1
|
Agnihotri P, Malik S, Saquib M, Chakraborty D, Kumar V, Biswas S. Exploring the impact of 2-hydroxyestradiol on heme oxygenase-1 to combat oxidative stress in rheumatoid arthritis. Int J Biol Macromol 2024; 283:137935. [PMID: 39592056 DOI: 10.1016/j.ijbiomac.2024.137935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint inflammation driven by complex signaling pathways. Recent therapeutic approaches focus on small molecules targeting intracellular signaling to address specific physiological aspects of the disease. Previously we identified a small molecule, 2-hydroxyestradiol (2-OHE2), an inhibitor of TNF-α by an in-silico study. In the present study, our aim was to explore the efficacy of 2-OHE2 by studying the proteome profile of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) using SWATH-MS and validate its therapeutic potential in RA by in-vitro studies. Oxidative stress was assessed using various biochemical assays, and cellular bioenergetics were analyzed with the Seahorse XFe96 Analyzer. We identified 396 differential proteins by SWATH-MS, and 82 showed significant changes. PharmMapper analysis revealed the association of 2-OHE2 with HMOX1 (HO-1), confirmed by SWATH-MS data. Also, we revealed that 2-OHE2 enhanced the expression of HO-1 and lowered oxidative stress via activating the Nrf2/KEAP1/HO-1 pathway. Further, 2-OHE2 has been found to boost cellular respiration and ATP production. Our findings thus suggest that 2-OHE2 possesses therapeutic potential as an antioxidant for RA treatment, effective at low dosages.
Collapse
Affiliation(s)
- Prachi Agnihotri
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swati Malik
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Saquib
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debolina Chakraborty
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay Kumar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sagarika Biswas
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR, Jiang X. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 2023; 186:2748-2764.e22. [PMID: 37267948 PMCID: PMC10330611 DOI: 10.1016/j.cell.2023.05.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
Ferroptosis, a cell death process driven by iron-dependent phospholipid peroxidation, has been implicated in various diseases. There are two major surveillance mechanisms to suppress ferroptosis: one mediated by glutathione peroxidase 4 (GPX4) that catalyzes the reduction of phospholipid peroxides and the other mediated by enzymes, such as FSP1, that produce metabolites with free radical-trapping antioxidant activity. In this study, through a whole-genome CRISPR activation screen, followed by mechanistic investigation, we identified phospholipid-modifying enzymes MBOAT1 and MBOAT2 as ferroptosis suppressors. MBOAT1/2 inhibit ferroptosis by remodeling the cellular phospholipid profile, and strikingly, their ferroptosis surveillance function is independent of GPX4 or FSP1. MBOAT1 and MBOAT2 are transcriptionally upregulated by sex hormone receptors, i.e., estrogen receptor (ER) and androgen receptor (AR), respectively. A combination of ER or AR antagonist with ferroptosis induction significantly inhibited the growth of ER+ breast cancer and AR+ prostate cancer, even when tumors were resistant to single-agent hormonal therapies.
Collapse
Affiliation(s)
- Deguang Liang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yan Feng
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Hua Wang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zeda Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jinnie Kim
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyan Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wei Gu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
3
|
Agnihotri P, Deka H, Chakraborty D, Monu, Saquib M, Kumar U, Biswas S. Anti-inflammatory potential of selective small compounds by targeting TNF-α & NF-kB signaling: a comprehensive molecular docking and simulation study. J Biomol Struct Dyn 2023; 41:13815-13828. [PMID: 37013999 DOI: 10.1080/07391102.2023.2196692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/11/2023] [Indexed: 04/05/2023]
Abstract
Tumor necrosis factor alpha (TNF-α) is the major cause of inflammation in autoimmune diseases like rheumatoid arthritis (RA). It's mechanisms of signal transduction through nuclear factor kappa B (NF-kB) pathway via small molecules such as metabolite crosstalk are still elusive. In this study, we have targeted TNF-α and NF-kB through metabolites of RA, to inhibit TNF-α activity and deter NF-kB signaling pathways, thereby mitigating the disease severity of RA. TNF-α and NF-kB structure was obtained from PDB database and metabolites of RA were selected from literature survey. In-silico studies were carried out by molecular docking using AutoDock Vina software and further, known TNF-α and NF-kB inhibitors were compared and revealed metabolite's capacity to targets the respective proteins. Most suitable metabolite was then validated by MD simulation to verify its efficiency against TNF-α. Total 56 known differential metabolites of RA were docked with TNF-α and NF-kB compared to their corresponding inhibitor compounds. Four metabolites such as Chenodeoxycholic acid, 2-Hydroxyestrone, 2-Hydroxyestradiol (2-OHE2), and 16-Hydroxyestradiol were identified as a common TNF-α inhibitor's having binding energies ranging from -8.3 to -8.6 kcal/mol, followed by docking with NF-kB. Further, 2-OHE2 was selected because of having binding energy -8.5 kcal/mol, found to inhibit inflammation and the effectiveness was validated by root mean square fluctuation, radius of gyration and molecular mechanics with generalized born and surface area solvation against TNF-α. Thus 2-OHE2, an estrogen metabolite was identified as the potential inhibitor, attenuated inflammatory activation and can be utilized as a therapeutic target to disseminate severity of RA.
Collapse
Affiliation(s)
- Prachi Agnihotri
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hemchandra Deka
- Gauhati University Institute of Science and Technology, Guwahati University, Guwahati, India
| | - Debolina Chakraborty
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Monu
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohd Saquib
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uma Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - Sagarika Biswas
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Arnone AA, Cline JM, Soto-Pantoja DR, Cook KL. Investigating the role of endogenous estrogens, hormone replacement therapy, and blockade of estrogen receptor-α activity on breast metabolic signaling. Breast Cancer Res Treat 2021; 190:53-67. [PMID: 34448090 PMCID: PMC8557185 DOI: 10.1007/s10549-021-06354-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022]
Abstract
Purpose Menopause is associated with an increased risk of estrogen receptor-positive (ER +) breast cancer. To characterize the metabolic shifts associated with reduced estrogen bioavailability on breast tissue, metabolomics was performed from ovary-intact and ovariectomized (OVX) female non-human primates (NHP). The effects of exogenous estrogen administration or estrogen receptor blockade (tamoxifen treatment) on menopause-induced metabolic changes were also investigated. Methods Bilateral ovariectomies were performed on female cynomolgus macaques (Macaca fascicularis) to model menopause. OVX NHP were then divided into untreated (n = 13), conjugated equine estrogen (CEE)-treated (n= 13), or tamoxifen-treated (n = 13) subgroups and followed for 3 years. Aged-matched ovary-intact female NHP (n = 12) were used as a premenopausal comparison group. Metabolomics was performed on snap-frozen breast tissue. Results Changes in several different metabolic biochemicals were noted, particularly in glucose and fatty acid metabolism. Specifically, glycolytic, Krebs cycle, acylcarnitines, and phospholipid metabolites were elevated in breast tissue from ovary-intact NHP and OVX + CEE in relation to the OVX and OVX + tamoxifen group. In contrast, treatment with CEE and tamoxifen decreased several cholesterol metabolites, compared to the ovary-intact and OVX NHP. These changes were accompanied by elevated bile acid metabolites in the ovary-intact group. Conclusion Alterations in estrogen bioavailability are associated with changes in the mammary tissue metabolome, particularly in glucose and fatty acid metabolism. Changes in these pathways may represent a bioenergetic shift in gland metabolism at menopause that may affect breast cancer risk. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06354-w.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - David R Soto-Pantoja
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Katherine L Cook
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA. .,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA. .,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
5
|
Merico V, Zanoni M, Parada-Bustamante A, Garagna S, Zuccotti M. In Vitro Maturation of Fully Grown Mouse Antral Follicles in the Presence of 1 nM 2-Hydroxyestradiol Improves Oocytes' Developmental Competence. Reprod Sci 2020; 28:121-133. [PMID: 32757137 PMCID: PMC7782423 DOI: 10.1007/s43032-020-00276-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/24/2020] [Indexed: 11/06/2022]
Abstract
Cathecolestrogens are estradiol metabolites produced during folliculogenesis in the mammalian ovary. 2-Hydroxyestradiol (2-OHE2) is one of the most abundant although its role remains unknown. The aim of this study is to investigate whether the presence of 2-OHE2 during the germinal vesicle-to-metaphase II transition affects oocyte meiotic and preimplantation developmental competence. Mouse cumulus-oocyte complexes (COCs), isolated from fully grown antral follicles, were in vitro–matured (IVM) in the presence of 2-OHE2 (0.1, 1, 10 or 100 nM) for 6 or 15 h; then, their meiotic and developmental competence was evaluated using a number of cytological quality markers. With the exception of the highest dose (100 nM), the addition of 2-OHE2 to the IVM medium, did not alter, compared with untreated control, the frequency of oocytes that reached the MII stage. Instead, IVM in the presence of 1 nM 2-OHE2 highly increased the rate of preimplantation development and blastocyst quality. To understand whether this positive effect could be attributed to the events occurring during meiosis resumption, we analysed a number of specific cytological quality markers of the asymmetric division, such as PB-I volume and position, presence and extension of the cortical F-actin cap, meiotic spindle shape and area, and microtubule organisation centre localisation. The results highlighted how the presence of 1 nM 2-OHE2 significantly improved the overall cytological organisation required for a correct asymmetric division. Our results contribute a first step to acknowledge a potential role of this estradiol metabolite during the GV-to-MII transition, contributing to the acquisition of oocytes developmental competence.
Collapse
Affiliation(s)
- Valeria Merico
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy. .,Centre for Health Technologies (C.H.T.), University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy.
| | - Mario Zanoni
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy.,Centre for Health Technologies (C.H.T.), University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Alexis Parada-Bustamante
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Silvia Garagna
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy. .,Centre for Health Technologies (C.H.T.), University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy.
| | - Maurizio Zuccotti
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy. .,Centre for Health Technologies (C.H.T.), University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy.
| |
Collapse
|
6
|
Canbolat EP, Sağsöz N, Noyan V, Yücel A, Kısa Ü. Effects of l-carnitine on oxidative stress parameters in oophorectomized rats. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2016.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Emel Peri Canbolat
- Şanlıurfa Obstetrics and Gynecology Hospital, Department of Obstetrics and Gynecology, Şanlıurfa, Turkey
| | - Nevin Sağsöz
- Kırıkkale University Faculty of Medicine, Department of Obstetrics and Gynecology, Kırıkkale, Turkey
| | | | - Aykan Yücel
- Zekai Tahir Burak Women’s Health Education and Research Hospital, Kırıkkale, Turkey
| | - Üçler Kısa
- Kırıkkale University Faculty of Medicine, Department of Biochemistry, Kırıkkale, Turkey
| |
Collapse
|
7
|
Hao S, Jiang L, Fu C, Wu X, Liu Z, Song J, Lu H, Wu X, Li S. 2-Methoxyestradiol attenuates chronic-intermittent-hypoxia-induced pulmonary hypertension through regulating microRNA-223. J Cell Physiol 2018; 234:6324-6335. [PMID: 30246291 DOI: 10.1002/jcp.27363] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is prevalent in patients with obstructive sleep apnea (OSA) syndrome, and coexistence of PH and OSA indicates a worse prognosis and higher mortality. Chronic intermittent hypoxia (CIH) is the key pathogenesis of OSA. Also, microRNA-223 (miR-223) plays a role in the regulation of CIH-induced PH process. However, the detailed mechanism of CIH inducing PH is still unclear. This study aimed to investigate the pathological process of CIH associated PH and explore the potential therapeutic methods. In this study, adult Sprague-Dawley rats were exposed to CIH or normoxic (N) conditions with 2-methoxyestradiol (2-Me) or vehicle treatment for 6 weeks. The results showed that 2-Me treatment reduced the progression of pulmonary angiogenesis in CIH rats, and alleviated proliferation, cellular migration, and reactive oxygen species formation was induced by CIH in pulmonary artery smooth muscle cells (PASMCs). CIH decreased the expression of miR-223, whereas 2-Me reversed the downregulation of miR-223 both in vivo and in vitro. Furthermore, the antiangiogenic effect of 2-Me observed in PASMCs was abrogated by miR-223 inhibitor, while enhanced by miR-223 mimic. These findings suggested that miR-223 played an important role in the process of CIH inducing PH, and 2-Me might reverse CIH-induced PH via upregulating miR-223.
Collapse
Affiliation(s)
- Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyan Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cuiping Fu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zilong Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieqiong Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Lu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodan Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Lan XF, Zhang XJ, Lin YN, Wang Q, Xu HJ, Zhou LN, Chen PL, Li QY. Estradiol Regulates Txnip and Prevents Intermittent Hypoxia-Induced Vascular Injury. Sci Rep 2017; 7:10318. [PMID: 28871193 PMCID: PMC5583380 DOI: 10.1038/s41598-017-10442-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
Chronic intermittent hypoxia (IH) contributes to obstructive sleep apnea (OSA)-related cardiovascular diseases through increasing oxidative stress. It has been widely recognized that estradiol decreases the risk for cardiovascular disease, but the estrogen replacement therapy is limited for its side effects. Thioredoxin (Trx) and its endogenous inhibitor, thioredoxin-interacting protein (Txnip), are associated with the protective effect of estradiol in some conditions. In this study, we aimed to explore whether estradiol could protect against IH-induced vascular injury, and the possible effect of Trx-1/Txnip in this process. Forty-eight adult female C57/BL6J mice were randomly divided into 4 groups, ovariectomy combined with IH group, sham operation combined with IH group, IH group and the control group. The mice treated with IH for 8 hrs/day, and 28 days. IH induced the injury of aorta, and ovariectomized mice were more prone to the IH-induced aortic injury, with higher level of oxidative stress. In vitro, estradiol increased Trx-1 level, but decreased the level of Txnip and oxidative stress in human umbilical vein endothelial cells (HUVECs) treated with IH for 16 hrs. Knock-down of Txnip by specific siRNA rescued oxidative stress and apoptosis. In conclusion, estradiol protects against IH-induced vascular injury, partially through the regulation of Trx-1/Txnip pathway.
Collapse
Affiliation(s)
- Xiao Fei Lan
- Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.,Department of Respiratory Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 West Xianxia Road, Shanghai, 200335, China
| | - Xiu Juan Zhang
- Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.,Department of Respiratory Medicine, Huashan Hospital, Fudan University School of Medicine, No.12 Middle, Urumqi Road, Shanghai, 200040, China
| | - Ying Ni Lin
- Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Qiong Wang
- Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hua Jun Xu
- Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.,Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, No. 600 Yishan Road, Shanghai, 200233, China
| | - Li Na Zhou
- Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Pei Li Chen
- Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Qing Yun Li
- Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
9
|
Pingili AK, Davidge KN, Thirunavukkarasu S, Khan NS, Katsurada A, Majid DSA, Gonzalez FJ, Navar LG, Malik KU. 2-Methoxyestradiol Reduces Angiotensin II-Induced Hypertension and Renal Dysfunction in Ovariectomized Female and Intact Male Mice. Hypertension 2017; 69:1104-1112. [PMID: 28416584 PMCID: PMC5426976 DOI: 10.1161/hypertensionaha.117.09175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022]
Abstract
Cytochrome P450 1B1 protects against angiotensin II (Ang II)-induced hypertension and associated cardiovascular changes in female mice, most likely via production of 2-methoxyestradiol. This study was conducted to determine whether 2-methoxyestradiol ameliorates Ang II-induced hypertension, renal dysfunction, and end-organ damage in intact Cyp1b1-/-, ovariectomized female, and Cyp1b1+/+ male mice. Ang II or vehicle was infused for 2 weeks and administered concurrently with 2-methoxyestradiol. Mice were placed in metabolic cages on day 12 of Ang II infusion for urine collection for 24 hours. 2-Methoxyestradiol reduced Ang II-induced increases in systolic blood pressure, water consumption, urine output, and proteinuria in intact female Cyp1b1-/- and ovariectomized mice. 2-Methoxyestradiol also reduced Ang II-induced increase in blood pressure, water intake, urine output, and proteinuria in Cyp1b1+/+ male mice. Treatment with 2-methoxyestradiol attenuated Ang II-induced end-organ damage in intact Cyp1b1-/- and ovariectomized Cyp1b1+/+ and Cyp1b1-/- female mice and Cyp1b1+/+ male mice. 2-Methoxyestradiol mitigated Ang II-induced increase in urinary excretion of angiotensinogen in intact Cyp1b1-/- and ovariectomized Cyp1b1+/+ and Cyp1b1-/- female mice but not in Cyp1b1+/+ male mice. The G protein-coupled estrogen receptor 1 antagonist G-15 failed to alter Ang II-induced increases in blood pressure and renal function in Cyp1b1+/+ female mice. These data suggest that 2-methoxyestradiol reduces Ang II-induced hypertension and associated end-organ damage in intact Cyp1b1-/-, ovariectomized Cyp1b1+/+ and Cyp1b1-/- female mice, and Cyp1b1+/+ male mice independent of G protein-coupled estrogen receptor 1. Therefore, 2-methoxyestradiol could serve as a therapeutic agent for treating hypertension and associated pathogenesis in postmenopausal females, and in males.
Collapse
Affiliation(s)
- Ajeeth K Pingili
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Karen N Davidge
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Shyamala Thirunavukkarasu
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Nayaab S Khan
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Akemi Katsurada
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Dewan S A Majid
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Frank J Gonzalez
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - L Gabriel Navar
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Kafait U Malik
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis (A.K.P., K.N.D., S.T., N.S.K., K.U.M.); Department of Physiology, Hypertension & Renal Center, School of Medicine, Tulane University, New Orleans, LA (A.K., D.S.A.M., L.G.N.); and Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.).
| |
Collapse
|
10
|
Else PL. Membrane peroxidation in vertebrates: Potential role in metabolism and growth. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Paul L. Else
- School of Medicine; University of Wollongong; Lipid Research Centre (in IHMRI); Wollongong NSW Australia
| |
Collapse
|
11
|
Kumar BS, Raghuvanshi DS, Hasanain M, Alam S, Sarkar J, Mitra K, Khan F, Negi AS. Recent Advances in chemistry and pharmacology of 2-methoxyestradiol: An anticancer investigational drug. Steroids 2016; 110:9-34. [PMID: 27020471 DOI: 10.1016/j.steroids.2016.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/13/2016] [Accepted: 03/22/2016] [Indexed: 01/29/2023]
Abstract
2-Methoxyestradiol (2ME2), an estrogen hormone metabolite is a potential cancer chemotherapeutic agent. Presently, it is an investigational drug under various phases of clinical trials alone or in combination therapy. Its anticancer activity has been attributed to its antitubulin, antiangiogenic, pro-apoptotic and ROS induction properties. This anticancer drug candidate has been explored extensively in last twenty years for its detailed chemistry and pharmacology. Present review is an update of its chemistry and biological activity. It also extends an assessment of potential of 2ME2 and its analogues as possible anticancer drug in future.
Collapse
Affiliation(s)
- B Sathish Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Dushyant Singh Raghuvanshi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Mohammad Hasanain
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sarfaraz Alam
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Jayanta Sarkar
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kalyan Mitra
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India.
| |
Collapse
|
12
|
Abstract
Abdominal aortic aneurysm (AAA) is a significant cause of mortality in older adults. A key mechanism implicated in AAA pathogenesis is inflammation and the associated production of reactive oxygen species (ROS) and oxidative stress. These have been suggested to promote degradation of the extracellular matrix (ECM) and vascular smooth muscle apoptosis. Experimental and human association studies suggest that ROS can be favourably modified to limit AAA formation and progression. In the present review, we discuss mechanisms potentially linking ROS to AAA pathogenesis and highlight potential treatment strategies targeting ROS. Currently, none of these strategies has been shown to be effective in clinical practice.
Collapse
|
13
|
Curcumin Supplementation Decreases Intestinal Adiposity Accumulation, Serum Cholesterol Alterations, and Oxidative Stress in Ovariectomized Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5719291. [PMID: 26640615 PMCID: PMC4658407 DOI: 10.1155/2016/5719291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/21/2015] [Accepted: 01/29/2015] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the potential of curcumin oral supplementation (50 and 100 mg/Kg/day, for 30 days) in circumventing menopause-associated oxidative stress and lipid profile dysfunctions in a rat ovariectomy (OVX) model. Female Wistar rats were operated and randomly divided into either sham-operated or OVX groups. Sham-operated group (n = 8) and one OVX group (n = 11) were treated with vehicle (refined olive oil), and the other two OVX groups received curcumin at 50 or 100 mg/Kg/day doses (n = 8/group). OVX vehicle-treated animals presented a higher deposition of intestinal adipose tissue as well as increased serum levels of IL-6, LDL, and total cholesterol when compared to sham-operated rats. In addition, several oxidative stress markers in serum, blood, and liver (such as TBARS, carbonyl, reduced-sulphydryl, and nonenzymatic antioxidant defenses) were altered toward a prooxidant status by OVX. Interestingly, curcumin supplementation attenuated most of these parameters to sham comparable values. Thus, the herein presented results show that curcumin may be useful to ameliorate lipid metabolism alterations and oxidative damage associated with hormone deprivation in menopause.
Collapse
|
14
|
Hemnes AR, Kiely DG, Cockrill BA, Safdar Z, Wilson VJ, Al Hazmi M, Preston IR, MacLean MR, Lahm T. Statement on pregnancy in pulmonary hypertension from the Pulmonary Vascular Research Institute. Pulm Circ 2015; 5:435-65. [PMID: 26401246 PMCID: PMC4556496 DOI: 10.1086/682230] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/25/2015] [Indexed: 01/06/2023] Open
Abstract
Pregnancy outcomes in patients with pulmonary hypertension remain poor despite advanced therapies. Although consensus guidelines recommend against pregnancy in pulmonary hypertension, it may nonetheless occasionally occur. This guideline document sought to discuss the state of knowledge of pregnancy effects on pulmonary vascular disease and to define usual practice in avoidance of pregnancy and pregnancy management. This guideline is based on systematic review of peer-reviewed, published literature identified with MEDLINE. The strength of the literature was graded, and when it was inadequate to support high-level recommendations, consensus-based recommendations were formed according to prespecified criteria. There was no literature that met standards for high-level recommendations for pregnancy management in pulmonary hypertension. We drafted 38 consensus-based recommendations on pregnancy avoidance and management. Further, we identified the current state of knowledge on the effects of sex hormones during pregnancy on the pulmonary vasculature and right heart and suggested areas for future study. There is currently limited evidence-based knowledge about both the basic molecular effects of sex hormones and pregnancy on the pulmonary vasculature and the best practices in contraception and pregnancy management in pulmonary hypertension. We have drafted 38 consensus-based recommendations to guide clinicians in these challenging topics, but further research is needed in this area to define best practices and improve patient outcomes.
Collapse
Affiliation(s)
- Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - David G. Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
| | - Barbara A. Cockrill
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, and Harvard University Medical School, Boston, Massachusetts, USA
| | - Zeenat Safdar
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria J. Wilson
- Department of Obstetrics and Gynaecology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Manal Al Hazmi
- Section of Pulmonary Diseases, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ioana R. Preston
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, Massachusetts, USA
| | - Mandy R. MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, United Kingdom
| | - Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine and Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Endogenous Estrogen-Mediated Heme Oxygenase Regulation in Experimental Menopause. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:429713. [PMID: 26064421 PMCID: PMC4438186 DOI: 10.1155/2015/429713] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/04/2014] [Indexed: 12/27/2022]
Abstract
Estrogen deficiency is one of the main causes of age-associated diseases in the cardiovascular system. Female Wistar rats were divided into four experimental groups: pharmacologically ovariectomized, surgically ovariectomized, and 24-month-old intact aging animals were compared with a control group. The activity and expression of heme oxygenases (HO) in the cardiac left ventricle, the concentrations of cardiac interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), the myeloperoxidase (MPO) activity in the cardiac left ventricle, and the effects of heme oxygenase blockade (by 24-hour and 1-hour pretreatment with tin-protoporphyrin IX, SnPP) on the epinephrine and phentolamine-induced electrocardiogram ST segment changes in vivo were investigated. The cardiac HO activity and the expression of HO-1 and HO-2 were significantly decreased in the aged rats and after ovariectomy. Estrogen depletion was accompanied by significant increases in the expression of IL-6 and TNF-α. The aged and ovariectomized animals exhibited a significantly elevated MPO activity and a significant ST segment depression. After pretreatment with SnPP augmented ST segment changes were determined. These findings demonstrate that the sensitivity to cardiac ischemia in estrogen depletion models is associated with suppression of the activity and expression of the HO system and increases in the secretion of proinflammatory cytokines and biomarkers.
Collapse
|
16
|
Wen W, Luo R, Tang X, Tang L, Huang HX, Wen X, Hu S, Peng B. Age-related progression of arterial stiffness and its elevated positive association with blood pressure in healthy people. Atherosclerosis 2015; 238:147-52. [DOI: 10.1016/j.atherosclerosis.2014.10.089] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/01/2022]
|
17
|
Markofski MM, Braun WA. Influence of Menstrual Cycle on Indices of Contraction-Induced Muscle Damage. J Strength Cond Res 2014; 28:2649-56. [DOI: 10.1519/jsc.0000000000000429] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Roness H, Kalich-Philosoph L, Meirow D. Prevention of chemotherapy-induced ovarian damage: possible roles for hormonal and non-hormonal attenuating agents. Hum Reprod Update 2014; 20:759-74. [PMID: 24833728 DOI: 10.1093/humupd/dmu019] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Current options for female fertility preservation in the face of cytotoxic treatments include embryo, oocyte and ovarian tissue cryopreservation. However these methods are limited by the patient age, status or available timeframe before treatment and they necessitate invasive procedures. Agents which can prevent or attenuate the ovotoxic effects of treatment would provide significant advantages over the existing fertility preservation techniques, and would allow patients to retain their natural fertility without the necessity for costly, invasive and risky procedures. Recent studies have contributed to our understanding of the mechanisms involved in cytotoxicity-induced ovarian follicle loss and highlight a number of agents that may be able to prevent or reduce this loss. METHODS This paper reviews the relevant literature (research articles published in English up to December 2013) on the mechanisms of cytotoxic-induced ovarian damage and the implications for fertility preservation. We present a comprehensive discussion of the potential agents that have been shown to preserve the ovarian follicle reserve in the face of cytotoxic treatments, including an analysis of their respective advantages and risks, and mechanisms of action. RESULTS Multiple molecular pathways are involved in the cellular response to cytotoxic treatments, and specific cellular reactions depend on variables including the drug class and dose, cell type, and cell stage. A number of agents acting on different elements of these pathways have demonstrated potential for preventing or reducing ovarian follicle loss, although in most cases, the studies are still very preliminary. CONCLUSIONS Advances in our understanding of the mechanisms and pathways involved in both cytotoxic ovarian damage and follicle growth and development have opened up new directions for fertility preservation. In order to bring these agents from the lab to the clinic, it will be vital to accurately evaluate the efficacy of each agent and additionally to demonstrate that co-treatment with these agents will not interfere with the anti-cancer activity of the chemotherapy drugs, or produce genetically comprised embryos.
Collapse
Affiliation(s)
- Hadassa Roness
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Lital Kalich-Philosoph
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel The Safdie Institute for AIDS and Immunology Research, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat-Gan, Ramat-Gan 52900, Israel
| | - Dror Meirow
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
19
|
Cutolo M, Sulli A, Straub RH. Estrogen’s effects in chronic autoimmune/inflammatory diseases and progression to cancer. Expert Rev Clin Immunol 2013; 10:31-9. [DOI: 10.1586/1744666x.2014.863149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Mahran YF, El-Demerdash E, Nada AS, Ali AA, Abdel-Naim AB. Insights into the protective mechanisms of tamoxifen in radiotherapy-induced ovarian follicular loss: impact on insulin-like growth factor 1. Endocrinology 2013; 154:3888-3899. [PMID: 23798597 DOI: 10.1210/en.2013-1214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Radiotherapy is one of the most common and effective cancer treatments. However, it has a profound impact on ovarian function, leading to premature ovarian failure. With the hope of preserving fertility in cancer survivors, the need for an effective radioprotective therapy is evident. The present study investigated the mechanism of the potential radioprotective effect of tamoxifen (TAM) on γ-irradiation-induced ovarian failure on experimental rats and the impact of the IGF-1 in the underlying protective mechanisms. Female Sprague Dawley rats were either exposed to single whole-body irradiation (3.2 Gy; lethal dose [LD₂₀]) and/or treated with TAM (1 mg/kg). γ-Irradiation caused an array of ovarian dysfunction that was evident by assessment of hormonal changes, follicular development, proliferation marker (proliferating cell nuclear antigen), and oxidative stress as well as apoptotic markers. In addition, IGF-1/IGF-1 receptor axis expression was assessed using real-time RT-PCR and immunolocalization techniques. Furthermore, fertility assessment was performed. TAM significantly enhanced follicular development and restored the anti-Mullerian hormone level. Moreover, it ameliorated the deleterious effects of irradiation on oxidative stress, proliferating cell nuclear antigen expression, and apoptosis. Interestingly, TAM was shown to enhance the ovarian IGF-1 but not IGF-1 receptor, a property that contributed significantly to its radioprotective mechanisms. Finally, TAM regained the fertility that was lost after irradiation. In conclusion, TAM showed a radioprotective effect and saved the ovarian reserve and fertility through increasing anti-Mullerian hormone and the local IGF-1 level and counteracting the oxidative stress-mediated apoptosis.
Collapse
Affiliation(s)
- Yasmen F Mahran
- Professor of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt. or
| | | | | | | | | |
Collapse
|
21
|
Cancer morbidity in rheumatoid arthritis: role of estrogen metabolites. BIOMED RESEARCH INTERNATIONAL 2013; 2013:748178. [PMID: 24151619 PMCID: PMC3789363 DOI: 10.1155/2013/748178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/17/2013] [Indexed: 12/21/2022]
Abstract
Estrogen metabolites have been implicated in rheumatoid arthritis (RA) and cancer, although the mechanism remains unestablished. Some estrogen metabolites, which are used for the assessment of cancer risk, play an important role in RA. The pathways by which malignancies associated with RA remain elusive. Possible mechanism involves enzymatic or nonenzymatic oxidation of estrogen into catecholestrogen metabolites through semiquinone and quinone redox cycle to produce free radicals that can cause DNA modifications. Modifications of DNA alter its immunogenicity and trigger various immune responses leading to elevated levels of cancer and RA antibodies. However, the role of different estrogen metabolites as a mediator of immune response cannot be ruled out in various immune-related diseases.
Collapse
|
22
|
Machado-Linde F, Pelegrin P, Sanchez-Ferrer ML, Leon J, Cascales P, Parrilla JJ. 2-Methoxyestradiol in the Pathophysiology of Endometriosis: Focus on Angiogenesis and Therapeutic Potential. Reprod Sci 2012; 19:1018-29. [DOI: 10.1177/1933719112446080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Pablo Pelegrin
- Inflammation and Experimental Surgery Group, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Virgen Arrixaca, Murcia, Spain
| | | | - Josefa Leon
- Department of Hospital Pharmacy, Hospital Morales Meseguer, Murcia, Spain
| | - Pedro Cascales
- Department of General Surgery, Hospital Virgen Arrixaca, Murcia, Spain
| | - Juan J. Parrilla
- Department of Gynecology and Obstetrics, Hospital Virgen Arrixaca, Murcia, Spain
| |
Collapse
|
23
|
Gava AL, Freitas FPS, Meyrelles SS, Silva IV, Graceli JB. Gender-dependent effects of aging on the kidney. Braz J Med Biol Res 2011; 44:905-13. [PMID: 21956533 DOI: 10.1590/s0100-879x2011007500101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 08/05/2011] [Indexed: 11/22/2022] Open
Abstract
It is well known that the kidney plays an important role in the development of cardiovascular diseases such as hypertension. The normal aging process leads to changes in kidney morphology, hemodynamics and function, which increase the incidence of cardiovascular events in the elderly population. These disturbances are influenced by several factors, including gender. In general, females are protected by the effects of estrogens on the cardiorenal system. Several studies have demonstrated the beneficial effects of estrogens on renal function in the elderly; however, the relationships between androgens and kidney health during one's lifetime are not well understood. Sex steroids have many complex actions, and the decline in their levels during aging clearly influences kidney function, decreases the renal reserve and facilitates the development of cardiovascular disorders. Therefore, in this review, we discuss the cellular, biochemical, and molecular mechanisms by which sex hormones may influence renal function during the aging process.
Collapse
Affiliation(s)
- A L Gava
- Laboratório de Transgenes e Controle Cardiovascular, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | | | | | | | | |
Collapse
|
24
|
Masood DEN, Roach EC, Beauregard KG, Khalil RA. Impact of sex hormone metabolism on the vascular effects of menopausal hormone therapy in cardiovascular disease. Curr Drug Metab 2011; 11:693-714. [PMID: 21189141 DOI: 10.2174/138920010794233477] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/25/2010] [Indexed: 12/24/2022]
Abstract
Epidemiological studies have shown that cardiovascular disease (CVD) is less common in pre-menopausal women (Pre-MW) compared to men of the same age or post-menopausal women (Post-MW), suggesting cardiovascular benefits of estrogen. Estrogen receptors (ERs) have been identified in the vasculature, and experimental studies have demonstrated vasodilator effects of estrogen/ER on the endothelium, vascular smooth muscle (VSM) and extracellular matrix. Several natural and synthetic estrogenic preparations have been developed for relief of menopausal vasomotor symptoms. However, whether menopausal hormone therapy (MHT) is beneficial in postmenopausal CVD remains controversial. Despite reports of vascular benefits of MHT from observational and experimental studies, randomized clinical trials (RCTs), such as the Heart and Estrogen/progestin Replacement Study (HERS) and the Women's Health Initiative (WHI), have suggested that, contrary to expectations, MHT may increase the risk of CVD. These discrepancies could be due to agerelated changes in sex hormone synthesis and metabolism, which would influence the effective dose of MHT and the sex hormone environment in Post-MW. Age-related changes in the vascular ER subtype, structure, expression, distribution, and post-ER signaling pathways in the endothelium and VSM, along with factors related to the design of RCTs, preexisting CVD condition, and structural changes in the blood vessels architecture have also been suggested as possible causes of MHT failure in CVD. Careful examination of these factors should help in identifying the causes of the changes in the vascular effects of estrogen with age. The sex hormone metabolic pathways, the active versus inactive estrogen metabolites, and their effects on vascular function, the mitochondria, the inflammatory process and angiogenesis should be further examined. Also, the genomic and non-genomic effects of estrogenic compounds should be viewed as integrated rather than discrete responses. The complex interactions between these factors highlight the importance of careful design of MHT RCTs, and the need of a more customized approach for each individual patient in order to enhance the vascular benefits of MHT in postmenopausal CVD.
Collapse
Affiliation(s)
- Durr-e-Nayab Masood
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
25
|
Tamoxifen decreases ovarian follicular loss from experimental toxicant DMBA and chemotherapy agents cyclophosphamide and doxorubicin in the rat. J Assist Reprod Genet 2010; 27:591-7. [PMID: 20711751 DOI: 10.1007/s10815-010-9463-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION we serendipitously observed a protective effect of tamoxifen against depletion of ovarian follicles by 7,12-dimethylbenzanthracene (DMBA), a chemical carcinogen, during a cancer prevention study. Such ovarian protection is being sought as an alternative approach to fertility preservation in human cancer patients. METHODS rats received tamoxifen (0, 1 mg or 2.5 mg/kg/d) and DMBA (0, 1, 2 mg/kg/wk) or cyclophosphamide (0, 35, 50 mg/kg/wk). Ovarian follicles were quantified and effects on fertility and litter size were tested. Cultured oocytes were exposed to chemotherapy drug doxorubicin, with or without 4-hydroxytamoxifen (4HT). RESULTS DMBA and cyclophosphamide decreased the number of primordial and total follicles, and this reduction was prevented by tamoxifen. Cyclophosphamide tended to reduce fertility and lessened neonatal survival. Tamoxifen reversed these defects. Doxorubicin caused oocyte fragmentation which was prevented by 4HT. CONCLUSIONS tamoxifen decreases follicle loss and improves reproductive function following exposure to ovarian toxicants including chemotherapy drugs in the female rat.
Collapse
|
26
|
Sullivan JC, Pardieck JL, Brinson K, Kang KT. Effects of estradiol on renal cyclic guanosine monophosphate and oxidative stress in spontaneously hypertensive rats. ACTA ACUST UNITED AC 2010; 6:498-510. [PMID: 19850246 DOI: 10.1016/j.genm.2009.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2009] [Indexed: 01/02/2023]
Abstract
BACKGROUND Evidence suggests that estradiol offers protection against the development of cardiovascular and renal pathologies, although the mechanisms involved are still under investigation. The nitric oxide (NO) pathway regulates blood pressure and kidney function, and estradiol is associated with increases in NO bioavailability. We hypothesized that in female spontaneously hypertensive rats (SHRs), estra-diol increases NO bioavailability, activates the NO synthase (NOS) pathway, and suppresses superoxide production compared with rats that underwent ovariectomy (OVX). OBJECTIVE The goal of this study was to determine whether estradiol regulates the NO/cyclic guanosine monophosphate (cGMP) pathway and superoxide levels in the kidneys of female SHR. METHODS Three types of SHRs were studied: gonad-intact females, OVX rats, and OVX rats with estra-diol replacement (OVX+E). Renal cortical cGMP levels were measured to assess NO bioavailability. NOS enzymatic activity, NOS protein expression, basal superoxide production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity were measured in the renal cortex. RESULTS Fifty-six SHRs were included in the study (17 intact females, 21 OVX rats, 18 OVX+E rats). Mean (SEM) cGMP levels were significantly lower in the renal cortex of OVX rats (0.03 [0.008] pmol/mg, n = 5) than in intact females (0.1 [0.02] pmol/mg, n = 6; P < 0.05), and estradiol restored cGMP levels to those seen in intact females (0.1 [0.01] pmol/mg, n = 5; P < 0.05). Despite a decrease in cGMP following OVX, renal cortical NOS activity, NOS1 and NOS3 protein expression, and the phosphorylation status of NOS3 were comparable among the 3 groups (n = 7-9 per group). However, mean basal superoxide production in the renal cortex was higher in OVX rats (3.2 [0.3] cpm/mg, n = 12) than in intact females (1.9 [0.3] cpm/mg, n = 8; P < 0.05) and lower in OVX+E rats (1.3 [0.3] cpm/mg, n = 9; P < 0.05). Mean NADPH oxidase activity was comparable in the renal cortex of intact females and OVX rats (81 [4] and 83 [12] cpm/35 microg, respectively [n = 5 per group]). OVX+E rats had significantly lower mean renal cortical NADPH oxidase activity than did rats in the other groups (45 [6] cpm/35 microg, n = 6; P < 0.05), and the decrease in activity was accompanied by a decrease in p22(phox) protein expression. CONCLUSIONS In vivo manipulations of estradiol levels influenced renal cortical NO bioavailability, as assessed indirectly by cGMP measurements. The decrease in cGMP following OVX was not due to alterations in the activity or expression of NOS.
Collapse
|
27
|
Modulation of gene expression by Polyalthia longifolia in postmenopausal women with coronary artery disease: an in vitro study. J Cardiovasc Transl Res 2009; 3:570-9. [PMID: 20559769 DOI: 10.1007/s12265-009-9162-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
Chronic underlying inflammation is involved in the pathophysiology of coronary artery disease (CAD). Polyalthia longifolia var. pendula bark extract (PLE) is known to exhibit anti-inflammatory activity and has high content of phytosteroids. Since phytosteroids mimic estrogen structurally, we postulated that PLE may provide protection in postmenopausal women against CAD. Thus the effect of PLE has been explored on expression of estrogen receptors (ERalpha and ERbeta) and inflammatory inducible nitric oxide synthase (iNOS) genes in vitro in peripheral blood mononuclear cells (PBMCs) obtained from postmenopausal women. A total of 20 postmenopausal women were included in the present study. Group I (N = 10) included women with angiographically proven CAD, and group II (N = 10) is composed of equal number of age-matched healthy postmenopausal females as controls. Significantly low levels of serum 17-beta estradiol were observed in subjects of group I as compared to group II (p < 0.01). A marked increase in L: -citrulline levels (p > 0.05) and significantly augmented levels of reactive nitrogen intermediates (p < 0.05) were observed in group I subjects. PLE significantly attenuated PMA-induced expression of both ERalpha and ERbeta receptors and inflammatory iNOS gene in vitro in a dose- and time-dependent manner and had an additive effect on these genes when compared with tamoxifen. Ours is the first report to demonstrate that PLE contains certain bioactive principles, which possess anti-inflammatory and estrogenic properties, and thereby hold the promise to be screened for their anti-atherogenic potential in experimental animals to favorably alter several other markers of cardiovascular risk.
Collapse
|
28
|
Kasımay Ö, Şener G, Çakır B, Yüksel M, Çetinel Ş, Contuk G, Yeğen BÇ. Estrogen Protects against Oxidative Multiorgan Damage in Rats with Chronic Renal Failure. Ren Fail 2009; 31:711-25. [DOI: 10.3109/08860220903134563] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
29
|
Dubey RK, Jackson EK. Potential vascular actions of 2-methoxyestradiol. Trends Endocrinol Metab 2009; 20:374-9. [PMID: 19734053 PMCID: PMC2761235 DOI: 10.1016/j.tem.2009.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 12/29/2022]
Abstract
2-Methoxyestradiol (2-ME) is a biologically active metabolite of 17beta-estradiol that appears to inhibit key processes associated with cell replication in vitro. The molecule has been suggested to have potent growth-inhibitory effects on proliferating cells, including smooth muscle cells and endothelial cells, and may be antiangiogenic. Because of these potential roles for 2-ME, its lack of cytotoxicity and low estrogenic activity, we hypothesize that 2-ME could be a valuable therapeutic molecule for prevention and treatment of cardiovascular diseases. Whether 2-ME is as effective in vivo as it is in vitro at modulating vascular processes remains controversial. Here we discuss recent developments regarding mechanisms by which 2-ME might regulate vascular activity and angiogenesis and speculate on the therapeutic implications of these developments.
Collapse
Affiliation(s)
- Raghvendra K Dubey
- Clinic for Reproductive Endocrinology, Department of Obstetrics and Gynecology, Zurich Center for Integrative Human Physiology, University Hospital Zurich, Frauenklinikstrasse, Zurich, Switzerland.
| | | |
Collapse
|
30
|
Enli Y, Oztekin O, Pinarbasili RD. The nitroxide tempol has similar antioxidant effects as physiological levels of 17beta-oestradiol in reversing ovariectomy-induced oxidative stress in mice liver and kidney. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:526-34. [PMID: 19343575 DOI: 10.1080/00365510902862967] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Oestrogen defciency increases oxidative stress postmenopause, while tempol is an intracellular radical scavenger that interferes with the formation or effects of many radicals. We aimed to investigate the effects of oestrogen and tempol on oxidative stress parameters in the kidney and liver of ovariectomized mice. MATERIAL AND METHODS Forty 8-week-old female Bald/c mice were divided into five groups: sham-operated, ovariectomized mice without treatment, ovariectomized mice treated with tempol, ovariectomized mice treated with 17beta-oestradiol and ovariectomized mice treated with 17beta-oestradiol and tempol. Oxidative stress in liver and kidney tissues was investigated by measuring 2-thiobarbituric acid reactive substances (TBA-RS), reduced glutathione, myeloperoxidase, superoxide dismutase and catalase levels. RESULTS TBA-RS levels were increased and reduced glutathione, myeloperoxidase, superoxide dismutase levels were decreased in the tissues of ovariectomized mice. This effect of ovariectomy on oxidative stress parameters was opposed significantly by the administration of tempol and 17beta-oestradiol either alone or in combination. Ovariectomy reduced the kidney catalase levels, but the effect was not statistically significant (p>0.05). On the other hand, catalase levels were elevated significantly in all treatment groups compared to those of the ovariectomized group (p<0.05). CONCLUSION These study findings demonstrate that tempol significantly opposes the oxidative stress generated by ovariectomy. This effect, which is evident in remote tissues such as liver and kidney, is comparable to that of physiological levels of oestradiol.
Collapse
Affiliation(s)
- Yasar Enli
- Department of Biochemistry, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | | | | |
Collapse
|
31
|
Hass MA, Nichol P, Lee L, Levin RM. Estrogen modulates permeability and prostaglandin levels in the rabbit urinary bladder. Prostaglandins Leukot Essent Fatty Acids 2009; 80:125-9. [PMID: 19181506 DOI: 10.1016/j.plefa.2008.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 11/04/2008] [Accepted: 11/28/2008] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to characterize barrier function, hypoxic damage and prostaglandin levels in the urinary bladder in response to estrogen deficiency. Female New Zealand White rabbits were separated into three groups: ovariectomized; sham-operated; and ovariectomized treated with estrogen. Barrier function was compromised in the ovariectomized group compared to that of the sham group and the ovariectomized group treated with estrogen. Urinary bladders of ovariectomized animals showed higher concentrations of hypoxic markers than controls, localized primarily in the urothelium. Levels of 6-keto-PGF(1alpha) and PGF(2alpha) were significantly higher in smooth muscle than the ovariectomized animals and PGE(2) levels were significantly lower in the mucosa of ovariectomized animals. These results suggest that estrogen deficiency induces a loss of barrier function and an increase in hypoxia. The estrogen-dependent decreases of prostaglandin PGE(2) in the urothelium correlate with loss of barrier function, suggesting estrogen regulation of PGE(2) may contribute to maintenance of urothelial function.
Collapse
Affiliation(s)
- Martha A Hass
- Department of Arts and Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | | | |
Collapse
|
32
|
Estrogen deficiency-induced alterations of vascular MMP-2, MT1-MMP, and TIMP-2 in ovariectomized rats. Am J Hypertens 2009; 22:27-34. [PMID: 19023275 DOI: 10.1038/ajh.2008.306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) activity may modulate hypertension-related accumulation of extracellular matrix (ECM) in arteries. We tested whether estrogen deficiency induces alterations of vascular collagen, MMP-2, membrane-type 1-MMP (MT1-MMP), or tissue inhibitor of metalloproteinases-2 (TIMP-2) expression in ovariectomized rats, which may be associated with postmenopausal hypertension. METHODS Estrogen deficiency was induced by ovariectomy (Ovx) in female rats. Time-course changes of aortic MMPs protein expression were evaluated. Treatment with tempol or aminoguanidine was used to examine the role of oxidative stress and nitric oxide (NO) on these changes. RESULTS The level of the active-form MMP-2 was markedly reduced during 1-4 weeks after Ovx, with a significant increase in collagen accumulation and increased MT1-MMP expression. Although active-form MMP-2 and collagen progressively returned to normal levels, the markedly increased collagen deposition appeared again at 8 weeks and persisted until 12 weeks, followed by induction of MMP-2 and MT1-MMP at 12 weeks. The TIMP-2 level reduced for 2 weeks after Ovx, but soon returned to normal. Treatment with 17beta-estradiol (E(2)), tempol, or aminoguanidine for 6 weeks prevented Ovx-induced blood pressure elevation and apparently reversed the MMPs changes. CONCLUSIONS In an initial period, E(2) deficiency induces a reduction of active-form MMP-2 leading to collagen accumulation, and induction of MT1-MMP, which may be a compensatory response to degrade collagen. At a latter stage, the concurrent elevation of active-form MMP-2 and MT1-MMP expression may be adaptive responses to regulate ECM composition in the vascular wall. Oxidative stress and NO contribute to activity modulation of vascular MMPs in Ovx rats.
Collapse
|
33
|
Bonacasa B, Sanchez ML, Rodriguez F, Lopez B, Quesada T, Fenoy FJ, Hernández I. 2-Methoxyestradiol attenuates hypertension and coronary vascular remodeling in spontaneously hypertensive rats. Maturitas 2008; 61:310-6. [PMID: 19010616 DOI: 10.1016/j.maturitas.2008.09.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Accumulating data provide evidence that some metabolites of 17beta-estradiol are biologically active and mediate multiple effects on the cardiovascular and renal systems. We investigated the effect of 2-methoxyestradiol (an active metabolite of estradiol with non-feminizing activity) on the development of hypertension and myocardial vascular remodeling in male and female ovarectomized SHR. METHODS Rats were divided into five groups: intact females, ovarectomized (OVX), OVX+ 2-methoxyestradiol (2ME), control males, and male+2ME. Systolic blood pressure was determined from 10 to 18 weeks. Structural changes in coronary vessels were quantified by an image analyzer. Immunoblotting of phosphorylated ERK1/2 and NADPH oxidase activity were performed on mesenteric arteries. RESULTS Treatment with 2ME reduced the increase in systolic blood pressure in male and ovarectomized rats to values not different from those obtained in intact females. Myocardial arterioles and small arteries showed significant increases in wall-to-lumen ratio and perivascular fibrosis in male and ovarectomized rats when compared with intact females. NADPH oxidase activity was increased in mesenteric arteries from males and ovarectomized females as compared with intact females. Finally, the expression of phosphorilated ERK1/2 were significantly higher in mesenteric arteries from male and ovariectomized animals than in those from intact females. Those effects of ovarectomy and gender differences were totally or partially prevented by treatment with 2-methoxyestradiol. CONCLUSIONS These data demonstrate that 2-methoxyestradiol protects the vasculature from hypertension-induced myocardial arterial remodeling in male and ovarectomized SHR, and that might be in part related to decreased superoxide generation and ERK1/2 activation.
Collapse
Affiliation(s)
- B Bonacasa
- Department of Physiology, Facultad de Medicina, Universidad de Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
The effects of estrogen on pulmonary artery vasoreactivity and hypoxic pulmonary vasoconstriction: potential new clinical implications for an old hormone. Crit Care Med 2008; 36:2174-83. [PMID: 18552699 DOI: 10.1097/ccm.0b013e31817d1a92] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Recent research recognizes gender as a major factor determining the outcomes in trauma, ischemia/reperfusion, shock, and sepsis. In particular, estrogen has been demonstrated to exert protective effects in these settings. The effects of estrogens on the pulmonary vasculature are potent and complex yet not fully understood. A better mechanistic understanding may allow for future therapeutic interventions in pulmonary hypertensive crises after cardiac surgery and during acute lung injury as well as in patients with pulmonary arterial hypertension. DATA SOURCES AND STUDY SELECTION We searched PubMed for articles in the English language by using the search words pulmonary hypertension, hypoxic pulmonary vasoconstriction, estrogen, estradiol, inflammation, acute injury, ischemia reperfusion, sepsis, trauma, and burns. These were used in various combinations. We read the abstracts of the relevant titles to confirm their relevance, and the full articles were then extracted. References from extracted articles were checked for any additional relevant articles. DATA EXTRACTION AND SYNTHESIS Estrogen plays a critical role in the improved outcomes in the settings of trauma, shock, sepsis, myocardial ischemia/reperfusion, and acute lung injury. Several new mechanisms of action have been identified. In the pulmonary vasculature, estrogen causes vasodilation and attenuates the vasoconstrictor response to various stimuli, including hypoxia. This is mediated by increased levels of prostacyclin and nitric oxide as well as decreased levels of endothelin-1. In addition, effects on intracellular signaling pathways and several kinases as well as anti-inflammatory mechanisms may contribute as well. Recent studies suggest the importance of acute, nongenomic effects. CONCLUSION Estrogen exerts a variety of nongenomic actions, which may allow for future therapeutic interventions in pulmonary vascular disease.
Collapse
|
35
|
Abstract
There is still an unresolved paradox with respect to the immunomodulating role of estrogens. On one side, we recognize inhibition of bone resorption and suppression of inflammation in several animal models of chronic inflammatory diseases. On the other hand, we realize the immunosupportive role of estrogens in trauma/sepsis and the proinflammatory effects in some chronic autoimmune diseases in humans. This review examines possible causes for this paradox. This review delineates how the effects of estrogens are dependent on criteria such as: 1) the immune stimulus (foreign antigens or autoantigens) and subsequent antigen-specific immune responses (e.g., T cell inhibited by estrogens vs. activation of B cell); 2) the cell types involved during different phases of the disease; 3) the target organ with its specific microenvironment; 4) timing of 17beta-estradiol administration in relation to the disease course (and the reproductive status of a woman); 5) the concentration of estrogens; 6) the variability in expression of estrogen receptor alpha and beta depending on the microenvironment and the cell type; and 7) intracellular metabolism of estrogens leading to important biologically active metabolites with quite different anti- and proinflammatory function. Also mentioned are systemic supersystems such as the hypothalamic-pituitary-adrenal axis, the sensory nervous system, and the sympathetic nervous system and how they are influenced by estrogens. This review reinforces the concept that estrogens have antiinflammatory but also proinflammatory roles depending on above-mentioned criteria. It also explains that a uniform concept as to the action of estrogens cannot be found for all inflammatory diseases due to the enormous variable responses of immune and repair systems.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Division of Rheumatology, Department of Internal Medicine I, University Hospital, 93042 Regensburg, Germany.
| |
Collapse
|
36
|
Cano A, Hermenegildo C, Oviedo P, Tarín JJ. Selective estrogen receptor modulators and risk for coronary heart disease. Climacteric 2007; 10:97-111. [PMID: 17453858 DOI: 10.1080/13697130701258804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Coronary heart disease (CHD) is the leading cause of death in women in most countries. Atherosclerosis is the main biological process determining CHD. Clinical data support the notion that CHD is sensitive to estrogens, but debate exists concerning the effects of the hormone on atherosclerosis and its complications. Selective estrogen receptor modulators (SERMs) are compounds capable of binding the estrogen receptor to induce a functional profile distinct from estrogens. The possibility that SERMs may shift the estrogenic balance on cardiovascular risk towards a more beneficial profile has generated interest in recent years. There is considerable information on the effects of SERMs on distinct areas that are crucial in atherogenesis. The complexity derived from the diversity of variables affecting their mechanism of action plus the differences between compounds make it difficult to delineate one uniform trend for SERMs. The present picture, nonetheless, is one where SERMs seem less powerful than estrogens in atherosclerosis protection, but more gentle with advanced forms of the disease. The recent publication of the Raloxifene Use for The Heart (RUTH) study has confirmed a neutral effect for raloxifene. Prothrombotic states may favor occlusive thrombi at sites occupied by atheromatous plaques. Platelet activation has received attention as an important determinant of arterial thrombogenesis. Although still sparse, available evidence globally suggests neutral or beneficial effects for SERMs.
Collapse
Affiliation(s)
- A Cano
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | | | | | | |
Collapse
|
37
|
Zhang Y, Milatovic D, Aschner M, Feustel PJ, Kimelberg HK. Neuroprotection by tamoxifen in focal cerebral ischemia is not mediated by an agonist action at estrogen receptors but is associated with antioxidant activity. Exp Neurol 2007; 204:819-27. [PMID: 17321521 PMCID: PMC1913768 DOI: 10.1016/j.expneurol.2007.01.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/14/2006] [Accepted: 01/12/2007] [Indexed: 01/22/2023]
Abstract
We have previously shown that tamoxifen can induce marked neuroprotection after middle cerebral artery occlusion (MCAo) in rats and have described two possible mechanisms of action: namely, inhibition of EAA release and inhibition of nNOS activity. In this study we tested other potential mechanisms. Namely, agonist action at estrogen receptors and an antioxidative action. Tamoxifen-treated rats had significantly improved neurobehavioral deficit scores after 24 h and showed approximately 75% reduced infarct volumes. These were unaffected by ICI 182,780 (a high affinity and pure receptor antagonist) administered intravenously, or intracisternally to avoid possible lack of brain penetration, 15 min before intravenous administration of tamoxifen. In rats subjected to 2 h MCAo followed by 22 h reperfusion, 1.8-fold and 2.9-fold increases of F(2)-IsoPs and F(4) neuroprostanes, respectively, as relatively stable markers of oxidative damage, were measured in the ischemic hemisphere compared with the corresponding contralateral hemisphere or sham controls. Tamoxifen given at 3 h after the start of ischemia reduced the IsoPs and NeuroPs to sham control levels, and also inhibited their production by chemically induced lipid peroxidation in brain homogenates. These data are consistent with at least part of tamoxifen's marked neuroprotection in focal cerebral ischemic injury being due to its antioxidant activity but not by an acute action on estrogen receptors (212 words).
Collapse
Affiliation(s)
- Yonghua Zhang
- Neural and Vascular Biology Theme, Ordway Research Institute, 150 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
38
|
Moreau KL, DePaulis AR, Gavin KM, Seals DR. Oxidative stress contributes to chronic leg vasoconstriction in estrogen-deficient postmenopausal women. J Appl Physiol (1985) 2006; 102:890-5. [PMID: 17110511 DOI: 10.1152/japplphysiol.00877.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Basal whole leg blood flow and vascular conductance are reduced in estrogen-deficient postmenopausal compared with premenopausal women. The underlying mechanisms are unknown, but oxidative stress could be involved. We studied 9 premenopausal [23 +/- 1 yr (mean +/- SE)] and 20 estrogen-deficient postmenopausal (55 +/- 1 yr) healthy women. During baseline control, oxidized low-density lipoprotein (LDL), a marker of oxidative stress, was 50% greater in the postmenopausal women (P < 0.001). Basal whole leg blood flow (duplex ultrasound of femoral artery) was 34% lower in the postmenopausal women because of a 38% lower leg vascular conductance (P < 0.0001); mean arterial pressure was not different. Intravenous administration of a supraphysiological dose of the antioxidant ascorbic acid increased leg blood flow by 15% in the postmenopausal women as a result of an increase in leg vascular conductance (both P < 0.001), but it did not affect leg blood flow in premenopausal controls or mean arterial pressure in either group. In the pooled subjects, the changes in leg blood flow and leg vascular conductance with ascorbic acid were related to baseline plasma oxidized LDL (r = 0.46 and 0.53, P < 0.01) and waist-to-hip ratio and total body fat (r = 0.41-0.44, all P < 0.05). Our results are consistent with the hypothesis that oxidative stress contributes to chronic leg vasoconstriction and reduced basal whole leg blood flow in estrogen-deficient postmenopausal women. This oxidative stress-related suppression of leg vascular conductance and blood flow may be linked in part to increased total and abdominal adiposity.
Collapse
Affiliation(s)
- Kerrie L Moreau
- Dept. of Integrative Physiology, University of Colorado, Boulder, CO, USA.
| | | | | | | |
Collapse
|
39
|
Shen J, White M, Husband AJ, Hambly BD, Bao S. Phytoestrogen derivatives differentially inhibit arterial neointimal proliferation in a mouse model. Eur J Pharmacol 2006; 548:123-8. [PMID: 16950243 DOI: 10.1016/j.ejphar.2006.07.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 07/19/2006] [Accepted: 07/20/2006] [Indexed: 11/24/2022]
Abstract
Neointimal proliferation is a key element in atherosclerotic plaque formation and in arterial restenosis following angioplasty. Estrogen-like compounds, including naturally occurring plant phytoestrogens, are known to alter the extent of neointimal proliferation. This study investigates the anti-atherogenic/restenotic effect of several synthetic metabolites of isoflavone phytoestrogens (dihydrodaidzein, tetrahydrodaidzein and dehydroequol) (Novogen, Sydney, Australia). Acute neointimal proliferation was induced in the iliac artery of cholesterol-fed mice, by mechanically damaging the endothelium. Phytoestrogens were administered orally for 4 weeks and the damaged arteries harvested. Intimal area, as a percentage of the iliac artery wall area, was measured. Dihydrodaidzein significantly halved the intimal response (intima approximately 25% of wall area; p < 0.01) compared with placebo diet-fed mice (intima approximately 50% of wall area), while tetrahydrodaidzein and dehydroequol showed no inhibitory effects. Immunohistochemistry demonstrated that alpha-actin-positive vascular smooth muscle cells were the major cell type in the proliferating neointima. A single layer of endothelium covered the thickened intima by 4 weeks. Thus, a specific phytoestrogen isoflavone compound (dihydrodaidzein) can selectively inhibit neointimal proliferation, either by inhibition of vascular smooth muscle cell migration and proliferation, and/or by enhancing endothelial proliferation and function, and inhibition of endothelial apoptosis.
Collapse
Affiliation(s)
- Jie Shen
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine, University of Sydney 2006, Australia
| | | | | | | | | |
Collapse
|
40
|
Ho SY, Schooling M, Hui LL, McGhee SM, Mak KH, Lam TH. Soy consumption and mortality in Hong Kong: proxy-reported case-control study of all older adult deaths in 1998. Prev Med 2006; 43:20-6. [PMID: 16631248 DOI: 10.1016/j.ypmed.2006.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 03/08/2006] [Accepted: 03/08/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVES This study investigates the relation between soy consumption and mortality in a population-based case-control study in Hong Kong of all adult deaths in 1998. METHODS Multivariable logistic regression was used to assess the effect of soy on all-cause and cause-specific mortality in 21,494 deceased cases and 10,968 living controls who were ethnic Chinese aged 60 or above, using proxy reports collected from the person registering the death. Dietary habits were obtained from proxies in both cases and controls, based on a 7-item questionnaire. RESULTS The adjusted odds ratios for all-cause mortality for soy consumption 4 or more times a week compared with less than once a month were 0.77 (95% CI: 0.62, 0.95) for men and 0.66 (0.54, 0.81) for women. Mortality from lung cancer (males P = 0.02, females P = 0.02), colorectal cancer (males P = 0.07, females P < 0.001), stomach cancer (males P = 0.04, females P = 0.03), female breast cancer (P = 0.02) and ischemic heart disease (males P < 0.001, females P = 0.002) was inversely associated with soy consumption. CONCLUSIONS Our study suggests that maintaining traditional levels of soy consumption could be protective for some chronic diseases in China.
Collapse
Affiliation(s)
- Sai-Yin Ho
- Department of Community Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Tofovic SP, Zhang X, Jackson EK, Dacic S, Petrusevska G. 2-Methoxyestradiol mediates the protective effects of estradiol in monocrotaline-induced pulmonary hypertension. Vascul Pharmacol 2006; 45:358-67. [PMID: 16872912 DOI: 10.1016/j.vph.2006.05.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/14/2006] [Accepted: 05/16/2006] [Indexed: 01/20/2023]
Abstract
When exposed to chronic hypoxia or toxin monocrotaline (MCT), female animals develop less severe pulmonary arterial hypertension (PH) compared to males; ovariectomy (OVX) exacerbates PH, and OVX animals treated with estradiol (E2) develop less severe disease. There is a line of evidence suggesting that cardiovascular protective effects of E2 are mediated by its major metabolite, 2-methoxyestradiol (2ME). Recently, we have shown that 2ME attenuates the development and retards the progression of MCT-induced pulmonary hypertension in male rats. We hypothesized that the protective effects of E2 in experimental PH are mediated by 2ME. Subsets of intact and OVX female rats were injected saline (Cont and OXV groups) or MCT (60 mg/kg; MCT and OVX-MCT groups) and some of OVX-MCT animals were treated with 2ME (10 microg/kg/h via osmotic minipumps; OVX-MCT+2ME). After 28 days, MCT caused PH, i.e., increased right ventricular peak systolic pressure (RVPSP) and right ventricle/left ventricle+septum (RV/LV+S) ratio, induced inflammatory response in the lungs and caused media hypertrophy (media thickness and % media index) and adventitia widening of small size pulmonary arteries. Ovariectomy exacerbated the disease, i.e., further increased RVPSP, and RV/LV+S ratio, and augmented vascular remodeling and inflammatory response. In diseased OVX rats, treatment with 2ME prevented the worsening of PH and attenuated the inflammatory response and vascular remodeling. No mortality was recorded in the OVX-MCT+2ME group vs. 10% and 36% mortality in the MCT and OVX-MCT group, respectively. This study suggests that 2-methoxyestradiol (a major non-estrogenic metabolite of E2) may mediate the protective effects of estradiol in MCT-induced PH, and warrants further evaluation of 2ME for treatment of PH.
Collapse
MESH Headings
- 2-Methoxyestradiol
- Analysis of Variance
- Animals
- Blood Pressure/drug effects
- Disease Progression
- Estradiol/analogs & derivatives
- Estradiol/metabolism
- Estradiol/pharmacology
- Estradiol/therapeutic use
- Female
- Heart Ventricles/drug effects
- Heart Ventricles/pathology
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Lung/drug effects
- Lung/pathology
- Monocrotaline
- Ovariectomy
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Rats
- Time Factors
- Ventricular Function, Left/drug effects
- Ventricular Function, Right/drug effects
Collapse
Affiliation(s)
- Stevan P Tofovic
- Center for Clinical Pharmacology, University of Pittsburgh School of Medicine, PA 15219, United States.
| | | | | | | | | |
Collapse
|
42
|
Lam KK, Lee YM, Hsiao G, Chen SY, Yen MH. Estrogen therapy replenishes vascular tetrahydrobiopterin and reduces oxidative stress in ovariectomized rats. Menopause 2006; 13:294-302. [PMID: 16645543 DOI: 10.1097/01.gme.0000182806.99137.5e] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We investigated whether the effect of estrogen therapy on vascular endothelial function is mediated through increasing the bioavailability of tetrahydrobiopterin (BH4) and associated antioxidant capacity in ovariectomized (Ovx) rats. DESIGN Aortas of sham-operated, Ovx, and Ovx plus estrogen therapy (Ovx + ET) female Sprague-Dawley rats were used to measure vascular reactivity. Plasma levels of nitric oxide (NO) metabolites, total antioxidant capacity, aortic superoxide anion (O2.), and BH4 contents were determined. RESULTS Vascular reactivity, assessed on isolated aortic segments, indicated that phenylephrine-induced contraction in the Ovx group was significantly greater than that in the sham and Ovx + ET groups. The vasodilator responses to acetylcholine (10 to 10 M) and L-arginine (L-Arg; 10 M) in the sham and Ovx + ET groups were significantly greater than those in the Ovx group. Pretreatment with BH4 (10 M) enhanced the vasodilator responses to L-Arg in the Ovx group compared with the untreated Ovx group. An inhibitor of BH4 synthesis, 2,4-diamino-6-hydroxypyrimidine (2 mM), significantly attenuated the vasodilator response to L-Arg in the sham and Ovx + ET groups. In addition, Ovx significantly increased O2. production in aortic tissues and decreased plasma NO metabolites levels, whereas ET significantly prevented these effects. Pretreatment with BH4 also significantly decreased aortic O2. production in the Ovx group; both plasma total antioxidant capacity and aortic BH4 contents in the Ovx group decreased significantly compared with those in the sham group, which were also improved by ET. There were no significant differences in the protein expression of endothelial NO synthase in aortas in these groups. CONCLUSIONS ET increases the availability of vascular BH4 to attenuate O2. production and restores total antioxidant capacity, leading to improved NO-mediated vasodilation in Ovx rats.
Collapse
Affiliation(s)
- Kwok-Keung Lam
- Department of Pharmacology, Taipei Medical College, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
43
|
Mukhopadhyay S, Mukherjee TK. Bridging advanced glycation end product, receptor for advanced glycation end product and nitric oxide with hormonal replacement/estrogen therapy in healthy versus diabetic postmenopausal women: A perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:145-55. [PMID: 15890418 DOI: 10.1016/j.bbamcr.2005.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 03/20/2005] [Accepted: 03/22/2005] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases (CVD) are the most significant cause of death in postmenopausal women. The loss of estrogen biosynthesis with advanced age is suggested as one of the major causes of higher CVD in postmenopausal women. While some studies show beneficial effects of estrogen therapy (ET)/hormonal replacement therapy (HRT) in the cardiovascular system of healthy postmenopausal women, similar studies in diabetic counterparts contradict these findings. In particular, ET/HRT in diabetic postmenopausal women results in a seemingly detrimental effect on the cardiovascular system. In this review, the comparative role of estrogens is discussed in the context of CVD in both healthy and diabetic postmenopausal women in regard to the synthesis or expression of proinflammatory molecules like advanced glycation end products (AGEs), receptor for advanced glycation end products (RAGEs), inducible nitric oxide synthases (iNOS) and the anti-inflammatory endothelial nitric oxide synthases (eNOS). The interaction of AGE-RAGE signaling with molecular nitric oxide (NO) may determine the level of reactive oxygen species (ROS) and influence the overall redox status of the vascular microenvironment that may further determine the ultimate outcome of the effects of estrogens on the CVD in healthy versus diabetic women.
Collapse
Affiliation(s)
- Srirupa Mukhopadhyay
- Pulmonary Division, Department of Internal Medicine, University of Utah Health Science Center, Rm 725 Wintrobe Building, 26 North 1900 East, Salt Lake City, UT 84132-4701, USA
| | | |
Collapse
|
44
|
Sener G, Arbak S, Kurtaran P, Gedik N, Yeğen BC. Estrogen Protects the Liver and Intestines Against Sepsis-Induced Injury in Rats. J Surg Res 2005; 128:70-8. [PMID: 16115495 DOI: 10.1016/j.jss.2005.02.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 02/21/2005] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIM Sepsis is commonly associated with enhanced generation of reactive oxygen metabolites, leading to multiple organ dysfunctions. The aim of this study was to examine the putative protective role of estradiol against sepsis-induced oxidative organ damage. MATERIALS AND METHODS Sepsis was induced by cecal ligation and puncture method in Wistar albino rats. Sham-operated (control) and sepsis groups received saline or estradiol propionate (10 mg/kg) intraperitoneally immediately after the operation and at 12 h. Twenty-four hours after the surgery, rats were decapitated and malondialdehyde, glutathione levels, and myeloperoxidase activity were determined in the liver and ileum, while oxidant-induced tissue fibrosis was determined by collagen contents. Tissues were also examined microscopically. Serum aspartate aminotransferase, alanine aminotransferase levels, and lactate dehydrogenase were measured for the evaluation of liver functions and tissue damage, respectively. Tumor necrosis factor-alpha was also assayed in serum samples. RESULTS In the saline-treated sepsis group, glutathione levels were decreased significantly, while the malondialdehyde levels, myeloperoxidase activity, and collagen content were increased in the tissues (P < 0.01 to P < 0.001), suggesting oxidative organ damage, which was also verified histologically. In the estradiol-treated sepsis group, all of these oxidant responses were reversed significantly (P < 0.05 to P < 0.01). Liver function tests and tumor necrosis factor-alpha levels, which were increased significantly (P < 0.001) following sepsis, were decreased (P < 0.05 to P < 0.001) with estradiol treatment. CONCLUSION The results demonstrate the role of oxidative mechanisms in sepsis-induced tissue damage, and estradiol, by its antioxidant properties, ameliorates oxidative organ injury, implicating that treatment with estrogens might be applicable in clinical situations to ameliorate multiple organ damage induced by sepsis.
Collapse
Affiliation(s)
- Göksel Sener
- Marmara University School of Pharmacy, Department of Pharmacology and School of Medicine, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
45
|
Tofovic SP, Salah EM, Dubey RK, Melhem MF, Jackson EK. Estradiol Metabolites Attenuate Renal and Cardiovascular Injury Induced by Chronic Nitric Oxide Synthase Inhibition. J Cardiovasc Pharmacol 2005; 46:25-35. [PMID: 15965351 DOI: 10.1097/01.fjc.0000162765.89437.ae] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our previous studies in rodent models of nephropathy demonstrate that 2-hydroxyestradiol (2HE), an estradiol metabolite with little estrogenic activity, exerts renoprotective effects. In vivo, 2HE is readily converted to 2-methoxyestradiol (2ME), a major estradiol metabolite with no estrogenic activity. The goal of this study was to determine whether 2ME has renal and cardiovascular protective effects in vivo. First, the acute (90 minutes) and chronic (14 days) effects of 2ME (10 microg/kg/h) on blood pressure and renal function were examined in normotensive and spontaneously hypertensive rats (SHR). Second, a rat model of cardiovascular and renal injury induced by chronic nitric oxide synthase inhibition (N-nitro-L-arginine; 40 mg/kg/d; LNNA group) was used to examine the protective effects of estradiol metabolites. Subsets of LNNA-treated rats were administered either 2HE or 2ME (10 microg/kg/h via osmotic minipump; LNNA+2ME and LNNA+2HE groups, respectively. 2-Methoxyestradiol had no acute or chronic effects on blood pressure or renal function in normotensive animals or on hypertension in SHR. Prolonged, 5-week NOS inhibition induced severe cardiovascular and renal disease and high mortality (75%, LNNA group). 2ME, but not 2HE, significantly decreased elevated blood pressure and attenuated the reduction in GFR. 2HE delayed the onset of proteinuria, whereas no proteinuria was detected in the 2-ME group. 2HE and 2ME reduced mortality rate by 66% and 83%, respectively (P < 0.001). In the kidney, 2HE and 2ME abolished LNNA-induced interstitial and glomerular inflammation, attenuated glomerular collagen IV synthesis, and inhibited glomerular and tubular cell proliferation. In the heart, 2HE and 2ME markedly reduced vascular and interstitial inflammation and reduced collagen synthesis and vascular/interstitial cell proliferation. This study provides the first evidence that, in a model of severe cardiovascular and renal injury, 2-methoxyestradiol (a major nonestrogenic estradiol metabolite) exerts renal and cardiovascular protective effects and reduces mortality.
Collapse
Affiliation(s)
- Stevan P Tofovic
- Center for Clinical Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
46
|
Grigoryants V, Hannawa KK, Pearce CG, Sinha I, Roelofs KJ, Ailawadi G, Deatrick KB, Woodrum DT, Cho BS, Henke PK, Stanley JC, Eagleton MJ, Upchurch GR. Tamoxifen up-regulates catalase production, inhibits vessel wall neutrophil infiltration, and attenuates development of experimental abdominal aortic aneurysms. J Vasc Surg 2005; 41:108-14. [PMID: 15696052 DOI: 10.1016/j.jvs.2004.09.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Selective estrogen receptor modulators (SERMs), similar to estrogens, possess vasoprotective effects by reducing release of reactive oxygen species. Little is known about the potential effects of SERMs on the pathogenesis of abdominal aortic aneurysms (AAAs). This study's objective was to investigate the growth of experimental AAAs in the setting of the SERM tamoxifen. METHODS In the first set of experiments, adult male rats underwent subcutaneous tamoxifen pellet (delivering 10 mg/kg/day) implantation (n = 14) or sham operation (n = 16). Seven days later, all animals underwent pancreatic elastase perfusion of the abdominal aorta. Aortic diameters were determined at that time, and aortas were harvested 7 and 14 days after elastase perfusion for immunohistochemistry, real-time polymerase chain reaction, Western blot analysis, and zymography. In the second set of experiments, a direct irreversible catalase inhibitor, 3-amino-1,2,4-triazole (AT), was administered intraperitoneally (1 mg/kg) daily to tamoxifen-treated (n = 6) and control rats (n = 6), starting on day 7 after elastase perfusion. Aortic diameters were measured on day 14. In a third set of experiments, rats were perfused with catalase (150 mg/kg) after the elastase (n = 5), followed by daily intravenous injections of catalase (150 mg/kg/day) administered for 10 days. A control group of rats (n = 7) received 0.9% NaCl instead of catalase. RESULTS Mean AAA diameters were approximately 50% smaller in tamoxifen-treated rats compared with sham rats 14 days after elastase perfusion (P = .002). The tamoxifen-treated group's aortas had a five-fold increase in catalase mRNA expression (P = .02) on day 7 and an eight-fold increase in catalase protein on day 14 (P = .04). Matrix metalloprotroteinase-9 activity was 2.4-fold higher (P = .01) on day 7 in the aortas of the controls compared to the tamoxifen-treated group's aortas. Tamoxifen-treated rats had approximately 40% fewer aortic polymorphonuclear neutrophils compared to controls on day 7 (P = .05). Administration of the direct catalase inhibitor AT to tamoxifen-treated rats partially reversed the aneurysm inhibitory effect of tamoxifen by nearly 30% (P = .02). In contrast, catalase administration inhibited AAA formation by 44% (P = .002). CONCLUSIONS The selective estrogen receptor modulator tamoxifen inhibits the development of AAAs in male rats in association with an up-regulation of catalase and inhibition of aortic wall neutrophil infiltration.
Collapse
Affiliation(s)
- Vladimir Grigoryants
- Jobst Vascular Research Laboratory, Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Moreira PI, Custódio JB, Oliveira CR, Santos MS. Hydroxytamoxifen protects against oxidative stress in brain mitochondria. Biochem Pharmacol 2004; 68:195-204. [PMID: 15183131 DOI: 10.1016/j.bcp.2004.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 03/19/2004] [Indexed: 11/18/2022]
Abstract
This study evaluated the effect of hydroxytamoxifen, the major active metabolite of tamoxifen (synthetic, nonsteroidal antiestrogen drug), on the function of brain mitochondria. We observed that only high concentrations of hydroxytamoxifen (60 nmol/mg protein) induced a significant decrease in RCR, while ADP/O ratio remained statistically unchanged. Similarly, only the highest concentration of hydroxytamoxifen (60 nmol/mg protein) affected the phosphorylative capacity of brain mitochondria, characterized by a decrease in the repolarization level and an increase in the repolarization lag phase. We observed that all the concentrations of hydroxytamoxifen tested (7.5, 15 and 30 nmol/mg protein) prevented lipid peroxidation induced by the oxidant pair ADP/Fe(2+). Furthermore, through the analyses of calcium fluxes and mitochondrial transmembrane potential parameters, we observed that hydroxytamoxifen (30 nmol/mg protein) exerted some protection against pore opening, although in a less extension than that promoted by cyclosporin A, the specific inhibitor of the mitochondrial permeability transition pore. However, in the presence of hydroxytamoxifen plus cyclosporin A, the protection observed was significantly higher when compared with that induced by both agents alone. These results support the idea that hydroxytamoxifen protects lipid peroxidation and inhibits the mitochondrial permeability transition pore in brain. Since numerous neurodegenerative diseases are intimately related with mitochondrial dysfunction resulting from lipid peroxidation and induction of mitochondrial permeability transition, among other factors, future therapeutical strategies could be designed taking in account this neuroprotective role of hydroxytamoxifen, which is pharmacologically much more potent and less toxic than its promoter tamoxifen.
Collapse
Affiliation(s)
- Paula I Moreira
- Centre for Neuroscience of Coimbra, University Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|
48
|
Nkondjock A, Ghadirian P. Dietary carotenoids and risk of colon cancer: case-control study. Int J Cancer 2004; 110:110-6. [PMID: 15054875 DOI: 10.1002/ijc.20066] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Some epidemiological studies suggest that consumption of fruits and vegetables with a high carotenoid content may protect against colon cancer (CC). The evidence, however, is not completely consistent. Given the inconsistencies in findings in previous studies and continued interest in identifying modifiable risk factors for CC, a case-control study of French-Canadian in Montreal, Canada, was undertaken to examine the possible association between dietary carotenoids and CC risk and to investigate whether this association varies in relation to lifestyle factors such as smoking or diet, and particularly the high consumption of long-chain polyunsaturated fatty acids (LCPUFA). A total of 402 colorectal cases (200 males and 202 females) and 688 population-based controls matched for age, gender and place of residence were interviewed. Dietary intake was assessed through a validated food frequency questionnaire that collected information on over 200 food items and recipes. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated in unconditional logistic regression models. After adjustment for important variables such as total energy intake, no association was found between dietary intake of carotenoids and CC risk. For women with high intakes of LCPUFA, an inverse association was found between lutein + zeaxanthin and CC risk. ORs were 0.41; 95%CI (0.19-0.91), p=0.03 for eicosapentaenoic acid, and OR=0.36, 95%CI (0.19-0.78), p=0.01 for docosahexaenoic acid, when the upper quartiles of intake were compared to the lower. Among never-smokers, a significantly reduced risk of CC was associated with intake of beta-carotene [OR=0.44, 95%CI (0.21-0.92) and p=0.02], whereas an inverse association was found between lycopene intake and CC risk [OR=0.63, 95%CI (0.40-0.98) and p=0.05] among smokers. The results of our study suggest that a diet rich in both lutein + zeaxanthin and LCPUFAs may help prevent CC in French-Canadian females.
Collapse
Affiliation(s)
- André Nkondjock
- Epidemiology Research Unit, Research Centre, CHUM-Hôtel-Dieu, Pavillon Masson, 3850 St. Urbain, Montreal, Quebec, Canada H2W 1T7
| | | |
Collapse
|
49
|
Dubey RK, Tofovic SP, Jackson EK. Cardiovascular pharmacology of estradiol metabolites. J Pharmacol Exp Ther 2004; 308:403-9. [PMID: 14657266 DOI: 10.1124/jpet.103.058057] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A discussion of the role of endogenous estradiol metabolites in mediating important biological actions of estradiol is essentially nonexistent in standard textbooks of pharmacology and endocrinology. Indeed, the prevailing view is that all biological effects of estradiol are initiated by binding of estradiol per se to estrogen receptors and that estradiol metabolites are more or less irrelevant. This orthodox view, which is most likely incorrect, is the fundamental premise (an estrogen is an estrogen is an estrogen) underlying the design of important clinical trials such as the Heart and Estrogen/Progestin Replacement Study and the Women's Health Initiative Study. Accumulating data provide convincing evidence that some metabolites of estradiol, the major estrogen secreted by human ovaries, are biologically active and mediate multiple effects on the cardiovascular and renal systems that are largely independent of estrogen receptors. More specifically, metabolites of estradiol, particularly catecholestradiols and methoxyestradiols, induce multiple estrogen receptor-independent actions that protect the heart, blood vessels, and kidneys from disease. These protective effects are mediated in part by the inhibition of the ability of vascular smooth muscle cells, cardiac fibroblasts, and glomerular mesangial cells to migrate, proliferate, and secrete extracellular matrix proteins, as well as by an improvement in vascular endothelial cell function. The purpose of this review is to highlight the cardiovascular and renal pharmacology of catecholestradiols and methoxyestradiols. The take home message is simple: that when it comes to cardiovascular and renal protection, the concept that all estrogenic compounds are created equal may not be true.
Collapse
Affiliation(s)
- Raghvendra K Dubey
- Department of Obstetrics and Gynaecology, Clinic for Endocrinology, University Hospital Zurich, Switzerland
| | | | | |
Collapse
|
50
|
Incerpi S, D'Arezzo S, Marino M, Musanti R, Pallottini V, Pascolini A, Trentalance A. Short-term activation by low 17beta-estradiol concentrations of the Na+/H+ exchanger in rat aortic smooth muscle cells: physiopathological implications. Endocrinology 2003; 144:4315-24. [PMID: 12959986 DOI: 10.1210/en.2003-0495] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Low physiological concentrations of 17beta-estradiol increased the intracellular pH of rat aortic smooth muscle cells by a rapid nongenomic mechanism. This effect was due to stimulation of the Na+/H+ exchanger activity, measured using the intracellular pH-sensitive fluorescent probe 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein. The 17beta-estradiol gave rise to a bell-shaped dose response, with a maximum at 10-12 m and no significant effect at 10-9 m. The specificity of the effect was verified by the use of the Na+/H+ exchanger inhibitor 5-(ethyl-N-isopropyl)amiloride and the lack of effect of the isomer 17alpha-estradiol. Inhibitors of the nuclear estrogen receptors, tamoxifen and ICI 182,780, completely prevented activation of the exchanger by 17beta-estradiol. The effect of low estrogen concentrations on the intracellular pH was mimicked by both norepinephrine and phenylephrine, suggesting a connection between the increase of intracellular pH and the muscle contraction process. The transduction mechanism for this nongenomic effect of estrogens did not involve modulation of the cAMP content, whereas inositol 1,4,5-trisphosphate, protein kinase C and MAPK pathways appear to play a role, as indicated by both pharmacological approaches and immunoblot experiments on protein kinase C translocation and ERK phosphorylation. These results for the first time provide evidence for a nongenomic effect of low physiological concentrations of 17beta-estradiol on intracellular pH that, together with other factors, may contribute to the development of hypertension and atherosclerosis in men and postmenopausal women and increase the risk of cardiovascular disease. Paradoxically, the lack of stimulation at high physiological estradiol levels could explain the protective effects found in premenopausal women.
Collapse
Affiliation(s)
- Sandra Incerpi
- Department of Biology, University of Rome 'Roma Tre,' Viale Marconi, 446, 00146 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|