1
|
Dong B, Li Y, Ai F, Geng J, Tang T, Peng W, Tang Y, Wang H, Tian Z, Bu F, Chen L. Genetic variation in patent foramen ovale: a case-control genome-wide association study. Front Genet 2025; 15:1523304. [PMID: 39872005 PMCID: PMC11769951 DOI: 10.3389/fgene.2024.1523304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025] Open
Abstract
Background Patent foramen ovale (PFO) is a congenital defect between the atria, resulting in abnormal hemodynamics. We conducted a genome-wide association study (GWAS) to identify common genetic variants associated with PFO. Methods We performed a whole genome sequencing in a discovery cohort of 3,227 unrelated Chinese participants screened for PFO via contrast transthoracic echocardiography (cTTE). Single-nucleotide polymorphisms (SNPs) associated with PFO were further validated by Sanger sequencing and subsequently were evaluated in a validation cohort. Expression quantitative trait loci (eQTL) analysis was conducted using the GTEx database. Single-cell sequencing analyses with pseudotime trajectory modeling were employed to evaluate their expression in human fetal hearts. Results The case-control GWAS of discovery cohort ultimately included 517 cases and 517 demographically matched controls. Of the 7,040,407 variants assessed, we identified rs1227675732 (OR = 2.903; 95% CI, 1.961 to 4.297; p = 3.05 × 10-8), rs62206790 (OR = 2.780; 95% CI, 1.864 to 4.146; p = 2.02 × 10-7), rs879176184 (OR = 2.724; 95% CI, 1.822 to 4.073; p = 4.30 × 10-7) and rs13115019 (OR = 2.437; 95% CI, 1.702 to 3.488; p = 5.80 × 10-7) as high-risk variants for PFO, while rs57922961 (OR = 0.5081; 95% CI, 0.388 to 0.666; p = 6.82 × 10-7) was identified as protective variant. These variations were replicated in the validation cohort (111 cases and 152 controls). Single-cell sequencing showed that CNOT2, KCNMB4, MLLT10, IGBP1, and FRG1 were highly expressed with significant changes during heart development. Conclusion The identification of susceptible loci for PFO might provide insights into the pathogenesis of PFO and contribute to understanding heart development. Clinical Trial Registration https://www.chictr.org.cn/showproj.html?proj=40590, identifier ChiCTR1900024623.
Collapse
Affiliation(s)
- Bosi Dong
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Yajiao Li
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Fandi Ai
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Jia Geng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ting Tang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Wan Peng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yusha Tang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Wang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zixuan Tian
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Caño-Carrillo S, Garcia-Padilla C, Aranega AE, Lozano-Velasco E, Franco D. Mef2c- and Nkx2-5-Divergent Transcriptional Regulation of Chick WT1_76127 and Mouse Gm14014 lncRNAs and Their Implication in Epicardial Cell Migration. Int J Mol Sci 2024; 25:12904. [PMID: 39684625 DOI: 10.3390/ijms252312904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium. A subset of these embryonic epicardial cells migrate and colonize the embryonic myocardium, contributing to the formation of distinct cell types. In recent years, our understanding of the molecular mechanisms that govern proepicardium and embryonic epicardium formation has greatly increased. We have recently witnessed the discovery of a novel layer of complexity governing gene regulation with the discovery of non-coding RNAs. Our laboratory recently identified three distinct lncRNAs, adjacent to the Wt1, Bmp4 and Fgf8 chicken gene loci, with enhanced expression in the proepicardium that are distinctly regulated by Bmp, Fgf and thymosin β4, providing support for their plausible implication in epicardial formation. The expression of lncRNAs was analyzed in different chicken and mouse tissues as well as their subcellular distribution in chicken proepicardial, epicardial, ventricle explants and in different murine cardiac cell types. lncRNA transcriptional regulation was analyzed by using siRNAs and expression vectors of different transcription factors in chicken and mouse models, whereas antisense oligonucleotides were used to inhibit Gm14014 expression. Furthermore, RT-qPCR, immunocytochemistry, RNA pulldown, Western blot, viability and cell migration assays were conducted to investigate the biological functions of Wt1_76127 and Gm14014. We demonstrated that Wt1_76127 in chicken and its putative conserved homologue Gm14014 in mice are widely distributed in different embryonic and adult tissues and distinctly regulated by cardiac-enriched transcription factors, particularly Mef2c and Nkx2.5. Furthermore, silencing assays demonstrated that mouse Gm14014, but not chicken Wt1_76127, is essential for epicardial, but not endocardial or myocardial, cell migration. Such processes are governed by partnering with Myl9, promoting cytoskeletal remodeling. Our data show that Gm14014 plays a pivotal role in epicardial cell migration essential for heart regeneration under these experimental conditions.
Collapse
Affiliation(s)
- Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Amelia E Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
3
|
Brown C, Stefaniuk-Szmukier M, Decloedt A, Beijerink N, Hamilton NA, Velie BD. Congenital heart defects in Arabian horses and the prospects of genetic testing: A review. Equine Vet J 2024; 56:884-891. [PMID: 38272847 DOI: 10.1111/evj.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Congenital heart defects (CHDs) can have profound and potentially life-threatening consequences on horses' health and performance capability. While CHDs are rare in the general horse population, the Arabian breed is disproportionately overrepresented and thus is widely suspected to be genetically predisposed. This review discusses the most common CHDs in Arabian horses, including ventricular septal defect (VSD), tetralogy of Fallot (TOF), patent duct arteriosus (PDA), tricuspid valve atresia (TVA) and atrial septal defect (ASD). This review also explores how future research into the genetic factors that likely underpin many CHDs can revolutionise the way these disorders are managed in Arabian horses.
Collapse
Affiliation(s)
- Caitlin Brown
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Monika Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Annelies Decloedt
- Equine Cardioteam Ghent, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niek Beijerink
- Veterinaire Specialisten Vught, Vught, The Netherlands
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Natasha A Hamilton
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Brandon D Velie
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Sun S, Zhang L, Li X, Zang L, Huang L, Zeng J, Cao Z, Liao X, Zhong Z, Lu H, Chen J. Hexafluoropropylene oxide trimer acid, a perfluorooctanoic acid alternative, induces cardiovascular toxicity in zebrafish embryos. J Environ Sci (China) 2024; 139:460-472. [PMID: 38105069 DOI: 10.1016/j.jes.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 12/19/2023]
Abstract
As an increasingly used alternative to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been widely detected in global water environments. However, little is known regarding its toxic effects on cardiovascular development. Here, zebrafish embryos were treated with egg water containing 0, 60, 120, or 240 mg/L HFPO-TA. Results showed that HFPO-TA treatment led to a significant reduction in both larval survival percentage and heart rate. Furthermore, HFPO-TA exposure caused severe pericardial edema and elongation of the sinus venous to bulbus arteriosus distance (SV-BA) in Tg (myl7: GFP) transgenic larvae, disrupting the expression of genes involved in heart development and thus causing abnormal heart looping. Obvious sprouting angiogenesis was observed in the 120 and 240 mg/L exposed Tg (fli: GFP) transgenic larvae. HFPO-TA treatment also impacted the mRNA levels of genes involved in the vascular endothelial growth factor (VEGF) pathway and embryonic vascular development. HFPO-TA exposure significantly decreased erythrocyte number in Tg (gata1: DsRed) transgenic embryos and influenced gene expression associated with the heme metabolism pathway. HFPO-TA also induced oxidative stress and altered the transcriptional levels of genes related to cell cycle and apoptosis, inhibiting cell proliferation while promoting apoptosis. Therefore, HFPO-TA exposure may induce abnormal development of the cardiovascular and hematopoietic systems in zebrafish embryos, suggesting it may not be a suitable or safe alternative for PFOA.
Collapse
Affiliation(s)
- Sujie Sun
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Li Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Center for Clinical Research Center of the Affiliated Hospital of Jinggangshan University, Ji'an 343009, China; Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xue Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Center for Clinical Research Center of the Affiliated Hospital of Jinggangshan University, Ji'an 343009, China; Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Lu Zang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Huang
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an 343009, China
| | - Junquan Zeng
- Department of Internal Medicine and Hematology, Affiliated Hospital of Jinggangshan University, Ji'an 343009, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Center for Clinical Research Center of the Affiliated Hospital of Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Center for Clinical Research Center of the Affiliated Hospital of Jinggangshan University, Ji'an 343009, China
| | - Zilin Zhong
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Center for Clinical Research Center of the Affiliated Hospital of Jinggangshan University, Ji'an 343009, China.
| | - Jianjun Chen
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| |
Collapse
|
5
|
Olejnickova V, Hamor PU, Janacek J, Bartos M, Zabrodska E, Sankova B, Kvasilova A, Kolesova H, Sedmera D. Development of ventricular trabeculae affects electrical conduction in the early endothermic heart. Dev Dyn 2024; 253:78-90. [PMID: 36400745 DOI: 10.1002/dvdy.552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The ventricular trabeculae play a role, among others, in the impulse spreading in ectothermic hearts. Despite the morphological similarity with the early developing hearts of endotherms, this trabecular function in mammalian and avian embryos was poorly addressed. RESULTS We simulated impulse propagation inside the looping ventricle and revealed delayed apical activation in the heart with inhibited trabecular growth. This finding was corroborated by direct imaging of the endocardial surface showing early activation within the trabeculae implying preferential spreading of depolarization along with them. Targeting two crucial pathways of trabecular formation (Neuregulin/ErbB and Nkx2.5), we showed that trabecular development is also essential for proper conduction patterning. Persistence of the slow isotropic conduction likely contributed to the pumping failure in the trabeculae-deficient hearts. CONCLUSIONS Our results showed the essential role of trabeculae in intraventricular impulse spreading and conduction patterning in the early endothermic heart. Lack of trabeculae leads to the failure of conduction parameters differentiation resulting in primitive ventricular activation with consequent impact on the cardiac pumping function.
Collapse
Affiliation(s)
- Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Uriel Hamor
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Janacek
- Laboratory of Biomathematics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Bartos
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Stomatology, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Zabrodska
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Sankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Prapa M, Ho SY. Human Genetics of Semilunar Valve and Aortic Arch Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:761-775. [PMID: 38884747 DOI: 10.1007/978-3-031-44087-8_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.
Collapse
Affiliation(s)
- Matina Prapa
- Department of Clinical Genetics, St George's University Hospitals NHS Foundation Trust, London, UK.
| | - Siew Yen Ho
- Cardiac Morphology, Royal Brompton & Harefield Hospitals, London, UK
| |
Collapse
|
7
|
Cao C, Li L, Zhang Q, Li H, Wang Z, Wang A, Liu J. Nkx2.5: a crucial regulator of cardiac development, regeneration and diseases. Front Cardiovasc Med 2023; 10:1270951. [PMID: 38124890 PMCID: PMC10732152 DOI: 10.3389/fcvm.2023.1270951] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiomyocytes fail to regenerate after birth and respond to mitotic signals through cellular hypertrophy rather than cellular proliferation. Necrotic cardiomyocytes in the infarcted ventricular tissue are eventually replaced by fibroblasts, generating scar tissue. Cardiomyocyte loss causes localized systolic dysfunction. Therefore, achieving the regeneration of cardiomyocytes is of great significance for cardiac function and development. Heart development is a complex biological process. An integral cardiac developmental network plays a decisive role in the regeneration of cardiomyocytes. During this process, genetic epigenetic factors, transcription factors, signaling pathways and small RNAs are involved in regulating the developmental process of the heart. Cardiomyocyte-specific genes largely promote myocardial regeneration, among which the Nkx2.5 transcription factor is one of the earliest markers of cardiac progenitor cells, and the loss or overexpression of Nkx2.5 affects cardiac development and is a promising candidate factor. Nkx2.5 affects the development and function of the heart through its multiple functional domains. However, until now, the specific mechanism of Nkx2.5 in cardiac development and regeneration is not been fully understood. Therefore, this article will review the molecular structure, function and interaction regulation of Nkx2.5 to provide a new direction for cardiac development and the treatment of heart regeneration.
Collapse
Affiliation(s)
- Ce Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Qian Zhang
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haoran Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ziyan Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Aoao Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Dong B, Lu Y, He S, Li B, Li Y, Lai Q, Li W, Ji S, Chen Y, Dai L, Chen L. Multisite and multitimepoint proteomics reveal that patent foramen ovale closure improves migraine and epilepsy by reducing right-to-left shunt-induced hypoxia. MedComm (Beijing) 2023; 4:e334. [PMID: 37576864 PMCID: PMC10422075 DOI: 10.1002/mco2.334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 08/15/2023] Open
Abstract
Patent foramen ovale (PFO) is a congenital defect in the partition between two atria, which may cause right-to-left shunt (RLS), leading to neurological chronic diseases with episodic manifestations (NCDEMs), such as migraine and epilepsy. However, whether PFO closure was effective in improving NCDEMs and the mechanism were unclear. Twenty-eight patients with migraine or epilepsy who underwent PFO closure were recruited. Notably, approximately half of patients received 50% or more reduction in seizure or headache attacks. Meanwhile, the postoperative blood oxygen partial pressure and oxygen saturation were elevated after PFO closure. Multisite (peripheral, right, and left atrial) and multitimepoint (before and after surgery) plasma proteomics from patients showed that the levels of free hemoglobin and cell adhesion molecules (CAMs) were significantly increased after PFO closure, which may be related to the relief of the hypoxic state. Furtherly, the omics data from multiple brain regions of mice revealed that a large number of proteins were differentially expressed in the occipital region in response to PFO, including redox molecules and CAMs, suggesting PFO-caused hypoxia may have great impacts on occipital region. Collectively, PFO may cause NCDEMs due to RLS-induced hypoxia, and PFO closure could prevent RLS to improve migraine and epilepsy.
Collapse
Affiliation(s)
- Bosi Dong
- Department of NeurologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Ying Lu
- State Key Laboratory of BiotherapyNational Clinical Research Center for Geriatrics and Department of General PracticeWest China HospitalSichuan Universityand Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Siyu He
- State Key Laboratory of BiotherapyNational Clinical Research Center for Geriatrics and Department of General PracticeWest China HospitalSichuan Universityand Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Baichuan Li
- Department of NeurologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yajiao Li
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Qi Lai
- Department of NeurologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Wanling Li
- Department of NeurologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shuming Ji
- Department of Clinical Research ManagementWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yucheng Chen
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Lunzhi Dai
- State Key Laboratory of BiotherapyNational Clinical Research Center for Geriatrics and Department of General PracticeWest China HospitalSichuan Universityand Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Lei Chen
- Department of NeurologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
9
|
Tessler I, Albuisson J, Piñeiro-Sabarís R, Verstraeten A, Kamber Kaya HE, Siguero-Álvarez M, Goudot G, MacGrogan D, Luyckx I, Shpitzen S, Levin G, Kelman G, Reshef N, Mananet H, Holdcraft J, Muehlschlegel JD, Peloso GM, Oppenheim O, Cheng C, Mazzella JM, Andelfinger G, Mital S, Eriksson P, Billon C, Heydarpour M, Dietz HC, Jeunemaitre X, Leitersdorf E, Sprinzak D, Blacklow SC, Body SC, Carmi S, Loeys B, de la Pompa JL, Gilon D, Messas E, Durst R. Novel Association of the NOTCH Pathway Regulator MIB1 Gene With the Development of Bicuspid Aortic Valve. JAMA Cardiol 2023; 8:721-731. [PMID: 37405741 PMCID: PMC10323766 DOI: 10.1001/jamacardio.2023.1469] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/21/2023] [Indexed: 07/06/2023]
Abstract
Importance Nonsyndromic bicuspid aortic valve (nsBAV) is the most common congenital heart valve malformation. BAV has a heritable component, yet only a few causative genes have been identified; understanding BAV genetics is a key point in developing personalized medicine. Objective To identify a new gene for nsBAV. Design, Setting, and Participants This was a comprehensive, multicenter, genetic association study based on candidate gene prioritization in a familial cohort followed by rare and common association studies in replication cohorts. Further validation was done using in vivo mice models. Study data were analyzed from October 2019 to October 2022. Three cohorts of patients with BAV were included in the study: (1) the discovery cohort was a large cohort of inherited cases from 29 pedigrees of French and Israeli origin; (2) the replication cohort 1 for rare variants included unrelated sporadic cases from various European ancestries; and (3) replication cohort 2 was a second validation cohort for common variants in unrelated sporadic cases from Europe and the US. Main Outcomes and Measures To identify a candidate gene for nsBAV through analysis of familial cases exome sequencing and gene prioritization tools. Replication cohort 1 was searched for rare and predicted deleterious variants and genetic association. Replication cohort 2 was used to investigate the association of common variants with BAV. Results A total of 938 patients with BAV were included in this study: 69 (7.4%) in the discovery cohort, 417 (44.5%) in replication cohort 1, and 452 (48.2%) in replication cohort 2. A novel human nsBAV gene, MINDBOMB1 homologue MIB1, was identified. MINDBOMB1 homologue (MIB1) is an E3-ubiquitin ligase essential for NOTCH-signal activation during heart development. In approximately 2% of nsBAV index cases from the discovery and replication 1 cohorts, rare MIB1 variants were detected, predicted to be damaging, and were significantly enriched compared with population-based controls (2% cases vs 0.9% controls; P = .03). In replication cohort 2, MIB1 risk haplotypes significantly associated with nsBAV were identified (permutation test, 1000 repeats; P = .02). Two genetically modified mice models carrying Mib1 variants identified in our cohort showed BAV on a NOTCH1-sensitized genetic background. Conclusions and Relevance This genetic association study identified the MIB1 gene as associated with nsBAV. This underscores the crucial role of the NOTCH pathway in the pathophysiology of BAV and its potential as a target for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Idit Tessler
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Juliette Albuisson
- Genetics Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, National Referral Center for Rare Vascular Diseases, VASCERN MSA European Reference Center, Paris, France
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer –UNICANCER, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon, France
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hatem Elif Kamber Kaya
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Marcos Siguero-Álvarez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillaume Goudot
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- French Research Consortium RHU STOP-AS, Rouen, France
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Ilse Luyckx
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Shoshana Shpitzen
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galina Levin
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Kelman
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- The Jerusalem Center for Personalized Computational Medicine, Jerusalem, Israel
| | - Noga Reshef
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- The Jerusalem Center for Personalized Computational Medicine, Jerusalem, Israel
| | - Hugo Mananet
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer –UNICANCER, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon, France
| | - Jake Holdcraft
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Olya Oppenheim
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Charles Cheng
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- French Research Consortium RHU STOP-AS, Rouen, France
| | - Jean-Michael Mazzella
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montreal, Montreal, Quebec, Canada
| | - Seema Mital
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| | - Clarisse Billon
- Genetics Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, National Referral Center for Rare Vascular Diseases, VASCERN MSA European Reference Center, Paris, France
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
| | - Mahyar Heydarpour
- Department of Medicine, Division of Endocrinology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harry C. Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xavier Jeunemaitre
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Eran Leitersdorf
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Simon C. Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Dan Gilon
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
| | - Emmanuel Messas
- Université Paris Cité, INSERM, U970 PARCC, Paris, France
- Vascular Medicine Department, Assistance Publique–Hȏpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- French Research Consortium RHU STOP-AS, Rouen, France
| | - Ronen Durst
- Cardiology Department, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, the Hebrew University, Jerusalem, Israel
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Odelin G, Faucherre A, Marchese D, Pinard A, Jaouadi H, Le Scouarnec S, Chiarelli R, Achouri Y, Faure E, Herbane M, Théron A, Avierinos JF, Jopling C, Collod-Béroud G, Rezsohazy R, Zaffran S. Variations in the poly-histidine repeat motif of HOXA1 contribute to bicuspid aortic valve in mouse and zebrafish. Nat Commun 2023; 14:1543. [PMID: 36941270 PMCID: PMC10027860 DOI: 10.1038/s41467-023-37110-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Bicuspid aortic valve (BAV), the most common cardiovascular malformation occurs in 0.5-1.2% of the population. Although highly heritable, few causal mutations have been identified in BAV patients. Here, we report the targeted sequencing of HOXA1 in a cohort of BAV patients and the identification of rare indel variants in the homopolymeric histidine tract of HOXA1. In vitro analysis shows that disruption of this motif leads to a significant reduction in protein half-life and defective transcriptional activity of HOXA1. In zebrafish, targeting hoxa1a ortholog results in aortic valve defects. In vivo assays indicates that these variants behave as dominant negatives leading abnormal valve development. In mice, deletion of Hoxa1 leads to BAV with a very small, rudimentary non-coronary leaflet. We also show that 17% of homozygous Hoxa1-1His knock-in mice present similar phenotype. Genetic lineage tracing in Hoxa1-/- mutant mice reveals an abnormal reduction of neural crest-derived cells in the valve leaflet, which is caused by a failure of early migration of these cells.
Collapse
Affiliation(s)
- Gaëlle Odelin
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Adèle Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Damien Marchese
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Amélie Pinard
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Hager Jaouadi
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | | | | | - Raphaël Chiarelli
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Emilie Faure
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Marine Herbane
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Alexis Théron
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Chirurgie Cardiaque, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Cardiologie, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - René Rezsohazy
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France.
| |
Collapse
|
11
|
Yasuhara J, Schultz K, Bigelow AM, Garg V. Congenital aortic valve stenosis: from pathophysiology to molecular genetics and the need for novel therapeutics. Front Cardiovasc Med 2023; 10:1142707. [PMID: 37187784 PMCID: PMC10175644 DOI: 10.3389/fcvm.2023.1142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Congenital aortic valve stenosis (AVS) is one of the most common valve anomalies and accounts for 3%-6% of cardiac malformations. As congenital AVS is often progressive, many patients, both children and adults, require transcatheter or surgical intervention throughout their lives. While the mechanisms of degenerative aortic valve disease in the adult population are partially described, the pathophysiology of adult AVS is different from congenital AVS in children as epigenetic and environmental risk factors play a significant role in manifestations of aortic valve disease in adults. Despite increased understanding of genetic basis of congenital aortic valve disease such as bicuspid aortic valve, the etiology and underlying mechanisms of congenital AVS in infants and children remain unknown. Herein, we review the pathophysiology of congenitally stenotic aortic valves and their natural history and disease course along with current management strategies. With the rapid expansion of knowledge of genetic origins of congenital heart defects, we also summarize the literature on the genetic contributors to congenital AVS. Further, this increased molecular understanding has led to the expansion of animal models with congenital aortic valve anomalies. Finally, we discuss the potential to develop novel therapeutics for congenital AVS that expand on integration of these molecular and genetic advances.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| | - Karlee Schultz
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Amee M. Bigelow
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| |
Collapse
|
12
|
Gao X, Yan B. The mechanism and diagnostic value of Tbx20 in cardiovascular diseases. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
13
|
The Medical versus Zoological Concept of Outflow Tract Valves of the Vertebrate Heart. J Cardiovasc Dev Dis 2022; 9:jcdd9100318. [PMID: 36286270 PMCID: PMC9604109 DOI: 10.3390/jcdd9100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
The anatomical elements that in humans prevent blood backflow from the aorta and pulmonary artery to the left and right ventriclesare the aortic and pulmonary valves, respectively. Each valve regularly consists of three leaflets (cusps), each supported by its valvular sinus. From the medical viewpoint, each set of three leaflets and sinuses is regarded as a morpho-functional unit. This notion also applies to birds and non-human mammals. However, the structures that prevent the return of blood to the heart in other vertebrates are notably different. This has led to discrepancies between physicians and zoologists in defining what a cardiac outflow tract valve is. The aim here is to compare the gross anatomy of the outflow tract valvular system among several groups of vertebrates in order to understand the conceptual and nomenclature controversies in the field.
Collapse
|
14
|
TRPM4 Participates in Irradiation-Induced Aortic Valve Remodeling in Mice. Cancers (Basel) 2022; 14:cancers14184477. [PMID: 36139640 PMCID: PMC9497207 DOI: 10.3390/cancers14184477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite its benefit in cancer treatment, thoracic irradiation can induce aortic valve stenosis with fibrosis and calcification. The TRPM4 cation channel is known to participate in cellular remodeling including the transition of cardiac fibroblasts to myofibroblasts, similar to that observed during aortic valve stenosis. This study evaluates if TRPM4 is involved in irradiation-induced aortic valve damage. The aortic valve of mice was targeted by irradiation. Cardiac echography 5 months after treatment revealed an increase in aortic jet velocity, indicating stenosis. This was not observed in non-treated animals. Histological analysis revealed an increase in valvular cusp surface associated with fibrosis which was not observed in non-treated animals. The experiments were reproduced on mice after Trpm4 gene disruption. In these animals, irradiation did not induce valvular remodeling. It indicates that TRPM4 influences irradiation-induced aortic valve damage and thus could be a target to prevent such side effects of irradiation. Abstract Thoracic radiotherapy can lead to cardiac remodeling including valvular stenosis due to fibrosis and calcification. The monovalent non-selective cation channel TRPM4 is known to be involved in calcium handling and to participate in fibroblast transition to myofibroblasts, a phenomenon observed during aortic valve stenosis. The goal of this study was to evaluate if TRPM4 is involved in irradiation-induced aortic valve damage. Four-month-old Trpm4+/+ and Trpm4−/− mice received 10 Gy irradiation at the aortic valve. Cardiac parameters were evaluated by echography until 5 months post-irradiation, then hearts were collected for morphological and histological assessments. At the onset of the protocol, Trpm4+/+ and Trpm4−/− mice exhibited similar maximal aortic valve jet velocity and mean pressure gradient. Five months after irradiation, Trpm4+/+ mice exhibited a significant increase in those parameters, compared to the untreated animals while no variation was detected in Trpm4−/− mice. Morphological analysis revealed that irradiated Trpm4+/+ mice exhibited a 53% significant increase in the aortic valve cusp surface while no significant variation was observed in Trpm4−/− animals. Collagen staining revealed aortic valve fibrosis in irradiated Trpm4+/+ mice but not in irradiated Trpm4−/− animals. It indicates that TRPM4 influences irradiation-induced valvular remodeling.
Collapse
|
15
|
Jia L, Limeng D, Xiaoyin T, Junwen W, Xintong Z, Gang X, Yun B, Hong G. A Novel Splicing Mutation c.335-1 G > A in the Cardiac Transcription Factor NKX2-5 Leads to Familial Atrial Septal Defect Through miR-19 and PYK2. Stem Cell Rev Rep 2022; 18:2646-2661. [PMID: 35778654 DOI: 10.1007/s12015-022-10400-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 10/17/2022]
Abstract
Mutations of NKX2-5 largely contribute to congenital heart diseases (CHDs), especially atrial septal defect (ASD). We identified a novel heterozygous splicing mutation c.335-1G > A in NKX2-5 gene in an ASD family via whole exome sequencing (WES) and linkage analysis. Utilizing the human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) as a disease model, we showed that haploinsufficiency of NKX2-5 contributed to aberrant orchestration of apoptosis and proliferation in ASD patient-derived hiPSC-CMs. RNA-seq profiling and dual-luciferase reporter assay revealed that NKX2-5 acts upstream of PYK2 via miR-19a and miR-19b (miR-19a/b) to regulate cardiomyocyte apoptosis. Meanwhile, miR-19a/b are also downstream mediators of NKX2-5 during cardiomyocyte proliferation. The novel splicing mutation c.335-1G > A in NKX2-5 and its potential pathogenic roles in ASD were demonstrated. Our work provides clues not only for deep understanding of NKX2-5 in cardia development, but also for better knowledge in the molecular mechanisms of CHDs.
Collapse
Affiliation(s)
- Li Jia
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Dai Limeng
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Tan Xiaoyin
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Wang Junwen
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Zhu Xintong
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Xiong Gang
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Bai Yun
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038.
| | - Guo Hong
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038.
| |
Collapse
|
16
|
Rao KS, Kameswaran V, Bruneau BG. Modeling congenital heart disease: lessons from mice, hPSC-based models, and organoids. Genes Dev 2022; 36:652-663. [PMID: 35835508 PMCID: PMC9296004 DOI: 10.1101/gad.349678.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital heart defects (CHDs) are among the most common birth defects, but their etiology has long been mysterious. In recent decades, the development of a variety of experimental models has led to a greater understanding of the molecular basis of CHDs. In this review, we contrast mouse models of CHD, which maintain the anatomical arrangement of the heart, and human cellular models of CHD, which are more likely to capture human-specific biology but lack anatomical structure. We also discuss the recent development of cardiac organoids, which are a promising step toward more anatomically informative human models of CHD.
Collapse
Affiliation(s)
- Kavitha S Rao
- Gladstone Institutes, San Francisco, California 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California 94158, USA
| | - Vasumathi Kameswaran
- Gladstone Institutes, San Francisco, California 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California 94158, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, California 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California 94158, USA
- Department of Pediatrics and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
17
|
Chen H, Li T, Wu Y, Wang X, Wang M, Wang X, Fang X. Association between single-nucleotide polymorphisms of NKX2.5 and congenital heart disease in Chinese population: A meta-analysis. Open Life Sci 2022; 17:473-482. [PMID: 35647298 PMCID: PMC9102305 DOI: 10.1515/biol-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
NKX2.5 is a transcription factor that plays a key role in cardiovascular growth and development. Several independent studies have been previously conducted to investigate the association between the single-nucleotide polymorphism (SNP) 606G >C (rs3729753) in the coding region of NKX2.5 and congenital heart disease (CHD). However, the results of these studies have been inconsistent. Therefore, the present study aimed to reveal the relationship between NKX2.5 SNP 606G >C and the risk of CHD as possible in the Chinese population through meta-analysis. After retrieving related articles in PubMed, MEDLINE, EMBASE, Web of science, Cochrane, China National Knowledge Infrastructure, Wanfang DATA, and VIP database until August 2021, a total of eight studies were included in the present meta-analysis. The qualified research data were then merged into allele, dominant, recessive, heterozygous, homozygous, and additive models. Overall results of the current meta-analysis showed that 606G >C was not associated with CHD of the Chinese population in any model. In addition, subgroup analysis based on CHD type gave the same negative result. Results of sensitivity analysis showed that there was no significant correlation after the deletion of each study. Furthermore, it was noted that the results were negative and the heterogeneity was not significant. In conclusion, it was evident that NKX2-5 SNP 606G >C may not lead to the risk of CHD in Chinese population.
Collapse
Affiliation(s)
- Huan Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Tianjiao Li
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Yuqing Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Xi Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Mingyuan Wang
- Department of Pathophysiology, Xiangya Medical College, Central South University , Changsha , Hunan , China
| | - Xin Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| |
Collapse
|
18
|
Paolucci M, Vincenzi C, Romoli M, Amico G, Ceccherini I, Lattanzi S, Bersano A, Longoni M, Sacco S, Vernieri F, Pascarella R, Valzania F, Zedde M. The Genetic Landscape of Patent Foramen Ovale: A Systematic Review. Genes (Basel) 2021; 12:genes12121953. [PMID: 34946902 PMCID: PMC8700998 DOI: 10.3390/genes12121953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022] Open
Abstract
Patent Foramen Ovale (PFO) is a common postnatal defect of cardiac atrial septation. A certain degree of familial aggregation has been reported. Animal studies suggest the involvement of the Notch pathway and other cardiac transcription factors (GATA4, TBX20, NKX2-5) in Foramen Ovale closure. This review evaluates the contribution of genetic alterations in PFO development. We systematically reviewed studies that assessed rare and common variants in subjects with PFO. The protocol was registered with PROSPERO and followed MOOSE guidelines. We systematically searched English studies reporting rates of variants in PFO subjects until the 30th of June 2021. Among 1231 studies, we included four studies: two of them assessed the NKX2-5 gene, the remaining reported variants of chromosome 4q25 and the GATA4 S377G variant, respectively. We did not find any variant associated with PFO, except for the rs2200733 variant of chromosome 4q25 in atrial fibrillation patients. Despite the scarceness of evidence so far, animal studies and other studies that did not fulfil the criteria to be included in the review indicate a robust genetic background in PFO. More research is needed on the genetic determinants of PFO.
Collapse
Affiliation(s)
- Matteo Paolucci
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University Hospital, Via Alvaro del Portillo, 200, 00128 Rome, Italy;
- Neurology Unit, “M. Bufalini” Hospital, AUSL Romagna, Viale Giovanni Ghirotti, 286, 47521 Cesena, Italy; (M.R.); (M.L.)
- Correspondence:
| | - Chiara Vincenzi
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (C.V.); (F.V.); (M.Z.)
| | - Michele Romoli
- Neurology Unit, “M. Bufalini” Hospital, AUSL Romagna, Viale Giovanni Ghirotti, 286, 47521 Cesena, Italy; (M.R.); (M.L.)
| | - Giulia Amico
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (G.A.); (I.C.)
- DINOGMI-Universite degli Studi di Genova, Largo P. Daneo,3, 16132 Genova, Italy
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (G.A.); (I.C.)
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60121 Ancona, Italy;
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Marco Longoni
- Neurology Unit, “M. Bufalini” Hospital, AUSL Romagna, Viale Giovanni Ghirotti, 286, 47521 Cesena, Italy; (M.R.); (M.L.)
| | - Simona Sacco
- Neuroscience Section, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Fabrizio Vernieri
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University Hospital, Via Alvaro del Portillo, 200, 00128 Rome, Italy;
| | - Rosario Pascarella
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (C.V.); (F.V.); (M.Z.)
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; (C.V.); (F.V.); (M.Z.)
| |
Collapse
|
19
|
Stutt N, Song M, Wilson MD, Scott IC. Cardiac specification during gastrulation - The Yellow Brick Road leading to Tinman. Semin Cell Dev Biol 2021; 127:46-58. [PMID: 34865988 DOI: 10.1016/j.semcdb.2021.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
The question of how the heart develops, and the genetic networks governing this process have become intense areas of research over the past several decades. This research is propelled by classical developmental studies and potential clinical applications to understand and treat congenital conditions in which cardiac development is disrupted. Discovery of the tinman gene in Drosophila, and examination of its vertebrate homolog Nkx2.5, along with other core cardiac transcription factors has revealed how cardiac progenitor differentiation and maturation drives heart development. Careful observation of cardiac morphogenesis along with lineage tracing approaches indicated that cardiac progenitors can be divided into two broad classes of cells, namely the first and second heart fields, that contribute to the heart in two distinct waves of differentiation. Ample evidence suggests that the fate of individual cardiac progenitors is restricted to distinct cardiac structures quite early in development, well before the expression of canonical cardiac progenitor markers like Nkx2.5. Here we review the initial specification of cardiac progenitors, discuss evidence for the early patterning of cardiac progenitors during gastrulation, and consider how early gene expression programs and epigenetic patterns can direct their development. A complete understanding of when and how the developmental potential of cardiac progenitors is determined, and their potential plasticity, is of great interest developmentally and also has important implications for both the study of congenital heart disease and therapeutic approaches based on cardiac stem cell programming.
Collapse
Affiliation(s)
- Nathan Stutt
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Ian C Scott
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
20
|
Zheng H, Zhai W, Zhong C, Hong Q, Li H, Rui B, Zhu X, Que D, Feng L, Yu B, Huang G, Yin J, Li J, Yan J, Yang P. Nkx2-3 induces autophagy inhibiting proliferation and migration of vascular smooth muscle cells via AMPK/mTOR signaling pathway. J Cell Physiol 2021; 236:7342-7355. [PMID: 33928642 DOI: 10.1002/jcp.30400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Vascular remodeling and restenosis are common complications after percutaneous coronary intervention. Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play important roles in intimal hyperplasia-induced vascular restenosis. NK2 Homeobox 3 (Nkx2-3), a critical member of Nkx family, is involved in tissue differentiation and organ development. However, the role of Nkx2-3 in VSMCs proliferation and migration remains unknown. In this study, we used carotid balloon injury model and platelet-derived growth factor-BB (PDGF)-treated VSMCs as in vivo and in vitro experimental models. EdU assay and CCK-8 assay were used to detect cell proliferation. Migration was measured by scratch test. Hematoxylin and eosin staining and immunohistochemistry staining were used to evaluate the intimal hyperplasia. The autophagy level was detected by fluorescent mRFP-GFP-LC3 in vitro and by transmission electron microscopy in vivo. It was shown that Nkx2-3 was upregulated both in balloon injured carotid arteries and PDGF-stimulated VSMCs. Adenovirus-mediated Nkx2-3 overexpression inhibited intimal hyperplasia after balloon injury, and suppressed VSMCs proliferation and migration induced by PDGF. Conversely, silencing of Nkx2-3 by small interfering RNA exaggerated proliferation and migration of VSMCs. Furthermore, we found that Nkx2-3 enhanced autophagy level, while the autophagy inhibitor 3-MA eliminated the inhibitory effect of Nkx2-3 on VSMCs proliferation and migration both in vivo and in vitro. Moreover, Nkx2-3 promoted autophagy in VSMCs by activating the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway. These results demonstrated for the first time that Nkx2-3 inhibited VSMCs proliferation and migration through AMPK/mTOR-mediated autophagy.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Autophagy/drug effects
- Becaplermin/pharmacology
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/prevention & control
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/ultrastructure
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/ultrastructure
- Neointima
- Rats, Sprague-Dawley
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
- Transcription Factors/genetics
- Transcription Factors/physiology
- Vascular Remodeling
- Rats
Collapse
Affiliation(s)
- Huajun Zheng
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Weicheng Zhai
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Chongbin Zhong
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Qingqing Hong
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Hekai Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Bowen Rui
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Xingxing Zhu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Dongdong Que
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Bin Yu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Guanlin Huang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Jianlong Yin
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Jiacheng Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Rowton M, Guzzetta A, Rydeen AB, Moskowitz IP. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin Cell Dev Biol 2021; 118:94-106. [PMID: 34144893 PMCID: PMC8968240 DOI: 10.1016/j.semcdb.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Congenital Heart Disease (CHD), malformations of the heart present at birth, is the most common class of life-threatening birth defect (Hoffman (1995) [1], Gelb (2004) [2], Gelb (2014) [3]). A major research challenge is to elucidate the genetic determinants of CHD and mechanistically link CHD ontogeny to a molecular understanding of heart development. Although the embryonic origins of CHD are unclear in most cases, dysregulation of cardiovascular lineage specification, patterning, proliferation, migration or differentiation have been described (Olson (2004) [4], Olson (2006) [5], Srivastava (2006) [6], Dunwoodie (2007) [7], Bruneau (2008) [8]). Cardiac differentiation is the process whereby cells become progressively more dedicated in a trajectory through the cardiac lineage towards mature cardiomyocytes. Defects in cardiac differentiation have been linked to CHD, although how the complex control of cardiac differentiation prevents CHD is just beginning to be understood. The stages of cardiac differentiation are highly stereotyped and have been well-characterized (Kattman et al. (2011) [9], Wamstad et al. (2012) [10], Luna-Zurita et al. (2016) [11], Loh et al. (2016) [12], DeLaughter et al. (2016) [13]); however, the developmental and molecular mechanisms that promote or delay the transition of a cell through these stages have not been as deeply investigated. Tight temporal control of progenitor differentiation is critically important for normal organ size, spatial organization, and cellular physiology and homeostasis of all organ systems (Raff et al. (1985) [14], Amthor et al. (1998) [15], Kopan et al. (2014) [16]). This review will focus on the action of signaling pathways in the control of cardiomyocyte differentiation timing. Numerous signaling pathways, including the Wnt, Fibroblast Growth Factor, Hedgehog, Bone Morphogenetic Protein, Insulin-like Growth Factor, Thyroid Hormone and Hippo pathways, have all been implicated in promoting or inhibiting transitions along the cardiac differentiation trajectory. Gaining a deeper understanding of the mechanisms controlling cardiac differentiation timing promises to yield insights into the etiology of CHD and to inform approaches to restore function to damaged hearts.
Collapse
|
22
|
Cho K, Feneley M, Holloway C. Atrial Septal Aneurysms - A Clinically Relevant Enigma? Heart Lung Circ 2021; 31:17-24. [PMID: 34507890 DOI: 10.1016/j.hlc.2021.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022]
Abstract
Atrial septal aneurysms (ASAs) are often seen during routine cardiac imaging, though their clinical relevance has been poorly defined. The aneurysmal, and often mobile, inter-atrial septum is frequently associated with other clinically relevant structural cardiac abnormalities, particularly patent foramen ovale (PFO). Whilst ASAs have previously been considered an incidental finding, a well-endowed atrial septum provides more than visual interest, including insights into atrial function and intra-atrial pressures, and has important clinical implications in PFO-associated stroke, migraines, and arrhythmias. This review outlines diagnostic challenges when assessing ASAs using all imaging modalities and the clinical implications of this common anatomical variant.
Collapse
Affiliation(s)
- Kenneth Cho
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia; Western Sydney University, Sydney, NSW, Australia
| | - Michael Feneley
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Cameron Holloway
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Transl Pediatr 2021; 10:2366-2386. [PMID: 34733677 PMCID: PMC8506053 DOI: 10.21037/tp-21-297] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Congenital heart disease (CHD) is the most common human birth defect and remains a leading cause of mortality in childhood. Although advances in clinical management have improved the survival of children with CHD, adult survivors commonly experience cardiac and non-cardiac comorbidities, which affect quality of life and prognosis. Therefore, the elucidation of genetic etiologies of CHD not only has important clinical implications for genetic counseling of patients and families but may also impact clinical outcomes by identifying at-risk patients. Recent advancements in genetic technologies, including massively parallel sequencing, have allowed for the discovery of new genetic etiologies for CHD. Although variant prioritization and interpretation of pathogenicity remain challenges in the field of CHD genomics, advances in single-cell genomics and functional genomics using cellular and animal models of CHD have the potential to provide novel insights into the underlying mechanisms of CHD and its associated morbidities. In this review, we provide an updated summary of the established genetic contributors to CHD and discuss recent advances in our understanding of the genetic architecture of CHD along with current challenges with the interpretation of genetic variation. Furthermore, we highlight the clinical implications of genetic findings to predict and potentially improve clinical outcomes in patients with CHD.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
24
|
Kern CB. Excess Provisional Extracellular Matrix: A Common Factor in Bicuspid Aortic Valve Formation. J Cardiovasc Dev Dis 2021; 8:92. [PMID: 34436234 PMCID: PMC8396938 DOI: 10.3390/jcdd8080092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
A bicuspid aortic valve (BAV) is the most common cardiac malformation, found in 0.5% to 2% of the population. BAVs are present in approximately 50% of patients with severe aortic stenosis and are an independent risk factor for aortic aneurysms. Currently, there are no therapeutics to treat BAV, and the human mutations identified to date represent a relatively small number of BAV patients. However, the discovery of BAV in an increasing number of genetically modified mice is advancing our understanding of molecular pathways that contribute to BAV formation. In this study, we utilized the comparison of BAV phenotypic characteristics between murine models as a tool to advance our understanding of BAV formation. The collation of murine BAV data indicated that excess versican within the provisional extracellular matrix (P-ECM) is a common factor in BAV development. While the percentage of BAVs is low in many of the murine BAV models, the remaining mutant mice exhibit larger and more amorphous tricuspid AoVs, also with excess P-ECM compared to littermates. The identification of common molecular characteristics among murine BAV models may lead to BAV therapeutic targets and biomarkers of disease progression for this highly prevalent and heterogeneous cardiovascular malformation.
Collapse
Affiliation(s)
- Christine B Kern
- Department of Regenerative Medicine and Cell Biology, 171 Ashley Avenue, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
25
|
Abstract
Bicuspid aortic valve (BAV) is the most common valvular congenital heart disease, with a prevalence of 0.5 to 2% in the general population. Patients with BAV are at risk for developing cardiovascular complications, some of which are life-threatening. BAV has a wide spectrum of clinical presentations, ranging from silent malformation to severe and even fatal cardiac events. Despite the significant burden on both the patients and the health systems, data are limited regarding pathophysiology, risk factors, and genetics. Family studies indicate that BAV is highly heritable, with autosomal dominant inheritance, incomplete penetrance, variable expressivity, and male predominance. Owing to its complex genetic model, including high genetic heterogenicity, only a few genes were identified in association with BAV, while the majority of BAV genetics remains obscure. Here, we review the different forms of BAV and the current data regarding its genetics. Given the clear heritably of BAV with the potential high impact on clinical outcome, the clinical value and cost effectiveness of cascade screening are discussed.
Collapse
|
26
|
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functional analysis of novel genetic variants of NKX2-5 associated with nonsyndromic congenital heart disease. Am J Med Genet A 2021; 185:3644-3663. [PMID: 34214246 DOI: 10.1002/ajmg.a.62413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023]
Abstract
NKX2-5, a master cardiac regulatory transcription factor was the first known genetic cause of congenital heart diseases (CHDs). To further investigate its role in CHD pathogenesis, we performed mutational screening of 285 CHD probands and 200 healthy controls. Five coding sequence variants were identified in six CHD cases (2.1%), including three in the N-terminal region (p.A61G, p.R95L, and p.E131K) and one each in homeodomain (HD) (p.A148E) and tyrosine-rich domain (p.P247A). Variant-p.A148E showed tertiary structure changes and differential DNA binding affinity of mutant compared to wild type. Two N-terminal variants-p.A61G and p.E131K along with HD variant p.A148E demonstrated significantly reduced transcriptional activity of Nppa and Actc1 promoters in dual luciferase promoter assay supported by their reduced expression in qRT-PCR. Nonetheless, variant p.R95L affected the synergy of NKX2-5 with serum response factor and TBX5 leading to significantly decreased Actc1 promoter activity depicting a distinctive role of this region. The aberrant expression of other target genes-Irx4, Mef2c, Bmp10, Myh6, Myh7, and Myocd is also observed in response to NKX2-5 variants, possibly due to the defective gene regulatory network. Severely impaired downstream promoter activities and abnormal expression of target genes due to N-terminal variants supports the emerging role of this region during cardiac-developmental pathways.
Collapse
Affiliation(s)
- Ritu Dixit
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chitra Narasimhan
- Department of Pediatric Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, India
| | - Vijayalakshmi I Balekundri
- Super Speciality Hospital, Pradhan Mantri Swasthya Suraksha Yojana (PMSSY), Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Damyanti Agrawal
- Department of Cardiothoracic and Vascular Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
27
|
Dai W, Kesaraju S, Weber CR. Transcriptional factors in calcium mishandling and atrial fibrillation development. Pflugers Arch 2021; 473:1177-1197. [PMID: 34003377 DOI: 10.1007/s00424-021-02553-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy cardiac conduction relies on the coordinated electrical activity of distinct populations of cardiomyocytes. Disruption of cell-cell conduction results in cardiac arrhythmias, a leading cause of morbidity and mortality worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with risk of atrial fibrillation, including transcription factor genes, particularly those important in cardiac development, microRNAs, and long noncoding RNAs. Identification of such genetic factors has prompted the search to understand the mechanisms that underlie the genetic component of AF. Recent studies have found several mechanisms by which genetic alterations can result in AF formation via disruption of calcium handling. Loss of developmental transcription factors in adult cardiomyocytes can result in disruption of SR calcium ATPase, sodium calcium exchanger, calcium channels, among other ion channels, which underlie action potential abnormalities and triggered activity that can contribute to AF. This review aims to summarize the complex network of transcription factors and their roles in calcium handling.
Collapse
Affiliation(s)
- Wenli Dai
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sneha Kesaraju
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
28
|
Abstract
Aortic stenosis (AS) remains one of the most common forms of valve disease, with significant impact on patient survival. The disease is characterized by left ventricular outflow obstruction and encompasses a series of stenotic lesions starting from the left ventricular outflow tract to the descending aorta. Obstructions may be subvalvar, valvar, or supravalvar and can be present at birth (congenital) or acquired later in life. Bicuspid aortic valve, whereby the aortic valve forms with two instead of three cusps, is the most common cause of AS in younger patients due to primary anatomic narrowing of the valve. In addition, the secondary onset of premature calcification, likely induced by altered hemodynamics, further obstructs left ventricular outflow in bicuspid aortic valve patients. In adults, degenerative AS involves progressive calcification of an anatomically normal, tricuspid aortic valve and is attributed to lifelong exposure to multifactoral risk factors and physiological wear-and-tear that negatively impacts valve structure-function relationships. AS continues to be the most frequent valvular disease that requires intervention, and aortic valve replacement is the standard treatment for patients with severe or symptomatic AS. While the positive impacts of surgical interventions are well documented, the financial burden, the potential need for repeated procedures, and operative risks are substantial. In addition, the clinical management of asymptomatic patients remains controversial. Therefore, there is a critical need to develop alternative approaches to prevent the progression of left ventricular outflow obstruction, especially in valvar lesions. This review summarizes our current understandings of AS cause; beginning with developmental origins of congenital valve disease, and leading into the multifactorial nature of AS in the adult population.
Collapse
Affiliation(s)
- Punashi Dutta
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Jeanne F James
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Hail Kazik
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee (H.K.)
| | - Joy Lincoln
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| |
Collapse
|
29
|
Majumdar U, Yasuhara J, Garg V. In Vivo and In Vitro Genetic Models of Congenital Heart Disease. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a036764. [PMID: 31818859 DOI: 10.1101/cshperspect.a036764] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital cardiovascular malformations represent the most common type of birth defect and encompass a spectrum of anomalies that range from mild to severe. The etiology of congenital heart disease (CHD) is becoming increasingly defined based on prior epidemiologic studies that supported the importance of genetic contributors and technological advances in human genome analysis. These have led to the discovery of a growing number of disease-contributing genetic abnormalities in individuals affected by CHD. The ever-growing population of adult CHD survivors, which are the result of reductions in mortality from CHD during childhood, and this newfound genetic knowledge have led to important questions regarding recurrence risks, the mechanisms by which these defects occur, the potential for novel approaches for prevention, and the prediction of long-term cardiovascular morbidity in adult CHD survivors. Here, we will review the current status of genetic models that accurately model human CHD as they provide an important tool to answer these questions and test novel therapeutic strategies.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jun Yasuhara
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43205, USA
| |
Collapse
|
30
|
Iop L. Toward the Effective Bioengineering of a Pathological Tissue for Cardiovascular Disease Modeling: Old Strategies and New Frontiers for Prevention, Diagnosis, and Therapy. Front Cardiovasc Med 2021; 7:591583. [PMID: 33748193 PMCID: PMC7969521 DOI: 10.3389/fcvm.2020.591583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) still represent the primary cause of mortality worldwide. Preclinical modeling by recapitulating human pathophysiology is fundamental to advance the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and treatment. In silico, in vivo, and in vitro models have been applied to dissect many cardiovascular pathologies. Computational and bioinformatic simulations allow developing algorithmic disease models considering all known variables and severity degrees of disease. In vivo studies based on small or large animals have a long tradition and largely contribute to the current treatment and management of CVDs. In vitro investigation with two-dimensional cell culture demonstrates its suitability to analyze the behavior of single, diseased cellular types. The introduction of induced pluripotent stem cell technology and the application of bioengineering principles raised the bar toward in vitro three-dimensional modeling by enabling the development of pathological tissue equivalents. This review article intends to describe the advantages and disadvantages of past and present modeling approaches applied to provide insights on some of the most relevant congenital and acquired CVDs, such as rhythm disturbances, bicuspid aortic valve, cardiac infections and autoimmunity, cardiovascular fibrosis, atherosclerosis, and calcific aortic valve stenosis.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences, and Public Health, University of Padua Medical School, Padua, Italy
| |
Collapse
|
31
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
32
|
Abstract
Congenital heart disease is the most common congenital defect observed in newborns. Within the spectrum of congenital heart disease are left‐sided obstructive lesions (LSOLs), which include hypoplastic left heart syndrome, aortic stenosis, bicuspid aortic valve, coarctation of the aorta, and interrupted aortic arch. These defects can arise in isolation or as a component of a defined syndrome; however, nonsyndromic defects are often observed in multiple family members and associated with high sibling recurrence risk. This clear evidence for a heritable basis has driven a lengthy search for disease‐causing variants that has uncovered both rare and common variants in genes that, when perturbed in cardiac development, can result in LSOLs. Despite advancements in genetic sequencing platforms and broadening use of exome sequencing, the currently accepted LSOL‐associated genes explain only 10% to 20% of patients. Further, the combinatorial effects of common and rare variants as a cause of LSOLs are emerging. In this review, we highlight the genes and variants associated with the different LSOLs and discuss the strengths and weaknesses of the present genetic associations. Furthermore, we discuss the research avenues needed to bridge the gaps in our current understanding of the genetic basis of nonsyndromic congenital heart disease.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC
| | - Andrew P Landstrom
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
33
|
Nkx2-5 defines distinct scaffold and recruitment phases during formation of the murine cardiac Purkinje fiber network. Nat Commun 2020; 11:5300. [PMID: 33082351 PMCID: PMC7575572 DOI: 10.1038/s41467-020-19150-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/29/2020] [Indexed: 01/24/2023] Open
Abstract
The ventricular conduction system coordinates heartbeats by rapid propagation of electrical activity through the Purkinje fiber (PF) network. PFs share common progenitors with contractile cardiomyocytes, yet the mechanisms of segregation and network morphogenesis are poorly understood. Here, we apply genetic fate mapping and temporal clonal analysis to identify murine cardiomyocytes committed to the PF lineage as early as E7.5. We find that a polyclonal PF network emerges by progressive recruitment of conductive precursors to this scaffold from a pool of bipotent progenitors. At late fetal stages, the segregation of conductive cells increases during a phase of rapid recruitment to build the definitive PF network through a non-cell autonomous mechanism. We also show that PF differentiation is impaired in Nkx2-5 haploinsufficient embryos leading to failure to extend the scaffold. In particular, late fetal recruitment fails, resulting in PF hypoplasia and persistence of bipotent progenitors. Our results identify how transcription factor dosage regulates cell fate divergence during distinct phases of PF network morphogenesis. Here, the authors apply genetic fate mapping and temporal clonal analysis to study progenitor recruitment and network morphogenesis of murine cardiac Purkinje fibers. Additionally, they characterize how transcription factor dosage regulates cell fate divergence during distinct phases of this process.
Collapse
|
34
|
Meng Z, Wang J, Peng J, Zhou Y, Zhou S, Song W, Chen S, Wang Q, Bai K, Sun K. Dynamic transcriptome profiling toward understanding the development of the human embryonic heart during different Carnegie stages. FEBS Lett 2020; 594:4307-4319. [PMID: 32946599 DOI: 10.1002/1873-3468.13930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Transcriptional regulation participates in heart development. However, the transcriptomes of human embryonic hearts during Carnegie stage (CS)10-CS16 have not been elucidated. Here, we found marked changes in the morphology and transcriptome of the human embryonic heart from CS10 to CS11. At CS12-CS14, the embryonic heart undergoes hypoxia-to-aerobic transformation. At CS14-CS16, transcriptome functions were related to energy metabolism, regulation of cholesterol, and processes related to inorganic substances. Moreover, the transcriptomes of cardiac progenitor cells derived from human embryonic stem cells (hESCs) most overlapped with those of human embryonic hearts at CS10. Cardiomyocytes derived from hESCs considerably overlapped with embryonic hearts at CS14-CS16. Overall, these results provide a new perspective into the characteristics of human embryonic heart development.
Collapse
Affiliation(s)
- Zhuo Meng
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China.,Department of Pediatric Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jiayu Peng
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yue Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Shuang Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Wenting Song
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China.,Department of Pediatric Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Kai Bai
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China.,Department of Pediatric Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, China
| |
Collapse
|
35
|
Lai G, Wang L, Li Z, Zhao Y. Homocysteine downregulates cardiac homeobox transcription factor NKX2.5 via IGFBP5. Am J Physiol Heart Circ Physiol 2020; 319:H1380-H1386. [PMID: 33035436 DOI: 10.1152/ajpheart.00347.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Homocysteine (Hcy) is an independent risk factor of congenital heart disease (CHD), but its exact underlying mechanism is unclear. In this study, we collected amniotic fluid (AF) supernatant samples from pregnant women carrying CHD-affected (n = 16) or normal (n = 16) fetuses. We found that Hcy concentrations were higher in the AF of the CHD group when compared with normal pregnancies. Also, Western blot showed that NK2 homeobox 5 (NKX2.5) was decreased and insulin-like growth factor binding protein 5 (IGFBP5) was increased in the AF of the CHD group. In the H9C2 cell culture experiment, 500 μmol/L Hcy downregulated NKX2.5 and upregulated IGFBP5. Real-time PCR and Western blot showed that NKX2.5 expression was reduced in H9C2 cells treated with IGFBP5. Luciferase reporter gene demonstrated that IGFBP5 decreased the transcription of the NKX2.5 promoter. Chromatin immunoprecipitation and electrophoretic mobility shift assay suggested that IGFBP5 binds to the NKX2.5 promoter region. Thus, the data indicated that one of the possible mechanisms by which Hcy is involved in CHD may be that Hcy inhibits NKX2.5 expression partly through IGFBP5.NEW & NOTEWORTHY We found that Hcy and IGFBP5 were increased, whereas NKX2.5 was decreased, in AF of CHD. Meanwhile, Hcy could upregulate IGFBP5 but downregulate NKX2.5, and IGFBP5 inhibited NKX2.5 expression in vitro. Moreover, IGFBP5 can bind to the NKX2.5 promoter region and reduce NKX2.5 transcriptional activity.
Collapse
Affiliation(s)
- Guangrui Lai
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Leitong Wang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.,Department of Reproductive Laboratory, Shenyang Jinghua Hospital, Shenyang, Liaoning, People's Republic of China
| | - Zhen Li
- Department of Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
36
|
Correction to: Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:e143-e146. [DOI: 10.1161/res.0000000000000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Zhang Q, Liang D, Yue Y, He L, Li N, Jiang D, Hu P, Zhao Q. Axenfeld-Rieger syndrome-associated mutants of the transcription factor FOXC1 abnormally regulate NKX2-5 in model zebrafish embryos. J Biol Chem 2020; 295:11902-11913. [PMID: 32631953 DOI: 10.1074/jbc.ra120.013287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/04/2020] [Indexed: 12/25/2022] Open
Abstract
FOXC1 is a member of the forkhead family of transcription factors, and whose function is poorly understood. A variety of FOXC1 mutants have been identified in patients diagnosed with the autosomal dominant disease Axenfeld-Rieger syndrome, which is mainly characterized by abnormal development of the eyes, particularly those who also have accompanying congenital heart defects (CHD). However, the role of FOXC1 in CHD, and how these mutations might impact FOXC1 function, remains elusive. Our previous work provided one clue to possible function, demonstrating that zebrafish foxc1a, an orthologue of human FOXC1 essential for heart development, directly regulates the expression of nkx2.5, encoding a transcriptional regulator of cardiac progenitor cells. Abnormal expression of Nkx2-5 leads to CHD in mice and is also associated with CHD patients. Whether this link extends to the human system, however, requires investigation. In this study, we demonstrate that FOXC1 does regulate human NKX2-5 expression in a dose-dependent manner via direct binding to its proximal promoter. A comparison of FOXC1 mutant function in the rat cardiac cell line H9c2 and zebrafish embryos suggested that the zebrafish embryos might serve as a more representative model system than the H9c2 cells. Finally, we noted that three of the Axenfeld-Rieger syndrome FOXC1 mutations tested increased, whereas a fourth repressed the expression of NKX2-5 These results imply that mutant FOXC1s might play etiological roles in CHD by abnormally regulating NKX2-5 in the patients. And zebrafish embryos can serve as a useful in vivo platform for rapidly evaluating disease-causing roles of mutated genes.
Collapse
Affiliation(s)
- Qinxin Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Dong Liang
- Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yunyun Yue
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Luqingqing He
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Nan Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Dongya Jiang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
38
|
Akerberg BN, Pu WT. Genetic and Epigenetic Control of Heart Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036756. [PMID: 31818853 DOI: 10.1101/cshperspect.a036756] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A transcriptional program implemented by transcription factors and epigenetic regulators governs cardiac development and disease. Mutations in these factors are important causes of congenital heart disease. Here, we review selected recent advances in our understanding of the transcriptional and epigenetic control of heart development, including determinants of cardiac transcription factor chromatin occupancy, the gene regulatory network that regulates atrial septation, the chromatin landscape and cardiac gene regulation, and the role of Brg/Brahma-associated factor (BAF), nucleosome remodeling and histone deacetylation (NuRD), and Polycomb epigenetic regulatory complexes in heart development.
Collapse
Affiliation(s)
- Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
39
|
Soto-Navarrete MT, López-Unzu MÁ, Durán AC, Fernández B. Embryonic development of bicuspid aortic valves. Prog Cardiovasc Dis 2020; 63:407-418. [PMID: 32592706 DOI: 10.1016/j.pcad.2020.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, frequently associated with aortopathies and valvulopathies. The congenital origin of BAV is suspected to impact the development of the disease in the adult life. During the last decade, a number of studies dealing with the embryonic development of congenital heart disease have significantly improved our knowledge on BAV etiology. They describe the developmental defects, at the molecular, cellular and morphological levels, leading to congenital cardiac malformations, including BAV, in animal models. These models consist of a spontaneous hamster and several mouse models with different genetic manipulations in genes belonging to a variety of pathways. In this review paper, we aim to gather information on the developmental defects leading to BAV formation in these animal models, in order to tentatively explain the morphogenetic origin of the spectrum of valve morphologies that characterizes human BAV. BAV may be the only defect resulting from gene manipulation in mice, but usually it appears as the less severe defect of a spectrum of malformations, most frequently affecting the cardiac outflow tract. The genes whose alterations cause BAV belong to different genetic pathways, but many of them are direct or indirectly associated with the NOTCH pathway. These molecular alterations affect three basic cellular mechanisms during heart development, i.e., endocardial-to-mesenchymal transformation, cardiac neural crest (CNC) cell behavior and valve cushion mesenchymal cell differentiation. The defective cellular functions affect three possible morphogenetic mechanisms, i.e., outflow tract endocardial cushion formation, outflow tract septation and valve cushion excavation. While endocardial cushion abnormalities usually lead to latero-lateral BAVs and septation defects to antero-posterior BAVs, alterations in cushion excavation may give rise to both BAV types. The severity of the original defect most probably determines the specific aortic valve phenotype, which includes commissural fusions and raphes. Based on current knowledge on the developmental mechanisms of the cardiac outflow tract, we propose a unified hypothesis of BAV formation, based on the inductive role of CNC cells in the three mechanisms of BAV development. Alterations of CNC cell behavior in three possible alternative key valvulogenic processes may lead to the whole spectrum of BAV.
Collapse
Affiliation(s)
- María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Miguel Ángel López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain; CIBERCV Enfermedades Cardiovasculares, Málaga, Spain.
| |
Collapse
|
40
|
van Ouwerkerk AF, Hall AW, Kadow ZA, Lazarevic S, Reyat JS, Tucker NR, Nadadur RD, Bosada FM, Bianchi V, Ellinor PT, Fabritz L, Martin J, de Laat W, Kirchhof P, Moskowitz I, Christoffels VM. Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:34-50. [PMID: 32717170 PMCID: PMC8315291 DOI: 10.1161/circresaha.120.316574] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.
Collapse
Affiliation(s)
- Antoinette F. van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Amelia W. Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary A. Kadow
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Rangarajan D. Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
| | - Jim Martin
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
- Texas Heart Institute, Houston, Texas, 77030
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
- University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Ivan Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
41
|
Bousalis D, Lacko CS, Hlavac N, Alkassis F, Wachs RA, Mobini S, Schmidt CE, Kasahara H. Extracellular Matrix Disparities in an Nkx2-5 Mutant Mouse Model of Congenital Heart Disease. Front Cardiovasc Med 2020; 7:93. [PMID: 32548129 PMCID: PMC7272573 DOI: 10.3389/fcvm.2020.00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Congenital heart disease (CHD) affects almost one percent of all live births. Despite diagnostic and surgical reparative advances, the causes and mechanisms of CHD are still primarily unknown. The extracellular matrix plays a large role in cell communication, function, and differentiation, and therefore likely plays a role in disease development and pathophysiology. Cell adhesion and gap junction proteins, such as integrins and connexins, are also essential to cellular communication and behavior, and could interact directly (integrins) or indirectly (connexins) with the extracellular matrix. In this work, we explore disparities in the expression and spatial patterning of extracellular matrix, adhesion, and gap junction proteins between wild type and Nkx2-5 +/R52G mutant mice. Decellularization and proteomic analysis, Western blotting, histology, immunostaining, and mechanical assessment of embryonic and neonatal wild type and Nkx2-5 mutant mouse hearts were performed. An increased abundance of collagen IV, fibronectin, and integrin β-1 was found in Nkx2-5 mutant neonatal mouse hearts, as well as increased expression of connexin 43 in embryonic mutant hearts. Furthermore, a ventricular noncompaction phenotype was observed in both embryonic and neonatal mutant hearts, as well as spatial disorganization of ECM proteins collagen IV and laminin in mutant hearts. Characterizing such properties in a mutant mouse model provides valuable information that can be applied to better understanding the mechanisms of congenital heart disease.
Collapse
Affiliation(s)
- Deanna Bousalis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Christopher S Lacko
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Fariz Alkassis
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Rebecca A Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sahba Mobini
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
42
|
Kolomenski JE, Delea M, Simonetti L, Fabbro MC, Espeche LD, Taboas M, Nadra AD, Bruque CD, Dain L. An update on genetic variants of the NKX2-5. Hum Mutat 2020; 41:1187-1208. [PMID: 32369864 DOI: 10.1002/humu.24030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
NKX2-5 is a homeodomain transcription factor that plays a crucial role in heart development. It is the first gene where a single genetic variant (GV) was found to be associated with congenital heart diseases in humans. In this study, we carried out a comprehensive survey of NKX2-5 GVs to build a unified, curated, and updated compilation of all available GVs. We retrieved a total of 1,380 unique GVs. From these, 970 had information on their frequency in the general population and 143 have been linked to pathogenic phenotypes in humans. In vitro effect was ascertained for 38 GVs. The homeodomain had the biggest cluster of pathogenic variants in the protein: 49 GVs in 60 residues, 23 in its third α-helix, where 11 missense variants may affect protein-DNA interaction or the hydrophobic core. We also pinpointed the likely location of pathogenic GVs in four linear motifs. These analyses allowed us to assign a putative explanation for the effect of 90 GVs. This study pointed to reliable pathogenicity for GVs in helix 3 of the homeodomain and may broaden the scope of functional and structural studies that can be done to better understand the effect of GVs in NKX2-5 function.
Collapse
Affiliation(s)
- Jorge E Kolomenski
- Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisol Delea
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Leandro Simonetti
- Department of Chemistry-Biomedical Centre, Uppsala University, Uppsala, Sweden
| | | | - Lucía D Espeche
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Melisa Taboas
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Alejandro D Nadra
- Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos D Bruque
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, (IBYME-CONICET), Buenos Aires, Argentina
| | - Liliana Dain
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina.,Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
43
|
Fernández B, Soto-Navarrete MT, López-García A, López-Unzu MÁ, Durán AC, Fernández MC. Bicuspid Aortic Valve in 2 Model Species and Review of the Literature. Vet Pathol 2020; 57:321-331. [DOI: 10.1177/0300985819900018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common human congenital cardiac malformation. Although the etiology is unknown for most patients, formation of the 2 main BAV anatomic types (A and B) has been shown to rely on distinct morphogenetic mechanisms. Animal models of BAV include 2 spontaneous hamster strains and 27 genetically modified mouse strains. To assess the value of these models for extrapolation to humans, we examined the aortic valve anatomy of 4340 hamsters and 1823 mice from 8 and 7 unmodified strains, respectively. In addition, we reviewed the literature describing BAV in nonhuman mammals. The incidences of BAV types A and B were 2.3% and 0.03% in control hamsters and 0% and 0.3% in control mice, respectively. Hamsters from the spontaneous model had BAV type A only, whereas mice from 2 of 27 genetically modified strains had BAV type A, 23 of 27 had BAV type B, and 2 of 27 had both BAV types. In both species, BAV incidence was dependent on genetic background. Unlike mice, hamsters had a wide spectrum of aortic valve morphologies. We showed interspecific differences in the occurrence of BAV between humans, hamsters, and mice that should be considered when studying aortic valve disease using animal models. Our results suggest that genetic modifiers play a significant role in both the morphology and incidence of BAV. We propose that mutations causing anomalies in specific cardiac morphogenetic processes or cell lineages may lead to BAV types A, B, or both, depending on additional genetic, environmental, and epigenetic factors.
Collapse
Affiliation(s)
- Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- CIBERCV Enfermedades Cardiovasculares, Málaga, Spain
| | - María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Alejandro López-García
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Miguel Ángel López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - M. Carmen Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
44
|
Wünnemann F, Ta-Shma A, Preuss C, Leclerc S, van Vliet PP, Oneglia A, Thibeault M, Nordquist E, Lincoln J, Scharfenberg F, Becker-Pauly C, Hofmann P, Hoff K, Audain E, Kramer HH, Makalowski W, Nir A, Gerety SS, Hurles M, Comes J, Fournier A, Osinska H, Robins J, Pucéat M, Elpeleg O, Hitz MP, Andelfinger G. Loss of ADAMTS19 causes progressive non-syndromic heart valve disease. Nat Genet 2019; 52:40-47. [PMID: 31844321 DOI: 10.1038/s41588-019-0536-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/23/2019] [Indexed: 01/24/2023]
Abstract
Valvular heart disease is observed in approximately 2% of the general population1. Although the initial observation is often localized (for example, to the aortic or mitral valve), disease manifestations are regularly observed in the other valves and patients frequently require surgery. Despite the high frequency of heart valve disease, only a handful of genes have so far been identified as the monogenic causes of disease2-7. Here we identify two consanguineous families, each with two affected family members presenting with progressive heart valve disease early in life. Whole-exome sequencing revealed homozygous, truncating nonsense alleles in ADAMTS19 in all four affected individuals. Homozygous knockout mice for Adamts19 show aortic valve dysfunction, recapitulating aspects of the human phenotype. Expression analysis using a lacZ reporter and single-cell RNA sequencing highlight Adamts19 as a novel marker for valvular interstitial cells; inference of gene regulatory networks in valvular interstitial cells positions Adamts19 in a highly discriminatory network driven by the transcription factor lymphoid enhancer-binding factor 1 downstream of the Wnt signaling pathway. Upregulation of endocardial Krüppel-like factor 2 in Adamts19 knockout mice precedes hemodynamic perturbation, showing that a tight balance in the Wnt-Adamts19-Klf2 axis is required for proper valve maturation and maintenance.
Collapse
Affiliation(s)
- Florian Wünnemann
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada.,Institute of Bioinformatics, University of Münster, Münster, Germany
| | - Asaf Ta-Shma
- Department of Pediatric Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Monique and Jacques Robo Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Severine Leclerc
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada.,LIA (International Associated Laboratory) Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada.,LIA (International Associated Laboratory) INSERM, Marseille, France
| | - Andrea Oneglia
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Maryse Thibeault
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Emily Nordquist
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - Franka Scharfenberg
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Christoph Becker-Pauly
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Philipp Hofmann
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kirstin Hoff
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany.,German Centre for Cardiovascular Research (DZHK), Kiel, Germany
| | - Enrique Audain
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany.,German Centre for Cardiovascular Research (DZHK), Kiel, Germany
| | - Hans-Heiner Kramer
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany.,German Centre for Cardiovascular Research (DZHK), Kiel, Germany
| | | | - Amiram Nir
- Department of Pediatric Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | - Johanna Comes
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Anne Fournier
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Hanna Osinska
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jeffrey Robins
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Michel Pucéat
- LIA (International Associated Laboratory) Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada.,LIA (International Associated Laboratory) INSERM, Marseille, France.,Université Aix-Marseille, INSERM U-1251, Marseille, France
| | | | - Orly Elpeleg
- Monique and Jacques Robo Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany.,German Centre for Cardiovascular Research (DZHK), Kiel, Germany.,Wellcome Sanger Institute, Cambridge, UK.,Department of Human Genetics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada. .,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada. .,Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
45
|
Abstract
Objective. This study aimed to assess the association of atrial septal aneurysm (ASA) with cardiac arrhythmias by comparing patients with ASA with a control group with non-ASA, matched for age and gender. Methods. 641 patients with ASA who fulfilled the inclusion criteria were enrolled into the study. The control group consisted of 641 patients without ASA. Patients underwent physical, electrocardiographic and transthoracic echocardiographic examinations. Additional examinations such as transesophageal echocardiography, 24-h rhythm Holter monitoring, and electrophysiological study were performed when clinically needed. Results. There were no differences between the groups in respect to baseline demographic, clinical parameters and echocardiographic parameters except ischemic stroke and smoking status. Percentages of patients suffering from atrial premature complex (APC), ventricular premature complex (VPC), supraventricular tachycardia (SVT) and paroxysmal atrial fibrillation (AF) were higher in ASA patients compared to non-ASA patients. In addition, these parameters were independently associated with the presence of ASA in logistic regression analysis. Conclusions. Certain types of arrhythmias such as APC, VPC, SVT and paroxysmal AF have been shown to be independently associated with the presence of ASA.
Collapse
Affiliation(s)
- Ertan Yetkin
- Department of Cardiology, Istinye University Liv Hospital, Istanbul, Turkey
| | - Mehmet Ileri
- Department of Cardiology, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Ahmet Korkmaz
- Department of Cardiology, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Selcuk Ozturk
- Department of Cardiology, Ankara Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
46
|
Li H, Li D, Wang Y, Huang Z, Xu J, Yang T, Wang L, Tang Q, Cai CL, Huang H, Zhang Y, Chen Y. Nkx2-5 defines a subpopulation of pacemaker cells and is essential for the physiological function of the sinoatrial node in mice. Development 2019; 146:dev.178145. [PMID: 31320323 DOI: 10.1242/dev.178145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/04/2019] [Indexed: 02/05/2023]
Abstract
The sinoatrial node (SAN), the primary cardiac pacemaker, consists of a head domain and a junction/tail domain that exhibit different functional properties. However, the underlying molecular mechanism defining these two pacemaker domains remains elusive. Nkx2-5 is a key transcription factor essential for the formation of the working myocardium, but it was generally thought to be detrimental to SAN development. However, Nkx2-5 is expressed in the developing SAN junction, suggesting a role for Nkx2-5 in SAN junction development and function. In this study, we present unambiguous evidence that SAN junction cells exhibit unique action potential configurations intermediate to those manifested by the SAN head and the surrounding atrial cells, suggesting a specific role for the junction cells in impulse generation and in SAN-atrial exit conduction. Single-cell RNA-seq analyses support this concept. Although Nkx2-5 inactivation in the SAN junction did not cause a malformed SAN at birth, the mutant mice manifested sinus node dysfunction. Thus, Nkx2-5 defines a population of pacemaker cells in the transitional zone. Despite Nkx2-5 being dispensable for SAN morphogenesis during embryogenesis, its deletion hampers atrial activation by the pacemaker.
Collapse
Affiliation(s)
- Hua Li
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province 350108, PR China.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Dainan Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yuzhi Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Zhen Huang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province 350108, PR China
| | - Jue Xu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.,West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Tianfang Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Linyan Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Qinghuang Tang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Chen-Leng Cai
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hai Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province 350108, PR China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
47
|
Wang H, Liu Y, Li Y, Wang W, Li L, Meng M, Xie Y, Zhang Y, Yunfeng Z, Han S, Zeng J, Hou Z, Jiang L. Analysis of NKX2-5 in 439 Chinese Patients with Sporadic Atrial Septal Defect. Med Sci Monit 2019; 25:2756-2763. [PMID: 30982828 PMCID: PMC6481236 DOI: 10.12659/msm.916052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background The NKX2 gene family is made up of core transcription factors that are involved in the morphogenesis of the vertebrate heart. NKx2-5 plays a pivotal role in mouse cardiogenesis, and mutations in NKx2-5 result in an abnormal structure and function of the heart, including atrial septal defect and cardiac electrophysiological abnormalities. Material/Methods To investigate the genetic variation of NKX2-5 in Chinese patients with sporadic atrial septal defect, we sequenced the full length of the NKX2-5 gene in the participants of the study. Four hundred thirty-nine patients and 567 healthy unrelated individuals were recruited. Genomic DNA was extracted from the peripheral blood leukocytes of the participants. DNA samples from the participants were amplified by multiplex PCR and sequenced on an Illumina HiSeq platform. Variations were detected by comparison with a standard reference genome and annotation with a variant effect predictor. Results Thirty variations were detected in Chinese patients with sporadic atrial septal defect, and 6 single nucleotide polymorphisms (SNPs) had a frequency greater than 1%. Among the 30 variations, the SNPs rs2277923 and rs3729753 were extremely prominent, with a high frequency and odds ratio in patients. Conclusions Single nucleotide variations are the prominent genetic variations of NKX2-5 in Chinese patients with sporadic atrial septal defect. The SNPs rs2277923 and rs3729753 are prominent single nucleotide variations (SNVs) in Chinese patients with sporadic atrial septal defect.
Collapse
Affiliation(s)
- Hongshu Wang
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Yong Liu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Yaxiong Li
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Wenju Wang
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Lin Li
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Mingyao Meng
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yanhua Xie
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yayong Zhang
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Zi Yunfeng
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Shen Han
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Jianying Zeng
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - ZongLiu Hou
- Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland).,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Lihong Jiang
- The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
48
|
Aquila I, Frati G, Sciarretta S, Dellegrottaglie S, Torella D, Torella M. New imaging techniques project the cellular and molecular alterations underlying bicuspid aortic valve development. J Mol Cell Cardiol 2019; 129:197-207. [PMID: 30826295 DOI: 10.1016/j.yjmcc.2019.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/29/2022]
Abstract
Bicuspid aortic valve (BAV) disease is the most common congenital cardiac malformation associated with an increased lifetime risk and a high rate of surgically-relevant valve deterioration and aortic dilatation. Genomic data revealed that different genes are associated with BAV. A dominant genetic factor for the recent past was the basis to the recommendation for a more extensive aortic intervention. However very recent evidence that hemodynamic stressors and alterations of wall shear stress play an important role independent from the genetic trait led to more conservative treatment recommendations. Therefore, there is a current need to improve the ability to risk stratify BAV patients in order to obtain an early detection of valvulopathy and aortopathy while also to predict valve dysfunction and/or aortic disease development. Imaging studies based on new cutting-edge technologies, such us 4-dimensional (4D) flow magnetic resonance imaging (MRI), two-dimensional (2D) or three-dimensional (3D) speckle-tracking imaging (STI) and computation fluid dynamics, combined with studies demonstrating new gene mutations, specific signal pathways alterations, hemodynamic influences, circulating biomarkers modifications, endothelial progenitor cell impairment and immune/inflammatory response, all detected BAV valvulopathy progression and aortic wall abnormality. Overall, the main purpose of this review article is to merge the evidences of imaging and basic science studies in a coherent hypothesis that underlies and thus projects the development of both BAV during embryogenesis and BAV-associated aortopathy and its complications in the adult life, with the final goal to identifying aneurysm formation/rupture susceptibility to improve diagnosis and management of patients with BAV-related aortopathy.
Collapse
Affiliation(s)
- Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro 88100, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; IRCCS NEUROMED, Pozzilli, IS, Italy.
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; IRCCS NEUROMED, Pozzilli, IS, Italy
| | - Santo Dellegrottaglie
- Division of Cardiology, Ospedale Accreditato Villa dei Fiori, Acerra, Naples 80011, Italy; The Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro 88100, Italy.
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
49
|
Moreau JLM, Kesteven S, Martin EMMA, Lau KS, Yam MX, O'Reilly VC, Del Monte-Nieto G, Baldini A, Feneley MP, Moon AM, Harvey RP, Sparrow DB, Chapman G, Dunwoodie SL. Gene-environment interaction impacts on heart development and embryo survival. Development 2019; 146:146/4/dev172957. [PMID: 30787001 DOI: 10.1242/dev.172957] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
Abstract
Congenital heart disease (CHD) is the most common type of birth defect. In recent years, research has focussed on identifying the genetic causes of CHD. However, only a minority of CHD cases can be attributed to single gene mutations. In addition, studies have identified different environmental stressors that promote CHD, but the additive effect of genetic susceptibility and environmental factors is poorly understood. In this context, we have investigated the effects of short-term gestational hypoxia on mouse embryos genetically predisposed to heart defects. Exposure of mouse embryos heterozygous for Tbx1 or Fgfr1/Fgfr2 to hypoxia in utero increased the incidence and severity of heart defects while Nkx2-5+/- embryos died within 2 days of hypoxic exposure. We identified the molecular consequences of the interaction between Nkx2-5 and short-term gestational hypoxia, which suggest that reduced Nkx2-5 expression and a prolonged hypoxia-inducible factor 1α response together precipitate embryo death. Our study provides insight into the causes of embryo loss and variable penetrance of monogenic CHD, and raises the possibility that cases of foetal death and CHD in humans could be caused by similar gene-environment interactions.
Collapse
Affiliation(s)
- Julie L M Moreau
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2010, Australia
| | - Scott Kesteven
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Ella M M A Martin
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Kin S Lau
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Michelle X Yam
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Victoria C O'Reilly
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Gonzalo Del Monte-Nieto
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2010, Australia
| | - Antonio Baldini
- Dept. of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, and Institute of Genetics and Biophysics, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Michael P Feneley
- St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2010, Australia.,Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2010, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Duncan B Sparrow
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Gavin Chapman
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2010, Australia
| | - Sally L Dunwoodie
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia .,St Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2010, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2033, Australia
| |
Collapse
|
50
|
Olejníčková V, Šaňková B, Sedmera D, Janáček J. Trabecular Architecture Determines Impulse Propagation Through the Early Embryonic Mouse Heart. Front Physiol 2019; 9:1876. [PMID: 30670981 PMCID: PMC6331446 DOI: 10.3389/fphys.2018.01876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Most embryonic ventricular cardiomyocytes are quite uniform, in contrast to the adult heart, where the specialized ventricular conduction system is molecularly and functionally distinct from the working myocardium. We thus hypothesized that the preferential conduction pathway within the embryonic ventricle could be dictated by trabecular geometry. Mouse embryonic hearts of the Nkx2.5:eGFP strain between ED9.5 and ED14.5 were cleared and imaged whole mount by confocal microscopy, and reconstructed in 3D at 3.4 μm isotropic voxel size. The local orientation of the trabeculae, responsible for the anisotropic spreading of the signal, was characterized using spatially homogenized tensors (3 × 3 matrices) calculated from the trabecular skeleton. Activation maps were simulated assuming constant speed of spreading along the trabeculae. The results were compared with experimentally obtained epicardial activation maps generated by optical mapping with a voltage-sensitive dye. Simulated impulse propagation starting from the top of interventricular septum revealed the first epicardial breakthrough at the interventricular grove, similar to experimentally obtained activation maps. Likewise, ectopic activation from the left ventricular base perpendicular to dominant trabecular orientation resulted in isotropic and slower impulse spreading on the ventricular surface in both simulated and experimental conditions. We conclude that in the embryonic pre-septation heart, the geometry of the A-V connections and trabecular network is sufficient to explain impulse propagation and ventricular activation patterns.
Collapse
Affiliation(s)
- Veronika Olejníčková
- Department of Developmental Cardiology, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Barbora Šaňková
- Department of Developmental Cardiology, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Sedmera
- Department of Developmental Cardiology, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jiří Janáček
- Department of Biomathematics, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|