1
|
Vladev G, Sirakov A, Matanov S, Sirakova K, Ninov K, Sirakov S. Subacute Stent Deformities as an Underlying Reason for Vessel Stenosis after Flow Diversion with the p64 Stent: Review and Discussion of Biologic Mechanisms and Consequences. AJNR Am J Neuroradiol 2025; 46:712-719. [PMID: 40113252 PMCID: PMC11979843 DOI: 10.3174/ajnr.a8564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/29/2024] [Indexed: 03/22/2025]
Abstract
BACKGROUND AND PURPOSE Flow-diverter stents are a potent and efficient tool in the instrumentarium of neurointerventional radiologists for the treatment of intracranial aneurysms. With their implementation, some adverse effects and complications such as hemorrhagic and ischemic ones, have been seen as a potential downfall of the method. In-stent stenosis is one such complication, which until now has not received enormous attention due to its seemingly benign characteristic. In our study we propose a different point of view on this matter and aim to establish a potential mechanism for its development: a subacute postprocedural stent deformation, due to segmental vessel constriction as a reaction to the implant. MATERIALS AND METHODS We enrolled 48 patients between the ages of 31 and 71 (8 men) with aneurysms on the distal portions of the ICA, all of whom were treated with the p64 flow-diverter stent, to assess the incidence of this phenomenon, as well as establish a correlation between it and subsequent clinical symptoms. A protocol for short-term follow-up, consisting only of a high-dose fluoroscopy image of the implant (conducted on the 14th postprocedural day) was implemented to assess the state of the implant before endothelization was to be expected. RESULTS Stent deformities were seen in 58% of cases. One patient with an observed stent deformity presented with several episodes of acute contralateral 1-sided weakness of the limbs. Seventy-one percent of those patients presented with a mild/moderate unilateral headache postprocedurally. A correlation between the deformity and a subsequent narrowing of the parent vessel diameter was established on follow-ups. Notable in-stent stenosis was reported in 35% of all cases. CONCLUSIONS Cases with subacute stent deformities are presented in a nonnegligible percent of flow-diversion therapies with the p64 stent. A statistically significant association between the observed deformation and subsequent in-stent stenosis was observed on follow-up.
Collapse
Affiliation(s)
- G Vladev
- From the Radiology Department (G.V., A.S., S.M., S.S.), UH St Ivan Rilski, Sofia, Bulgaria
- Radiology Department (K.S., G.V., A.S., S.S.), Medical University of Sofia, Bulgaria
| | - A Sirakov
- From the Radiology Department (G.V., A.S., S.M., S.S.), UH St Ivan Rilski, Sofia, Bulgaria
- Radiology Department (K.S., G.V., A.S., S.S.), Medical University of Sofia, Bulgaria
| | - S Matanov
- From the Radiology Department (G.V., A.S., S.M., S.S.), UH St Ivan Rilski, Sofia, Bulgaria
| | - K Sirakova
- Radiology Department (K.S., G.V., A.S., S.S.), Medical University of Sofia, Bulgaria
| | - K Ninov
- Neurosurgery Department (K.N.), UH St Ivan Rilski, Sofia, Bulgaria
| | - S Sirakov
- From the Radiology Department (G.V., A.S., S.M., S.S.), UH St Ivan Rilski, Sofia, Bulgaria
- Radiology Department (K.S., G.V., A.S., S.S.), Medical University of Sofia, Bulgaria
| |
Collapse
|
2
|
Suvorava T, Metry S, Pick S, Kojda G. Alterations in endothelial nitric oxide synthase activity and their relevance to blood pressure. Biochem Pharmacol 2022; 205:115256. [DOI: 10.1016/j.bcp.2022.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
|
3
|
Garg N, Raghuvanshi AS, Kapoor A, Tewari S, Khanna R, Kumar S, Sahu A, Goel PK. Vascular dysfunction and its recovery after transradial coronary angioplasty- A serial observational study. Indian Heart J 2021; 73:697-703. [PMID: 34715123 PMCID: PMC8642652 DOI: 10.1016/j.ihj.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To serially evaluate the effect of trans-radial coronary angioplasty (TRA) on the vascular function of radial artery (RA) and upstream brachial artery (BA) and to find out the relative contribution of endothelial dependent flow-mediated vasodilatation (FMD) and endothelial independent nitrate mediated dilatation (NMD). METHODS Forty patients of chronic stable angina with successful TRA were studied. FMD and NMD of bilateral RA and BA were measured with high-resolution ultrasound, before and at 24 h and at 3 months, after catheterization. RESULTS FMD as well as NMD were significantly decreased in right RA (16.3 ± 3.6% to 5.7 ± 1.8%; p = 0.001, and 24.1 ± 5.3% to 9.7 ± 2.8%; p = 0.001, respectively) as well as in upstream BA (17.0 ± 1.6% to 9.4 ± 0.5%; p = 0.001,and 26.5 ± 6.8% to 20.5 ± 3.7%; p = 0.001, respectively) at 24 h. FMD/NMD ratio was also decreased in RA (70 ± 10% to 60 ± 10%; p = 0.04) and as well as in BA (70 ± 20% to 50 ± 10%; p = 0.03). The endothelial dysfunctions returned to normal at 3 months. Control arm did not show any change in vascular function at any point of time. Radial artery diameter/sheath ratio <1 and catheter exchanges >2 were the independent predictors for >50% decrease in FMD. CONCLUSIONS TRA results in reversible depression in FMD as well as NMD in the radial artery as well as upstream brachial artery. These vascular dysfunctions are limited to the catheterized arm only and return to normal after 3 months.
Collapse
Affiliation(s)
- Naveen Garg
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
| | - Arvind Singh Raghuvanshi
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Aditya Kapoor
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Satyendra Tewari
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Roopali Khanna
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sudeep Kumar
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Ankit Sahu
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Pravin Kumar Goel
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
4
|
Jukic I, Mihaljevic Z, Matic A, Mihalj M, Kozina N, Selthofer-Relatic K, Mihaljevic D, Koller A, Tartaro Bujak I, Drenjancevic I. Angiotensin II type 1 receptor is involved in flow-induced vasomotor responses of isolated middle cerebral arteries: role of oxidative stress. Am J Physiol Heart Circ Physiol 2021; 320:H1609-H1624. [PMID: 33666506 DOI: 10.1152/ajpheart.00620.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/10/2021] [Indexed: 11/22/2022]
Abstract
This study aimed to determine the mechanosensing role of angiotensin II type 1 receptor (AT1R) in flow-induced dilation (FID) and oxidative stress production in middle cerebral arteries (MCA) of Sprague-Dawley rats. Eleven-week old, healthy male Sprague-Dawley rats on a standard diet were given the AT1R blocker losartan (1 mg/mL) in drinking water (losartan group) or tap water (control group) ad libitum for 7 days. Blockade of AT1R attenuated FID and acetylcholine-induced dilation was compared with control group. Nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester (l-NAME) and cyclooxygenase inhibitor indomethacin (Indo) significantly reduced FID in control group. The attenuated FID in losartan group was further reduced by Indo only at Δ100 mmHg, whereas l-NAME had no effect. In losartan group, Tempol (a superoxide scavenger) restored dilatation, whereas Tempol + l-NAME together significantly reduced FID compared with restored dilatation with Tempol alone. Direct fluorescence measurements of NO and reactive oxygen species (ROS) production in MCA, in no-flow conditions revealed significantly reduced vascular NO levels with AT1R blockade compared with control group, whereas in flow condition increased the NO and ROS production in losartan group and had no effect in the control group. In losartan group, Tempol decreased ROS production in both no-flow and flow conditions. AT1R blockade elicited increased serum concentrations of ANG II, 8-iso-PGF2α, and TBARS, and decreased antioxidant enzyme activity (SOD and CAT). These results suggest that in small isolated cerebral arteries: 1) AT1 receptor maintains dilations in physiological conditions; 2) AT1R blockade leads to increased vascular and systemic oxidative stress, which underlies impaired FID.NEW & NOTEWORTHY The AT1R blockade impaired the endothelium-dependent, both flow- and acetylcholine-induced dilations of MCA by decreasing vascular NO production and increasing the level of vascular and systemic oxidative stress, whereas it mildly influenced the vascular wall inflammatory phenotype, but had no effect on the systemic inflammatory response. Our data provide functional and molecular evidence for an important role of AT1 receptor activation in physiological conditions, suggesting that AT1 receptors have multiple biological functions.
Collapse
Affiliation(s)
- Ivana Jukic
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljevic
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Matic
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Dermatology and Venereology, University Hospital Centre Osijek, Osijek, Croatia
| | - Natasa Kozina
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatic
- Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, Osijek, Croatia
- Department of Internal Medicine, Faculty of Medicine, University of Josip Juraj Strossmayer Osijek, Osijek, Croatia
| | - Dubravka Mihaljevic
- Department of Internal Medicine, Faculty of Medicine, University of Josip Juraj Strossmayer Osijek, Osijek, Croatia
- Department of Nephrology, University Hospital Centre Osijek, Osijek, Croatia
| | - Akos Koller
- Department of Neurosurgery and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary
- Sport-Physiology Research Centre, University of Physical Education, Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Ivana Tartaro Bujak
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruder Boskovic Institute, Zagreb, Croatia
| | - Ines Drenjancevic
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care, University of Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
5
|
Faulkner JL, Lluch E, Kennard S, Antonova G, Jaffe IZ, Belin de Chantemèle EJ. Selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium-restricted female mice. Biol Sex Differ 2020; 11:64. [PMID: 33228767 PMCID: PMC7685592 DOI: 10.1186/s13293-020-00340-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Recent evidence by our laboratory demonstrates that women and female mice endogenously express higher endothelial mineralocorticoid receptor (ECMR) than males. Mounting clinical evidence also indicates that aldosterone production is higher in pathological conditions in females compared to males. However, the role for increased activation of ECMR by aldosterone in the absence of a comorbid condition is yet to be explored. The current study hypothesized that increased ECMR activation induced by elevated aldosterone production predisposes healthy female mice to endothelial dysfunction. Method Vascular reactivity was assessed in aortic rings from wild-type (WT) and ECMR KO (KO) mice fed either a normal salt (NSD, 0.4% NaCl) or sodium-restricted diet (SRD, 0.05% NaCl) for 28 days. Results SRD elevated plasma aldosterone levels as well as adrenal CYP11B2 and angiotensin II type 1 receptor (AT1R) expressions in female, but not male, WT mice. In baseline conditions (NSD), endothelial function, assessed by vascular relaxation to acetylcholine, was higher while vascular contractility to phenylephrine, serotonin, and KCl lower in female than male WT mice. SRD impaired endothelial function and increased vascular contractility in female, but not male, WT mice effectively ablating the baseline sex differences. NOS inhibition with LNAME ablated endothelial relaxation to a higher extent in male than female mice on NSD and ablated differences in acetylcholine relaxation responses between NSD- and SRD-fed females, indicating a role for NO in SRD-mediated endothelial function. In association, SRD significantly reduced vascular NOX4 expression in female, but not male, mice. Lastly, selective deletion of ECMR protected female mice from SRD-mediated endothelial dysfunction and increased vascular contractility. Conclusion Collectively, these data indicate that female mice develop aldosterone-induced endothelial dysfunction via endothelial MR-mediated reductions in NO bioavailability. In addition, these data support a role for ECMR to promote vascular contractility in female mice in response to sodium restriction.
Collapse
Affiliation(s)
- Jessica L Faulkner
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA.
| | - Emily Lluch
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Simone Kennard
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Galina Antonova
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA.,Department of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
6
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Huang A, Sun D. Sexually Dimorphic Regulation of EET Synthesis and Metabolism: Roles of Estrogen. Front Pharmacol 2018; 9:1222. [PMID: 30420806 PMCID: PMC6215857 DOI: 10.3389/fphar.2018.01222] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/08/2018] [Indexed: 01/03/2023] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid via cytochrome P450 (CYP)/epoxygenase and are hydrolyzed by soluble epoxide hydrolase (sEH). Circulating and tissue levels of EETs are controlled by CYP (EET synthesis) and sEH (EET degradation). Therefore, both increases in CYP activity and decreases in sEH expression potentiate EET bioavailability, responses that prevail in the female sex as a function of estrogen. This mini review, based on subtitles listed, briefly summarizes studies focusing specifically on (1) female-specific potentiation of CYP/epoxygenase activity to compensate for the endothelial dysfunction; and (2) estrogen-dependent downregulation of sEH expression, which yields divergent actions in both systemic and pulmonary circulation, respectively. Estrogen-Potentiating EET Synthesis in Response to Endothelial Dysfunction: This section summarizes the current understanding regarding the roles of estrogen in facilitating EET synthesis in response to endothelial dysfunction. In this regard, estrogen recruitment of EET-driven signaling serves as a back-up mechanism, which compensates for NO deficiency to preserve endothelium-dependent vasodilator responses and maintain normal blood pressure. Estrogen-Dependent Downregulation of Ephx2/sEH Expression: This section focuses on molecular mechanisms responsible for the female-specific downregulation of sEH expression. Roles of EETs in Systemic Circulation, as a Function of Estrogen-Dependent Downregulation of sEH: This section summarizes studies conducted on animals that are either deficient in the Ephx2 gene (sEH-KO) or have been treated with sEH inhibitors (sEHIs), and exhibit EET-mediated cardiovascular protections in the cerebral, coronary, skeletal, and splanchnic circulations. In particular, the estrogen-inherent silencing of the Ephx2 gene duplicates the action of sEH deficiency, yielding comparable adaptations in attenuated myogenic vasoconstriction, enhanced shear stress-induced vasodilation, and improved cardiac contractility among female WT mice, male sEH-KO and sEHI-treated mice. Roles of Estrogen-Driven EET Production in Pulmonary Circulation: This section reviews epidemiological and clinical studies that provide the correlation between the polymorphism, or mutation of gene(s) involving estrogen metabolism and female predisposition to pulmonary hypertension, and specifically addresses an intrinsic causation between the estrogen-dependent downregulation of Ephx2 gene/sEH expression and female-susceptibility of being pulmonary hypertensive, a topic that has never been explored before. Additionally, the issue of the “estrogen paradox” in the incidence and prognosis of pulmonary hypertension is discussed.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
8
|
Olchanheski LR, Sordi R, Oliveira JG, Alves GF, Mendes RT, Santos FA, Fernandes D. The role of potassium channels in the endothelial dysfunction induced by periodontitis. J Appl Oral Sci 2018; 26:e20180048. [PMID: 30304126 PMCID: PMC6172022 DOI: 10.1590/1678-7757-2018-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/18/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Periodontitis is associated with endothelial dysfunction, which is clinically characterized by a reduction in endothelium-dependent relaxation. However, we have previously shown that impairment in endothelium-dependent relaxation is transient. Therefore, we evaluated which mediators are involved in endothelium-dependent relaxation recovery. MATERIAL AND METHODS Rats were subjected to ligature-induced experimental periodontitis. Twenty-one days after the procedure, the animals were prepared for blood pressure recording, and the responses to acetylcholine or sodium nitroprusside were obtained before and 30 minutes after injection of a nitric oxide synthase inhibitor (L-NAME), cyclooxygenase inhibitor (Indomethacin, SC-550 and NS- 398), or calcium-dependent potassium channel blockers (apamin plus TRAM- 34). The maxilla and mandible were removed for bone loss analysis. Blood and gingivae were obtained for C-reactive protein (CRP) and myeloperoxidase (MPO) measurement, respectively. RESULTS Experimental periodontitis induces bone loss and an increase in the gingival MPO and plasmatic CRP. Periodontitis also reduced endothelium-dependent vasodilation, a hallmark of endothelial dysfunction, 14 days after the procedure. However, the response was restored at day 21. We found that endothelium-dependent vasodilation at day 21 in ligature animals was mediated, at least in part, by the activation of endothelial calcium-activated potassium channels. CONCLUSIONS Periodontitis induces impairment in endothelial-dependent relaxation; this impairment recovers, even in the presence of periodontitis. The recovery is mediated by the activation of endothelial calcium-activated potassium channels in ligature animals. Although important for maintenance of vascular homeostasis, this effect could mask the lack of NO, which has other beneficial properties.
Collapse
Affiliation(s)
- Luiz Renato Olchanheski
- Universidade Estadual de Ponta Grossa, Departamento de Ciências Farmacêuticas, Ponta Grossa, Paraná, Brasil
| | - Regina Sordi
- Universidade Estadual de Ponta Grossa, Departamento de Ciências Farmacêuticas, Ponta Grossa, Paraná, Brasil.,Universidade Estadual de Ponta Grossa, Departamento de Biologia Molecular e Genética, Ponta Grossa, Paraná, Brasil
| | - Junior Garcia Oliveira
- Universidade Estadual de Ponta Grossa, Departamento de Ciências Farmacêuticas, Ponta Grossa, Paraná, Brasil
| | - Gustavo Ferreira Alves
- Universidade Federal de Santa Catarina, Departamento de Farmacologia, Florianópolis, Santa Catarina, Brasil
| | - Reila Taina Mendes
- Universidade Estadual de Ponta Grossa, Departamento de Odontologia, Ponta Grossa, Paraná, Brasil
| | - Fábio André Santos
- Universidade Estadual de Ponta Grossa, Departamento de Odontologia, Ponta Grossa, Paraná, Brasil
| | - Daniel Fernandes
- Universidade Federal de Santa Catarina, Departamento de Farmacologia, Florianópolis, Santa Catarina, Brasil
| |
Collapse
|
9
|
Matic A, Jukic I, Stupin A, Baric L, Mihaljevic Z, Unfirer S, Tartaro Bujak I, Mihaljevic B, Lombard JH, Drenjancevic I. High salt intake shifts the mechanisms of flow-induced dilation in the middle cerebral arteries of Sprague-Dawley rats. Am J Physiol Heart Circ Physiol 2018; 315:H718-H730. [DOI: 10.1152/ajpheart.00097.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of the present study was to examine the effect of 1 wk of high salt (HS) intake and the role of oxidative stress in changing the mechanisms of flow-induced dilation (FID) in isolated pressurized middle cerebral arteries of male Sprague-Dawley rats ( n = 15–16 rats/group). Reduced FID in the HS group was restored by intake of the superoxide scavenger tempol (HS + tempol in vivo group). The nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester, cyclooxygenase inhibitor indomethacin, and selective inhibitor of microsomal cytochrome P-450 epoxidase activity N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide significantly reduced FID in the low salt diet-fed group, whereas FID in the HS group was mediated by NO only. Cyclooxygenase-2 mRNA (but not protein) expression was decreased in the HS and HS + tempol in vivo groups. Hypoxia-inducible factor-1α and VEGF protein levels were increased in the HS group but decreased in the HS + tempol in vivo group. Assessment by direct fluorescence of middle cerebral arteries under flow revealed significantly reduced vascular NO levels and increased superoxide/reactive oxygen species levels in the HS group. These results suggest that HS intake impairs FID and changes FID mechanisms to entirely NO dependent, in contrast to the low-salt diet-fed group, where FID is NO, prostanoid, and epoxyeicosatrienoic acid dependent. These changes were accompanied by increased lipid peroxidation products in the plasma of HS diet-fed rats, increased vascular superoxide/reactive oxygen species levels, and decreased NO levels, together with increased expression of hypoxia-inducible factor-1α and VEGF. NEW & NOTEWORTHY High-salt (HS) diet changes the mechanisms of flow-induced dilation in rat middle cerebral arteries from a combination of nitric oxide-, prostanoid-, and epoxyeicosatrienoic acid-dependent mechanisms to, albeit reduced, a solely nitric oxide-dependent dilation. In vivo reactive oxygen species scavenging restores flow-induced dilation in HS diet-fed rats and ameliorates HS-induced increases in the transcription factor hypoxia-inducible factor-1α and expression of its downstream target genes.
Collapse
Affiliation(s)
- Anita Matic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Lidija Baric
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Zrinka Mihaljevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Sanela Unfirer
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Tartaro Bujak
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Branka Mihaljevic
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Julian H. Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| |
Collapse
|
10
|
Silva H, Ferreira HA, da Silva HP, Monteiro Rodrigues L. The Venoarteriolar Reflex Significantly Reduces Contralateral Perfusion as Part of the Lower Limb Circulatory Homeostasis in vivo. Front Physiol 2018; 9:1123. [PMID: 30174614 PMCID: PMC6107688 DOI: 10.3389/fphys.2018.01123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
Perfusion at microvascular level involves the contribution of both local and central regulators, under a complex vascular signaling frame. The venoarteriolar reflex (VAR) is one of such regulatory responses, of particular relevance in the lower limb to prevent edema. Although known for quite some time, many of the complex interactions involving all of these regulatory mechanisms still need clarification. Our objective was to look deeper into VAR through modern photoplethymography (PPG). Twelve healthy subjects (both sexes, 26.0 ± 5.0 y.o.) were enrolled in this study after informed written consent. Subjects were submitted to a leg lowering maneuver while lying supine to evoke the VAR, involving three phases-10 min baseline register, both legs extended, 10 min challenge, with one randomly chosen leg (test) pending 50 cm below heart level, while the contralateral (control) remained in place, and 10 minutes recovery, resuming the initial position. PPG signals were collected from both feet and treated by the wavelet transform (WT) revealing six spectral bands in frequency intervals comprising the cardiac [1.6-0.7 Hz], respiratory [0.4-0.26 Hz], myogenic [0.26-0.1 Hz], neurogenic/sympathetic [0.1-0.045 Hz], endothelial NO-dependent (NOd) [0.045-0.015 Hz], and NO-independent (NOi) [0.015-0.007 Hz] activities. For the first time, this approach revealed that, with VAR, perfusion significantly decreased in both limbs, although the change was more pronounced in the test foot. Here, a significant decrease in myogenic, neurogenic and NOd, were noted, while the control foot recorded a decrease in neurogenic and an increase in NOd. These results confirm the utility of WT spectral analysis for flowmotion. Further, it strongly suggests that VAR results from a complex cooperation between local myogenic-endothelial responses, where a central neurogenic reflex might also be involved.
Collapse
Affiliation(s)
- Henrique Silva
- Research Center for Biosciences and Health Technologies, Universidade Lusófona's CBiOS, Lisbon, Portugal
- Pharmacological Sciences Department, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Hugo A. Ferreira
- Faculty of Sciences, Institute of Biophysics and Biomedical Engineering, Universidade de Lisboa, Lisbon, Portugal
| | - Hugo P. da Silva
- IT - Instituto de Telecomunicações, Lisbon, Portugal
- School of Technology, Polytechnic Institute of Setúbal, Setúbal, Portugal
| | - L. Monteiro Rodrigues
- Research Center for Biosciences and Health Technologies, Universidade Lusófona's CBiOS, Lisbon, Portugal
- Pharmacological Sciences Department, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Zinkevich NS, Fancher IS, Gutterman DD, Phillips SA. Roles of NADPH oxidase and mitochondria in flow-induced vasodilation of human adipose arterioles: ROS-induced ROS release in coronary artery disease. Microcirculation 2018; 24. [PMID: 28480622 DOI: 10.1111/micc.12380] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/30/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES H2 O2 contributes to FID of human arterioles. This study is designed to examine the roles of mitochondria and NADPH oxidase in modulating the release of ROS and in mediating FID. We tested whether NADPH oxidase contributes to mitochondrial ROS generation in arterioles during CAD. METHODS Visceral adipose arterioles obtained from patients with or without CAD were cannulated and pressurized for videomicroscopic measurement of arteriolar diameters. Dilator responses and ROS production during flow were determined in the presence and absence of the NADPH oxidase inhibitor gp91ds-tat and the mitochondrial electron transport inhibitor rotenone. RESULTS Both dilation and H2 O2 generation during flow were reduced in the presence of rotenone (13.5±8% vs 97±% without rotenone) or gp91ds-tat in patients with CAD, while patients without CAD exhibited H2 O2 -independent dilations. Mitochondrial superoxide production during flow was attenuated by gp91ds-tat in arterioles from CAD patients. CONCLUSIONS These findings indicate that ROS produced by NADPH oxidase are an upstream component of the mitochondria-dependent pathway contributing to flow-dependent H2 O2 generation and dilation in peripheral microvessels from patients with CAD. We conclude that in CAD, both mitochondria and NADPH oxidase contribute to FID through a redox mechanism in visceral arterioles.
Collapse
Affiliation(s)
- Natalya S Zinkevich
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Health and Medicine, Carroll University, Waukesha, WI, USA
| | - Ibra S Fancher
- Department of Physical Therapy, Department of Medicine (Division of Pulmonary, Critical Care, Sleep and Allergy), University of Illinois at Chicago, Chicago, IL, USA
| | - David D Gutterman
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shane A Phillips
- Department of Physical Therapy, Department of Medicine (Division of Endocrinology, Diabetes and Metabolism), Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Selective impairment of blood pressure reduction by endothelial nitric oxide synthase dimer destabilization in mice. J Hypertens 2017; 35:76-88. [PMID: 27861245 DOI: 10.1097/hjh.0000000000001127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Endothelial dysfunction and oxidative stress are associated with hypertension but whether endothelial superoxide may play a role in the early development of essential hypertension remains uncertain. We investigated whether endothelial nitric oxide synthase (eNOS)-derived endothelial oxidative stress is involved in the regulation of SBP. METHODS Wild-type eNOS [mice with endothelium-specific overexpression of bovine endothelial NO-synthase (eNOS-Tg)] or a novel dimer-destabilized eNOS-mutant harboring a partially disrupted zinc-finger [mice with endothelium-specific overexpression of destabilized bovine eNOS destabilized by replacement of Cys 101 to Ala (C101A-eNOS-Tg)] was introduced in C57BL/6 in an endothelial-specific manner. Mice were monitored for aortic endothelium-dependent relaxation, SBP, levels of superoxide and several posttranslational modifications indicating activity and/or increased vascular oxidative stress. Some groups of mice underwent voluntary exercise training for 4 weeks or treatment with the superoxide dismutase mimetic Tempol. RESULTS C101A-eNOS-Tg showed significantly increased superoxide generation, protein-tyrosine-nitration and eNOS-tyrosine-nitration, eNOS-S-glutathionylation, eNOS phosphorylation and AMP kinase-α phosphorylation at Thr172 in aorta, skeletal muscle, left ventricular myocardium and lung as compared with eNOS-Tg and wild-type controls. Exercise training increased phosphorylation of eNOS at Ser and AMP kinase-α in wild-type. These physiologic adaptations were absent in C101A-eNOS-Tg. Maximal aortic endothelium-dependent relaxation was similar in all strains. C101A-eNOS-Tg displayed normal SBP despite higher levels of eNOS, whereas eNOS-Tg showed significant hypotension. Tempol completely reversed the occurring protein modifications and significantly reduced SBP in C101A-eNOS-Tg but not in wild-type. CONCLUSION Oxidative stress generated by endothelial-specific expression of genetically destabilized C101A-eNOS selectively prevents SBP-reducing activity of vascular eNOS, while having no effect on aortic endothelium-dependent relaxation. These data suggest that oxidative stress in microvascular endothelium may play a role for the development of essential hypertension.
Collapse
|
13
|
d'Uscio LV, He T, Katusic ZS. Expression and Processing of Amyloid Precursor Protein in Vascular Endothelium. Physiology (Bethesda) 2017; 32:20-32. [PMID: 27927802 DOI: 10.1152/physiol.00021.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid precursor protein (APP) is evolutionary conserved protein expressed in endothelial cells of cerebral and peripheral arteries. In this review, we discuss mechanisms responsible for expression and proteolytic cleavage of APP in endothelial cells. We focus on physiological and pathological implications of APP expression in vascular endothelium.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tongrong He
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
14
|
Manicam C, Ginter N, Li H, Xia N, Goloborodko E, Zadeh JK, Musayeva A, Pfeiffer N, Gericke A. Compensatory Vasodilator Mechanisms in the Ophthalmic Artery of Endothelial Nitric Oxide Synthase Gene Knockout Mice. Sci Rep 2017; 7:7111. [PMID: 28769073 PMCID: PMC5541003 DOI: 10.1038/s41598-017-07768-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/29/2017] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) plays an important role in the maintenance of ocular vascular homeostasis. Therefore, perturbations in vascular NO synthesis have been implicated in the pathogenesis of several ocular diseases. We recently reported that eNOS contributes significantly to vasodilation of the mouse ophthalmic artery. Interestingly, dilatory responses were also retained in eNOS gene-deficient mice (eNOS-/-), indicating inherent endothelial adaptive mechanism(s) that act as back-up systems in chronic absence of eNOS to preserve vasorelaxation. Thus, this study endeavoured to identify the compensatory mechanism(s) in the ophthalmic artery of eNOS-/- mice employing isolated arterial segments and pharmacological inhibitors in vitro. Endothelium removal virtually abolished acetylcholine (ACh)-induced vasodilation, suggesting an obligatory involvement of the endothelium in cholinergic control of vascular tone. However, non-NOS and non-cyclooxygenase components compensate for eNOS deficiency via endothelium-derived hyperpolarizing factors (EDHFs). Notably, arachidonic acid-derived metabolites of the 12-lipoxygenase pathway were key mediators in activating the inwardly rectifying potassium channels to compensate for chronic lack of eNOS. Conclusively, endothelium-dependent cholinergic responses of the ophthalmic artery in the eNOS-/- mice are largely preserved and, this vascular bed has the ability to compensate for the loss of normal vasodilator responses solely via EDHFs.
Collapse
Affiliation(s)
- Caroline Manicam
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Natalja Ginter
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Huige Li
- Institute of Pharmacology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ning Xia
- Institute of Pharmacology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Evgeny Goloborodko
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Aytan Musayeva
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
15
|
Effects of chronic nitric oxide synthase inhibition on V'O 2max and exercise capacity in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2016; 390:235-244. [PMID: 27915453 DOI: 10.1007/s00210-016-1318-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
Acute inhibition of NOS by L-NAME (Nω-nitro-L-arginine methyl ester) is known to decrease maximal oxygen consumption (V'O2max) and impair maximal exercise capacity, whereas the effects of chronic L-NAME treatment on V'O2max and exercise performance have not been studied so far. In this study, we analysed the effect of L-NAME treatment, (LN2 and LN12, respectively) on V'O2max and exercise capacity (in maximal incremental running and prolonged sub-maximal incremental running tests), systemic NO bioavailability (plasma nitrite (NO2-) and nitrate (NO3-)) and prostacyclin (PGI2) production in C57BL6/J mice. Mice treated with L-NAME for 2 weeks (LN2) displayed higher V'O2max and better running capacity than age-matched control mice. In LN2 mice, NO bioavailability was preserved, as evidenced by maintained NO2- plasma concentration. PGI2 production was activated (increased 6-keto-PGF1α plasma concentration) and the number of circulating erythrocytes (RBC) and haemoglobin concentration were increased. In mice treated with L-NAME for 12 weeks (LN12), NO bioavailability was decreased (lower NO2- plasma concentration), and 6-keto-PGF1α plasma concentration and RBC number were not elevated compared to age-matched control mice. However, LN12 mice still performed better during the maximal incremental running test despite having lower V'O2max. Interestingly, the LN12 mice showed poorer running capacity during the prolonged sub-maximal incremental running test. To conclude, short-term (2 weeks) but not long-term (12 weeks) treatment with L-NAME activated robust compensatory mechanisms involving preservation of NO2- plasma concentration, overproduction of PGI2 and increased number of RBCs, which might explain the fully preserved exercise capacity despite the inhibition of NOS.
Collapse
|
16
|
Emeksiz HC, Bideci A, Damar Ç, Derinkuyu B, Çelik N, Döğer E, Yüce Ö, Özmen MC, Çamurdan MO, Cinaz P. Soluble Endoglin Level Increase Occurs Prior to Development of Subclinical Structural Vascular Alterations in Diabetic Adolescents. J Clin Res Pediatr Endocrinol 2016; 8:313-20. [PMID: 27097763 PMCID: PMC5096495 DOI: 10.4274/jcrpe.2906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Soluble endoglin (S-endoglin) has been implicated as a potential marker of endothelial dysfunction (ED) and was reported to be elevated in diabetic adults, correlating with the severity of diabetic vasculopathy. However, circulating S-endoglin and its association with other markers of ED have not been formerly analyzed in the first decade of diabetes onset in adolescents with type 1 diabetes mellitus (T1DM). METHODS Fifty-eight adolescents with moderately/poorly controlled T1DM were included in this study and twenty-nine healthy adolescents served as controls. The diabetic group was divided into two groups based on the presence of microalbuminuria, as the microalbuminuria group (n=15) and the normoalbuminuria group (n=43). Functional vascular alterations were evaluated by measuring serum S-endoglin and plasma nitric oxide (NO) concentrations, the flow-mediated dilatation (FMD) of the brachial artery. Carotid intima media thickness (CIMT) was measured for evaluation of structural vascular alterations. RESULTS The S-endoglin and NO levels of both microalbuminuria and normoalbuminuria groups were higher than those of the control group (for S-endoglin, p=0.047 and p<0.001; for NO, p=0.004 and p=0.006, respectively). The FMD percent was lower in the microalbuminuria group compared to the normoalbuminuria and control groups (p=0.036 and p=0.020, respectively). There were negative correlations between S-endoglin concentration and FMD percent (r=-0.213, p=0.051) and between serum S-endoglin concentration and albumin excretion rate (r=-0.361, p=0.005). No significant differences were found in CIMT among any of the groups (p=0.443). CONCLUSION In adolescents with T1DM, S-endoglin concentrations might increase in parallel to the deterioration in endothelial function before subclinical structural vascular alterations become evident.
Collapse
Affiliation(s)
- Hamdi Cihan Emeksiz
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey, Phone: +90 462 341 56 56/11572 E-mail:
| | - Aysun Bideci
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Çağrı Damar
- Gazi University Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | - Betül Derinkuyu
- Gazi University Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | - Nurullah Çelik
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Esra Döğer
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Özge Yüce
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Mehmet Cüneyt Özmen
- Gazi University Faculty of Medicine, Department of Ophthalmology, Ankara, Turkey
| | - Mahmut Orhun Çamurdan
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Peyami Cinaz
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| |
Collapse
|
17
|
Nitric oxide up-regulates endothelial expression of angiotensin II type 2 receptors. Biochem Pharmacol 2016; 112:24-36. [PMID: 27235748 DOI: 10.1016/j.bcp.2016.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/24/2016] [Indexed: 11/21/2022]
Abstract
Increasing vascular NO levels following up-regulation of endothelial nitric oxide synthase (eNOS) is considered beneficial in cardiovascular disease. Whether such beneficial effects exerted by increased NO-levels include the vascular renin-angiotensin system remains elucidated. Exposure of endothelial cells originated from porcine aorta, mouse brain and human umbilical veins to different NO-donors showed that expression of the angiotensin-II-type-2-receptor (AT2) mRNA and protein is up-regulated by activation of soluble guanylyl cyclase, protein kinase G and p38 mitogen-activated protein kinase without changing AT2 mRNA stability. In mice, endothelial-specific overexpression of eNOS stimulated, while chronic treatment with the NOS-blocker l-nitroarginine inhibited AT2 expression. The NO-induced AT2 up-regulation was associated with a profound inhibition of angiotensin-converting enzyme (ACE)-activity. In endothelial cells this reduction of ACE-activity was reversed by either the AT2 antagonist PD 123119 or by inhibition of transcription with actinomycin D. Furthermore, in C57Bl/6 mice an acute i.v. bolus of l-nitroarginine did not change AT2-expression and ACE-activity suggesting that inhibition of ACE-activity by endogenous NO is crucially dependent on AT2 protein level. Likewise, three weeks of either voluntary or forced exercise training increased AT2 expression and reduced ACE-activity in C57Bl/6 but not in mice lacking eNOS suggesting significance of this signaling interaction for vascular physiology. Finally, aortic AT2 expression is about 5 times greater in female as compared to male C57Bl/6 and at the same time aortic ACE activity is reduced in females by more than 50%. Together these findings imply that endothelial NO regulates AT2 expression and that AT2 may regulate ACE-activity.
Collapse
|
18
|
Knapp AE, Goldberg D, Delavar H, Trisko BM, Tang K, Hogan MC, Wagner PD, Breen EC. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice. Am J Physiol Regul Integr Comp Physiol 2016; 311:R192-9. [PMID: 27225953 DOI: 10.1152/ajpregu.00533.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/17/2016] [Indexed: 11/22/2022]
Abstract
A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P < 0.05) and endurance capacity (-47%; P < 0.05), which did not persist after 8 wk. In skmVEGF-/- mice, gastrocnemius complex time to fatigue measured in situ was 71% lower than control mice. Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity.
Collapse
Affiliation(s)
- Amy E Knapp
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Daniel Goldberg
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Hamid Delavar
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Breanna M Trisko
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Kechun Tang
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Michael C Hogan
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Peter D Wagner
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
19
|
Abstract
BACKGROUND Digital tonometry is designed to non-invasively screen for endothelial dysfunction by the detection of impaired flow-induced reactive hyperaemia in the fingertip. We determined whether digital reactive hyperaemia correlated with risk factors for atherosclerosis in two groups of children at increased risk for endothelial dysfunction. METHODS A total of 15 obese children and 23 non-obese, dyslipidaemic children, 8-21 years of age, were enrolled, and their medical histories, anthropometric measurements, carotid wall thickness by means of ultrasonography, and fasting blood samples for cardiovascular risk factors were obtained. The standard endoPAT index of digital reactive hyperaemia was modified to reflect the true peak response or the integrated response of the entire post-occlusion period. In each group, age, sex, pubertal status, carotid wall thickness, and multiple cardiovascular risk factors were tested as predictors of endothelial dysfunction. RESULTS In the non-obese, dyslipidaemic group, but not in the obese group, both indices strongly correlated with height (r=0.55, p=0.007, by peak response) followed by weight, waist circumference, and age. In both groups, neither index of reactive hyperaemia significantly correlated with any other cardiovascular risk factor. CONCLUSIONS Contrary to the known age-related increase in atherosclerosis, digital reactive hyperaemia increased with age and its correlates in non-obese, dyslipidaemic children and was not related to other cardiovascular risk factors in either group. The reason for the lack of this relationship with age in obese children is unknown. The age-dependent physiology of digital microvascular reactivity and the endothelium-independent factors controlling the peak hyperaemic response need further study in children with a wide age range.
Collapse
|
20
|
Quek KJ, Boyd R, Ameer OZ, Zangerl B, Butlin M, Murphy TV, Avolio AP, Phillips JK. Progressive vascular remodelling, endothelial dysfunction and stiffness in mesenteric resistance arteries in a rodent model of chronic kidney disease. Vascul Pharmacol 2016; 81:42-52. [PMID: 26771067 DOI: 10.1016/j.vph.2015.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/02/2015] [Accepted: 12/31/2015] [Indexed: 12/25/2022]
Abstract
Chronic kidney disease (CKD) and hypertension are co-morbid conditions both associated with altered resistance artery structure, biomechanics and function. We examined these characteristics in mesenteric artery together with renal function and systolic blood pressure (SBP) changes in the Lewis polycystic kidney (LPK) rat model of CKD. Animals were studied at early (6-weeks), intermediate (12-weeks), and late (18-weeks) time-points (n=21), relative to age-matched Lewis controls (n=29). At 12 and 18-weeks, LPK arteries exhibited eutrophic and hypertrophic inward remodelling characterised by thickened medial smooth muscle, decreased lumen diameter, and unchanged or increased media cross-sectional area, respectively. At these later time points, endothelium-dependent vasorelaxation was also compromised, associated with impaired endothelium-dependent hyperpolarisation and reduced nitric oxide synthase activity. Stiffness, elastic-modulus/stress slopes and collagen/elastin ratios were increased in 6 and 18-week-old-LPK, in contrast to greater arterial compliance at 12weeks. Multiple linear regression analysis highlighted SBP as the main predictor of wall-lumen ratio (r=0.536, P<0.001 n=46 pairs). Concentration-response curves revealed increased sensitivity to phenylephrine but not potassium chloride in 18-week-LPK. Our results indicate that impairment in LPK resistance vasculature is evident at 6weeks, and worsens with hypertension and progression of renal disease.
Collapse
Affiliation(s)
- K J Quek
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - R Boyd
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - O Z Ameer
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - B Zangerl
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia; Centre for Eye Health, University of New South Wales, Sydney, Australia.
| | - M Butlin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - T V Murphy
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | - A P Avolio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - J K Phillips
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
21
|
Qin J, Kandhi S, Froogh G, Jiang H, Luo M, Sun D, Huang A. Sexually dimorphic phenotype of arteriolar responsiveness to shear stress in soluble epoxide hydrolase-knockout mice. Am J Physiol Heart Circ Physiol 2015; 309:H1860-6. [PMID: 26453332 DOI: 10.1152/ajpheart.00568.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/07/2015] [Indexed: 01/05/2023]
Abstract
We hypothesized that potentiating the bioavailability of endothelial epoxyeicosatrienoic acids (EETs) via deletion of the gene for soluble epoxide hydrolase (sEH), or downregulation of sEH expression, enhances flow/shear stress-induced dilator responses (FID) of arterioles. With the use of male (M) and female (F) wild-type (WT) and sEH-knockout (KO) mice, isolated gracilis muscle arterioles were cannulated and pressurized at 80 mmHg. Basal tone and increases in diameter of arterioles as a function of perfusate flow (5, 10, 15, 20, and 25 μl/min) were recorded. The magnitude of FID was significantly smaller and associated with a greater arteriolar tone in M-WT than F-WT mice, revealing a sex difference in FID. This sex difference was abolished by deletion of the sEH gene, as evidenced by an enhanced FID in M-KO mice to a level comparable with those observed in F-KO and F-WT mice. These three groups of mice coincidentally exhibited an increased endothelial sensitivity to shear stress (smaller WSS50) and were hypotensive. Endothelial EETs participated in the mediation of enhanced FID in M-KO, F-KO, and F-WT mice, without effects on FID of M-WT mice. Protein expression of sEH was downregulated by approximately fourfold in vessels of F-WT compared with M-WT mice, paralleled with greater vascular EET levels that were statistically comparable with those observed in both male and female sEH-KO mice. In conclusion, sex-different regulation of sEH accounts for sex differences in flow-mediated dilation of microvessels in gonadally intact mice.
Collapse
Affiliation(s)
- Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York; Renji Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Meng Luo
- Renji Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China; Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, People's Republic of China
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York;
| |
Collapse
|
22
|
Grizelj I, Cavka A, Bian JT, Szczurek M, Robinson A, Shinde S, Nguyen V, Braunschweig C, Wang E, Drenjancevic I, Phillips SA. Reduced flow-and acetylcholine-induced dilations in visceral compared to subcutaneous adipose arterioles in human morbid obesity. Microcirculation 2015; 22:44-53. [PMID: 25155427 DOI: 10.1111/micc.12164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/19/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The hypothesis of this study was that microvascular FID and AChID is impaired in visceral (VAT) compared to SAT arterioles in morbidly obese women. An Additional aim was to determine the mechanisms contributing to FID and AChID in VAT and SAT arterioles. METHODS AND RESULTS Arterioles were obtained from SAT and VAT biopsies from women (BMI > 35 kg/m(2) ) undergoing bariatric surgery. Microvessels were cannulated for reactivity measurements in response to flow (pressure gradients of 10-100 cmH2 O) and to ACh (10(-9) -10(-4 ) M) with and without l-NAME, INDO, and PEG-catalase. NO and H2 O2 generation were detected in arterioles by fluorescence microscopy. FID and AChID of arterioles from VAT were reduced compared to SAT arterioles. In SAT arterioles, l-NAME, INDO, and PEG-catalase significantly reduced FID and AChID but had no effect individually on VAT arterioles' vasodilator reactivity. INDO +l-NAME reduced FID in VAT arterioles. NO-fluorescence was greater in arterioles from SAT compared to VAT arterioles. Vascular H2 O2 generation during flow was similar in both VAT and SAT. CONCLUSION Our results suggest that VAT arterioles display reduced vasodilator reactivity to flow and ACh compared to SAT arterioles, mediated by different regulatory mechanisms in human obesity.
Collapse
Affiliation(s)
- Ivana Grizelj
- Department of Physical Therapy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Physiology and Immunology, Faculty of Medicine University of Osijek, Osijek, Croatia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zoladz JA, Majerczak J, Duda K, Chlopicki S. Coronary and muscle blood flow during physical exercise in humans; heterogenic alliance. Pharmacol Rep 2015; 67:719-27. [PMID: 26321273 DOI: 10.1016/j.pharep.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/08/2015] [Accepted: 06/02/2015] [Indexed: 02/02/2023]
Abstract
In this review, we present the relation between power generation capabilities and pulmonary oxygen uptake during incremental cycling exercise in humans and the effect of exercise intensity on the oxygen cost of work. We also discuss the importance of oxygen delivery to the working muscles as a factor determining maximal oxygen uptake in humans. Subsequently, we outline the importance of coronary blood flow, myocardial oxygen uptake and myocardial metabolic stability for exercise tolerance. Finally, we describe mechanisms of endothelium-dependent regulation of coronary and skeletal muscle blood flow, dysregulation of which may impair exercise capacity and increase the cardiovascular risk of exercise.
Collapse
Affiliation(s)
- Jerzy A Zoladz
- Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland.
| | - Joanna Majerczak
- Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland
| | - Krzysztof Duda
- Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland
| | - Stefan Chlopicki
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland; Department of Experimental Pharmacology, Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
24
|
Dinenno FA. Skeletal muscle vasodilation during systemic hypoxia in humans. J Appl Physiol (1985) 2015; 120:216-25. [PMID: 26023228 DOI: 10.1152/japplphysiol.00256.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/21/2015] [Indexed: 11/22/2022] Open
Abstract
In humans, the net effect of acute systemic hypoxia in quiescent skeletal muscle is vasodilation despite significant reflex increases in muscle sympathetic vasoconstrictor nerve activity. This vasodilation increases tissue perfusion and oxygen delivery to maintain tissue oxygen consumption. Although several mechanisms may be involved, we recently tested the roles of two endothelial-derived substances during conditions of sympathoadrenal blockade to isolate local vascular control mechanisms: nitric oxide (NO) and prostaglandins (PGs). Our findings indicate that 1) NO normally plays a role in regulating vascular tone during hypoxia independent of the PG pathway; 2) PGs do not normally contribute to vascular tone during hypoxia, however, they do affect vascular tone when NO is inhibited; 3) NO and PGs are not independently obligatory to observe hypoxic vasodilation when assessed as a response from rest to steady-state hypoxia; and 4) combined NO and PG inhibition abolishes hypoxic vasodilation in human skeletal muscle. When the stimulus is exacerbated via combined submaximal rhythmic exercise and systemic hypoxia to cause further red blood cell (RBC) deoxygenation, skeletal muscle blood flow is augmented compared with normoxic exercise via local dilator mechanisms to maintain oxygen delivery to active tissue. Data obtained in a follow-up study indicate that combined NO and PG inhibition during hypoxic exercise blunts augmented vasodilation and hyperemia compared with control (normoxic) conditions by ∼50%; however, in contrast to hypoxia alone, the response is not abolished, suggesting that other local substances are involved. Factors associated with greater RBC deoxygenation such as ATP release, or nitrite reduction to NO, or both likely play a role in regulating this response.
Collapse
Affiliation(s)
- Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
25
|
Herre DJ, Norman JB, Anderson R, Tremblay ML, Huby AC, Belin de Chantemèle EJ. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B) Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction. PLoS One 2015; 10:e0126866. [PMID: 25974252 PMCID: PMC4431674 DOI: 10.1371/journal.pone.0126866] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/08/2015] [Indexed: 01/13/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM) was induced in wild-type (WT) and PTP1B-deficient mice (KO) with streptozotocin (STZ) injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384±20 vs. Ko: 432±29 mg/dL), cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.
Collapse
Affiliation(s)
- David J. Herre
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States of America
| | - J. Blake Norman
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States of America
| | - Ruchi Anderson
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States of America
| | - Michel L. Tremblay
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Anne-Cecile Huby
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States of America
| | - Eric J. Belin de Chantemèle
- Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta, GA, United States of America
- * E-mail:
| |
Collapse
|
26
|
Suvorava T, Stegbauer J, Thieme M, Pick S, Friedrich S, Rump LC, Hohlfeld T, Kojda G. Sustained hypertension despite endothelial-specific eNOS rescue in eNOS-deficient mice. Biochem Biophys Res Commun 2015; 458:576-583. [PMID: 25680465 DOI: 10.1016/j.bbrc.2015.01.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/28/2015] [Indexed: 02/07/2023]
Abstract
The aim of the study was to evaluate the possible contribution of non-endothelial eNOS to the regulation of blood pressure (BP). To accomplish this, a double transgenic strain expressing eNOS exclusively in the vascular endothelium (eNOS-Tg/KO) has been generated by endothelial-specific targeting of bovine eNOS in eNOS-deficient mice (eNOS-KO). Expression of eNOS was evaluated in aorta, myocardium, kidney, brain stem and skeletal muscle. Organ bath studies revealed a complete normalization of aortic reactivity to acetylcholine, phenylephrine and the NO-donors in eNOS-Tg/KO. Function of eNOS in resistance arteries was demonstrated by acute i.v. infusion of acetylcholine and the NOS-inhibitor L-NAME. Acetylcholine decreased mean arterial pressure in all strains but eNOS-KO responded significantly less sensitive as compared eNOS-Tg/KO and C57BL/6. Likewise, acute i.v. L-NAME application elevated mean arterial pressure in C57BL/6 and eNOS-Tg/KO, but not in eNOS-KO. In striking contrast to these findings, mean, systolic and diastolic BP in eNOS-Tg/KO remained significantly elevated and was similar to values of eNOS-KO. Chronic oral treatment with L-NAME increased BP to the level of eNOS-KO only in C57BL/6, but had no effect on hypertension in eNOS-KO and eNOS-Tg/KO. Taken together, functional reconstitution of eNOS in the vasculature of eNOS-KO not even partially lowered BP. These data suggest that the activity of eNOS expressed in non-vascular tissue might play a role in physiologic BP regulation.
Collapse
Affiliation(s)
- Tatsiana Suvorava
- Institute of Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, University Hospital, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Manuel Thieme
- Department of Nephrology, University Hospital, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stephanie Pick
- Institute of Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sebastian Friedrich
- Department of Nephrology, University Hospital, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lars C Rump
- Department of Nephrology, University Hospital, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Thomas Hohlfeld
- Institute of Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Georg Kojda
- Institute of Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
27
|
Tousoulis D, Simopoulou C, Papageorgiou N, Oikonomou E, Hatzis G, Siasos G, Tsiamis E, Stefanadis C. Endothelial dysfunction in conduit arteries and in microcirculation. Novel therapeutic approaches. Pharmacol Ther 2014; 144:253-267. [PMID: 24928320 DOI: 10.1016/j.pharmthera.2014.06.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
The vascular endothelium not only is a single monolayer of cells between the vessel lumen and the intimal wall, but also plays an important role by controlling vascular function and structure mainly via the production of nitric oxide (NO). The so called "cardiovascular risk factors" are associated with endothelial dysfunction, that reduces NO bioavailability, increases oxidative stress, and promotes inflammation contributing therefore to the development of atherosclerosis. The significant role of endothelial dysfunction in the development of atherosclerosis emphasizes the need for efficient therapeutic interventions. During the last years statins, angiotensin-converting enzyme inhibitors, angiotensin-receptor antagonists, antioxidants, beta-blockers and insulin sensitizers have been evaluated for their ability to restore endothelial function (Briasoulis et al., 2012). As there is not a straightforward relationship between therapeutic interventions and improvement of endothelial function but rather a complicated interrelationship between multiple cellular and sub-cellular targets, research has been focused on the understanding of the underlying mechanisms. Moreover, the development of novel diagnostic invasive and non-invasive methods has allowed the early detection of endothelial dysfunction expanding the role of therapeutic interventions and our knowledge. In the current review we present the available data concerning the contribution of endothelial dysfunction to atherogenesis and review the methods that assess endothelial function with a view to understand the multiple targets of therapeutic interventions. Finally we focus on the classic and novel therapeutic approaches aiming to improve endothelial dysfunction and the underlying mechanisms.
Collapse
Affiliation(s)
- Dimitris Tousoulis
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece.
| | - Chryssa Simopoulou
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - Nikos Papageorgiou
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - George Hatzis
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | - Eleftherios Tsiamis
- 1st Cardiology Department, Athens University Medical School, Hippokration Hospital, Greece
| | | |
Collapse
|
28
|
Villela NR, dos Santos AOMT, de Miranda ML, Bouskela E. Fluid resuscitation therapy in endotoxemic hamsters improves survival and attenuates capillary perfusion deficits and inflammatory responses by a mechanism related to nitric oxide. J Transl Med 2014; 12:232. [PMID: 25151363 PMCID: PMC4158098 DOI: 10.1186/s12967-014-0232-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/15/2014] [Indexed: 12/21/2022] Open
Abstract
Background Relative hypovolemia is frequently found in early stages of severe sepsis and septic shock and prompt and aggressive fluid therapy has become standard of care improving tissue perfusion and patient outcome. This paper investigates the role of the nitric oxide pathway on beneficial microcirculatory effects of fluid resuscitation. Methods After skinfold chamber implantation procedures and endotoxemia induction by intravenous Escherichia coli lipopolysaccharide administration (2 mg.kg−1), male golden Syrian hamsters were fluid resuscitated and then sequentially treated with L-Nω-Nitroarginine and L-Arginine hydrochloride (LPS/FR/LNNA group). Intravital microscopy of skinfold chamber preparations allowed quantitative analysis of microvascular variables including venular leukocyte rolling and adhesion. Macro-hemodynamic, biochemical and hematological parameters as well as survival rate were also evaluated. Endotoxemic hamsters treated with fluid therapy alone (LPS/FR group) and non-treated animals (LPS group) served as controls. Results Fluid resuscitation was effective in reducing lipopolysaccharide-induced microcirculatory changes. After 3 hours of lipopolysaccharide administration, non-fluid resuscitated animals (LPS group) had the lowest functional capillary density (1% from baseline for LPS group vs. 19% for LPS/FR one; p <0.05). At the same time point, arteriolar mean internal diameter was significantly wider in LPS/FR group than in LPS one (100% vs. 50% from baseline). Fluid resuscitation also reduced leukocyte-endothelium interactions and sequestration (p <0.05 for LPS vs. LPS/FR group) and increased survival (median survival time: 2 and 5.5 days for LPS and LPS/FR groups, respectively; p <0.05). Nitric oxide synthase inhibition prevented these protective effects, while L-Arginine administration markedly restored many of them. Conclusion Our results suggest that the underlying mechanism of fluid therapy is the restoration of nitric oxide bioavailability, because inhibition of NOS prevented many of its beneficial effects. Nevertheless, further investigations are required in experimental models closer to conditions of human sepsis to confirm these results.
Collapse
Affiliation(s)
- Nivaldo Ribeiro Villela
- Department of Surgery, Division of Anesthesiology, Faculty of Medical Sciences, Rio de Janeiro State University, Boulevard 28 de Setembro, Rio de Janeiro, 77 - Vila Isabel, 20,551-030, RJ, Brazil.
| | | | | | | |
Collapse
|
29
|
Yu C, Luo X, Farhat N, Daneault C, Duquette N, Martel C, Lambert J, Thorin-Trescases N, Rosiers CD, Thorin E. Lack of angiopoietin-like-2 expression limits the metabolic stress induced by a high-fat diet and maintains endothelial function in mice. J Am Heart Assoc 2014; 3:jah3618. [PMID: 25128474 PMCID: PMC4310393 DOI: 10.1161/jaha.114.001024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Angiopoietin‐like‐2 (angptl2) is produced by several cell types including endothelial cells, adipocytes and macrophages, and contributes to the inflammatory process in cardiovascular diseases. We hypothesized that angptl2 impairs endothelial function, and that lowering angptl2 levels protects the endothelium against high‐fat diet (HFD)‐induced fat accumulation and hypercholesterolemia. Methods and Results Acute recombinant angptl2 reduced (P<0.05) acetylcholine‐mediated vasodilation of isolated wild‐type (WT) mouse femoral artery, an effect reversed (P<0.05) by the antioxidant N‐acetylcysteine. Accordingly, in angptl2 knockdown (KD) mice, ACh‐mediated endothelium‐dependent vasodilation was greater (P<0.05) than in WT mice. In arteries from KD mice, prostacyclin contributed to the overall dilation unlike in WT mice. After a 3‐month HFD, overall vasodilation was not altered, but dissecting out the endothelial intrinsic pathways revealed that NO production was reduced in arteries isolated from HFD‐fed WT mice (P<0.05), while NO release was maintained in KD mice. Similarly, endothelium‐derived hyperpolarizing factor (EDHF) was preserved in mesenteric arteries from HFD‐fed KD mice but not in those from WT mice. Finally, the HFD increased (P<0.05) total cholesterol–to–high‐density lipoprotein ratios, low‐density lipoprotein–to–high‐density lipoprotein ratios, and leptin levels in WT mice only, while glycemia remained similar in the 2 strains. KD mice displayed less triglyceride accumulation in the liver (P<0.05 versus WT), and adipocyte diameters in mesenteric and epididymal white adipose tissues were smaller (P<0.05) in KD than in WT fed an HFD, while inflammatory gene expression increased (P<0.05) in the fat of WT mice only. Conclusions Lack of angptl2 expression limits the metabolic stress induced by an HFD and maintains endothelial function in mice.
Collapse
Affiliation(s)
- Carol Yu
- Departments of Pharmacology and Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada (C.Y., N.F., T.) Montreal Heart Institute, Research Center, Montreal, Quebec, Canada (C.Y., X.L., N.F., C.D., N.D., M., N.T.T., C.D.R., T.)
| | - Xiaoyan Luo
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada (C.Y., X.L., N.F., C.D., N.D., M., N.T.T., C.D.R., T.)
| | - Nada Farhat
- Departments of Pharmacology and Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada (C.Y., N.F., T.) Montreal Heart Institute, Research Center, Montreal, Quebec, Canada (C.Y., X.L., N.F., C.D., N.D., M., N.T.T., C.D.R., T.)
| | - Caroline Daneault
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada (C.Y., X.L., N.F., C.D., N.D., M., N.T.T., C.D.R., T.)
| | - Natacha Duquette
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada (C.Y., X.L., N.F., C.D., N.D., M., N.T.T., C.D.R., T.)
| | - Cécile Martel
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada (C.Y., X.L., N.F., C.D., N.D., M., N.T.T., C.D.R., T.)
| | - Jean Lambert
- Departments of Social and Preventive Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada (J.L.)
| | - Nathalie Thorin-Trescases
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada (C.Y., X.L., N.F., C.D., N.D., M., N.T.T., C.D.R., T.)
| | - Christine Des Rosiers
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada (C.D.R.) Montreal Heart Institute, Research Center, Montreal, Quebec, Canada (C.Y., X.L., N.F., C.D., N.D., M., N.T.T., C.D.R., T.)
| | - Eric Thorin
- Departments of Pharmacology and Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada (C.Y., N.F., T.) Montreal Heart Institute, Research Center, Montreal, Quebec, Canada (C.Y., X.L., N.F., C.D., N.D., M., N.T.T., C.D.R., T.)
| |
Collapse
|
30
|
Sun D, Cuevas AJ, Gotlinger K, Hwang SH, Hammock BD, Schwartzman ML, Huang A. Soluble epoxide hydrolase-dependent regulation of myogenic response and blood pressure. Am J Physiol Heart Circ Physiol 2014; 306:H1146-53. [PMID: 24561863 DOI: 10.1152/ajpheart.00920.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid via cytochrome P450 (CYP)/epoxygenases. EETs possess cardioprotective properties and are catalyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs) that lack vasoactive property. To date, the role of sEH in the regulation of myogenic response of resistant arteries, a key player in the control of blood pressure, remains unknown. To this end, experiments were conducted on sEH-knockout (KO) mice, wild-type (WT) mice, and endothelial nitric oxide synthase (eNOS)-KO mice treated with t-TUCB, a sEH inhibitor, for 4 wk. sEH-KO and t-TUCB-treated mice displayed significantly lower blood pressure, associated with significantly increased vascular EETs and ratio of EETs/DHETs. Pressure-diameter relationships were assessed in isolated and cannulated gracilis muscle arterioles. All arterioles constricted in response to increases in transmural pressure from 60 to 140 mmHg. The myogenic constriction was significantly reduced, expressed as an upward shift of pressure-diameter curve, in arterioles of sEH-KO and t-TUCB-treated eNOS-KO mice compared with their controls. Removal of the endothelium, or treatment of the vessels with PPOH, an inhibitor of EET synthase, restored the attenuated pressure-induced constriction to the levels similar to those observed in their controls but had no effects on control vessels. No difference was observed in the myogenic index, or in the vascular expression of eNOS, CYP2C29 (EET synthase), and CYP4A (20-HETE synthase) among these groups of mice. In conclusion, the increased EET bioavailability, as a function of deficiency/inhibition of sEH, potentiates vasodilator responses that counteract pressure-induced vasoconstriction to lower blood pressure.
Collapse
Affiliation(s)
- Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | | | | | | | | | | | | |
Collapse
|
31
|
Craig J, Martin W. Dominance of flow-mediated constriction over flow-mediated dilatation in the rat carotid artery. Br J Pharmacol 2013; 167:527-36. [PMID: 22537086 DOI: 10.1111/j.1476-5381.2012.02006.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The shearing forces generated by flow generally evoke dilatation in systemic vessels but constriction in the cerebral circulation. The aim of this study was to determine the effects of flow on the conduit artery delivering blood to the brain in the rat, that is, the carotid artery. EXPERIMENTAL APPROACH Carotid artery segments were mounted in a pressure myograph and pressurized to 100 mmHg. Changes in vessel diameter to flow (0.5-10 mL·min⁻¹ for 2-10 min) at constant pressure were then measured using a video dimension analyser. KEY RESULTS Following the induction of tone, the onset of flow evoked a transient dilatation followed by a powerful constriction that was sustained until the termination of flow. Endothelial denudation or treatment with indomethacin, N(G)-nitro-L-arginine methyl ester, or the combination of apamin and TRAM-34 showed that the initial flow-mediated dilatation arose from the combined actions of endothelium-derived NO and endothelium-derived hyperpolarizing factor (EDHF). The flow-mediated constriction, which increased in magnitude with increasing flow rate and duration of flow, was also endothelium dependent, but was unaffected by treatment with superoxide dismutase, BQ-123, indomethacin, HET0016 or carbenoxolone. Flow-mediated constriction therefore appeared not to involve superoxide anion, endothelin-1, a COX product, 20-HETE or gap-junctional communication. CONCLUSIONS AND IMPLICATIONS Although a weak, transient flow-mediated dilatation is observed in the rat carotid artery, the dominant response to flow is a powerful and sustained constriction. Whether this flow-mediated constriction in the carotid artery serves as an extracranial mechanism to regulate cerebral blood flow remains to be determined.
Collapse
Affiliation(s)
- John Craig
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, UK
| | | |
Collapse
|
32
|
Piva A, Zampieri F, Di Pascoli M, Gatta A, Sacerdoti D, Bolognesi M. Mesenteric arteries responsiveness to acute variations of wall shear stress is impaired in rats with liver cirrhosis. Scand J Gastroenterol 2012; 47:1003-13. [PMID: 22774919 DOI: 10.3109/00365521.2012.703231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE In liver cirrhosis, excessive splanchnic vasodilation is due to abnormal synthesis of endogenous vasodilators and to decreased sensitivity to vasoconstrictors. The role of mechanical stimuli such as wall shear stress (WSS) on splanchnic circulation remains unclear. The aim of this study was to assess the vasodilation induced by wall shear stress (WSS) and acute changes in blood flow in the mesenteric arteries in an experimental model of liver cirrhosis. MATERIALS AND METHODS The effect of acute changes in intraluminal flow (0, 10, and 20 μl/min) and WSS on the diameter of the mesenteric arteries (diameters <500 μm) of control and cirrhotic rats was assessed, at baseline and after the inhibition of nitric oxide synthase, cyclooxygenase and hemeoxygenase. Concentration-response curves to phenylephrine were also obtained. RESULTS In controls, the increase in intraluminal flow led to a significant increase in arterial diameter (p < 0.05), while WSS remained stable; the effect was maintained in vessels pre-constricted with phenylephrine, blocked by the exposure to indomethacin and L-NAME and restored by the subsequent addition of chromium mesoporphyrin (p < 0.05). In cirrhotic arteries, arterial diameters did not change in response to acute increase in flow, neither at baseline nor after exposure to indomethacin and L-NAME, while WSS increased (p < 0.01). Responsiveness to flow was partially restored (p < 0.05) after exposure of the arteries to chromium mesoporphyrin in addition to indomethacin and L-NAME. CONCLUSIONS Arteries from cirrhotic rats showed an abolished responsiveness to acute variations in flow, which exposes the mesenteric endothelium to sudden variations in WSS.
Collapse
Affiliation(s)
- Anna Piva
- Clinica Medica 5, Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Wei D, He WY, Lv QZ. Effect of nisoldipine and olmesartan on endothelium-dependent vasodilation in essential hypertensive patients. CNS Neurosci Ther 2012; 18:400-5. [PMID: 22533725 DOI: 10.1111/j.1755-5949.2012.00304.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIMS To investigate whether nisoldipine and olmesartan improve endothelial function, decrease asymmetric dimethylarginine (ADMA) and alleviate the inflammatory and oxidative process. METHODS Fifty-five essential hypertensive patients were randomized to receive nisoldipine or olmesartan for 8 weeks according to a parallel-group, active-controlled, single blind study, and 28 matched normotensive subjects served as healthy controls. Flow-mediated dilation (FMD), and plasma levels of nitric oxide (NO), endothelin-1 (ET-1), high-sensitive C-reactive protein (hs-CRP), 8-isoprostane (also named 8-isoPGF2α), and ADMA were determined. RESULTS At baseline, the plasma levels of ADMA, ET-1, hs-CRP, and 8-isoPGF2α were markedly higher in patients with essential hypertension than in normotensive subjects (P < 0.05). A significant positive correlation was observed between plasma levels of ET-1 and ADMA in patients with essential hypertension, but not in normotensive subjects. The NO plasma concentrations were significantly lower in patients with essential hypertension than in normotensive subjects. Furthermore, hypertensive subjects demonstrated significantly lower FMD than healthy control (P < 0.05). Nisoldipine and olmesartan significantly and similarly reduced blood pressure in patients with essential hypertension (P < 0.001). At the end of the 8-week treatment, plasma ADMA and ET-1 levels were decreased significantly (P < 0.01). FMD increased significantly in nisoldipine or olmesartan-treated patients (P < 0.05). A significant decrease in plasma hs-CRP contents was observed in patients receiving nisoldipine (P < 0.05). CONCLUSION The findings demonstrate that nisoldipine and olmesartan both improve FMD in patients with essential hypertension. This may be associated with decreased circulating levels of CRP, ET-1, and ADMA.
Collapse
Affiliation(s)
- Duo Wei
- Department of Pharmacy, Zhongshan, Hospital, Fudan University, Shanghai, China
| | | | | |
Collapse
|
34
|
Katusic ZS, Santhanam AV, He T. Vascular effects of prostacyclin: does activation of PPARδ play a role? Trends Pharmacol Sci 2012; 33:559-64. [PMID: 22727878 DOI: 10.1016/j.tips.2012.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/11/2012] [Accepted: 05/22/2012] [Indexed: 02/06/2023]
Abstract
Prostacyclin (PGI(2)) is a potent vasodilator that exerts multiple vasoprotective effects in the cardiovascular system. The effects of PGI(2) are mediated by activation of the cell membrane G-protein-coupled PGI(2) receptor (IP receptor). More recently, however, it has been suggested that PGI(2) might also serve as an endogenous ligand and activator of nuclear peroxisome proliferator-activated receptorδ (PPARδ). Consistent with this concept, studies designed to define pharmacological properties of stable PGI(2) analogs revealed that beneficial effects of these compounds appear to be mediated, in part, by activation of PPARδ. This review discusses emerging evidence regarding the contribution of PPARδ activation to vasoprotective and regenerative functions of PGI(2) and stable analogs of PGI(2).
Collapse
Affiliation(s)
- Zvonimir S Katusic
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | | | |
Collapse
|
35
|
Félétou M, Huang Y, Vanhoutte PM. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol 2012; 164:894-912. [PMID: 21323907 DOI: 10.1111/j.1476-5381.2011.01276.x] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelium-dependent contractions contribute to endothelial dysfunction in various animal models of aging, diabetes and cardiovascular diseases. In the spontaneously hypertensive rat, the archetypal model for endothelium-dependent contractions, the production of the endothelium-derived contractile factors (EDCF) involves an increase in endothelial intracellular calcium concentration, the production of reactive oxygen species, the predominant activation of cyclooxygenase-1 (COX-1) and to a lesser extent that of COX-2, the diffusion of EDCF towards the smooth muscle cells and the subsequent stimulation of their thromboxane A2-endoperoxide TP receptors. Endothelium-dependent contractions are also observed in various models of hypertension, aging and diabetes. They generally also involve the generation of COX-1- and/or COX-2-derived products and the activation of smooth muscle TP receptors. Depending on the model, thromboxane A(2), PGH(2), PGF(2α), PGE(2) and paradoxically PGI(2) can all act as EDCFs. In human, the production of COX-derived EDCF is a characteristic of the aging and diseased blood vessels, with essential hypertension causing an earlier onset and an acceleration of this endothelial dysfunction. As it has been observed in animal models, COX-1, COX-2 or both isoforms can contribute to these endothelial dysfunctions. Since in most cases, the activation of TP receptors is the common downstream effector, selective antagonists of this receptor should curtail endothelial dysfunction and be of therapeutic interest in the treatment of cardiovascular disorders.
Collapse
|
36
|
Sun D, Jiang H, Wu H, Yang Y, Kaley G, Huang A. A novel vascular EET synthase: role of CYP2C7. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1723-30. [PMID: 21940400 DOI: 10.1152/ajpregu.00382.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We demonstrated previously that cytochrome P-450 (CYP) 2C29 is the epoxyeicosatrienoic acid (EET) synthase responsible for the EET-mediated flow/shear stress-induced dilation of vessels of female nitric oxide (NO)-deficient mice (Sun D, Yang YM, Jiang H, Wu H, Ojami C, Kaley G, Huang A. Am J Physiol Regul Integr Comp Physiol 298: R862-R869, 2010). In the present study, we aimed to identify which specific CYP isoform(s) is the source of the synthesis and release of EETs in response to stimulation by shear stress in vessels of rats. Cannulated mesenteric arteries isolated from both sexes of N(G)-nitro-L-arginine methyl ester (L-NAME)-treated rats were perfused with 2 and 10 dyn/cm(2) shear stress, followed by collection of the perfusate to determine EET concentrations and isoforms. Shear stress stimulated release of EETs in the perfusate of female (but not male) NO-deficient vessels, associated with an EET-mediated vasodilation, in which 11,12- and 14,15-EET contributed predominantly to the responses. Rat CYP cDNA array screened a total of 32 CYP genes of mesenteric arteries, indicating a significant upregulation of CYP2C7 in female L-NAME-treated rats. Endothelial RNA and protein were extracted from intact single vessels. Expression of CYP2C7 mRNA and protein in pooled extractions of endothelial lysate was identified by PCR and Western blot analyses. Transfection of the vessels with CYP2C7 short interfering RNA eliminated the release of EETs, consequently abolishing the EET-mediated flow-induced dilation; these responses, however, were maintained in vessels transfected with nonsilencing short interfering RNA. Knockdown of endothelial CYP2C7 was confirmed by PCR and Western blot analyses. In conclusion, CYP2C7 is an endothelial EET synthase in the female rat vasculature, by which, in NO deficiency, shear stress stimulates the release of EETs to initiate vasodilation.
Collapse
Affiliation(s)
- Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | |
Collapse
|
37
|
Lu D, Kassab GS. Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface 2011; 8:1379-85. [PMID: 21733876 DOI: 10.1098/rsif.2011.0177] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Blood vessels are under constant mechanical loading from blood pressure and flow which cause internal stresses (endothelial shear stress and circumferential wall stress, respectively). The mechanical forces not only cause morphological changes of endothelium and blood vessel wall, but also trigger biochemical and biological events. There is considerable evidence that physiologic stresses and strains (stretch) exert vasoprotective roles via nitric oxide and provide a homeostatic oxidative balance. A perturbation of tissue stresses and strains can disturb biochemical homeostasis and lead to vascular remodelling and possible dysfunction (e.g. altered vasorelaxation, tone, stiffness, etc.). These distinct biological endpoints are caused by some common biochemical pathways. The focus of this brief review is to point out some possible commonalities in the molecular pathways in response to endothelial shear stress and circumferential wall stretch.
Collapse
Affiliation(s)
- Deshun Lu
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | |
Collapse
|
38
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
|
40
|
Markwald RR, Kirby BS, Crecelius AR, Carlson RE, Voyles WF, Dinenno FA. Combined inhibition of nitric oxide and vasodilating prostaglandins abolishes forearm vasodilatation to systemic hypoxia in healthy humans. J Physiol 2011; 589:1979-90. [PMID: 21486803 DOI: 10.1113/jphysiol.2011.205013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We tested the hypothesis that nitric oxide (NO) and vasodilating prostaglandins (PGs) contribute independently to hypoxic vasodilatation, and that combined inhibition would reveal a synergistic role for these two pathways in the regulation of peripheral vascular tone. In 20 healthy adults, we measured forearm blood flow (Doppler ultrasound) and calculated forearm vascular conductance (FVC) responses to steady-state (SS) isocapnic hypoxia (O₂ saturation ~85%). All trials were performed during local α- and β-adrenoceptor blockade (via a brachial artery catheter) to eliminate sympathoadrenal influences on vascular tone and thus isolate local vasodilatory mechanisms. The individual and combined effects of NO synthase (NOS) and cyclooxygenase (COX) inhibition were determined by quantifying the vasodilatation from rest to SS hypoxia, as well as by quantifying how each inhibitor reduced vascular tone during hypoxia. Three hypoxia trials were performed in each subject. In group 1 (n = 10), trial 1, 5 min of SS hypoxia increased FVC from baseline (21 ± 3%; P < 0.05). Infusion of N(G)-nitro-L-arginine methyl ester (L-NAME) for 5 min to inhibit NOS during continuous SS hypoxia reduced FVC by -33 ± 3% (P < 0.05). In Trial 2 with continuous NOS inhibition, the increase in FVC from baseline to SS hypoxia was similar to control conditions (20 ± 3%), and infusion of ketorolac for 5 min to inhibit COX during continuous SS hypoxia reduced FVC by -15 ± 3% (P < 0.05). In Trial 3 with combined NOS and COX inhibition, the increase in FVC from baseline to SS hypoxia was abolished (~3%; NS vs. zero). In group 2 (n = 10), the order of NOS and COX inhibition was reversed. In trial 1, five minutes of SS hypoxia increased FVC from baseline (by 24 ± 5%; P < 0.05), and infusion of ketorolac during SS hypoxia had minimal impact on FVC (-4 ± 3%; NS). In Trial 2 with continuous COX inhibition, the increase in FVC from baseline to SS hypoxia was similar to control conditions (27 ± 4%), and infusion of L-NAME during continuous SS hypoxia reduced FVC by -36 ± 7% (P < 0.05). In Trial 3 with combined NOS and COX inhibition, the increase in FVC from baseline to SS hypoxia was abolished (~3%; NS vs. zero). Our collective findings indicate that (1) neither NO nor PGs are obligatory to observe the normal local vasodilatory response from rest to SS hypoxia; (2) NO regulates vascular tone during hypoxia independent of the COX pathway, whereas PGs only regulate vascular tone during hypoxia when NOS is inhibited; and (3) combined inhibition of NO and PGs abolishes local hypoxic vasodilatation (from rest to SS hypoxia) in the forearm circulation of healthy humans during systemic hypoxia.
Collapse
Affiliation(s)
- Rachel R Markwald
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Vascular Physiology Research Group, Colorado State University, Fort Collins, CO 80523-1582, USA
| | | | | | | | | | | |
Collapse
|
41
|
Devan AE, Umpierre D, Harrison ML, Lin HF, Tarumi T, Renzi CP, Dhindsa M, Hunter SD, Tanaka H. Endothelial ischemia-reperfusion injury in humans: association with age and habitual exercise. Am J Physiol Heart Circ Physiol 2011; 300:H813-9. [PMID: 21239631 DOI: 10.1152/ajpheart.00845.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advancing age is a major risk factor for coronary artery disease. Endothelial dysfunction accompanied by increased oxidative stress and inflammation with aging may predispose older arteries to greater ischemia-reperfusion (I/R) injury. Because coronary artery ischemia cannot be induced safely, the effects of age and habitual endurance exercise on endothelial I/R injury have not been determined in humans. Using the brachial artery as a surrogate model of the coronary arteries, endothelial function, assessed by brachial artery flow-mediated dilation (FMD), was measured before and after 20 min of continuous forearm occlusion in young sedentary (n = 10, 24 ± 2 yr) and middle-aged (n = 9, 48 ± 2 yr) sedentary adults to gain insight into the effects of primary aging on endothelial I/R injury. Young (n = 9, 25 ± 1 yr) and middle-aged endurance-trained (n = 9, 50 ± 2 yr) adults were also studied to determine whether habitual exercise provides protection from I/R injury. Fifteen minutes after ischemic injury, FMD decreased significantly by 37% in young sedentary, 35% in young endurance-trained, 68% in middle-aged sedentary, and 50% in middle-aged endurance-trained subjects. FMD returned to baseline levels within 30 min in young sedentary and endurance-trained subjects but remained depressed in middle-aged sedentary and endurance-trained subjects. Circulating markers of antioxidant capacity and inflammation were not related to FMD. In conclusion, advancing age is associated with a greater magnitude and delayed recovery from endothelial I/R injury in humans. Habitual endurance exercise may provide partial protection to the endothelium against this form of I/R injury with advancing age.
Collapse
Affiliation(s)
- Allison E Devan
- Cardiovascular Aging Research Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lu X, Guo X, Wassall CD, Kemple MD, Unthank JL, Kassab GS. Reactive oxygen species cause endothelial dysfunction in chronic flow overload. J Appl Physiol (1985) 2010; 110:520-7. [PMID: 21127212 DOI: 10.1152/japplphysiol.00786.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although elevation of shear stress increases production of vascular reactive oxygen species (ROS), the role of ROS in chronic flow overload (CFO) has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. In six swine, CFO in carotid arteries was induced by contralateral ligation for 1 wk. In an additional group, six swine received apocynin (NADPH oxidase blocker and anti-oxidant) treatment in conjunction with CFO for 1 wk. The blood flow in carotid arteries increased from 189.2 ± 25.3 ml/min (control) to 369.6 ± 61.9 ml/min (CFO), and the arterial diameter increased by 8.6%. The expressions of endothelial nitric oxide synthase (eNOS), p22/p47(phox), and NOX2/NOX4 were upregulated. ROS production increased threefold in response to CFO. The endothelium-dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. Although the process of CFO remodeling to restore the wall shear stress has been thought of as a physiological response, the present data implicate NADPH oxidase-produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO.
Collapse
Affiliation(s)
- X Lu
- Department of Biomedical Engineering, Indiana Univ. Purdue Univ. Indianapolis, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
43
|
Furuno T, Yamasaki F, Yokoyama T, Sato K, Sato T, Doi Y, Sugiura T. Effects of various doses of aspirin on platelet activity and endothelial function. Heart Vessels 2010; 26:267-73. [PMID: 21063876 DOI: 10.1007/s00380-010-0054-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 04/23/2010] [Indexed: 12/18/2022]
Abstract
Although aspirin has become an established medicine for cardiac and cerebrovascular diseases, the optimal dose remains unknown. We evaluated the optimal dose of aspirin on platelet activity and endothelial function by administering 11 healthy male volunteers (32 ± 6 years of age) doses of aspirin that were increased in a stepwise manner (0, 81, 162, 330 and 660 mg/day) every 3 days. Platelet activity was assessed as surface P-selectin expression (%) measured by flow cytometry and the platelet aggregation ratio. Endothelial function in the brachial artery was assessed by measuring flow-mediated dilation (FMD) before and after reactive hyperemia. Platelet aggregation and P-selectin expression were significantly and dose-dependently suppressed (81-660 mg), and the FMD ratio tended to increase from 0 to 162 mg, but decreased significantly at 660 mg. In conclusion, although aspirin suppressed platelet activity and even surface P-selectin expression, higher doses worsened endothelial-mediated arterial dilation.
Collapse
Affiliation(s)
- Takashi Furuno
- Medicine and Geriatrics, Kochi Medical School, Nankoku, Kochi, 783-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Jones ID, Fuentes VL, Fray TR, Vallance C, Elliott J. Evaluation of a flow-mediated vasodilation measurement technique in healthy dogs. Am J Vet Res 2010; 71:1154-61. [DOI: 10.2460/ajvr.71.10.1154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Heylen E, Huang A, Sun D, Kaley G. Nitric oxide-mediated dilation of arterioles to intraluminal administration of aldosterone. J Cardiovasc Pharmacol 2010; 54:535-42. [PMID: 19770672 DOI: 10.1097/fjc.0b013e3181bfb00d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nature of the rapid action of aldosterone on blood vessels, whether endothelium-dependent dilation or smooth muscle-dependent constriction is predominant, is still in dispute. In this study, we administered aldosterone intraluminally or extraluminally to isolated mesenteric and cerebral arterioles of male Wistar rats. Extraluminal administration of aldosterone (10(-11) or 10(-7) M) elicited a transient vasodilatation. The peak response appeared at approximately 5 minutes. In contrast, intraluminal administration of aldosterone elicited a greater and sustained dilation. When aldosterone (10(-12)-10(-7) M) was administered extraluminally in a cumulative manner, dose-dependent vasodilator responses were elicited, except a reduced dilation was observed to 10(-7) M aldosterone. The dilations were significantly inhibited by spironolactone (10(-7) M), a mineralocorticoid receptor antagonist or Nomega-nitro-l-arginine methyl ester (3 x 10(-4) M), a NO synthesis inhibitor. In endothelium-denuded vessels, extraluminal aldosterone induced a dose-dependent vasoconstrictor response. Scavenging superoxide with Tempol (10(-4) M) sustained the extraluminal aldosterone (10(-11) or 10(-7) M)-induced dilation, whereas inhibition of NO synthesis or removal of the endothelium abolished intraluminal aldosterone-induced dilation. Dilation to 10(-7) M aldosterone was significantly enhanced after inhibition of NAD(P)H-oxidase with apocynin (10(-5) M). Furthermore, in the presence of endothelial dysfunction, induced by chronic inhibition of NO synthesis, intraluminal administration of aldosterone failed to dilate the arterioles. We conclude that in physiological conditions, acute elevation of aldosterone will evoke mainly an endothelium-dependent NO-mediated dilation.
Collapse
Affiliation(s)
- Erwan Heylen
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
46
|
Drenjancevic-Peric I, Weinberg BD, Greene AS, Lombard JH. Restoration of cerebral vascular relaxation in renin congenic rats by introgression of the Dahl R renin gene. Am J Hypertens 2010; 23:243-8. [PMID: 19959997 DOI: 10.1038/ajh.2009.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND This study determined whether transfer of the renin gene from the Dahl salt-resistant (Dahl R) strain into the Dahl salt-sensitive (SS) genetic background restores the relaxation of middle cerebral arteries (MCAs) to different vasodilator stimuli in S/renRR renin congenic (SS.SR-(D13N1 and Syt2)/Mcwi) (RGRR) rats maintained on low-salt (0.4% NaCl) diet. METHODS Responses to vasodilator stimuli were evaluated in isolated MCA from SS (Dahl SS/Jr/Hsd/MCWi), RGRR rats, and Dahl R rats. RESULTS MCA from SS rats failed to dilate in response to acetylcholine (ACh; 10(-6) mol/l), hypoxia (PO2 reduction to 40-45 mm Hg), and iloprost (10(-11) g/ml). ACh- and hypoxia-induced dilations were present in Dahl R rats and restored in RGRR rats. MCA from RGRR and SS constricted in response to iloprost, whereas MCA from Dahl R rats dilated in response to iloprost. MCA from SS, RGRR, and Dahl R rats exhibited similar dilations in response to cholera toxin (10(-9) g/ml) and dialated in response to the nitric oxide (NO) donor DEA-NONOate (10(-5) mol/l). CONCLUSIONS (i) Restoration of normal regulation of the renin-angiotensin system restores dilations to ACh and hypoxia that are impaired in SS rats, (ii) prostacyclin signaling is impaired in SS and RGRR rats but intact in Dahl R rats, indicating that alleles other than the renin gene affect vascular relaxation in response to this agonist; and (iii) vascular smooth muscle sensitivity to NO is preserved in SS and RGRR and is not responsible for impaired arterial relaxation in response to ACh in SS rats.
Collapse
|
47
|
Impact of catheter insertion using the radial approach on vasodilatation in humans. Clin Sci (Lond) 2010; 118:633-40. [DOI: 10.1042/cs20090548] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to determine the impact of catheter sheath insertion, a model of endothelium disruption in humans, on the conventional FMD (flow-mediated dilatation) response in vivo. Seventeen subjects undergoing transradial catheterization were recruited and assessed prior to, the day after, and 3–4 months postcatheterization. The catheter sheath's external diameter was 2.7 mm, and the average preprocedure internal radial artery diameter was 2.8 mm, indicating a high likelihood of endothelial denudation as a consequence of sheath placement. Radial artery flow-mediated and endothelium-derived NO (nitric oxide)-dependent function (FMD) was assessed within the region of sheath placement (sheath site) and also above the sheath (catheter site). GTN (glyceryl trinitrate) endothelium-independent NO-mediated function was also assessed distally. Measurements were made in both arms at all time points; the non-catheterized arm provided an internal control. Neither sheath (4.5±0.9%) nor catheter (4.4±0.9%) insertion abolished FMD, although both significantly decreased FMD from preintervention levels (9.0±0.8% sheath segment; 8.4±0.8% catheter segment; P<0.05). The impact of sheath and catheter placement on FMD was no longer evident after ~ 3 months recovery (8.0±1.5 and 8.1±1.7%, sheath and catheter, respectively). GTN responses also decreased from 14.8±1.7 to 7.9±1.0% (P<0.05) as a result of sheath placement, but values returned to baseline at ~ 3 months (13.0±1.8%). These results suggest that the presence of an intact, functional endothelial layer and consequent NO release may not be obligatory for some component of the FMD response. This raises the possibility of an endothelium-independent contribution to the flow-induced vasodilatation in humans.
Collapse
|
48
|
Crowley SD, Song YS, Lin EE, Griffiths R, Kim HS, Ruiz P. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1089-97. [PMID: 20147609 DOI: 10.1152/ajpregu.00373.2009] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the immune system by ANG II contributes to the pathogenesis of hypertension, and pharmacological suppression of lymphocyte responses can ameliorate hypertensive end-organ damage. Therefore, to examine the mechanisms through which lymphocytes mediate blood pressure elevation, we studied ANG II-dependent hypertension in scid mice lacking lymphocyte responses and wild-type controls. Scid mice had a blunted hypertensive response to chronic ANG II infusion and accordingly developed less cardiac hypertrophy. Moreover, lymphocyte deficiency led to significant reductions in heart and kidney injury following 4 wk of angiotensin. The muted hypertensive response in the scid mice was associated with increased sodium excretion, urine volumes, and weight loss beginning on day 5 of angiotensin infusion. To explore the mechanisms underlying alterations in blood pressure and renal sodium handling, we measured gene expression for vasoactive mediators in the kidney after 4 wk of ANG II administration. Scid mice and controls had similar renal expression for interferon-gamma, interleukin-1beta, and interleukin-6. By contrast, lymphocyte deficiency (i.e., scid mice) during ANG II infusion led to upregulation of tumor necrosis factor-alpha, endothelial nitric oxide synthase (eNOS), and cyclooxygenase-2 (COX-2) in the kidney. In turn, this enhanced eNOS and COX-2 expression in the scid kidneys was associated with exaggerated renal generation of nitric oxide, prostaglandin E(2), and prostacyclin, all of which promote natriuresis. Thus, the absence of lymphocyte activity protects from hypertension by allowing blood pressure-induced sodium excretion, possibly via stimulation of eNOS- and COX-2-dependent pathways.
Collapse
Affiliation(s)
- Steven D Crowley
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Genetically modified mice-successes and failures of a widely used technology. Pflugers Arch 2010; 459:557-67. [PMID: 20140450 DOI: 10.1007/s00424-009-0770-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/28/2009] [Accepted: 11/30/2009] [Indexed: 12/31/2022]
Abstract
Genetically modified mice, created by random integration of a transgene into the genome or by targeted mutation of a specific gene, have proven to be extremely powerful tools for studying gene function in vivo. In this article, we give (1) a short overview of the traditional methods in mouse transgenesis and (2) a discussion of the problems with these methods, (3) more recent methods that were developed to overcome these problems, and (4) an outlook on future directions in gene targeting.
Collapse
|
50
|
Jennings BL, Donald JA. Mechanisms of nitric oxide-mediated, neurogenic vasodilation in mesenteric resistance arteries of toad Bufo marinus. Am J Physiol Regul Integr Comp Physiol 2010; 298:R767-75. [PMID: 20071617 DOI: 10.1152/ajpregu.00148.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study determined the role of nitric oxide (NO) in neurogenic vasodilation in mesenteric resistance arteries of the toad Bufo marinus. NO synthase (NOS) was anatomically demonstrated in perivascular nerves, but not in the endothelium. ACh and nicotine caused TTX-sensitive neurogenic vasodilation of mesenteric arteries. The ACh-induced vasodilation was endothelium-independent and was mediated by the NO/soluble guanylyl cyclase signaling pathway, inasmuch as the vasodilation was blocked by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and the NOS inhibitors N(omega)-nitro-l-arginine methyl ester and N(omega)-nitro-l-arginine. Furthermore, the ACh-induced vasodilation was significantly decreased by the more selective neural NOS inhibitor N(5)-(1-imino-3-butenyl)-l-ornithine. The nicotine-induced vasodilation was endothelium-independent and mediated by NO and calcitonin gene-related peptide (CGRP), inasmuch as pretreatment of mesenteric arteries with a combination of N(omega)-nitro-l-arginine and the CGRP receptor antagonist CGRP-(8-37) blocked the vasodilation. Clotrimazole significantly decreased the ACh-induced response, providing evidence that a component of the NO vasodilation involved Ca(2+)-activated K(+) or voltage-gated K(+) channels. These data show that NO control of mesenteric resistance arteries of toad is provided by nitrergic nerves, rather than the endothelium, and implicate NO as a potentially important regulator of gut blood flow and peripheral blood pressure.
Collapse
Affiliation(s)
- Brett L Jennings
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
| | | |
Collapse
|