.3 gene expression, one of the main voltage-gated K(+) channels, in the medulla. Real-time RT-PCR and Western blot analysis confirmed the downregulation of Kv4.3 in the RVLM of CHF rats. In intact animals, we found that microinjection of the voltage-gated potassium channel blocker, 4-aminopyridine, into the RVLM evoked a sympathoexcitation and hypertension in both normal and CHF rats. CHF rats exhibited smaller responses to 4-aminopyridine than did normal rats. Finally, we used a neuronal cell line (CATH.a neurons) to explore the effect of ANG II on Kv4.3 expression and function. We found that ANG II treatment significantly downregulated mRNA and protein expression of Kv4.3 and decreased the A-type K(+) current. Employing this cell line, we also found that the ANG II-induced inhibition of Kv4.3 mRNA expression was attenuated by the superoxide scavenger Tempol and the p38 MAPK inhibitor SB-203580. The effects of ANG II were abolished by the AT(1)R antagonist losartan. We conclude that the sympathoexcitation observed in the CHF state may be due, in part, to an ANG II-induced downregulation of Kv4.3 expression and subsequent decrease in K(+) current, thereby increasing the excitability of neurons in the RVLM. The ANG II-induced inhibition of Kv4.3 mRNA expression was mediated by ANG II-AT(1)R-ROS-p38 MAPK signaling.
Collapse
Affiliation(s)
- Lie Gao
- Dept. of Cellular and Integrative Physiology, Univ. of Nebraska Medical Center, Omaha, 68198-5850, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Xie C, Bondarenko VE, Morales MJ, Strauss HC. Closed-state inactivation in Kv4.3 isoforms is differentially modulated by protein kinase C. Am J Physiol Cell Physiol 2009; 297:C1236-48. [PMID: 19675305 DOI: 10.1152/ajpcell.00144.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kv4.3, with its complex open- and closed-state inactivation (CSI) characteristics, is a primary contributor to early cardiac repolarization. The two alternatively spliced forms, Kv4.3-short (Kv4.3-S) and Kv4.3-long (Kv4.3-L), differ by the presence of a 19-amino acid insert downstream from the sixth transmembrane segment. The isoforms are similar kinetically; however, the longer form has a unique PKC phosphorylation site. To test the possibility that inactivation is differentially regulated by phosphorylation, we expressed the Kv4.3 isoforms in Xenopus oocytes and examined changes in their inactivation properties after stimulation of PKC activity. Whereas there was no difference in open-state inactivation, there were profound differences in CSI. In Kv4.3-S, PMA reduced the magnitude of CSI by 24% after 14.4 s at -50 mV. In contrast, the magnitude of CSI in Kv4.3-L increased by 25% under the same conditions. Mutation of a putatively phosphorylated threonine (T504) to aspartic acid within a PKC consensus recognition sequence unique to Kv4.3-L eliminated the PMA response. The change in CSI was independent of the intervention used to increase PKC activity; identical results were obtained with either PMA or injected purified PKC. Our previously published 11-state model closely simulated our experimental data. Our data demonstrate isoform-specific regulation of CSI by PKC in Kv4.3 and show that the carboxy terminus of Kv4.3 plays an important role in regulation of CSI.
Collapse
Affiliation(s)
- Chang Xie
- Key Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Ministry of Education, College of Life Science and Technology, Wuhan, Hubei, China
| | | | | | | |
Collapse
|
12
|
Niwa N, Nerbonne JM. Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 2009; 48:12-25. [PMID: 19619557 DOI: 10.1016/j.yjmcc.2009.07.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/25/2009] [Accepted: 07/10/2009] [Indexed: 12/21/2022]
Abstract
Rapidly activating and inactivating cardiac transient outward K(+) currents, I(to), are expressed in most mammalian cardiomyocytes, and contribute importantly to the early phase of action potential repolarization and to plateau potentials. The rapidly recovering (I(t)(o,f)) and slowly recovering (I(t)(o,s)) components are differentially expressed in the myocardium, contributing to regional heterogeneities in action potential waveforms. Consistent with the marked differences in biophysical properties, distinct pore-forming (alpha) subunits underlie the two I(t)(o) components: Kv4.3/Kv4.2 subunits encode I(t)(o,f), whereas Kv1.4 encodes I(t)(o,s), channels. It has also become increasingly clear that cardiac I(t)(o) channels function as components of macromolecular protein complexes, comprising (four) Kvalpha subunits and a variety of accessory subunits and regulatory proteins that influence channel expression, biophysical properties and interactions with the actin cytoskeleton, and contribute to the generation of normal cardiac rhythms. Derangements in the expression or the regulation of I(t)(o) channels in inherited or acquired cardiac diseases would be expected to increase the risk of potentially life-threatening cardiac arrhythmias. Indeed, a recently identified Brugada syndrome mutation in KCNE3 (MiRP2) has been suggested to result in increased I(t)(o,f) densities. Continued focus in this area seems certain to provide new and fundamentally important insights into the molecular determinants of functional I(t)(o) channels and into the molecular mechanisms involved in the dynamic regulation of I(t)(o) channel functioning in the normal and diseased myocardium.
Collapse
Affiliation(s)
- Noriko Niwa
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8103, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
13
|
Schwoerer AP, Melnychenko I, Goltz D, Hedinger N, Broichhausen I, El-Armouche A, Eschenhagen T, Volk T, Ehmke H. Unloaded rat hearts in vivo express a hypertrophic phenotype of cardiac repolarization. J Mol Cell Cardiol 2008; 45:633-41. [DOI: 10.1016/j.yjmcc.2008.02.271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/25/2022]
|
14
|
He W, Jia Y, Takimoto K. Interaction between transcription factors Iroquois proteins 4 and 5 controls cardiac potassium channel Kv4.2 gene transcription. Cardiovasc Res 2008; 81:64-71. [PMID: 18815185 DOI: 10.1093/cvr/cvn259] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The homeobox transcription factor, Iroquois protein 5 (Irx5), plays an essential role in the generation of region-selective expression of Kv4.2 gene across the left ventricular wall of rodent hearts. Here, we analyse molecular mechanisms underlying the Irx5-induced regulation of the rat Kv4.2 promoter. METHODS AND RESULTS The mRNA levels for Irx members in various heart regions were assessed by RT-PCR. A luciferase reporter gene with the rat Kv4.2 promoter was used to test the effects of Irx members on channel promoter activity. Irx3 and Irx5 mRNAs were differentially distributed across the left ventricular wall, whereas Irx4 message was equally abundant in various ventricular regions. Irx5, but not Irx3 or Irx4, increased Kv4.2 promoter activity in 10T1/2 fibroblasts, whereas the transcription factor decreased promoter activity in neonatal ventricular myocytes. These effects were mediated by the C-terminal portion of Irx5. Irx4 appeared to inhibit the Irx5-induced increase in channel promoter activity in 10T1/2 cells. The N-terminal region of Irx4 was necessary and sufficient for this inhibition. Furthermore, when endogenous Irx4 expression was suppressed with siRNA, Irx5 increased channel promoter activity in neonatal myocytes. CONCLUSION These results indicate that Irx5 possesses the ability to activate the Kv4.2 promoter. The abundant Irx4 expression throughout the rat ventricle may play a role in the inverse relationship between Irx5 and Kv4.2 levels across the left ventricular wall.
Collapse
Affiliation(s)
- Wenjie He
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 100 Technology Drive, Bridgeside Point, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
15
|
Zhou C, Vignere CZ, Levitan ES. AUF1 is upregulated by angiotensin II to destabilize cardiac Kv4.3 channel mRNA. J Mol Cell Cardiol 2008; 45:832-8. [PMID: 18789946 DOI: 10.1016/j.yjmcc.2008.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 07/24/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Expression of cardiac myocyte Kv4 channels (Kv4.3 for human, Kv4.2 and Kv4.3 for rodents) is downregulated with hypertrophy in vivo leading to a decrease in the transient outward current (Ito). This effect is recapitulated in vitro with rat neonatal cardiac myocytes treated with angiotensin II (Ang II), which acts via AT(1) receptors, NADPH oxidase and p38 MAP kinase to destabilize the 3' untranslated region (3'UTR) of the Kv4.3 channel messenger RNA (mRNA). Here deletion analysis and mutagenesis identify an AU-rich element (ARE) in the Kv4.3 3'UTR that is required for Ang II-induced destabilization. Overexpression of AUF1 (ARE/poly-(U)-binding/degradation factor 1), an RNA destabilizing protein, mimics and occludes the Ang II effect, while RNA interference targeted against AUF1 blocks the Ang II effect on the Kv4.3 3'UTR. Ang II upregulates AUF1 by activating AT(1) receptors, NADPH oxidase and p38 MAP kinase. Finally, pull-down assays establish that Ang II increases AUF1 binding to the ARE required for destabilization, while binding of the mRNA stabilizing protein HuR is unaffected. Hence, Ang II acts via AT(1) receptors, NADPH oxidase and p38 MAP kinase to upregulate AUF1, which in turn binds to an ARE in the Kv4.3 3'UTR to destabilize the channel mRNA.
Collapse
Affiliation(s)
- Chaoming Zhou
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
16
|
Sonner PM, Filosa JA, Stern JE. Diminished A-type potassium current and altered firing properties in presympathetic PVN neurones in renovascular hypertensive rats. J Physiol 2008; 586:1605-22. [PMID: 18238809 DOI: 10.1113/jphysiol.2007.147413] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Accumulating evidence supports a contribution of the hypothalamic paraventricular nucleus (PVN) to sympathoexcitation and elevated blood pressure in renovascular hypertension. However, the underlying mechanisms resulting in altered neuronal function in hypertensive rats remain largely unknown. Here, we aimed to address whether the transient outward potassium current (I(A)) in identified rostral ventrolateral medulla (RVLM)-projecting PVN neurones is altered in hypertensive rats, and whether such changes affected single and repetitive action potential properties and associated changes in intracellular Ca(2+) levels. Patch-clamp recordings obtained from PVN-RVLM neurons showed a reduction in I(A) current magnitude and single channel conductance, and an enhanced steady-state current inactivation in hypertensive rats. Morphometric reconstructions of intracellularly labelled PVN-RVLM neurons showed a diminished dendritic surface area in hypertensive rats. Consistent with a diminished I(A) availability, action potentials in PVN-RVLM neurons in hypertensive rats were broader, decayed more slowly, and were less sensitive to the K(+) channel blocker 4-aminopyridine. Simultaneous patch clamp recordings and confocal Ca(2+) imaging demonstrated enhanced action potential-evoked intracellular Ca(2+) transients in hypertensive rats. Finally, spike broadening during repetitive firing discharge was enhanced in PVN-RVLM neurons from hypertensive rats. Altogether, our results indicate that diminished I(A) availability constitutes a contributing mechanism underlying aberrant central neuronal function in renovascular hypertension.
Collapse
Affiliation(s)
- Patrick M Sonner
- Department of Psychiatry, University of Cincinnati, Genome Research Institute, 2170 E. Galbraith Rd, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
17
|
Gray AC, Raingo J, Lipscombe D. Neuronal calcium channels: splicing for optimal performance. Cell Calcium 2007; 42:409-17. [PMID: 17512586 PMCID: PMC2001240 DOI: 10.1016/j.ceca.2007.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 03/31/2007] [Indexed: 01/06/2023]
Abstract
Calcium ion channels coordinate an astounding number of cellular functions. Surprisingly, only 10 Ca(V)alpha(1) subunit genes encode the structural cores of all voltage-gated calcium channels. What mechanisms exist to modify the structure of calcium channels and optimize their coupling to the rich spectrum of cellular functions? Growing evidence points to the contribution of post-translational alternative processing of calcium channel RNA as the main mechanism for expanding the functional potential of this important gene family. Alternative splicing of RNA is essential during neuronal development where fine adjustments in protein signaling promote and inhibit cell-cell interactions and underlie axonal guidance. However, attributing a specific functional role to an individual splice isoform or splice site has been difficult. In this regard, studies of ion channels are advantageous because their function can be monitored with precision, allowing even subtle changes in channel activity to be detected. Such studies are especially insightful when coupled with information about isoform expression patterns and cellular localization. In this paper, we focus on two sites of alternative splicing in the N-type calcium channel Ca(V)2.2 gene. We first describe cassette exon 18a that encodes a 21 amino acid segment in the II-III intracellular loop region of Ca(V)2.2. Here, we show that e18a is upregulated in the nervous system during development. We discuss these new data in light of our previous reports showing that e18a protects the N-type channel from cumulative inactivation. Second, we discuss our published data on exons e37a and e37b, which encode 32 amino acids in the intracellular C-terminus of Ca(V)2.2. These exons are expressed in a mutually exclusive manner. Exon e37a-containing Ca(V)2.2 mRNAs and their resultant channels express at higher density in dorsal root ganglia and, as we showed recently, e37a increases N-type channel sensitivity to G-protein-mediated inhibition, as compared to generic e37b-containing N-type channels.
Collapse
Affiliation(s)
| | | | - Diane Lipscombe
- Correspondence: Diane Lipscombe, Department of Neuroscience, Sidney E Frank Hall for Life Sciences, 185 Meeting Street, Providence RI 02912, USA, , Tel: 401 863 1092, Fax: 401 863 1074
| |
Collapse
|
18
|
Eghbali M, Wang Y, Toro L, Stefani E. Heart Hypertrophy During Pregnancy: A Better Functioning Heart? Trends Cardiovasc Med 2006; 16:285-91. [PMID: 17055385 DOI: 10.1016/j.tcm.2006.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 07/06/2006] [Accepted: 07/10/2006] [Indexed: 11/16/2022]
Abstract
During pregnancy, healthy women develop ventricular hypertrophy and diastolic dysfunction as a result of volume overload as well as increased stretch and force demand. Pregnancy also induces electrocardiogram disturbances such as longer QT-interval dispersion. Surprisingly, it was not until recently that the underlying molecular mechanisms or the role of sex hormones was addressed in this critical female reproductive stage. Recent work with the use of mouse and rat models show that the molecular signature of pregnancy-related hypertrophy differs from that of a pathologic form in that classic gene markers (e.g., myosin heavy chains [alpha and beta], atrial natriuretic peptide, phospholamban, and sarcoplasmic reticulum Ca(2+)-ATPase) remain unchanged. However, both types of hypertrophies have the commonality of a reduced expression of the Kv4.3 channel, a membrane protein that can prevent cardiac hypertrophy when overexpressed. Increased estrogen in late pregnancy may be a mechanism to induce Kv4.3 protein downregulation and increased activity of the stretch-activated c-Src kinase. Cellular/molecular mechanisms used to make a pregnant woman's heart work more efficiently and recover to normal cardiac function postpartum are beginning to emerge as cardioprotective natriuretic peptides- and NO-cGMP cascades get upregulated postpartum. This exciting initial work calls for more research in this underexplored area that should set the basis for better treatment of women during pregnancy.
Collapse
Affiliation(s)
- Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA 90095-7115, USA
| | | | | | | |
Collapse
|
19
|
Furukawa T, Kurokawa J. Potassium channel remodeling in cardiac hypertrophy. J Mol Cell Cardiol 2006; 41:753-61. [PMID: 16962130 DOI: 10.1016/j.yjmcc.2006.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 07/28/2006] [Accepted: 07/31/2006] [Indexed: 10/24/2022]
Abstract
Cardiac hypertrophy is an adaptive process against increased work loads; however, hypertrophy also presents substrates for lethal ventricular arrhythmias, resulting in sudden arrhythmic deaths that account for about one third of deaths in cardiac hypertrophy. To maintain physiological cardiac function in the face of increased work loads, hypertrophied cardiomyocytes undergo K(+) channel remodeling that provides a prolongation in action potential duration and an increase in Ca(2+) entry. Increased Ca(2+) entry, in turn, activates signaling mechanisms including a calcineruin/NFAT pathway to permit remodeling of the K(+) channels. This results in a positive feedback loop between the K(+) channel remodeling and altered Ca(2+) handling; this loop may represent a potential therapeutic target against sudden arrhythmic deaths in cardiac hypertrophy. The purposes of this review are to: (1) discuss types of K(+) channels and their mRNA that undergo remodeling in cardiac hypertrophy; (2) report on recent research on molecular mechanisms of K(+) channel remodeling; and (3) address physiological events underlying new therapeutic modalities to ameliorate arrhythmias and sudden death in cardiac hypertrophy.
Collapse
Affiliation(s)
- Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan.
| | | |
Collapse
|
20
|
Takimoto K, Hayashi Y, Ren X, Yoshimura N. Species and tissue differences in the expression of DPPY splicing variants. Biochem Biophys Res Commun 2006; 348:1094-100. [PMID: 16899223 DOI: 10.1016/j.bbrc.2006.07.157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Accepted: 07/26/2006] [Indexed: 11/29/2022]
Abstract
The non-functional dipeptidyl peptidase, DPPY (DPP10), regulates the expression and gating of K+ channels in Kv4 family by tightly binding to these pore-forming subunits. Neural tissue-specific expression of this and the related DPPX (DPP6) is thought to confer rapid inactivation and other unique properties of neuronal Kv4 channels. Here we report that DPPY mRNA is abundant in human adrenal gland, but very low in the corresponding rat tissue. Furthermore, multiple DPPY splicing variants with alternative first exons are significant in the brain, whereas the expression of DPPY gene in the adrenal gland and pancreas is predominantly initiated at the two latter sites. These splicing variants, as well as an N-terminal peptide-deleted DPPY, produce similar changes in Kv4.3 gating. Thus, transcription of DPPY gene is species- and tissue-specifically controlled.
Collapse
Affiliation(s)
- Koichi Takimoto
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
21
|
Zhou C, Ziegler C, Birder LA, Stewart AFR, Levitan ES. Angiotensin II and stretch activate NADPH oxidase to destabilize cardiac Kv4.3 channel mRNA. Circ Res 2006; 98:1040-7. [PMID: 16556864 PMCID: PMC1457039 DOI: 10.1161/01.res.0000218989.52072.e7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pathological and physiological hypertrophy of the heart is associated with decreased expression of the Kv4.3 transient outward current (Ito) channel. The downregulation of channel mRNA and protein, which may be proarrhythmic, is recapitulated with cultured neonatal rat ventricular myocytes treated with angiotensin II (Ang II). Here we show that the 4.9 kb 3' untranslated region (3' UTR) of the Kv4.3 channel transcript confers Ang II sensitivity to a promoter-reporter construct. In contrast, Kv4.2 and Kv1.5 3'-UTR sequences are insensitive to Ang II. Both Kv4.3 3'-UTR reporter mRNA and activity are decreased in Ang II-treated cardiac myocytes, in accordance with a decrease in mRNA stability. This regulation is mediated by Ang II type 1 (AT1) receptors and abolished by NADPH oxidase inhibitors and dominant negative rac. The Ang II effect is also blocked by expression of superoxide dismutase (SOD), but not catalase, showing that superoxide is required. Dominant negative subunits, enzyme inhibitors and hydrogen peroxide experiments show that the apoptosis signal-regulating kinase 1 (ASK1)-p38 kinase pathway mediates downstream signaling from NADPH oxidase. Mechanical stretch also downregulates Kv4.3 3'-UTR reporter activity and this requires AT1 receptors and NADPH oxidase. Thus, activation of AT1 receptors by Ang II or stretch specifically destabilizes cardiac myocyte Kv4.3 channel mRNA by activating NADPH oxidase. These results link long-term control of cardiac K+ channel gene expression to a physiological reactive oxygen species signaling pathway.
Collapse
Affiliation(s)
- Chaoming Zhou
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Hypertrophied myocardium is associated with reductions in the transient outward K(+) current (Ito) and expression of pore-forming Kv4.2/4.3 and auxiliary KChIP2 subunits. Here we show that KChIP2 mRNA and protein levels are dramatically decreased to 10% to 30% of control levels in the left ventricle of aorta-constricted rats in vivo and phenylephrine (PE)-treated myocytes in vitro. PE also markedly decreases Ito density. Inhibition of protein kinase Cs (PKCs) does not affect the PE-induced reduction in KChIP2 mRNA level, whereas activation of PKC with phorbol ester (phorbol myristate [PMA]) causes a marked reduction in KChIP2 mRNA level. Pharmacological inhibition of MEKs or overexpression of a dominant-negative MEK1 increases the basal KChIP2 mRNA expression and blocks the PMA-induced decrease in auxiliary subunit mRNA level. In addition, a constitutively active MEK1 decreases the basal KChIP2 mRNA level, and PMA causes no further reduction in auxiliary subunit mRNA level in active MEK1-expressing cells. Furthermore, pharmacological inhibition of JNKs or overexpression of a dominant-negative JNK1 prevents the PE-induced, but not PMA-induced, reduction in KChIP2 mRNA expression. These results suggest that downregulation of KChIP2 expression significantly contributes to the hypertrophy-associated reduction in Ito density. They also indicate that the expression of KChIP2 mRNA is controlled by the 2 branches of mitogen-activated protein kinase pathways: JNKs play a predominant role in mediating the PE-induced reduction, whereas the MEK-ERK pathway influences the basal expression and mediates the PKC-mediated downregulation.
Collapse
Affiliation(s)
| | - Koichi Takimoto
- Correspondence to Koichi Takimoto, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 3343 Forbes Ave, Pittsburgh, PA 15260. E-mail
| |
Collapse
|
23
|
Abstract
The heart is a rhythmic electromechanical pump, the functioning of which depends on action potential generation and propagation, followed by relaxation and a period of refractoriness until the next impulse is generated. Myocardial action potentials reflect the sequential activation and inactivation of inward (Na(+) and Ca(2+)) and outward (K(+)) current carrying ion channels. In different regions of the heart, action potential waveforms are distinct, owing to differences in Na(+), Ca(2+), and K(+) channel expression, and these differences contribute to the normal, unidirectional propagation of activity and to the generation of normal cardiac rhythms. Changes in channel functioning, resulting from inherited or acquired disease, affect action potential repolarization and can lead to the generation of life-threatening arrhythmias. There is, therefore, considerable interest in understanding the mechanisms that control cardiac repolarization and rhythm generation. Electrophysiological studies have detailed the properties of the Na(+), Ca(2+), and K(+) currents that generate cardiac action potentials, and molecular cloning has revealed a large number of pore forming (alpha) and accessory (beta, delta, and gamma) subunits thought to contribute to the formation of these channels. Considerable progress has been made in defining the functional roles of the various channels and in identifying the alpha-subunits encoding these channels. Much less is known, however, about the functioning of channel accessory subunits and/or posttranslational processing of the channel proteins. It has also become clear that cardiac ion channels function as components of macromolecular complexes, comprising the alpha-subunits, one or more accessory subunit, and a variety of other regulatory proteins. In addition, these macromolecular channel protein complexes appear to interact with the actin cytoskeleton and/or the extracellular matrix, suggesting important functional links between channel complexes, as well as between cardiac structure and electrical functioning. Important areas of future research will be the identification of (all of) the molecular components of functional cardiac ion channels and delineation of the molecular mechanisms involved in regulating the expression and the functioning of these channels in the normal and the diseased myocardium.
Collapse
Affiliation(s)
- Jeanne M Nerbonne
- Dept. of Molecular Biology and Pharmacology, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
24
|
Wang GL, Wang GX, Yamamoto S, Ye L, Baxter H, Hume JR, Duan D. Molecular mechanisms of regulation of fast-inactivating voltage-dependent transient outward K+ current in mouse heart by cell volume changes. J Physiol 2005; 568:423-43. [PMID: 16081489 PMCID: PMC1474744 DOI: 10.1113/jphysiol.2005.091264] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The K(v)4.2/4.3 channels are the primary subunits that contribute to the fast-inactivating, voltage-dependent transient outward K(+) current (I(to,fast)) in the heart. I(to,fast) is the critical determinant of the early repolarization of the cardiac action potential and plays an important role in the adaptive remodelling of cardiac myocytes, which usually causes cell volume changes, during myocardial ischaemia, hypertrophy and heart failure. It is not known, however, whether I(to,fast) is regulated by cell volume changes. In this study we investigated the molecular mechanism for cell volume regulation of I(to,fast) in native mouse left ventricular myocytes. Hyposmotic cell swelling caused a marked increase in densities of the peak I(to,fast) and a significant shortening in phase 1 repolarization of the action potential duration. The voltage-dependent gating properties of I(to,fast) were, however, not altered by changes in cell volume. In the presence of either protein kinase C (PKC) activator (12,13-dibutyrate) or phosphatase inhibitors (calyculin A and okadaic acid), hyposmotic cell swelling failed to further up-regulate I(to,fast). When expressed in NIH/3T3 cells, both K(v)4.2 and K(v)4.3 channels were also strongly regulated by cell volume in the same voltage-independent but PKC- and phosphatase-dependent manner as seen in I(to,fast) in the native cardiac myocytes. We conclude that K(v)4.2/4.3 channels in the heart are regulated by cell volume through a phosphorylation/dephosphorylation pathway mediated by PKC and serine/threonine phosphatase(s). These findings suggest a novel role of K(v)4.2/4.3 channels in the adaptive electrical and structural remodelling of cardiac myocytes in response to myocardial hypertrophy, ischaemia and reperfusion.
Collapse
Affiliation(s)
- Guan-Lei Wang
- Center of Biomedical Research Excellence, Department of Pharmacology, University of Nevada School of Medicine, Reno, 89557-0270, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Suzuki T, Takimoto K. Differential expression of Kv4 pore-forming and KChIP auxiliary subunits in rat uterus during pregnancy. Am J Physiol Endocrinol Metab 2005; 288:E335-41. [PMID: 15454398 DOI: 10.1152/ajpendo.00250.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of voltage-gated K(+) (K(v)) channel expression may be involved in controlling contractility of uterine smooth muscle cells during pregnancy. Functional expression of these channels is not only controlled by the levels of pore-forming subunits, but requires their association with auxiliary subunits. Specifically, rapidly inactivating K(v) current is prominent in myometrial cells and may be carried by complexes consisting of Kv4 pore-forming and KChIP auxiliary subunits. To determine the molecular identity of the channel complexes and their changes during pregnancy, we examined the expression and localization of these subunits in rat uterus. RT-PCR analysis revealed that rat uterus expressed all three Kv4 pore-forming subunits and KChIP2 and -4 auxiliary subunits. The expression of mRNAs for these subunits was dynamically and region selectively regulated during pregnancy. In the corpus, Kv4.2 mRNA level increased before parturition, whereas the expression of Kv4.1 and Kv4.3 mRNAs decreased during pregnancy. A marked increase in KChIP2 mRNA level was also seen at late gestation. In the cervix, the expression of all three pore-forming and two auxiliary subunit mRNAs increased at late gestation. Immunoprecipitation followed by immunoblot analysis indicated that Kv4.2-KChIP2 complexes were significant in uterus at late pregnancy. Kv4.2- and KChIP2-immunoreactive proteins were present in both circular and longitudinal myometrial cells. Finally, Kv4.2 and KChIP2 mRNA levels were similarly elevated in pregnant and nonpregnant corpora of one side-conceived rats. These results suggest that diffusible factors coordinate the pregnancy-associated changes in molecular compositions of myometrial Kv4-KChIP channel complexes.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Dept. of Environmental and Occupational Health, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
26
|
Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA. Structure and function of Kv4-family transient potassium channels. Physiol Rev 2004; 84:803-33. [PMID: 15269337 DOI: 10.1152/physrev.00039.2003] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Shal-type (Kv4.x) K(+) channels are expressed in a variety of tissue, with particularly high levels in the brain and heart. These channels are the primary subunits that contribute to transient, voltage-dependent K(+) currents in the nervous system (A currents) and the heart (transient outward current). Recent studies have revealed an enormous degree of complexity in the regulation of these channels. In this review, we describe the surprisingly large number of ancillary subunits and scaffolding proteins that can interact with the primary subunits, resulting in alterations in channel trafficking and kinetic properties. Furthermore, we discuss posttranslational modification of Kv4.x channel function with an emphasis on the role of kinase modulation of these channels in regulating membrane properties. This concept is especially intriguing as Kv4.2 channels may integrate a variety of intracellular signaling cascades into a coordinated output that dynamically modulates membrane excitability. Finally, the pathophysiology that may arise from dysregulation of these channels is also reviewed.
Collapse
Affiliation(s)
- Shari G Birnbaum
- Div. of Neuroscience, S607, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Yang EK, Takimoto K, Hayashi Y, de Groat WC, Yoshimura N. Altered expression of potassium channel subunit mRNA and alpha-dendrotoxin sensitivity of potassium currents in rat dorsal root ganglion neurons after axotomy. Neuroscience 2004; 123:867-74. [PMID: 14751280 DOI: 10.1016/j.neuroscience.2003.11.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have raised the possibility that a decrease in voltage-gated K+ currents may contribute to hyperexcitability of injured dorsal root ganglion (DRG) neurons and the emergence of neuropathic pain. We examined the effects of axotomy on mRNA levels for various Kv1 family subunits and voltage-gated K+ currents in L4-L5 DRG neurons from sham-operated and sciatic nerve-transected rats. RNase protection assay revealed that Kv1.1 and Kv 1.2 mRNAs are highly abundant while Kv1.3, Kv1.4, Kv1.5 and Kv1.6 mRNAs were detected at lower levels in L4-L5 DRGs from sham and intact rats. Axotomy significantly decreased Kv1.1, Kv1.2, Kv1.3 and Kv1.4 mRNA levels by approximately 35%, approximately 60%, approximately 40% and approximately 80%, respectively, but did not significantly change Kv1.5 or Kv1.6 mRNA levels. Patch clamp recordings revealed two types of K+ currents in small-sized L4-L5 DRG neurons: sustained delayed rectifier currents elicited from a -40 mV holding potential and slowly inactivating A-type currents that was additionally activated from a -120 mV holding potential. Axotomy decreased both types of K+ currents by 50-60% in injured DRG neurons. In addition, axotomy increased the alpha-dendrotoxin sensitivity of the delayed rectifier, but not slow A-type K+ currents in injured DRG neurons. These results suggest that Kv1.1 and Kv1.2 subunits are major components of voltage-gated K+ channels in L4-L5 DRG neurons and that the decreased expression of Kv1-family subunits significantly contributes to the reduction and altered kinetics of Kv current in axotomized neurons.
Collapse
Affiliation(s)
- E-K Yang
- Department of Physiology, Kyungpook National University, Daegu 700-422, South Korea
| | | | | | | | | |
Collapse
|
28
|
Hatano N, Ohya S, Muraki K, Clark RB, Giles WR, Imaizumi Y. Two arginines in the cytoplasmic C-terminal domain are essential for voltage-dependent regulation of A-type K+ current in the Kv4 channel subfamily. J Biol Chem 2003; 279:5450-9. [PMID: 14645239 DOI: 10.1074/jbc.m302034200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Contributions of the C-terminal domain of Kv4.3 to the voltage-dependent gating of A-type K+ current (IA) were examined by (i) making mutations in this region, (ii) heterologous expression in HEK293 cells, and (iii) detailed voltage clamp analyses. Progressive deletions of the C terminus of rat Kv4.3M (to amino acid 429 from the N terminus) did not markedly change the inactivation time course of IA but shifted the voltage dependence of steady state inactivation in the negative direction to a maximum of -17 mV. Further deletions (to amino acid 420) shifted this parameter in the positive direction, suggesting a critical role for the domain 429-420 in the voltage-dependent regulation of IA. There are four positively charged amino acids in this domain: Lys423, Lys424, Arg426, and Arg429. The replacement of the two arginines with alanines (R2A) resulted in -23 and -13 mV shifts of inactivation and activation, respectively. Additional replacement of the two lysines with alanines did not result in further shifts. Single replacements of R426A or R429A induced -15 and -10 mV shifts of inactivation, respectively. R2A did not significantly change the inactivation rate but did markedly change the voltage dependence of recovery from inactivation. These two arginines are conserved in Kv4 subfamily, and alanine replacement of Arg429 and Arg432 in Kv4.2 gave essentially the same results. These effects of R2A were not modulated by co-expression of the K+ channel beta subunit, KChIPs. In conclusion, the two arginines in the cytosolic C-terminal domain of alpha-subunits of Kv4 subfamily strongly regulate the voltage dependence of channel activation, inactivation, and recovery.
Collapse
Affiliation(s)
- Noriyuki Hatano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Wang L, Takimoto K, Levitan ES. Differential association of the auxiliary subunit Kvbeta2 with Kv1.4 and Kv4.3 K+ channels. FEBS Lett 2003; 547:162-4. [PMID: 12860406 DOI: 10.1016/s0014-5793(03)00705-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Kvbeta2 subunits associate with Kv1 and Kv4 K+ channels, but the basis of preferential association is not understood. For example, detergent resistance suggests stronger auxiliary subunit association with Kv4.2 than with Kv1.2, but Kvbeta2 preferentially localizes with the latter channels in brain. Here we examine the interaction of Kvbeta2 with two native binding partners in brain: Kv4.3 and Kv1.4. We show that the auxiliary subunit binds more efficiently to Kv1.4 than to Kv4.3 in mammalian cells. However, preexisting Kvbeta2 complexes with Kv1.4 and Kv4.3 have similar detergent sensitivity. Thus, preferential steady state binding may reflect a difference in initial association rather than stability. We also find that that the cytoplasmic C-terminus of Kv4.3 inhibits Kvbeta2 association. Apparently, a region proximal to the Kv4.3 pore contributes to the inefficient auxiliary subunit interaction that produces preferential binding of Kvbeta2 to Kv1 channels.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
30
|
Swynghedauw B, Baillard C, Milliez P. The long QT interval is not only inherited but is also linked to cardiac hypertrophy. J Mol Med (Berl) 2003; 81:336-45. [PMID: 12750820 DOI: 10.1007/s00109-003-0437-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Accepted: 03/07/2003] [Indexed: 11/26/2022]
Abstract
This review focuses on the molecular determinants of the duration of the QT interval as measured on by electrocardiography in normal subjects and during cardiac hypertrophy and failure. (a) In control conditions, on a single cell, the shape and duration of the action potential is the result of a balance between different ion currents which in turn were determined by the number of functional channels. On multicellular preparations the QT duration also represents the repolarization time; nevertheless it is modified by the transmural gradients. On body-surface electrocardiography the duration of the QT interval depends also of an additional factor: the spatial three-dimensional projection of the electrical waves vectors, which makes any determination of the epicardial dispersion by measuring QT interval dispersion questionable. (b) The enhanced action potential duration is well documented in cardiac hypertrophy and heart failure and is usually caused by a reduction in outward current densities in most of the species except mice. Among these currents I(tO) is the most frequently altered, especially in humans. Such an altered current density is caused by a diminished expression of the genes encoding either the ion channel subunits or regulatory proteins, such as KChIP2. In addition, hypertrophy modifies or even reverses the transmural gradient. In human and rats hypertensive cardiopathy is associated with a prolongation of the QT interval duration. The reduction in I(tO) is likely to be adaptive; it participates in the slowing of the cardiac cycle and reflects the fetal genetic reprogramming. Recent data also suggest that a reduction in the transient outward K(+) current density triggers protein synthesis through an activation of the calcineurin pathways. Thus a prolongation of the QT interval is not only inherited or drug-induced; it is also an essential component of the adaptive process in chronic mechanical overload. It is fundamentally incorrect to measure QT dispersion on a surface electrocardiography, but the mean QT interval may provide information concerning the progression of the disease, just as, and with the same restrictions, in the case of the quantification of V(max).
Collapse
Affiliation(s)
- Bernard Swynghedauw
- U572-INSERM, Lariboisière Hospital, 41 Bd de la Chapelle, 75475 Paris Cedex 10, France.
| | | | | |
Collapse
|
31
|
Physiology and Molecular Biology of Ion Channels Contributing to Ventricular Repolarization. CONTEMPORARY CARDIOLOGY 2003. [DOI: 10.1007/978-1-59259-362-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Amberg GC, Koh SD, Hatton WJ, Murray KJ, Monaghan K, Horowitz B, Sanders KM. Contribution of Kv4 channels toward the A-type potassium current in murine colonic myocytes. J Physiol 2002; 544:403-15. [PMID: 12381814 PMCID: PMC2290598 DOI: 10.1113/jphysiol.2002.025163] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A rapidly inactivating K(+) current (A-type current; I(A)) present in murine colonic myocytes is important in maintaining physiological patterns of slow wave electrical activity. The kinetic profile of colonic I(A) resembles that of Kv4-derived currents. We examined the contribution of Kv4 alpha-subunits to I(A) in the murine colon using pharmacological, molecular and immunohistochemical approaches. The divalent cation Cd(2+) decreased peak I(A) and shifted the voltage dependence of activation and inactivation to more depolarized potentials. Similar results were observed with La(3+). Colonic I(A) was sensitive to low micromolar concentrations of flecainide (IC(50) = 11 microM). Quantitative PCR indicated that in colonic and jejunal tissue, Kv4.3 transcripts demonstrate greater relative abundance than transcripts encoding Kv4.1 or Kv4.2. Antibodies revealed greater Kv4.3-like immunoreactivity than Kv4.2-like immunoreactivity in colonic myocytes. Kv4-like immunoreactivity was less evident in jejunal myocytes. To address this finding, we examined the expression of K(+) channel-interacting proteins (KChIPs), which act as positive modulators of Kv4-mediated currents. Qualitative PCR identified transcripts encoding the four known members of the KChIP family in isolated colonic and jejunal myocytes. However, the relative abundance of KChIP transcript was 2.6-fold greater in colon tissue than in jejunum, as assessed by quantitative PCR, with KChIP1 showing predominance. This observation is in accordance with the amplitude of the A-type current present in these two tissues, where colonic myocytes possess densities twice that of jejunal myocytes. From this we conclude that Kv4.3, in association with KChIP1, is the major molecular determinant of I(A) in murine colonic myocytes.
Collapse
Affiliation(s)
- Gregory C Amberg
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Dai DZ, Wang HL, Zhang GQ, He GX, Chen L. Matrix is the site of indirect effects of propranolol on the ion channelopathies in cardiac remodeling by L-thyroxine. J Card Surg 2002; 17:439-46. [PMID: 12630546 DOI: 10.1111/j.1540-8191.2001.tb01175.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cardiac remodeling by chronic L-thyroxine medication causes exaggerated cardiac arrhythmias in relation to ion channelopathies that involve multichannels. The matrix of lipid membrane is likely the key site where channel lesions, possibly will develop and be benefitted by drug intervention. Cardiac remodeling in rats and guinea pigs was developed by L-thyroxine 0.5 mg/kg SC for 10 days. Propranolol was instituted on days 8-10. Whole cell holding was applied to measure ion currents. An increase in HR, dispersion of QTc, mitochondrial Na+/K+ ATPase, Ca2+/Mg2+ ATPase, and LPO production were found in the model. T3 and T4 levels in plasma were high. Propranolol was effective in regressing cardiac remodeling, together with lowering all the parameters and the enhanced I(Ca.L),I(KS), and I(KR) currents, but T3 and T4 remained basically unchanged. The changes in ion channels are likely the consequence of the cardiac remodeling that is formed by oxidative stress and increased energy consumption provoked by L-thyroxine. The benefit of propranolol on the disordered ion channels is mediated by its ability to ameliorate lesions of the matrix.
Collapse
Affiliation(s)
- De-Zai Dai
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China.
| | | | | | | | | |
Collapse
|
34
|
Capuano V, Ruchon Y, Antoine S, Sant MC, Renaud JF. Ventricular hypertrophy induced by mineralocorticoid treatment or aortic stenosis differentially regulates the expression of cardiac K+ channels in the rat. Mol Cell Biochem 2002; 237:1-10. [PMID: 12236575 DOI: 10.1023/a:1016518920693] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rats treated with DOCA salts and subjected to abdominal aortic stenosis display left ventricle hypertrophy associated with a decrease in cardiac I(to) current density and prolongation of the action potential duration. We investigated the molecular basis of these electrophysiological defects by analyzing the amount of mRNA corresponding to the genes encoding the a subunits of the left ventricle K+ channel at the steady state. The mRNAs corresponding to the a subunits of the K+ channel (Kv1.2, Kv1.4, Kv1.5, Kv2. 1, Kv4.2 and Kv4.3) were measured by quantitative RT-PCR using a specific Kv internal standard. In control rats, the Kvl.5 gene was only expressed at a low level, whereas the Kv4.2 and Kv4.3 genes were expressed at a high level. Regardless of the etiology of the hypertrophy, the amounts of Kv1.4 and Kv1.5 mRNAwere similar in treated, sham and control rats. The amounts of Kv1.2 and Kv2.1 mRNA were markedly lower in DOCA-salt treated rats (66%) than in sham-DOCA rats, but no effect was observed after stenosis. The very conservative Kv4.2 and Kv4.3 genes were found to be downregulated simultaneously in both type of hypertrophy. However, the steady-state amount of Kv4 mRNA was even lower in rats with DOCA-salt-induced hypertrophy than in those with stenosis-induced ventricular hypertrophy. Therefore, the decrease in I(to) density, consecutively to pressure- and volume-overload, is due to a large decrease in the amount of Kv4.2 and Kv4.3 mRNA. In addition, DOCA-salt treatment alters the amounts of Kv transcripts independently to cardiac hypertrophy, suggesting that the mineralocorticoid may be involved in Kv gene expression.
Collapse
Affiliation(s)
- Veronique Capuano
- Laboratoire de Physiologie Cardio-vasculaire et Thymique, CNRS ESA 8078, Hĵpital Marie Lannelongue, Le Plessis-Robinson, France.
| | | | | | | | | |
Collapse
|
35
|
Wang S, Patel SP, Qu Y, Hua P, Strauss HC, Morales MJ. Kinetic properties of Kv4.3 and their modulation by KChIP2b. Biochem Biophys Res Commun 2002; 295:223-9. [PMID: 12150935 DOI: 10.1016/s0006-291x(02)00658-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
KChIPs are a family of Kv4 K(+) channel ancillary subunits whose effects usually include slowing of inactivation, speeding of recovery from inactivation, and increasing channel surface expression. We compared the effects of the 270 amino acid KChIP2b on Kv4.3 and a Kv4.3 inner pore mutant [V(399, 401)I]. Kv4.3 showed fast inactivation with a bi-exponential time course in which the fast time constant predominated. KChIP2b expressed with wild-type Kv4.3 slowed the fast time constant of inactivation; however, the overall rate of inactivation was faster due to reduction of the contribution of the slow inactivation phase. Introduction of [V(399, 401)I] slowed both time constants of inactivation less than 2-fold. Inactivation was incomplete after 20s pulse durations. Co-expression of KChIP2b with Kv4.3 [V(399, 401)I] slowed inactivation dramatically. KChIP2b increased the rate of recovery from inactivation 7.6-fold in the wild-type channel and 5.7-fold in Kv4.3 [V(399,401)I]. These data suggest that inner pore structure is an important factor in the modulatory effects of KChIP2b on Kv4.3 K(+) channels.
Collapse
Affiliation(s)
- Shimin Wang
- Department of Physiology and Biophysics, University at Buffalo-SUNY, NY 14214, Buffalo, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hiramatsu M, Furukawa T, Sawanobori T, Hiraoka M. Ion channel remodeling in cardiac hypertrophy is prevented by blood pressure reduction without affecting heart weight increase in rats with abdominal aortic banding. J Cardiovasc Pharmacol 2002; 39:866-74. [PMID: 12021581 DOI: 10.1097/00005344-200206000-00012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study investigates changes in the messenger RNA (mRNA) expression levels of HCN2 and HCN4 encoding rat If channels; ClC-3, a candidate gene for swelling-activated Cl- channel, and pICln, a regulatory subunit of Cl- channels in rat hypertrophied heart induced by banding the abdominal aorta. The mRNA expression levels were quantified with competitive reverse transcription polymerase chain reaction methods. Plasma renin activity, blood pressure, and heart weight increased. HCN2, HCN4, and ClC-3 mRNA levels decreased in the early phase after banding, whereas they increased in the late phase; pICln mRNA levels did not change at any stage. Administration of candesartan, an angiotensin II receptor blocker, prevented cardiac hypertrophy, but amlodipine, a Ca2+ channel blocker, did not prevent it, whereas both drugs lowered blood pressure. Changes in mRNA levels of HCN2, HCN4, and ClC-3 were alleviated by both candesartan and amlodipine, and these levels of the treated groups were not different from those in the sham control group. This study is the first to demonstrate changes in mRNA levels of HCN2, HCN4, and ClC-3 in cardiac hypertrophy induced by abdominal aortic banding. The data further suggest that the changes in channel mRNA levels were prevented by blood pressure reduction without affecting heart weight increase in this model.
Collapse
Affiliation(s)
- Mikio Hiramatsu
- Department of Cardiovascular Disease, Medical Research Institute, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
37
|
Abstract
The normal electrophysiologic behavior of the heart is determined by ordered propagation of excitatory stimuli that result in rapid depolarization and slow repolarization, thereby generating action potentials in individual myocytes. Abnormalities of impulse generation, propagation, or the duration and configuration of individual cardiac action potentials form the basis of disorders of cardiac rhythm, a continuing major public health problem for which available drugs are incompletetly effective and often dangerous. The integrated activity of specific ionic currents generates action potentials, and the genes whose expression results in the molecular components underlying individual ion currents in heart have been cloned. This review discusses these new tools and how their application to the problem of arrhythmias is generating new mechanistic insights to identify patients at risk for this condition and developing improved antiarrhythmic therapies.
Collapse
Affiliation(s)
- Dan M Roden
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
1. One essential role for potassium channels in vascular smooth muscle is to buffer cell excitation and counteract vasoconstrictive influences. Several molecular mechanisms regulate potassium channel function. The interaction of these mechanisms may be one method for fine-tuning potassium channel activity in response to various physiological and pathological challenges. 2. The most prevalent K+ channels in vascular smooth muscle are large-conductance calcium- and voltage-sensitive channels (maxi-K channels) and voltage-gated channels (Kv channels). Both channel types are complex molecular structures consisting of a pore-forming alpha-subunit and an ancillary beta-subunit. The maxi-K and Kv channel alpha-subunits assemble as tetramers and have S4 transmembrane domains that represent the putative voltage sensor. While most vascular smooth muscle cells identified to date contain both maxi-K and Kv channels, the expression of individual alpha-subunit isoforms and beta-subunit association occurs in a tissue-specific manner, thereby providing functional specificity. 3. The maxi-K channel alpha-subunit derives its molecular diversity by alternative splicing of a single-gene transcript to yield multiple isoforms that differ in their sensitivity to intracellular Ca2+ and voltage, cell surface expression and post- translational modification. The ability of this channel to assemble as a homo- or heterotetramer allows for fine-tuning control to intracellular regulators. Another level of diversity for this channel is in its association with accessory beta-subunits. Multiple beta-subunits have been identified that can arise either from separate genes or alternative splicing of a beta-subunit gene. The maxi-K channel beta-subunits modulate the channel's Ca2+ and voltage sensitivity and kinetic and pharmacological properties. 4. The Kv channel alpha-subunit derives its diverse nature by the expression of several genes. Similar to the maxi-K channel, this channel has been shown to assemble as a homo- and heterotetramer, which can significantly change the Kv current phenotype in a given cell type. Association with a number of the ancillary beta-subunits affects Kv channel function in several ways. Beta-subunits can induce inactivating properties and act as chaperones, thereby regulating channel cell-surface expression and current kinetics.
Collapse
Affiliation(s)
- Victoria P Korovkina
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
39
|
Po SS, Wu RC, Juang GJ, Kong W, Tomaselli GF. Mechanism of alpha-adrenergic regulation of expressed hKv4.3 currents. Am J Physiol Heart Circ Physiol 2001; 281:H2518-27. [PMID: 11709419 DOI: 10.1152/ajpheart.2001.281.6.h2518] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transient outward potassium current (I(to)) is an important repolarizing current in the mammalian heart. I(to) is regulated by adrenergic stimulation; however, the effect of agonists on this current, and consequently the action potential duration and profile, is variable. An important source of the variability is the difference in the channel genes that underlie I(to). There are two subfamilies of candidate genes that are likely to encode I(to) in the mammalian heart: Kv4 and Kv1.4; the predominance of either gene is a function of the species, stage of development, and region of the heart. The existence of different isoforms of the Kv4 family (principally Kv4.2 or Kv4.3) further complicates the effect of alpha-adrenergic modulation of cardiac I(to). In the human ventricle, hKv4.3 is the predominant gene underlying I(to). Two splice variants of human Kv4.3 (hKv4.3) are present in the human ventricle; the longer splice variant contains a 19-amino acid insert in the COOH-terminus with a consensus protein kinase C (PKC) site. We used heterologous expression of hKv4.3 splice variants and studies of human ventricular myocytes to demonstrate that alpha-adrenergic modulation of I(to) occurs through a PKC signaling pathway and that only the long splice variant (hKv4.3-L) is modulated via this pathway. Only a single hKv4.3-L monomer in the tetrameric I(to) channel is required to confer sensitivity to phenylephrine (PE). Mutation of the PKC site in hKv4.3-L eliminates alpha-adrenergic modulation of the hKv4.3-encoded current. The similar, albeit less robust, modulation of human ventricular I(to) by PE suggests that hKv4.3-L is expressed in a functional form in the human heart.
Collapse
Affiliation(s)
- S S Po
- Department of Medicine and Institute of Cardiobiology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
40
|
Armoundas AA, Wu R, Juang G, Marbán E, Tomaselli GF. Electrical and structural remodeling of the failing ventricle. Pharmacol Ther 2001; 92:213-30. [PMID: 11916538 DOI: 10.1016/s0163-7258(01)00171-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is a complex disease that presents a major public health challenge to Western society. The prevalence of HF increases with age in the elderly population, and the societal disease burden will increase with prolongation of life expectancy. HF is initially characterized by an adaptive increase of neurohumoral activation to compensate for reduction of cardiac output. This leads to a combination of neurohumoral activation and mechanical stress in the failing heart that trigger a cascade of maladaptive electrical and structural events that impair both the systolic and diastolic function of the heart.
Collapse
Affiliation(s)
- A A Armoundas
- Division of Molecular Cardiobiology, Johns Hopkins University, Ross 844, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
41
|
Nishiyama A, Ishii DN, Backx PH, Pulford BE, Birks BR, Tamkun MM. Altered K(+) channel gene expression in diabetic rat ventricle: isoform switching between Kv4.2 and Kv1.4. Am J Physiol Heart Circ Physiol 2001; 281:H1800-7. [PMID: 11557574 DOI: 10.1152/ajpheart.2001.281.4.h1800] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Expression of voltage-gated K(+) channels encoding the K(+) independent transient outward current in the streptozocin-induced diabetic (DM) rat ventricle was studied to determine the basis for slowed cardiac repolarization in diabetes mellitus. Although hypertrophy was not detected in diabetic rats at 12 wk after streptozocin treatment, ventricular Kv4.2 mRNA levels decreased 41% relative to nondiabetic controls. Kv1.4 mRNA levels increased 179% relative to controls, whereas Kv4.3 mRNA levels were unaffected. Immunohistochemistry and Western blot analysis of the diabetic heart showed that the density of the Kv4.2 protein decreased, whereas Kv1.4 protein increased. Thus isoform switching from Kv4.2 to Kv1.4 is most likely the mechanism underlying the slower kinetics of transient outward K(+) current observed in the diabetic ventricle. Brain Kv1.4, Kv4.2, or Kv4.3 mRNA levels were unaffected by diabetes. Myosin heavy chain (MHC) gene expression was altered with a 32% decrease in alpha-MHC mRNA and a 259% increase in beta-MHC mRNA levels in diabetic ventricle. Low-dose insulin-like growth factor-II (IGF-II) treatment during the last 6 of the 12 wk of diabetes (DM + IGF) protected against these changes in MHC mRNAs despite continued hyperglycemia and body weight loss. IGF-II treatment did not change K(+) channel mRNA levels in DM or control rat ventricles. Thus IGF treatment may prevent some, but not all, biochemical abnormalities in the diabetic heart.
Collapse
Affiliation(s)
- A Nishiyama
- Department of Physiology, Colorado State University, Ft. Collins, Colorado 80523, USA
| | | | | | | | | | | |
Collapse
|
42
|
Walsh KB, Sweet JK, Parks GE, Long KJ. Modulation of outward potassium currents in aligned cultures of neonatal rat ventricular myocytes during phorbol ester-induced hypertrophy. J Mol Cell Cardiol 2001; 33:1233-47. [PMID: 11444926 DOI: 10.1006/jmcc.2001.1386] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C-stimulating phorbol esters induce a strong hypertrophic response when applied in vitro to cardiac ventricular myocytes. The aim of this study was to determine if this in vitro model of hypertrophy is associated with changes in the expression of voltage-gated K(+)channels. Myocytes were isolated from 3--4-day-old neonatal rats and cultured on aligned collagen thin gels. Membrane currents were measured with the use of the whole-cell arrangement of the patch clamp technique and the expression levels of the Kv1.4, Kv4.2 and Kv2.1 alpha subunits quantified using Western blot analysis. Voltage steps positive to -30 mV resulted in the activation of both a transient (I(to)) and a sustained (I(sus)) component of outward K(+)current in the aligned myocytes. Overnight exposure to phorbol 12-myristate 13-acetate (PMA) caused a 55% increase in myocyte size and a three-fold reduction in the peak amplitude of I(to). No differences in the half-maximal voltages required for activation and steady-state inactivation were observed between I(to)measured in control and PMA-treated myocytes. In contrast, PMA treatment resulted in a 62% increase in a tetraethylammonium-sensitive component of I(sus)(TEA-I(sus)) and was associated with the appearance of a slow component of current decay. Expression levels of the Kv1.4 and Kv4.2 alpha subunits were strongly depressed in the hypertrophic myocytes, while the density of the Kv2.1 alpha subunit was enhanced. PMA-induced changes in the Kv alpha subunits were partially prevented through inhibition of the mitogen-activated protein kinase (MAPK) pathway. Thus, PMA-induced hypertrophy of cultured ventricular myocytes is associated with an altered expression of voltage-gated K(+)channels.
Collapse
Affiliation(s)
- K B Walsh
- Department of Pharmacology & Physiology, University of South Carolina, School of Medicine, Columbia, SC 29209, USA.
| | | | | | | |
Collapse
|
43
|
Oudit GY, Kassiri Z, Sah R, Ramirez RJ, Zobel C, Backx PH. The molecular physiology of the cardiac transient outward potassium current (I(to)) in normal and diseased myocardium. J Mol Cell Cardiol 2001; 33:851-72. [PMID: 11343410 DOI: 10.1006/jmcc.2001.1376] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G. Y. Oudit, Z. Kassiri, R. Sah, R. J. Ramirez, C. Zobel and P. H. Backx. The Molecular Physiology of the Cardiac Transient Outward Potassium Current (I(to)) in Normal and Diseased Myocardium. Journal of Molecular and Cellular Cardiology (2001) 33, 851-872. The Ca(2+)-independent transient outward potassium current (I(to)) plays an important role in early repolarization of the cardiac action potential. I(to)has been clearly demonstrated in myocytes from different cardiac regions and species. Two kinetic variants of cardiac I(to)have been identified: fast I(to), called I(to,f), and slow I(to), called I(to,s). Recent findings suggest that I(to,f)is formed by assembly of K(v4.2)and/or K(v4.3)alpha pore-forming voltage-gated subunits while I(to,s)is comprised of K(v1.4)and possibly K(v1.7)subunits. In addition, several regulatory subunits and pathways modulating the level and biophysical properties of cardiac I(to)have been identified. Experimental findings and data from computer modeling of cardiac action potentials have conclusively established an important physiological role of I(to)in rodents, with its role in large mammals being less well defined due to complex interplay between a multitude of cardiac ionic currents. A central and consistent electrophysiological change in cardiac disease is the reduction in I(to)density with a loss of heterogeneity of I(to)expression and associated action potential prolongation. Alterations of I(to)in rodent cardiac disease have been linked to repolarization abnormalities and alterations in intracellular Ca(2+)homeostasis, while in larger mammals the link with functional changes is far less certain. We review the current literature on the molecular basis for cardiac I(to)and the functional consequences of changes in I(to)that occur in cardiovascular disease.
Collapse
Affiliation(s)
- G Y Oudit
- Department of Medicine and Physiology, Toronto General Hospital, 101 College Street, Toronto, M5G 2C4, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Anorectic drugs have been used for more than 30 years as an aid in weight reduction for obese persons. The use of aminorex, an amphetamine analog that increases norepinephrine levels in the central nervous system, led to an epidemic of primary pulmonary hypertension (PPH) in Europe in the late 1960s and early 1970s. The use of fenfluramine and later dexfenfluramine [drugs that inhibit 5-hydroxytryptamine (5-HT) release and reuptake and increases 5-HT and thus 5-HT secretion in the brain] was associated with a second epidemic of PPH. All of these drugs have been voluntarily withdrawn from the market. The pathogenesis of PPH in patients treated with these agents is uncertain, but recent evidence suggests that potassium channel abnormalities and vasoactive and proliferative properties of 5-HT may play a role. There is increasing experimental evidence suggesting that aminorex, fenfluramine and dexfenfluramine inhibit 4-aminopyridine-sensitive currents in potassium channels resulting in vasoconstriction in pulmonary resistance vessels and perhaps smooth muscle cell proliferation. 5-HT causes pulmonary artery vasoconstriction and smooth muscle cell proliferation. Its levels are known to be high in those with fenfluramine-induced PPH. However, a firm cause-and-effect relationship has not yet been established. One potentially beneficial effect of the epidemics of anorectic-related PPH is that it may have provided important insights into the causes of PPH unrelated to anorectic agents.
Collapse
Affiliation(s)
- E D Michelakis
- Department of Medicine, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
45
|
Calmels TP, Faivre JF, Cheval B, Javré JL, Rouanet S, Bril A. hKv4.3 channel characterization and regulation by calcium channel antagonists. Biochem Biophys Res Commun 2001; 281:452-60. [PMID: 11181069 DOI: 10.1006/bbrc.2001.4396] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Relative expression pattern of short and long isoforms of hKv4.3 channels was evaluated by RT-PCR and RPA. Electrophysiological studies were performed in HEK293 cells transfected with short or long hKv4.3 cDNA. The long variant L-hKv4.3 was the only form present in lung, pancreas, and small intestine. The short variant S-hKv4.3 was predominant in brain whereas expression levels of the two isoforms were similar in cardiac and skeletal muscles. Properties of the ionic channels encoded by L-hKv4.3 and S-hKv4.3 cDNAs were essentially similar. Cadmium chloride and verapamil inhibited hKv4.3 current (with EC50s of 0.110 +/- 0.004 mM and 492.9 +/- 15.1 microM, respectively). Verapamil also accelerated current inactivation. Another calcium channel antagonist nicardipine was found inactive. In conclusion, this study confirms that both isoforms underlie the transient outward potassium current. Moreover, calcium channel inhibitors markedly affect hKv4.3 current, an effect which must be considered when evaluating transient outward potassium channel properties in native tissues.
Collapse
Affiliation(s)
- T P Calmels
- Department of Cardiovascular Pharmacology, SmithKline Beecham Laboratories Pharmaceutiques, 4 Rue du Chesnay Beauregard, 35760 Saint-Grégoire, France
| | | | | | | | | | | |
Collapse
|
46
|
Yang EK, Alvira MR, Levitan ES, Takimoto K. Kvbeta subunits increase expression of Kv4.3 channels by interacting with their C termini. J Biol Chem 2001; 276:4839-44. [PMID: 11087728 DOI: 10.1074/jbc.m004768200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Auxiliary Kvbeta subunits form complexes with Kv1 family voltage-gated K(+) channels by binding to a part of the N terminus of channel polypeptide. This association influences expression and gating of these channels. Here we show that Kv4.3 proteins are associated with Kvbeta2 subunits in the brain. Expression of Kvbeta1 or Kvbeta2 subunits does not affect Kv4.3 channel gating but increases current density and protein expression. The increase in Kv4.3 protein is larger at longer times after transfection, suggesting that Kvbeta-associated channel proteins are more stable than those without the auxiliary subunits. This association between Kv4.3 and Kvbeta subunits requires the C terminus but not the N terminus of the channel polypeptide. Thus, Kvbeta subunits utilize diverse molecular interactions to stimulate the expression of Kv channels from different families.
Collapse
Affiliation(s)
- E K Yang
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
47
|
Czarnecki A, Vaur S, Dufy-Barbe L, Dufy B, Bresson-Bepoldin L. Cell cycle-related changes in transient K(+) current density in the GH3 pituitary cell line. Am J Physiol Cell Physiol 2000; 279:C1819-28. [PMID: 11078697 DOI: 10.1152/ajpcell.2000.279.6.c1819] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our aim was to determine whether the expression of K(+) currents is related to the cell cycle in the excitable GH3 pituitary cell line. K(+) currents were studied by electrophysiology, and bromodeoxyuridine (BrdU) labeling was used to compare their expression in cells thereafter identified as being in the S or non-S phase of the cell cycle. We show that the peak density of the transient outward K(+) current (I(to)) was 33% lower in cells in S phase (BrdU+) than in cells in other phases of the cell cycle (BrdU-). The voltage-dependence of I(to) was not modified. However, of the two kinetic components of I(to) inactivation, the characteristics of the fast component differed significantly between BrdU+ and BrdU- cells. Recovery from inactivation of I(to) showed biexponential and monoexponential function in BrdU- and BrdU+ cells, respectively. This suggests that the molecular basis of this current varies during the cell cycle. We further demonstrated that 4-aminopyridine, which blocks I(to), inhibited GH3 cell proliferation without altering the membrane potential. These data suggest that I(to) may play a role in GH3 cell proliferation processes.
Collapse
Affiliation(s)
- A Czarnecki
- Laboratoire de Neurophysiologie, Centre National de la Recherche Scientifique UMR 5543, Université de Bordeaux 2, 33076 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
48
|
Abstract
In the mammalian heart, Ca2+-independent, depolarization-activated potassium (K+) currents contribute importantly to shaping the waveforms of action potentials, and several distinct types of voltage-gated K+ currents that subserve this role have been characterized. In most cardiac cells, transient outward currents, Ito,f and/or Ito,s, and several components of delayed reactivation, including IKr, IKs, IKur and IK,slow, are expressed. Nevertheless, there are species, as well as cell-type and regional, differences in the expression patterns of these currents, and these differences are manifested as variations in action potential waveforms. A large number of voltage-gated K+ channel pore-forming (alpha) and accessory (beta, minK, MiRP) subunits have been cloned from or shown to be expressed in heart, and a variety of experimental approaches are being exploited in vitro and in vivo to define the relationship(s) between these subunits and functional voltage-gated cardiac K+ channels. Considerable progress has been made in defining these relationships recently, and it is now clear that distinct molecular entities underlie the various electrophysiologically distinct repolarizing K+ currents (i.e. Ito,f, Ito,s, IKr, IKs, IKur, IK,slow, etc.) in myocyardial cells.
Collapse
Affiliation(s)
- J M Nerbonne
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St Louis, MO 63110, USA.
| |
Collapse
|
49
|
Abstract
The increased risk of sudden cardiac death in patients with myocardial hypertrophy and heart failure is the result of remodeling that occurs in both the myocyte and interstitial compartments of the heart. Action potential prolongation is a hallmark of hypertrophied and failing myocardium and is a consequence of differential expression and function of membrane currents and transporters. Functional downregulation of K currents in the ventricle is a recurring theme in hypertrophy and failure; the reduction in the density of the transient outward current (I(to)) is the most consistent observation, whereas data on the density of the inward (I(K1)) and the delayed rectifier (I(K)) currents are more contradictory. The altered intracellular Ca handling of the myopathic hearts prolongs the decay of the L-type Ca current and favors extrusion of cytosolic Ca2+ via the Na+-Ca2+ exchanger. The interaction between such altered membrane currents and a changed neurohumoral milieu creates a substrate that is highly susceptible to potentially lethal ventricular arrhythmias.
Collapse
Affiliation(s)
- G F Tomaselli
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| | | |
Collapse
|
50
|
Isbrandt D, Leicher T, Waldschütz R, Zhu X, Luhmann U, Michel U, Sauter K, Pongs O. Gene structures and expression profiles of three human KCND (Kv4) potassium channels mediating A-type currents I(TO) and I(SA). Genomics 2000; 64:144-54. [PMID: 10729221 DOI: 10.1006/geno.2000.6117] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The four known members of the KCND/Kv4 channel family encode voltage-gated potassium channels. Recent studies provide evidence that members of the Kv4 channel family are responsible for native, rapidly inactivating (A-type) currents described in heart (I(TO)) and neurons (I(SA)). In this study, we cloned the human KCND1 cDNA, localized the KCND1 gene to chromosome Xp11.23-p11.3, and determined the genomic structure and tissue-specific expression of the KCND1, KCND2, and KCND3 genes, respectively. The open reading frame of Kv4. 1 is 1941 nucleotides long, predicting a protein of 647 amino acids. The deduced protein sequence of Kv4.1 shows an overall identity of 60% with Kv4.2 and Kv4.3L and corresponds to the common structure of voltage-gated potassium channels. KCND1-specific transcripts were detectable in human brain, heart, liver, kidney, thyroid gland, and pancreas, as revealed by Northern blot and RT-PCR experiments. The comparison of the expression patterns of the known Kv4 family members shows subtype specificity with significant overlaps. The KCND gene structures exhibit an evolutionarily conserved exon pattern with a large first exon containing the intracellular N-terminus and the putative membrane-spanning regions S1 to S5, as well as part of the pore region. The KCND3 gene contains an additional exon of 57 bp, which is not present in the other two KCND genes and gives rise to the C-terminal splice KCND3L variant with an insertion of 19 amino acids.
Collapse
Affiliation(s)
- D Isbrandt
- Institute of Neural Signal Transduction, Centre for Molecular Neurobiology, Martinistrasse 52, Hamburg, 20246, Germany.
| | | | | | | | | | | | | | | |
Collapse
|