1
|
Arioka M, Miura K, Han R, Igawa K, Takahashi-Yanaga F, Sasaguri T. Mammalian target of differentiation-inducing factor-1 is mitochondrial malate dehydrogenase for activation of AMP-activated protein kinase and induction of mitochondrial fission. Life Sci 2024; 351:122807. [PMID: 38852800 DOI: 10.1016/j.lfs.2024.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
AIMS Differentiation-inducing factor-1 (DIF-1) is a polyketide produced by Dictyostelium discoideum that inhibits growth and migration, while promoting the differentiation of Dictyostelium stalk cells through unknown mechanisms. DIF-1 localizes in stalk mitochondria. In addition to its effect on Dictyostelium, DIF-1 also inhibits growth and migration, and induces mitochondrial fission followed by mitophagy in mammalian cells, at least in part by activating AMP-activated protein kinase (AMPK). In a previous study, we found that DIF-1 binds to mitochondrial malate dehydrogenase (MDH2) and inhibits its activity in HeLa cells. In the present study, we investigated whether MDH2 serves as a pharmacological target of DIF-1 in mammalian cells. MAIN METHODS To examine the enzymatic activity of MDH, mitochondrial morphology, and molecular mechanisms of DIF-1 action, we conducted an MDH reverse reaction assay, immunofluorescence staining, western blotting, and RNA interference using mammalian cells such as human umbilical vein endothelial cells, human cervical cancer cells, mouse endothelial cells, and mouse breast cancer cells. KEY FINDINGS DIF-1 inhibited mitochondrial but not cytoplasmic MDH activity. Similar to DIF-1, LW6, an authentic MDH2 inhibitor, induced phosphorylation of AMPK, resulting in the phosphorylation of acetyl-CoA carboxylase (ACC) and the dephosphorylation of p70 S6 kinase with approximately the same potency. DIF-1 and LW6 induced mitochondrial fission. Furthermore, MDH2 knockdown using siRNA reproduced the DIF-1 action on the AMPK signaling and mitochondrial morphology. Conversely, an AMPK inhibitor prevented DIF-1-induced mitochondrial fission. SIGNIFICANCE We propose that MDH2 is a mammalian target of DIF-1 for the activation of AMPK and induction of mitochondrial fission.
Collapse
Affiliation(s)
- Masaki Arioka
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Koichi Miura
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ruzhe Han
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunobu Igawa
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan.
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Toshiyuki Sasaguri
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
2
|
Sato Y, Umesono Y, Kuroki Y, Agata K, Hashimoto C. Proliferation maintains the undifferentiated status of stem cells: The role of the planarian cell cycle regulator Cdh1. Dev Biol 2021; 482:55-66. [PMID: 34922934 DOI: 10.1016/j.ydbio.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/03/2022]
Abstract
The coincidence of cell cycle exit and differentiation has been described in a wide variety of stem cells and organisms for decades, but the causal relationship is still unclear due to the complicated regulation of the cell cycle. Here, we used the planarian Dugesia japonica since they may possess a simple cell cycle regulation in which Cdh1 is one of the factors responsible for exiting the cell cycle. When cdh1 was functionally inhibited, the planarians could not maintain their tissue homeostasis and could not regenerate their missing body parts. While the knockdown of cdh1 caused pronounced accumulation of the stem cells, the progenitor and differentiated cells were decreased. Further analyses indicated that the stem cells with cdh1 knockdown did not undergo differentiation even though they received ERK signaling activation as an induction signal. These results suggested that stem cells could not acquire differentiation competence without cell cycle exit. Thus, we propose that cell cycle regulation determines the differentiation competence and that cell cycle exit to G0 enables stem cells to undergo differentiation.
Collapse
Affiliation(s)
| | | | - Yoshihito Kuroki
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Japan
| | - Kiyokazu Agata
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Japan
| | - Chikara Hashimoto
- JT Biohistory Research Hall, Japan; Department of Biology, Graduate School of Science, Osaka University, Japan.
| |
Collapse
|
3
|
Wei Z, Ran H, Yang C. CircRSF1 contributes to endothelial cell growth, migration and tube formation under ox-LDL stress through regulating miR-758/CCND2 axis. Life Sci 2020; 259:118241. [PMID: 32791147 DOI: 10.1016/j.lfs.2020.118241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
AIMS Compelling evidences demonstrate that informative RNAs play essential role in therapy of atherosclerosis. Here, we attempted to study the role of hsa_circ_0000345 (circRSF1) in endothelial cell damage through competing endogenous RNA pathway. MATERIALS AND METHODS Expression of circRSF1, miRNA-758-3p (miR-758) and cyclin D2 (CCND2) was detected using RT-qPCR and western blotting, and the cross-talk among them was identified using dual-luciferase reporter assay and RNA immunoprecipitation. The low-density lipoprotein cholesterol (LDL-C) level was measured with enzyme-linked immunosorbent assay. Cell growth was measured by MTS assay, flow cytometry and caspase-3 activity assay kit. Migration and tube formation were determined by scratch migration assay and tube formation assay, respectively. KEY FINDINGS CircRSF1 and CCND2 were downregulated, whereas miR-758 was upregulated in serum of patients with atherosclerosis and oxidized low-density lipoprotein (ox-LDL)-treated human aortic endothelial cells (HAECs). Moreover, levels of circRSF1, miR-758 and CCND2 were correlated with circulating LDL-C level. Restoring circRSF1 and silencing miR-758 could improve cell viability, tube formation and migration of HAECs under ox-LDL treatment, as well as attenuated apoptotic rate and caspase-3 activity. However, miR-758 upregulation counteracted the promotion of circRSF1 on cell growth, migration and tube formation in ox-LDL-induced HAECs; so did CCND2 deletion on effect of miR-758 silence. Notably, circRSF1 and CCND2 could competitively bound to miR-758, and circRSF1 positively regulated CCND2 expression via miR-758. SIGNIFICANCE CircRSF1 could protect against ox-LDL-induced endothelial cell injury in vitro via miR-758/CCND2 axis, suggesting circRSF1 as a potential target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Zhenheng Wei
- Department of Cardiovascular Medicine, Zhoukou Central Hospital, Zhoukou, Henan, China.
| | - Huazhong Ran
- Department of Cardiovascular Medicine, Zhoukou Central Hospital, Zhoukou, Henan, China
| | - Chunhua Yang
- Department of Cardiovascular Medicine, Zhoukou Central Hospital, Zhoukou, Henan, China
| |
Collapse
|
4
|
Differentiation-inducing factor-1 prevents hepatic stellate cell activation through inhibiting GSK3β inactivation. Biochem Biophys Res Commun 2019; 520:140-144. [PMID: 31582219 DOI: 10.1016/j.bbrc.2019.09.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Differentiation-inducing factor-1 (DIF-1), a morphogen produced by the cellular slime mold Dictyostelium discoideum, is a natural product that has attracted considerable attention for its antitumor properties. Here, we report a novel inhibitory effect of DIF-1 on the activation of hepatic stellate cells (HSCs) responsible for liver fibrosis. DIF-1 drastically inhibited transdifferentiation of quiescent HSCs into myofibroblastic activated HSCs in a concentration-dependent manner, thus conferring an antifibrotic effect against in the liver. Neither SQ22536, an adenylate cyclase inhibitor, nor ODQ, a guanylate cyclase inhibitor, showed any effect on the inhibition of HSC activation by DIF-1. In contrast, TWS119, a glycogen synthase kinase 3β (GSK3β) inhibitor, attenuated the inhibitory effect of DIF-1. Moreover, the level of inactive GSK3β (phosphorylated at Ser9) was significantly reduced by DIF-1. DIF-1 also inhibited nuclear translocation of β-catenin and reduced the level of non-phospho (active) β-catenin. These results suggest that DIF-1 inhibits HSC activation by disrupting the Wnt/β-catenin signaling pathway through dephosphorylation of GSK3β. We propose that DIF-1 is a possible candidate as a therapeutic agent for preventing liver fibrosis.
Collapse
|
5
|
Tetsuo F, Arioka M, Miura K, Kai M, Kubo M, Igawa K, Tomooka K, Takahashi-Yanaga F, Nishimura F, Sasaguri T. Differentiation-inducing factor-1 suppresses cyclin D1-induced cell proliferation of MCF-7 breast cancer cells by inhibiting S6K-mediated signal transducer and activator of transcription 3 synthesis. Cancer Sci 2019; 110:3761-3772. [PMID: 31553107 PMCID: PMC6890445 DOI: 10.1111/cas.14204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023] Open
Abstract
Differentiation-inducing factor-1 (DIF-1) has been reported to inhibit the proliferation of various mammalian cells by unknown means, although some possible mechanisms of its action have been proposed, including the activation of glycogen synthase kinase-3 (GSK-3). Here, we report an alternative mechanism underlying the action of DIF-1 in human breast cancer cell line MCF-7, on which the effects of DIF-1 have not been examined previously. Intragastric administration of DIF-1 reduced the tumor growth from MCF-7 cells injected into a mammary fat pad of nude mice, without causing adverse effects. In cultured MCF-7, DIF-1 arrested the cell cycle in G0 /G1 phase and suppressed cyclin D1 expression, consistent with our previous results obtained in other cell species. However, DIF-1 did not inhibit the phosphorylation of GSK-3. Investigating an alternative mechanism for the reduction of cyclin D1, we found that DIF-1 reduced the protein levels of signal transducer and activator of transcription 3 (STAT3). The STAT3 inhibitor S3I-201 suppressed cyclin D1 expression and cell proliferation and the overexpression of STAT3 enhanced cyclin D1 expression and accelerated proliferation. Differentiation-inducing factor-1 did not reduce STAT3 mRNA or reduce STAT3 protein in the presence of cycloheximide, suggesting that DIF-1 inhibited STAT3 protein synthesis. Seeking its mechanism, we revealed that DIF-1 inhibited the activation of 70 kDa and/or 85 kDa ribosomal protein S6 kinase (p70S6K /p85S6K ). Inhibition of p70S6K /p85S6K by rapamycin also reduced the expressions of STAT3 and cyclin D1. Therefore, DIF-1 suppresses MCF-7 proliferation by inhibiting p70S6K /p85S6K activity and STAT3 protein synthesis followed by reduction of cyclin D1 expression.
Collapse
Affiliation(s)
- Fumi Tetsuo
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masaki Arioka
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Miura
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Misato Kai
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Momoko Kubo
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunobu Igawa
- Department of Molecular and Materials Science, Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Japan
| | - Katsuhiko Tomooka
- Department of Molecular and Materials Science, Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Japan
| | - Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toshiyuki Sasaguri
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Kubohara Y, Kikuchi H. Dictyostelium: An Important Source of Structural and Functional Diversity in Drug Discovery. Cells 2018; 8:E6. [PMID: 30583484 PMCID: PMC6356392 DOI: 10.3390/cells8010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The cellular slime mold Dictyostelium discoideum is an excellent model organism for the study of cell and developmental biology because of its simple life cycle and ease of use. Recent findings suggest that Dictyostelium and possibly other genera of cellular slime molds, are potential sources of novel lead compounds for pharmacological and medical research. In this review, we present supporting evidence that cellular slime molds are an untapped source of lead compounds by examining the discovery and functions of polyketide differentiation-inducing factor-1, a compound that was originally isolated as an inducer of stalk-cell differentiation in D. discoideum and, together with its derivatives, is now a promising lead compound for drug discovery in several areas. We also review other novel compounds, including secondary metabolites, that have been isolated from cellular slime molds.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba 270-1695, Japan.
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
7
|
Takahashi K, Kikuchi H, Nguyen VH, Oshima Y, Ishigaki H, Nakajima-Shimada J, Kubohara Y. Biological Activities of Novel Derivatives of Differentiation-Inducing Factor 3 from Dictyostelium discoideum. Biol Pharm Bull 2018; 40:1941-1947. [PMID: 29093342 DOI: 10.1248/bpb.b17-00484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differentiation-inducing factor-3 (DIF-3; 1-(3-chloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one), which is found in the cellular slime mold Dictyostelium discoideum, is a potential candidate compound for the development of new medicines; DIF-3 and its derivatives possess several beneficial biological activities, including anti-tumor, anti-Trypanosoma cruzi, and immunoregulatory effects. To assess the relationship between the biological activities of DIF-3 and its chemical structure, particularly in regard to its alkoxy group and the length of the alkyl chains at the acyl group, we synthesized two derivatives of DIF-3, 1-(3-chloro-2,6-dihydroxy-4-methoxyphenyl)octan-1-one (DIF-3(+3)) and 1-(3-chloro-2,6-dihydroxy-4-butoxyphenyl)-hexan-1-one (Hex-DIF-3), and investigated their biological activities in vitro. At micro-molar levels, DIF-3(+3) and Hex-DIF-3 exhibited strong anti-proliferative effects in tumor cell cultures, but their anti-T. cruzi activities at 1 µM in vitro were not as strong as those of other known DIF derivatives. In addition, Hex-DIF-3 at 5 µM significantly suppressed mitogen-induced interleukin-2 production in vitro in Jurkat T cells. These results suggest that DIF-3(+3) and Hex-DIF-3 are promising leads for the development of anti-cancer and immunosuppressive agents.
Collapse
Affiliation(s)
- Katsunori Takahashi
- Department of Medical Technology, Faculty of Health Science, Gunma Paz College
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Van Hai Nguyen
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yoshiteru Oshima
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Hirotaka Ishigaki
- Department of Medical Technology, Faculty of Health Science, Gunma Paz College
| | - Junko Nakajima-Shimada
- Department of Molecular and Cellular Parasitology, Graduate School of Health Sciences, Gunma University
| | - Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Heath and Sports Science, Juntendo University
| |
Collapse
|
8
|
Anti-tumor effects of differentiation-inducing factor-1 in malignant melanoma: GSK-3-mediated inhibition of cell proliferation and GSK-3-independent suppression of cell migration and invasion. Biochem Pharmacol 2017; 138:31-48. [DOI: 10.1016/j.bcp.2017.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/09/2017] [Indexed: 01/15/2023]
|
9
|
Kubokura N, Takahashi-Yanaga F, Arioka M, Yoshihara T, Igawa K, Tomooka K, Morimoto S, Nakatsu Y, Tsuzuki T, Nakabeppu Y, Matsumoto T, Kitazono T, Sasaguri T. Differentiation-inducing factor-3 inhibits intestinal tumor growth in vitro and in vivo. J Pharmacol Sci 2015; 127:446-55. [PMID: 25913757 DOI: 10.1016/j.jphs.2015.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 12/28/2022] Open
Abstract
Differentiation-inducing factor-1 (DIF-1) produced by Dictyostelium discoideum strongly inhibits the proliferation of various types of cancer cells by suppression of the Wnt/β-catenin signal transduction pathway. In the present study, we examined the effect of differentiation-inducing factor-3 (DIF-3), a monochlorinated metabolite of DIF-1 that is also produced by D. discoideum, on human colon cancer cell lines HCT-116 and DLD-1. DIF-3 strongly inhibited cell proliferation by arresting the cell cycle at the G0/G1 phase. DIF-3 reduced the expression levels of cyclin D1 and c-Myc by facilitating their degradation via activation of GSK-3β in a time and dose-dependent manner. In addition, DIF-3 suppressed the expression of T-cell factor 7-like 2, a key transcription factor in the Wnt/β-catenin signaling pathway, thereby reducing the mRNA levels of cyclin D1 and c-Myc. Subsequently, we examined the in vivo effects of DIF-3 in Mutyh(-/-) mice with oxidative stress-induced intestinal cancers. Repeated oral administration of DIF-3 markedly reduced the number and size of cancers at a level comparable to that of DIF-1. These data suggest that DIF-3 inhibits intestinal cancer cell proliferation in vitro and in vivo, probably by mechanisms similar to those identified in DIF-1 actions, and that DIF-3 may be a potential novel anti-cancer agent.
Collapse
Affiliation(s)
- Naoya Kubokura
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Department of Medicine and Clinical Science, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Global Medical Science Education Unit, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Masaki Arioka
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tatsuya Yoshihara
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazunobu Igawa
- Department of Molecular and Material Science, Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, 816-8580, Japan
| | - Katsuhiko Tomooka
- Department of Molecular and Material Science, Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, 816-8580, Japan
| | - Sachio Morimoto
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshimichi Nakatsu
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Teruhisa Tsuzuki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, 020-0023, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiyuki Sasaguri
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
10
|
Kubohara Y, Kikuchi H, Matsuo Y, Oshima Y, Homma Y. Mitochondria are the target organelle of differentiation-inducing factor-3, an anti-tumor agent isolated from Dictyostelium discoideum [corrected]. PLoS One 2013; 8:e72118. [PMID: 23977224 PMCID: PMC3744471 DOI: 10.1371/journal.pone.0072118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/05/2013] [Indexed: 11/19/2022] Open
Abstract
Differentiation-inducing factor-3 (DIF-3), found in the cellular slime mold Dictyostelium discoideum, and its derivatives such as butoxy-DIF-3 (Bu-DIF-3) are potent anti-tumor agents. However, the precise mechanisms underlying the actions of DIF-3 remain to be elucidated. In this study, we synthesized a green fluorescent derivative of DIF-3, BODIPY-DIF-3, and a control fluorescent compound, Bu-BODIPY (butyl-BODIPY), and investigated how DIF-like molecules behave in human cervical cancer HeLa cells by using both fluorescence and electron microscopy. BODIPY-DIF-3 at 5–20 µ M suppressed cell growth in a dose-dependent manner, whereas Bu-BODIPY had minimal effect on cell growth. When cells were incubated with BODIPY-DIF-3 at 20 µM, it penetrated cell membranes within 0.5 h and localized mainly in mitochondria, while Bu-BODIPY did not stain the cells. Exposure of cells for 1–3 days to DIF-3, Bu-DIF-3, BODIPY-DIF-3, or CCCP (a mitochondrial uncoupler) induced substantial mitochondrial swelling, suppressing cell growth. When added to isolated mitochondria, DIF-3, Bu-DIF-3, and BOIDPY-DIF-3, like CCCP, dose-dependently promoted the rate of oxygen consumption, but Bu-BODIPY did not. Our results suggest that these bioactive DIF-like molecules suppress cell growth, at least in part, by disturbing mitochondrial activity. This is the first report showing the cellular localization and behavior of DIF-like molecules in mammalian tumor cells.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- * E-mail:
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Aoba-yama, Aoba-ku, Sendai, Japan
| | - Yusuke Matsuo
- Laboratory of Natural Product Chemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Aoba-yama, Aoba-ku, Sendai, Japan
| | - Yoshiteru Oshima
- Laboratory of Natural Product Chemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Aoba-yama, Aoba-ku, Sendai, Japan
| | - Yoshimi Homma
- Department of Biomolecular Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
11
|
Derivatives of Dictyostelium discoideum differentiation-inducing factor-3 suppress the activities of Trypanosoma cruzi in vitro and in vivo. Biochem Pharmacol 2013; 85:1603-10. [PMID: 23511088 DOI: 10.1016/j.bcp.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 11/21/2022]
Abstract
Chagas disease (human American trypanosomiasis), which is caused by the protozoan parasite Trypanosoma cruzi, is responsible for numerous deaths each year; however, established treatments for the disease are limited. Differentiation-inducing factor-1 (DIF-1) and DIF-3 are chlorinated alkylphenones originally found in the cellular slime mold Dictyostelium discoideum that have been shown to possess pharmacological activities. Here, we investigated the effects of DIF-3 derivatives on the infection rate and growth of T. cruzi by using an in vitro assay system utilizing host human fibrosarcoma HT1080 cells. Certain DIF-3 derivatives, such as butoxy-DIF-3 (Bu-DIF-3), at micro-molar levels strongly suppressed both the infection rate and growth of T. cruzi in HT1080 cells and exhibited little toxicity for HT1080 cells. For example, the IC50 of DIF-3 and Bu-DIF-3 versus the growth of T. cruzi in HT1080 cells were 3.95 and 0.72μM, respectively, and the LD50 of the two compounds versus HT1080 cells were both greater than 100μM. We also examined the effects of DIF-3 and Bu-DIF-3 on T. cruzi activity in C57BL/6 mice. Intraperitoneally administered Bu-DIF-3 (50mg/kg) significantly suppressed the number of trypomastigotes in blood with no apparent adverse effects. These results strongly suggest that DIF-3 derivatives could be new lead compounds in the development of anti-trypanosomiasis drugs.
Collapse
|
12
|
Seya K, Kanemaru K, Matsuki M, Hongo K, Kitahara H, Kikuchi H, Oshima Y, Kubohara Y, Okumura K, Motomura S, Furukawa KI. Br-DIF-1 accelerates dimethyl sulphoxide-induced differentiation of P19CL6 embryonic carcinoma cells into cardiomyocytes. Br J Pharmacol 2012; 165:870-9. [PMID: 21671902 DOI: 10.1111/j.1476-5381.2011.01541.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Stem cell transplantation therapy is a promising option for treatment of severe ischaemic heart disease. Dimethyl sulphoxide (DMSO) differentiates P19CL6 embryonic carcinoma cells into cardiomyocyte-like cells, but with low differentiation capacity. To improve the degree of this differentiation, we have assessed several derivatives of the differentiation-inducing factor-1 (DIF-1), originally found in the cellular slime mould Dictyostelium discoideum, on P19CL6 cells. EXPERIMENTAL APPROACH P19CL6 cells were cultured with each derivative and 1% DMSO for up to 16 days. Differentiation was assessed by measuring the number of beating and non-beating aggregates, and the expression of genes relevant to cardiac tissue. The mechanism of action was investigated using a T-type Ca(2+) channel blocker. KEY RESULTS Of all the DIF-1 derivatives tested only Br-DIF-1 showed any effects on cardiomyocyte differentiation. In the presence of 1% DMSO, Br-DIF-1 (0.3-3 µM) significantly and dose-dependently increased the number of spontaneously beating aggregates compared with 1% DMSO alone, by day 16. Expression of mRNA for T-type calcium channels was significantly increased by Br-DIF-1 + 1% DMSO compared with 1% DMSO alone. Mibefradil (a T-type Ca(2+) channel blocker; 100 nM) and a small interfering RNA for the T-type Ca(2+) channel both significantly decreased the beating rate of aggregates induced by Br-DIF-1 + 1% DMSO. CONCLUSIONS AND IMPLICATIONS Br-DIF-1 accelerated the differentiation, induced by 1% DMSO, of P19CL6 cells into spontaneously beating cardiomyocyte-like cells, partly by enhancing the expression of the T-type Ca(2+) channel gene.
Collapse
Affiliation(s)
- K Seya
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sprio AE, Di Scipio F, Ceppi P, Salamone P, Di Carlo F, Scagliotti GV, Papotti M, Ceccarelli A, Berta GN. Differentiation-inducing factor-1 enhances 5-fluorouracil action on oral cancer cells inhibiting E2F1 and thymidylate synthase mRNAs accumulation. Cancer Chemother Pharmacol 2011; 69:983-9. [DOI: 10.1007/s00280-011-1790-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/16/2011] [Indexed: 01/22/2023]
|
14
|
DIF-1 inhibits the Wnt/β-catenin signaling pathway by inhibiting TCF7L2 expression in colon cancer cell lines. Biochem Pharmacol 2011; 83:47-56. [PMID: 22005519 DOI: 10.1016/j.bcp.2011.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 12/18/2022]
Abstract
We previously reported that differentiation-inducing factor-1 (DIF-1), a morphogen in Dictyostelium discoideum, inhibits the proliferation of human cancer cell lines by inducing β-catenin degradation and suppressing the Wnt/β-catenin signaling pathway. To determine whether β-catenin degradation is essential for the effect of DIF-1, we examined the effect of DIF-1 on human colon cancer cell lines (HCT-116, SW-620 and DLD-1), in which the Wnt/β-catenin signaling pathway is constitutively active. DIF-1 strongly inhibited cell proliferation and arrested the cell cycle in the G(0)/G(1) phase via the suppression of cyclin D1 expression at mRNA and protein levels without reducing β-catenin protein. TCF-dependent transcriptional activity and cyclin D1 promoter activity were revealed to be inhibited via suppression of transcription factor 7-like 2 (TCF7L2) expression. Luciferase reporter assays and EMSAs using the TCF7L2 promoter fragments indicated that the binding site for the transcription factor early growth response-1 (Egr-1), which is located in the -609 to -601 bp region relative to the start codon in the TCF7L2 promoter, was involved in DIF-1 activity. Moreover, RNAi-mediated depletion of endogenous TCF7L2 resulted in reduced cyclin D1 promoter activity and protein expression, and the overexpression of TCF7L2 overrode the inhibition of the TCF-dependent transcriptional activity and cyclin D1 promoter activity induced by DIF-1. Therefore, DIF-1 seemed to inhibit the Wnt/β-catenin signaling pathway by suppressing TCF7L2 expression via reduced Egr-1-dependent transcriptional activity in these colon cancer cell lines. Our results provide a novel insight into the mechanisms by which DIF-1 inhibits the Wnt/β-catenin signaling pathway.
Collapse
|
15
|
Yoshihara T, Takahashi-Yanaga F, Shiraishi F, Morimoto S, Watanabe Y, Hirata M, Hoka S, Sasaguri T. Anti-angiogenic effects of differentiation-inducing factor-1 involving VEGFR-2 expression inhibition independent of the Wnt/β-catenin signaling pathway. Mol Cancer 2010; 9:245. [PMID: 20843378 PMCID: PMC2946290 DOI: 10.1186/1476-4598-9-245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differentiation-inducing factor-1 (DIF-1) is a putative morphogen that induces cell differentiation in Dictyostelium discoideum. DIF-1 inhibits proliferation of various mammalian tumor cells by suppressing the canonical Wnt/β-catenin signaling pathway. To assess the potential of a novel cancer chemotherapy based on the pharmacological effect of DIF-1, we investigated whether DIF-1 exhibits anti-angiogenic effects in vitro and in vivo. RESULTS DIF-1 not only inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) by restricting cell cycle in the G0/G1 phase and degrading cyclin D1, but also inhibited the ability of HUVECs to form capillaries and migrate. Moreover, DIF-1 suppressed VEGF- and cancer cell-induced neovascularization in Matrigel plugs injected subcutaneously to murine flank. Subsequently, we attempted to identify the mechanism behind the anti-angiogenic effects of DIF-1. We showed that DIF-1 strongly decreased vascular endothelial growth factor receptor-2 (VEGFR-2) expression in HUVECs by inhibiting the promoter activity of human VEGFR-2 gene, though it was not caused by inhibition of the Wnt/β-catenin signaling pathway. CONCLUSION These results suggested that DIF-1 inhibits angiogenesis both in vitro and in vivo, and reduction of VEGFR-2 expression is involved in the mechanism. A novel anti-cancer drug that inhibits neovascularization and tumor growth may be developed by successful elucidation of the target molecules for DIF-1 in the future.
Collapse
Affiliation(s)
- Tatsuya Yoshihara
- Department of Clinical Pharmacology, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Matsuda T, Takahashi-Yanaga F, Yoshihara T, Maenaka K, Watanabe Y, Miwa Y, Morimoto S, Kubohara Y, Hirata M, Sasaguri T. Dictyostelium differentiation-inducing factor-1 binds to mitochondrial malate dehydrogenase and inhibits its activity. J Pharmacol Sci 2010; 112:320-6. [PMID: 20173310 DOI: 10.1254/jphs.09348fp] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We have reported that the differentiation-inducing factors (DIFs) DIF-1 and DIF-3, morphogens secreted from Dictyostelium discoideum, inhibit proliferation of several cancer cells via suppression of the Wnt/beta-catenin signaling pathway. However, the target molecules of DIFs involved in the anti-proliferative effects are still unknown. In the present study, DIF-1-tethered resins were synthesized to explore the target molecules of DIFs, and mitochondrial malate dehydrogenase (mMDH) was identified as one of the target molecules. In the in vitro assay, DIF-1 and other analogs including 2-MIDIF-1, DIF-3, and 6-MIDIF-3 were found to be capable of binding to mMDH but not to cytoplasmic MDH. However, only DIF-1 and 2-MIDIF-1 inhibited the enzymatic activity of mMDH. The effects of DIF analogs on ATP content and cell proliferation were then analyzed using HeLa cells. DIF-1 and 2-MIDIF-1 were found to lower the ATP content and both chemicals inhibited HeLa cell proliferation, suggesting that inhibition of mMDH activity affected cell energy production, probably leading to the inhibition of proliferation. These results suggest that the inhibition of mMDH activity by DIF-1 and 2-MIDIF-1 could be one of the mechanisms to induce anti-proliferative effects, independent of the inhibition of the Wnt/beta-catenin signaling pathway.
Collapse
Affiliation(s)
- Tomoko Matsuda
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ohmine T, Miwa Y, Takahashi-Yanaga F, Morimoto S, Maehara Y, Sasaguri T. The involvement of aldosterone in cyclic stretch-mediated activation of NADPH oxidase in vascular smooth muscle cells. Hypertens Res 2009; 32:690-9. [PMID: 19478813 DOI: 10.1038/hr.2009.76] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increasing evidence suggests that aldosterone is implicated in the pathogenesis of cardiovascular diseases. We examined whether aldosterone contributes to the cyclic stretch (CS)-induced reactive oxygen species (ROS) generation in rat aortic smooth muscle cells (RASMCs). RASMCs were exposed to uniaxial CS and thereafter collected to evaluate the expressions of mRNA or protein relating aldosterone synthesis and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. CS strength-dependently enhanced NADPH oxidase activity. CS induced cytochrome P450 aldosterone synthase (CYP11B2) and increased aldosterone synthesis but did not influence the levels of 11beta-hydroxysteroid dehydrogenase 2 and mineralocorticoid receptor (MR). This CYP11B2 induction was almost completely suppressed by treatment with an extracellular signal-regulated kinase (ERK) inhibitor, U0126, whereas olmesartan, an angiotensin II (Ang II) receptor blocker (ARB), only partially suppressed CS-induced CYP11B2 expression and ERK phosphorylation. A selective MR antagonist, eplerenone (10 micromol l(-1)), significantly attenuated the CS-induced NADPH oxidase activation even in the presence of ARBs. In conclusion, aldosterone synthesis, which is partially independent of Ang II, may have an important role in CS-stimulated ROS generation in cultured RASMCs. We also suggest the potential benefit of eplerenone in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Takahiro Ohmine
- Faculty of Medical Sciences, Department of Clinical Pharmacology, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
18
|
O'Day DH, Poloz Y, Myre MA. Differentiation inducing factor-1 (DIF-1) induces gene and protein expression of the Dictyostelium nuclear calmodulin-binding protein nucleomorphin. Cell Signal 2008; 21:317-23. [PMID: 19000924 DOI: 10.1016/j.cellsig.2008.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 10/25/2008] [Accepted: 10/27/2008] [Indexed: 11/18/2022]
Abstract
The nucleomorphin gene numA1 from Dictyostelium codes for a multi-domain, calmodulin binding protein that regulates nuclear number. To gain insight into the regulation of numA, we assessed the effects of the stalk cell differentiation inducing factor-1 (DIF-1), an extracellular signalling molecule, on the expression of numA1 RNA and protein. For comparison, the extracellular signalling molecules cAMP (mediates chemotaxis, prestalk and prespore differentiation) and ammonia (NH(3)/NH(4)(+); antagonizes DIF) were also studied. Starvation, which is a signal for multicellular development, results in a greater than 80% decrease in numA1 mRNA expression within 4 h. Treatment with ammonium chloride led to a greater than 90% inhibition of numA1 RNA expression within 2 h. In contrast, the addition of DIF-1 completely blocked the decrease in numA1 gene expression caused by starvation. Treatment of vegetative cells with cAMP led to decreases in numA1 RNA expression that were equivalent to those seen with starvation. Western blotting after various morphogen treatments showed that the maintenance of vegetative levels of numA1 RNA by DIF-1 in starved cells was reflected in significantly increased numA1 protein levels. Treatment with cAMP and/or ammonia led to decreased protein expression and each of these morphogens suppressed the stimulatory effects of DIF-1. Protein expression levels of CBP4a, a calcium-dependent binding partner of numA1, were regulated in the same manner as numA1 suggesting this potential co-regulation may be related to their functional relationship. NumA1 is the first calmodulin binding protein shown to be regulated by developmental morphogens in Dictyostelium being upregulated by DIF-1 and down-regulated by cAMP and ammonia.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6.
| | | | | |
Collapse
|
19
|
Takahashi-Yanaga F, Sasaguri T. GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal 2008; 20:581-9. [PMID: 18023328 DOI: 10.1016/j.cellsig.2007.10.018] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 10/16/2007] [Indexed: 11/26/2022]
Abstract
Cyclin D1 is known as a proto-oncogene whose gene amplification and protein overexpression are frequently observed in tumor cells. It acts as a mitogenic signal sensor and is expressed as a delayed-early response to many mitogenic signals. Cyclin-dependent kinases (CDKs) 4 and 6 are cyclin D1 binding partners, and activated cyclin D1/CDK4 and cyclin D1/CDK6 complex phosphorylate the retinoblastoma protein to induce the expression of target genes essential for S phase entry, resulting in facilitation of the progression from G1 to S phase. As well as acting as a positive regulator of the cell cycle, cyclin D1 is known to bind and modulate the actions of several transcription factors. Since the protein level of cyclin D1 reflects cell cycle progression, the rates of protein production and degradation are strictly regulated. Glycogen synthase kinase-3beta (GSK-3beta), a serine/threonine protein kinase, has been shown to play an important role in the determination of cyclin D1 expression level by regulating mRNA transcription and protein degradation. This review highlights the regulatory mechanisms of cyclin D1 expression level, with special attention to the involvement of GSK-3beta.
Collapse
Affiliation(s)
- Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
20
|
Omata W, Shibata H, Nagasawa M, Kojima I, Kikuchi H, Oshima Y, Hosaka K, Kubohara Y. Dictyostelium differentiation-inducing factor-1 induces glucose transporter 1 translocation and promotes glucose uptake in mammalian cells. FEBS J 2007; 274:3392-404. [PMID: 17553062 DOI: 10.1111/j.1742-4658.2007.05872.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The differentiation-inducing factor-1 (DIF-1) is a signal molecule that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum, while DIF-1 and its analogs have been shown to possess antiproliferative activity in vitro in mammalian tumor cells. In the present study, we investigated the effects of DIF-1 and its analogs on normal (nontransformed) mammalian cells. Without affecting the cell morphology and cell number, DIF-1 at micromolar levels dose-dependently promoted the glucose uptake in confluent 3T3-L1 fibroblasts, which was not inhibited with wortmannin or LY294002 (inhibitors for phosphatidylinositol 3-kinase). DIF-1 affected neither the expression level of glucose transporter 1 nor the activities of four key enzymes involved in glucose metabolism, such as hexokinase, fluctose 6-phosphate kinase, pyruvate kinase, and glucose 6-phosphate dehydrogenase. Most importantly, stimulation with DIF-1 was found to induce the translocation of glucose transporter 1 from intracellular vesicles to the plasma membranes in the cells. In differentiated 3T3-L1 adipocytes, DIF-1 induced the translocation of glucose trasporter 1 (but not of glucose transporter 4) and promoted glucose uptake, which was not inhibited with wortmannin. These results indicate that DIF-1 induces glucose transporter 1 translocation and thereby promotes glucose uptake, at least in part, via a inhibitors for phosphatidylinositol 3-kinase/Akt-independent pathway in mammalian cells. Furthermore, analogs of DIF-1 that possess stronger antitumor activity than DIF-1 were less effective in promoting glucose consumption, suggesting that the mechanism of the action of DIF-1 for stimulating glucose uptake should be different from that for suppressing tumor cell growth.
Collapse
Affiliation(s)
- Waka Omata
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Takahashi-Yanaga F, Mori J, Matsuzaki E, Watanabe Y, Hirata M, Miwa Y, Morimoto S, Sasaguri T. Involvement of GSK-3beta and DYRK1B in differentiation-inducing factor-3-induced phosphorylation of cyclin D1 in HeLa cells. J Biol Chem 2006; 281:38489-97. [PMID: 17046823 DOI: 10.1074/jbc.m605205200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Differentiation-inducing factors (DIFs) are putative morphogens that induce cell differentiation in Dictyostelium discoideum. We previously reported that DIF-3 activates glycogen synthase kinase-3beta (GSK-3beta), resulting in the degradation of cyclin D1 in HeLa cells. In this study, we investigated the effect of DIF-3 on cyclin D1 mutants (R29Q, L32A, T286A, T288A, and T286A/T288A) to clarify the precise mechanisms by which DIF-3 degrades cyclin D1 in HeLa cells. We revealed that T286A, T288A, and T286A/T288A mutants were resistant to DIF-3-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr(286) and Thr(288) were critical for cyclin D1 degradation induced by DIF-3. Indeed, DIF-3 markedly elevated the phosphorylation level of cyclin D1, and mutations introduced to Thr(286) and/or Thr(288) prevented the phosphorylation induced by DIF-3. Depletion of endogenous GSK-3beta and dual-specificity tyrosine phosphorylation regulated kinase 1B (DYRK1B) by RNA interference attenuated the DIF-3-induced cyclin D1 phosphorylation and degradation. The effect of DIF-3 on DYRK1B activity was examined and we found that DIF-3 also activated this kinase. Further, we found that not only GSK-3beta but also DYRK1B modulates cyclin D1 subcellular localization by the phosphorylation of Thr(288). These results suggest that DIF-3 induces degradation of cyclin D1 through the GSK-3beta- and DYRK1B-mediated threonine phosphorylation in HeLa cells.
Collapse
Affiliation(s)
- Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kikuchi H, Oshima Y, Ichimura A, Gokan N, Hasegawa A, Hosaka K, Kubohara Y. Anti-leukemic activities of Dictyostelium secondary metabolites: a novel aromatic metabolite, 4-methyl-5-n-pentylbenzene-1,3-diol, isolated from Dictyostelium mucoroides suppresses cell growth in human leukemia K562 and HL-60 cells. Life Sci 2006; 80:160-5. [PMID: 17027864 DOI: 10.1016/j.lfs.2006.08.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 07/07/2006] [Accepted: 08/30/2006] [Indexed: 11/20/2022]
Abstract
It has previously been shown that DIF-1, a differentiation-inducing factor of the cellular slime mold Dictyostelium discoideum, possesses antitumor activities in mammalian tumor cells and that neuronal differentiation of PC12 cells can be induced with furanodictines (FDs), aminosugar analogs found in D. discoideum, or dictyoglucosamines (DGs), N-acetyl glucosamine derivatives (DG-A from D. purpureum and DG-B from D. discoideum). Thus, cellular slime molds are attractive natural resources that may provide valuable lead compounds to be utilized in the field of pharmacology and medicine. In this study, we have isolated a novel aromatic compound, 4-methyl-5-n-pentylbenzene-1,3-diol (MPBD), from fruiting bodies of the cellular slime mold D. mucoroides and assessed the in vitro antiproliferative activities of MPBD, FDs, and DGs in human leukemia K562 and HL-60 cells. MPBD at 20-80 microM dose-dependently suppressed cell growth in both K562 and HL-60 cells. While FDs at 10-80 microM did not affect cell growth, DGs at 10-40 microM dose-dependently suppressed cell growth in the cells. Although we failed to find the roles of FDs and DGs in the original organisms, MPBD at 5-20 microM was found to promote stalk cell formation in D. discoideum. The present results indicate that MPBD, DGs or their derivatives may have therapeutic potential in the treatment of cancer and confirm our expectations regarding cellular slime molds as drug resources.
Collapse
Affiliation(s)
- Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Matsuzaki E, Takahashi-Yanaga F, Miwa Y, Hirata M, Watanabe Y, Sato N, Morimoto S, Hirofuji T, Maeda K, Sasaguri T. Differentiation-inducing factor-1 alters canonical Wnt signaling and suppresses alkaline phosphatase expression in osteoblast-like cell lines. J Bone Miner Res 2006; 21:1307-16. [PMID: 16869729 DOI: 10.1359/jbmr.060512] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Because DIF-1 has been shown to affect Wnt/beta-catenin signaling pathway, the effects of DIF-1 on osteoblast-like cell lines, SaOS-2 and MC3T3-E1, were examined. We found that DIF-1 inhibited this pathway, resulting in the suppression of ALP promoter activity through the TCF/LEF binding site. INTRODUCTION Differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium, inhibits cell proliferation and induces cell differentiation in several mammalian cells. Previous studies showed that DIF-1 activated glycogen synthase kinase-3beta, suggesting that this chemical could affect the Wnt/beta-catenin signaling pathway. This pathway has been shown to be involved in bone biology. MATERIALS AND METHODS We studied the effects of DIF-1 on SaOS-2 and MC3T3-E1, osteosarcoma cell lines widely used as a model system for ostoblastic cells and murine osteoblast-like cell line, respectively. Reporter gene assays were also carried out to examine the effect of DIF-1 on the Wnt/beta-catenin signaling pathway. RESULTS DIF-1 inhibited SaOS-2 proliferation and reduced alkaline phosphatase (ALP) activity in a concentration- and a time-dependent manner. The expression of ALP was markedly suppressed by DIF-1-treatment in protein and mRNA levels. DIF-1 also suppressed the expression of other osteoblast differentiation markers, including core binding factor alpha1, type I collagen, and osteocalcin, in protein and mRNA levels and inhibited osteoblast-mediated mineralization. Subsequently, we examined the effect of DIF-1 on the Wnt/beta-catenin signaling pathway. We found that DIF-1 suppressed the expression of beta-catenin protein and the activity of the reporter gene containing T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) consensus binding sites. We examined the effect of DIF-1 on a reporter gene driven by the human ALP promoter and found that DIF-1 significantly reduced the ALP reporter gene activity through the TCF/LEF binding site (-1023/-1017 bp). Furthermore, the effect of DIF-1 on MC3T3-E1, a murine osteoblast-like cell line, was examined, and it was found that DIF-1 suppressed ALP mRNA expression by the reduction of the ALP reporter gene activity through the TCF/LEF binding site. CONCLUSIONS Our data suggest that DIF-1 inhibits Wnt/beta-catenin signaling, resulting in the suppression of ALP promoter activity. To our knowledge, this is the first report to analyze the role of the TCF/LEF binding site (-1023/-1017 bp) of the ALP gene promoter in osteoblast-like cell lines.
Collapse
Affiliation(s)
- Etsuko Matsuzaki
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kikuchi H, Saito Y, Sekiya J, Okano Y, Saito M, Nakahata N, Kubohara Y, Oshima Y. Isolation and synthesis of a new aromatic compound, brefelamide, from dictyostelium cellular slime molds and its inhibitory effect on the proliferation of astrocytoma cells. J Org Chem 2006; 70:8854-8. [PMID: 16238318 DOI: 10.1021/jo051352x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[structure: see text] We have explored the diversity of secondary metabolites produced by cellular slime molds to examine the possible use of such cellular slime molds as a resource for novel drug development. A new aromatic amide, brefelamide (1), was isolated from methanol extracts of the fruiting bodies of Dictyostelium brefeldianum and D. giganteum. The structure of 1 was determined by spectral means including EIMS and (1)H and (13)C NMR. The total synthesis of 1 was carried out to confirm the structure and obtain sufficient samples for performing biological evaluation. Interestingly, compound 1 inhibited the cellular proliferation of 1321N1 human astrocytoma cells.
Collapse
Affiliation(s)
- Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Arai A, Goto Y, Hasegawa A, Hosaka K, Kikuchi H, Oshima Y, Tanaka S, Kubohara Y. Dictyopyrones, novel alpha-pyronoids isolated from Dictyostelium spp., promote stalk cell differentiation in Dictyostelium discoideum. Differentiation 2006; 73:377-84. [PMID: 16219041 DOI: 10.1111/j.1432-0436.2005.00039.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dictyopyrones A and B (DpnA and B), whose function(s) is not known, were isolated from fruiting bodies of Dictyostelium discoideum. In the present study, to assess their function(s), we examined the effects of Dpns on in vitro cell differentiation in D. discoideum monolayer cultures with cAMP. Dpns at 1-20 microM promoted stalk cell formation to some extent in the wild-type strain V12M2. Although Dpns by themselves could hardly induce stalk cell formation in a differentiation-inducing factor (DIF)-deficient strain HM44, both of them dose-dependently promoted DIF-1-dependent stalk cell formation in the strain. In the sporogenous strain HM18, Dpns at 1-20 microM suppressed spore formation and promoted stalk cell formation in a dose-dependent manner. Analogs of Dpns were less effective in affecting cell differentiation in both HM44 and HM18 cells, indicating that the activity of Dpns should be chemical structure specific. It was also shown that DpnA at 2-20 microM dose-dependently suppressed spore formation induced with 8-bromo cAMP and promoted stalk cell formation in V12M2 cells. Interestingly, it was shown by the use of RT-PCR that DpnA at 10 microM slightly promoted both prespore- and prestalk-specific gene expressions in an early phase of V12M2 and HM18 in vitro differentiation. The present results suggest that Dpns may have functions (1) to promote both prespore and prestalk cell differentiation in an early stage of development and (2) to suppress spore formation and promote stalk cell formation in a later stage of development in D. discoideum.
Collapse
Affiliation(s)
- Akiko Arai
- Department of Basic Sciences for Medicine, Gunma University School of Health Sciences, Maebashi 371-8514, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mori J, Takahashi-Yanaga F, Miwa Y, Watanabe Y, Hirata M, Morimoto S, Shirasuna K, Sasaguri T. Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr286 in squamous cell carcinoma. Exp Cell Res 2005; 310:426-33. [PMID: 16153639 DOI: 10.1016/j.yexcr.2005.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 07/25/2005] [Accepted: 07/29/2005] [Indexed: 11/27/2022]
Abstract
Differentiation-inducing factors (DIFs) are morphogens which induce cell differentiation in Dictyostelium. We reported that DIF-1 and DIF-3 inhibit proliferation and induce differentiation in mammalian cells. In this study, we investigated the effect of DIF-1 on oral squamous cell carcinoma cell lines NA and SAS, well differentiated and poorly differentiated cell lines, respectively. Although DIF-1 did not induce the expression of cell differentiation makers in these cell lines, it inhibited the proliferation of NA and SAS in a dose-dependent manner by restricting the cell cycle in the G0/G1 phase. DIF-1 induced cyclin D1 degradation, but this effect was prevented by treatment with lithium chloride and SB216763, the inhibitors of glycogen synthase kinase-3beta (GSK-3beta). Depletion of endogenous GSK-3beta by RNA interference also attenuated the effect of DIF-1 on cyclin D1 degradation. Therefore, we investigated the effect of DIF-1 on GSK-3beta and found that DIF-1 dephosphorylated GSK-3beta on Ser9 and induced the nuclear translocation of GSK-3beta, suggesting that DIF-1 activated GSK-3beta. Then, we examined the effect of DIF-1 on cyclin D1 mutants (Thr286Ala, Thr288Ala, and Thr286/288Ala). We revealed that Thr286Ala and Thr286/288Ala mutants were highly resistant to DIF-1-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr286 was critical for cyclin D1 degradation induced by DIF-1. These results suggest that DIF-1 induces degradation of cyclin D1 through the GSK-3beta-mediated phosphorylation of Thr286.
Collapse
Affiliation(s)
- Jun Mori
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nakano N, Urasawa K, Takagi Y, Saito T, Kaneta S, Ishikawa S, Higashi H, Tsutsui H, Hatakeyama M, Kitabatake A. Downregulation of cyclin-dependent kinase inhibitor; p57(kip2), is involved in the cell cycle progression of vascular smooth muscle cells. Biochem Biophys Res Commun 2005; 338:1661-7. [PMID: 16259944 DOI: 10.1016/j.bbrc.2005.10.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Immature vascular smooth muscle cells (VSMCs) proliferate responding to extrinsic mitogens and accumulate in neointima after arterial injuries. Cell proliferation is positively regulated by cyclin/cyclin-dependent kinase (CDK) complex and negatively controlled by CDK inhibitors; CKIs such as p27(kip1) and p57(kip2). In this study, embryonic rat thoracic aorta VSMCs; A10 were G0/G1 arrested by serum starvation, re-stimulated with serum, and harvested every four hours. Both CKIs co-expressed in quiescent VSMCs and rapidly diminished by stimulation. Protein level of p27(kip1) was regulated by both transcription and post-transcription, but that of p57(kip2) was mainly by post-transcription. Supplemental overexpression of p57(kip2) inhibited the activations of G1 cyclin/CDKs and subsequent hyperphosphorylations of all three retinoblastoma pocket proteins as well as G1/S transition of cell cycle. Our findings suggest that the downregulations of not only p27(kip1), but also p57(kip2) responding to mitogenic stimulation, play key roles in the cell cycle progression of VSMCs.
Collapse
Affiliation(s)
- Noritsugu Nakano
- Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yasmin T, Takahashi-Yanaga F, Mori J, Miwa Y, Hirata M, Watanabe Y, Morimoto S, Sasaguri T. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells. Biochem Biophys Res Commun 2005; 338:903-9. [PMID: 16243295 DOI: 10.1016/j.bbrc.2005.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 10/06/2005] [Indexed: 11/18/2022]
Abstract
To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of beta-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3beta (GSK-3beta) and inhibition of GSK-3beta attenuated the DIF-1-induced beta-catenin degradation, indicating the involvement of GSK-3beta in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/beta-catenin signaling, resulting in the suppression of cyclin D1 promoter activity.
Collapse
Affiliation(s)
- Tania Yasmin
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gokan N, Kikuchi H, Nakamura K, Oshima Y, Hosaka K, Kubohara Y. Structural requirements of Dictyostelium differentiation-inducing factors for their stalk-cell-inducing activity in Dictyostelium cells and anti-proliferative activity in K562 human leukemic cells. Biochem Pharmacol 2005; 70:676-85. [PMID: 16023080 DOI: 10.1016/j.bcp.2005.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/25/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
The differentiation-inducing factor-1 (DIF-1) is a lipophilic signal molecule (chlorinated alkylphenone) that induces stalk-cell differentiation in the cellular slime mould Dictyostelium discoideum. It has also been shown that DIF-1 and its derivative (DIF-3) suppress cell growth in mammalian tumor cells. In the present study, in order to assess the chemical structure-effect relationship of DIF derivatives and to develop useful agents for the study of both Dictyostelium development and cancer biology, we synthesized 28 analogues of DIF-1 and DIF-3 and investigated their stalk-cell-inducing activity in Dictyostelium HM44 cells (mutant strain) and anti-proliferative activity in human leukemia K562 cells. HM44 cells are defective in endogenous DIF-1 production and should be suitable for the assay for stalk-cell-inducing activity of DIF analogues. DIF-1 and some of its derivatives at nanomolar levels were good stalk-cell inducers in HM44 cells, whereas DIF-3 and some DIF-3 derivatives at micromolar levels were potent anti-proliferative agents in K562 cells. We also tried to search for antagonistic molecules against DIF-1 and DIF-3 but failed to find such molecules from the analogues used here. The present findings would give us hints for identifying the target molecule(s) of DIFs and also for developing novel anti-cancer drugs.
Collapse
Affiliation(s)
- Naomi Gokan
- Department of Basic Sciences for Medicine, Gunma University School of Health Sciences, Maebashi 371-8514, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Mereyala HB, Baseeruddin M, Reddy Koduru S. Formal synthesis of furanodictine B from d-glucose. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.tetasy.2004.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Miwa Y, Takahashi-Yanaga F, Morimoto S, Sasaguri T. Involvement of clusterin in 15-deoxy-Δ12,14-prostaglandin J2-induced vascular smooth muscle cell differentiation. Biochem Biophys Res Commun 2004; 319:163-8. [PMID: 15158456 DOI: 10.1016/j.bbrc.2004.04.163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Indexed: 02/04/2023]
Abstract
To establish an in vitro model of vascular smooth muscle cell (VSMC) differentiation, we examined the effect of 15-deoxy-delta12,14-prostaglandin J(2) (15d-PGJ(2)) on the expression of VSMC differentiation markers. After the addition of 15d-PGJ(2) to confluent human umbilical artery smooth muscle cells synchronized in the G(0) phase, cells showed a "hill and valley" appearance and thereafter aggregated and formed macroscopic nodules. Cells forming nodules expressed high levels of SM2, the most specific VSMC differentiation marker, comparable to medial VSMCs in vivo. 15d-PGJ(2) significantly increased the mRNA and protein expression levels of clusterin, a secreted glycoprotein reported to induce nodule formation and differentiation of VSMCs. Moreover, addition of an anti-clusterin antibody completely inhibited the nodule formation induced by 15d-PGJ(2) and induced apoptosis. Our results suggested that clusterin is involved in 15d-PGJ(2)-induced nodule formation and cell differentiation in VSMCs.
Collapse
Affiliation(s)
- Yoshikazu Miwa
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
32
|
Shimizu K, Murata T, Tagawa T, Takahashi K, Ishikawa R, Abe Y, Hosaka K, Kubohara Y. Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1) is a pharmacological target of differentiation-inducing factor-1, an antitumor agent isolated from Dictyostelium. Cancer Res 2004; 64:2568-71. [PMID: 15059913 DOI: 10.1158/0008-5472.can-03-3551] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The differentiation-inducing factor-1 (DIF-1) isolated from Dictyostelium discoideum is a potent antiproliferative agent that induces growth arrest and differentiation in mammalian cells in vitro. However, the specific target molecule(s) of DIF-1 has not been identified. In this study, we have tried to identify the target molecule(s) of DIF-1 in mammalian cells, examining the effects of DIF-1 and its analogs on the activity of some candidate enzymes. DIF-1 at 10-40 micro M dose-dependently suppressed cell growth and increased the intracellular cyclic AMP concentration in K562 leukemia cells. It was then found that DIF-1 at 0.5-20 micro M inhibited the calmodulin (CaM)-dependent cyclic nucleotide phosphodiesterase (PDE1) in vitro in a dose-dependent manner. Kinetic analysis revealed that DIF-1 acted as a competitive inhibitor of PDE1 versus the substrate cyclic AMP. Because DIF-1 did not significantly affect the activity of other PDEs or CaM-dependent enzymes and, in addition, an isomer of DIF-1 was a less potent inhibitor, we have concluded that PDE1 is a pharmacological and specific target of DIF-1.
Collapse
Affiliation(s)
- Kasumi Shimizu
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Mie University, Mie, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Akaishi E, Narita T, Kawai S, Miwa Y, Sasaguri T, Hosaka K, Kubohara Y. Differentiation-inducing factor-1-induced growth arrest of K562 leukemia cells involves the reduction of ERK1/2 activity. Eur J Pharmacol 2004; 485:21-9. [PMID: 14757120 DOI: 10.1016/j.ejphar.2003.11.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The differentiation-inducing factor-1 (DIF-1) is a signal molecule that induces stalk cell differentiation in the cellular slime mold Dictyostelium discoideum. In addition, DIF-1 is a potent antileukemic agent that induces growth arrest in K562 cells. In this study, we investigated the mechanism of action of DIF-1 in K562 cells in the light of cell-cycle regulators such as cyclins, retinoblastoma protein (pRb), and the mitogen-activated protein kinase (MAPK) family. DIF-1 down-regulated cyclins D/E and a phosphorylated form of pRb (p-pRb), and thereby induced G(1) arrest of the cell cycle. DIF-1 inactivated the extracellular signal-regulated kinase (ERK) in a biphasic manner but did not affect the c-Jun N-terminal kinase (JNK) or p38 MAPK. The MEK (MAPK kinase) inhibitor, U0126, which has been shown to induce growth arrest, inactivated ERK and down-regulated cyclins D and E. Although DIF-1 activated the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway, neither wortmannin nor 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002; PI-3K inhibitors) cancelled DIF-1-induced growth arrest. The present results suggest that ERK inactivation may be involved in DIF-1-induced growth arrest and that PI-3K activity is not required for DIF-1-induced growth arrest in K562 cells.
Collapse
Affiliation(s)
- Emi Akaishi
- Department of Basic Sciences for Medicine, Gunma University School of Health Sciences, Maebashi 371-8514, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Takahashi-Yanaga F, Taba Y, Miwa Y, Kubohara Y, Watanabe Y, Hirata M, Morimoto S, Sasaguri T. Dictyostelium differentiation-inducing factor-3 activates glycogen synthase kinase-3beta and degrades cyclin D1 in mammalian cells. J Biol Chem 2003; 278:9663-70. [PMID: 12522140 DOI: 10.1074/jbc.m205768200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In search of chemical substances applicable for the treatment of cancer and other proliferative disorders, we studied the signal transduction of Dictyostelium differentiation-inducing factors (DIFs) in mammalian cells mainly using HeLa cells. Although DIF-1 and DIF-3 both strongly inhibited cell proliferation by inducing G(0)/G(1) arrest, DIF-3 was more effective than DIF-1. DIF-3 suppressed cyclin D1 expression at both mRNA and protein levels, whereas the overexpression of cyclin D1 overrode DIF-3-induced cell cycle arrest. The DIF-3-induced decrease in the amount of cyclin D1 protein preceded the reduction in the level of cyclin D1 mRNA. The decrease in cyclin D1 protein seemed to be caused by accelerated proteolysis, since it was abrogated by N-acetyl-Leu-Leu-norleucinal, a proteasome inhibitor. DIF-3-induced degradation of cyclin D1 was also prevented by treatment with lithium chloride, an inhibitor of glycogen synthase kinase-3beta (GSK-3beta), suggesting that DIF-3 induced cyclin D1 proteolysis through the activation of GSK-3beta. Indeed, DIF-3 dephosphorylated Ser(9) and phosphorylated tyrosine on GSK-3beta, and it stimulated GSK-3beta activity in an in vitro kinase assay. Moreover, DIF-3 was revealed to induce the nuclear translocation of GSK-3beta by immunofluorescent microscopy and immunoblotting of subcellular protein fractions. These results suggested that DIF-3 activates GSK-3beta to accelerate the proteolysis of cyclin D1 and that this mechanism is involved in the DIF-3-induced G(0)/G(1) arrest in mammalian cells.
Collapse
Affiliation(s)
- Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Graduate School of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kubohara Y, Hanaoka Y, Akaishi E, Kobayashi H, Maeda M, Hosaka K. DIF-1, an anti-tumor substance found in Dictyostelium discoideum, inhibits progesterone-induced oocyte maturation in Xenopus laevis. Eur J Pharmacol 2003; 460:93-8. [PMID: 12559368 DOI: 10.1016/s0014-2999(02)02918-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Differentiation-inducing factor-1 (DIF-1; 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one) is a putative morphogen that induces stalk-cell formation in the cellular slime mold Dictyostelium discoideum. DIF-1 has previously been shown to suppress cell growth in mammalian cells. In this study, we examined the effects of DIF-1 on the progesterone-induced germinal vesicle breakdown in Xenopus laevis, which is thought to be mediated by a decrease in intracellular cAMP and the subsequent activation of mitogen-activated protein kinase (MAPK) and maturation-promoting factor, a complex of cdc2 and cyclin B, which regulates germinal vesicle breakdown. DIF-1 at 10-40 microM inhibited progesterone-induced germinal vesicle breakdown in de-folliculated oocytes in a dose-dependent manner. Progesterone-induced cdc2 activation, MAPK activation, and c-Mos accumulation were inhibited by DIF-1. Furthermore, DIF-1 was found to inhibit the progesterone-induced cAMP decrease in the oocytes. These results indicate that DIF-1 inhibits progesterone-induced germinal vesicle breakdown possibly by blocking the progesterone-induced decrease in [cAMP](i) and the subsequent events in Xenopus oocytes.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Biosignal Research Center, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Showa-machi 3-39-15, Maebashi 371-8512 , Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Coats SR, Pabón-Peña LM, Covington JW, Vaughan DE. Ligand-specific control of src-suppressed C kinase substrate gene expression. Biochem Biophys Res Commun 2002; 297:1112-20. [PMID: 12372401 DOI: 10.1016/s0006-291x(02)02275-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The src-suppressed C-kinase substrate, SSeCKS, is now recognized as a key regulator of cell signaling and cytoskeletal dynamics. However, few ligands that control SSeCKS expression have been identified. We report that platelet-derived growth factor-BB (PDGF-BB), lysophosphatidic acid (LPA), and eicosapentaenoic acid (EPA) potently modulate SSeCKS gene expression in cultured smooth muscle (RASM) cells relative to other bioactive ligands tested. In addition, EPA-dependent regulation of SSeCKS expression correlates with distinct changes in cell morphology and adhesion in RASM cells. Independent evidence that ligand-specific control of SSeCKS expression links to the regulation of cell adhesion and morphology was obtained using ras-transformed fibroblasts, KNRK. Sodium butyrate (NaB) upregulates SSeCKS mRNA and protein expression corresponding to increased cell-spreading and adhesion. In addition, ectopic expression of recombinant SSeCKS recapitulates attributes of NaB-induced morphogenesis in KNRK cells. The data provide novel evidence that SSeCKS functions in PDGF-BB-, LPA-, EPA-, and NaB-mediated cell signaling.
Collapse
Affiliation(s)
- Stephen R Coats
- Department of Medicine, Vanderbilt University Medical Center and Nashville VAMC, Nashville, TN 37212-6300, USA.
| | | | | | | |
Collapse
|
37
|
Kikuchi H, Saito Y, Komiya J, Takaya Y, Honma S, Nakahata N, Ito A, Oshima Y. Furanodictine A and B: amino sugar analogues produced by cellular slime mold Dictyostelium discoideum showing neuronal differentiation activity. J Org Chem 2001; 66:6982-7. [PMID: 11597217 DOI: 10.1021/jo015657x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the constituents of Dictyostelium discoideum to clarify the diversity of secondary metabolites of Dictyostelium cellular slime molds and to explore biologically active substances that could be useful in the development of novel drugs. From a methanol extract of the multicellular fruit body of D. discoideum, we isolated two novel amino sugar analogues, furanodictine A (1) and B (2). They are the first 3,6-anhydrosugars to be isolated from natural sources. Their relative structures were elucidated by spectral means, and the absolute configurations were confirmed by asymmetric syntheses of 1 and 2. These furanodictines potently induce neuronal differentiation of rat pheochromocytoma (PC-12) cells.
Collapse
Affiliation(s)
- H Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Fujimaki S, Kubohara Y, Kobayashi I, Kojima I. Caspase-independent apoptosis induced by differentiation-inducing factor of Dicytostelium discoideum in INS-1 cells. Eur J Pharmacol 2001; 421:93-100. [PMID: 11399264 DOI: 10.1016/s0014-2999(01)01034-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Differentiation-inducing factor (DIF) is a lipophilic hormone of Dicytostelium discoideum and has been shown to exert diverse effects in mammalian cells. We investigated the effect of DIF on cell viability in insulin-secreting INS-1 cells. DIF induced cell death in a dose-dependent manner. In DIF-treated cells, nuclear condensation and shrinkage of the cell body were observed. After 6 h of DIF treatment, cells became Tdt-mediated dUTP-biotin nick end-labeling-positive, and DNA ladder formation was detected, indicating that DIF induced apoptosis in these cells. DIF did not activate caspase-3, a key enzyme mediating apoptotic signals generated by various agents. Furthermore, DIF-induced cell death was not affected by Z-asp-2, 6-dichlorobenzoyloxymethylketone, a broad inhibitor of the caspases. As is the case in other types of cells, DIF increased cytoplasmic free calcium concentration in INS-1 cells. However, DIF-induced cell death was not affected by chelating intracellular free calcium by 1, 2-bis(2-aminoophenoxy)ethane-N, N, N, N-tetra acetic acid (BAPTA). These results indicate that DIF induces apoptosis in INS-1 cells by a mechanism independent of caspase-3. DIF-induced elevation of cytoplasmic calcium does not mediate the effect of DIF on cell death.
Collapse
Affiliation(s)
- S Fujimaki
- Department of Laboratory Medicine, Gunma University School of Medicine, 371-8512, Maebashi, Japan
| | | | | | | |
Collapse
|
39
|
Miwa Y, Sasaguri T, Inoue H, Taba Y, Ishida A, Abumiya T. 15-Deoxy-Delta(12,14)-prostaglandin J(2) induces G(1) arrest and differentiation marker expression in vascular smooth muscle cells. Mol Pharmacol 2000; 58:837-44. [PMID: 10999955 DOI: 10.1124/mol.58.4.837] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In search of substances useful for the treatment of atherosclerotic vascular diseases, we studied the effects of 15-deoxy-Delta(12, 14)-prostaglandin J(2) (15d-PGJ(2)), a natural ligand for peroxisome proliferator-activated receptor gamma, on the proliferation and differentiation of vascular smooth muscle cells (VSMCs). 15d-PGJ(2) but not WY14643, an agonist for peroxisome proliferator-activated receptor alpha, dose-dependently inhibited VSMC proliferation; the effect was maximal at 12 microM. This compound strongly suppressed the activities of cyclin-dependent kinases (Cdk) 4, 6, and 2, thereby preventing the phosphorylation of the retinoblastoma protein. These Cdks seemed to be inhibited through two mechanisms: the down-regulation of cyclin D1 and the up-regulation of Cdk inhibitor p21(Cip1/Waf1/Sdi1). 15d-PGJ(2) was found to inhibit the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, which mediates cyclin D1 expression. Mitogenic stimulation of quiescent cells decreased the level of mRNA for the smooth muscle-specific myosin heavy-chain SM1, whereas this reduction was prevented by 15d-PGJ(2). A long-term treatment of exponentially growing VSMCs with 15d-PGJ(2) markedly elevated the mRNA level of SM1 and, moreover, induced SM2, another isoform expressed exclusively in mature VSMCs. 15d-PGJ(2) also increased the expression levels of calponin-h1 and smooth muscle alpha-actin. These results suggest that 15d-PGJ(2) induces G(1) arrest by two distinct mechanisms and promotes VSMC differentiation.
Collapse
Affiliation(s)
- Y Miwa
- Department of Bioscience, National Cardiovascular Center Research Institute, Osaka, Japan
| | | | | | | | | | | |
Collapse
|