1
|
Ricciardelli AR, Genet G, Genet N, McClugage ST, Kan PT, Hirschi KK, Fish JE, Wythe JD. From bench to bedside: murine models of inherited and sporadic brain arteriovenous malformations. Angiogenesis 2025; 28:15. [PMID: 39899215 PMCID: PMC11790818 DOI: 10.1007/s10456-024-09953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 02/04/2025]
Abstract
Brain arteriovenous malformations are abnormal vascular structures in which an artery shunts high pressure blood directly to a vein without an intervening capillary bed. These lesions become highly remodeled over time and are prone to rupture. Historically, brain arteriovenous malformations have been challenging to treat, using primarily surgical approaches. Over the past few decades, the genetic causes of these malformations have been uncovered. These can be divided into (1) familial forms, such as loss of function mutations in TGF-β (BMP9/10) components in hereditary hemorrhagic telangiectasia, or (2) sporadic forms, resulting from somatic gain of function mutations in genes involved in the RAS-MAPK signaling pathway. Leveraging these genetic discoveries, preclinical mouse models have been developed to uncover the mechanisms underlying abnormal vessel formation, and thus revealing potential therapeutic targets. Impressively, initial preclinical studies suggest that pharmacological treatments disrupting these aberrant pathways may ameliorate the abnormal pathologic vessel remodeling and inflammatory and hemorrhagic nature of these high-flow vascular anomalies. Intriguingly, these studies also suggest uncontrolled angiogenic signaling may be a major driver in bAVM pathogenesis. This comprehensive review describes the genetics underlying both inherited and sporadic bAVM and details the state of the field regarding murine models of bAVM, highlighting emerging therapeutic targets that may transform our approach to treating these devastating lesions.
Collapse
Affiliation(s)
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nafiisha Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samuel T McClugage
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Peter T Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77598, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Joshua D Wythe
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Brain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Han C, Nguyen CL, Scherschinski L, Schriber TD, Arthur HM, Lawton MT, Oh SP. VEGFR2 Expression Correlates with Postnatal Development of Brain Arteriovenous Malformations in a Mouse Model of Type I Hereditary Hemorrhagic Telangiectasia. Biomedicines 2023; 11:3153. [PMID: 38137374 PMCID: PMC10740421 DOI: 10.3390/biomedicines11123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Brain arteriovenous malformations (BAVMs) are a critical concern in hereditary hemorrhagic telangiectasia (HHT) patients, carrying the risk of life-threatening intracranial hemorrhage. While traditionally seen as congenital, the debate continues due to documented de novo cases. Our primary goal was to identify the precise postnatal window in which deletion of the HHT gene Endoglin (Eng) triggers BAVM development. We employed SclCreER(+);Eng2f/2f mice, enabling timed Eng gene deletion in endothelial cells via tamoxifen. Tamoxifen was given during four postnatal periods: P1-3, P8-10, P15-17, and P22-24. BAVM development was assessed at 2-3 months using latex dye perfusion. We examined the angiogenic activity by assessing vascular endothelial growth factor receptor 2 (VEGFR2) expression via Western blotting and Flk1-LacZ reporter mice. Longitudinal magnetic resonance angiography (MRA) was conducted up to 9 months. BAVMs emerged in 88% (P1-3), 86% (P8-10), and 55% (P15-17) of cases, with varying localization. Notably, the P22-24 group did not develop BAVMs but exhibited skin AVMs. VEGFR2 expression peaked in the initial 2 postnatal weeks, coinciding with BAVM onset. These findings support the "second hit" theory, highlighting the role of early postnatal angiogenesis in initiating BAVM development in HHT type I mice.
Collapse
Affiliation(s)
- Chul Han
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (C.H.); (C.L.N.); (L.S.); (M.T.L.)
| | - Candice L. Nguyen
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (C.H.); (C.L.N.); (L.S.); (M.T.L.)
| | - Lea Scherschinski
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (C.H.); (C.L.N.); (L.S.); (M.T.L.)
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Tyler D. Schriber
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (C.H.); (C.L.N.); (L.S.); (M.T.L.)
| | - Helen M. Arthur
- Biosciences Institute, Newcastle University, Newcastle NE1 7RU, UK;
| | - Michael T. Lawton
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (C.H.); (C.L.N.); (L.S.); (M.T.L.)
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Suk Paul Oh
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (C.H.); (C.L.N.); (L.S.); (M.T.L.)
| |
Collapse
|
3
|
Duerig I, Pylaeva E, Ozel I, Wainwright S, Thiel I, Bordbari S, Domnich M, Siakaeva E, Lakomek A, Toppe F, Schleupner C, Geisthoff U, Lang S, Droege F, Jablonska J. Nonfunctional TGF-β/ALK1/ENG signaling pathway supports neutrophil proangiogenic activity in hereditary hemorrhagic telangiectasia. J Leukoc Biol 2023; 114:639-650. [PMID: 37555392 DOI: 10.1093/jleuko/qiad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
The transforming growth factor β (TGF-β)/ALK1/ENG signaling pathway maintains quiescent state of endothelial cells, but at the same time, it regulates neutrophil functions. Importantly, mutations of this pathway lead to a rare autosomal disorder called hereditary hemorrhagic telangiectasia (HHT), characterized with abnormal blood vessel formation (angiogenesis). As neutrophils are potent regulators of angiogenesis, we investigated how disturbed TGF-β/ALK1/ENG signaling influences angiogenic properties of these cells in HHT. We could show for the first time that not only endothelial cells, but also neutrophils isolated from such patients are ENG/ALK1 deficient. This deficiency obviously stimulates proangiogenic switch of such neutrophils. Elevated proangiogenic activity of HHT neutrophils is mediated by the increased spontaneous degranulation of gelatinase granules, resulting in high release of matrix-degrading matrix metalloproteinase 9 (MMP9). In agreement, therapeutic disturbance of this process using Src tyrosine kinase inhibitors impaired proangiogenic capacity of such neutrophils. Similarly, inhibition of MMP9 activity resulted in significant impairment of neutrophil-mediated angiogenesis. All in all, deficiency in TGF-β/ALK1/ENG signaling in HHT neutrophils results in their proangiogenic activation and disease progression. Therapeutic strategies targeting neutrophil degranulation and MMP9 release and activity may serve as a potential therapeutic option for HHT.
Collapse
Affiliation(s)
- Inga Duerig
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Ekaterina Pylaeva
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Irem Ozel
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Sami Wainwright
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Ilona Thiel
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Sharareh Bordbari
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Maksim Domnich
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Elena Siakaeva
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Antonia Lakomek
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Felicia Toppe
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Carolin Schleupner
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Urban Geisthoff
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Marburg, University of Gießen and Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Stephan Lang
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
- German Cancer Consortium, Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| | - Freya Droege
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Jadwiga Jablonska
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
- German Cancer Consortium, Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| |
Collapse
|
4
|
Selhorst S, Nakisli S, Kandalai S, Adhicary S, Nielsen CM. Pathological pericyte expansion and impaired endothelial cell-pericyte communication in endothelial Rbpj deficient brain arteriovenous malformation. Front Hum Neurosci 2022; 16:974033. [PMID: 36147294 PMCID: PMC9485665 DOI: 10.3389/fnhum.2022.974033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Pericytes, like vascular smooth muscle cells, are perivascular cells closely associated with blood vessels throughout the body. Pericytes are necessary for vascular development and homeostasis, with particularly critical roles in the brain, where they are involved in regulating cerebral blood flow and establishing the blood-brain barrier. A role for pericytes during neurovascular disease pathogenesis is less clear—while some studies associate decreased pericyte coverage with select neurovascular diseases, others suggest increased pericyte infiltration in response to hypoxia or traumatic brain injury. Here, we used an endothelial loss-of-function Recombination signal binding protein for immunoglobulin kappa J region (Rbpj)/Notch mediated mouse model of brain arteriovenous malformation (AVM) to investigate effects on pericytes during neurovascular disease pathogenesis. We tested the hypothesis that pericyte expansion, via morphological changes, and Platelet-derived growth factor B/Platelet-derived growth factor receptor β (Pdgf-B/Pdgfrβ)-dependent endothelial cell-pericyte communication are affected, during the pathogenesis of Rbpj mediated brain AVM in mice. Our data show that pericyte coverage of vascular endothelium expanded pathologically, to maintain coverage of vascular abnormalities in brain and retina, following endothelial deletion of Rbpj. In Rbpj-mutant brain, pericyte expansion was likely attributed to cytoplasmic process extension and not to increased pericyte proliferation. Despite expanding overall area of vessel coverage, pericytes from Rbpj-mutant brains showed decreased expression of Pdgfrβ, Neural (N)-cadherin, and cluster of differentiation (CD)146, as compared to controls, which likely affected Pdgf-B/Pdgfrβ-dependent communication and appositional associations between endothelial cells and pericytes in Rbpj-mutant brain microvessels. By contrast, and perhaps by compensatory mechanism, endothelial cells showed increased expression of N-cadherin. Our data identify cellular and molecular effects on brain pericytes, following endothelial deletion of Rbpj, and suggest pericytes as potential therapeutic targets for Rbpj/Notch related brain AVM.
Collapse
Affiliation(s)
- Samantha Selhorst
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Honors Tutorial College, Ohio University, Athens, OH, United States
| | - Sera Nakisli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
| | - Shruthi Kandalai
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Honors Tutorial College, Ohio University, Athens, OH, United States
| | - Subhodip Adhicary
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Translational Biomedical Sciences Program, Ohio University, Athens, OH, United States
| | - Corinne M. Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- *Correspondence: Corinne M. Nielsen,
| |
Collapse
|
5
|
Soluble Endoglin Stimulates Inflammatory and Angiogenic Responses in Microglia That Are Associated with Endothelial Dysfunction. Int J Mol Sci 2022; 23:ijms23031225. [PMID: 35163148 PMCID: PMC8835690 DOI: 10.3390/ijms23031225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Increased soluble endoglin (sENG) has been observed in human brain arteriovenous malformations (bAVMs). In addition, the overexpression of sENG in concurrence with vascular endothelial growth factor (VEGF)-A has been shown to induce dysplastic vessel formation in mouse brains. However, the underlying mechanism of sENG-induced vascular malformations is not clear. The evidence suggests the role of sENG as a pro-inflammatory modulator, and increased microglial accumulation and inflammation have been observed in bAVMs. Therefore, we hypothesized that microglia mediate sENG-induced inflammation and endothelial cell (EC) dysfunction in bAVMs. In this study, we confirmed that the presence of sENG along with VEGF-A overexpression induced dysplastic vessel formation. Remarkably, we observed increased microglial activation around dysplastic vessels with the expression of NLRP3, an inflammasome marker. We found that sENG increased the gene expression of VEGF-A, pro-inflammatory cytokines/inflammasome mediators (TNF-α, IL-6, NLRP3, ASC, Caspase-1, and IL-1β), and proteolytic enzyme (MMP-9) in BV2 microglia. The conditioned media from sENG-treated BV2 (BV2-sENG-CM) significantly increased levels of angiogenic factors (Notch-1 and TGFβ) and pERK1/2 in ECs but it decreased the level of IL-17RD, an anti-angiogenic mediator. Finally, the BV2-sENG-CM significantly increased EC migration and tube formation. Together, our study demonstrates that sENG provokes microglia to express angiogenic/inflammatory molecules which may be involved in EC dysfunction. Our study corroborates the contribution of microglia to the pathology of sENG-associated vascular malformations.
Collapse
|
6
|
Genetics and Vascular Biology of Brain Vascular Malformations. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Rivera R, Cruz JP, Merino-Osorio C, Rouchaud A, Mounayer C. Brain arteriovenous malformations: A scoping review of experimental models. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Potential Second-Hits in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9113571. [PMID: 33167572 PMCID: PMC7694477 DOI: 10.3390/jcm9113571] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder that presents with telangiectases in skin and mucosae, and arteriovenous malformations (AVMs) in internal organs such as lungs, liver, and brain. Mutations in ENG (endoglin), ACVRL1 (ALK1), and MADH4 (Smad4) genes account for over 95% of HHT. Localized telangiectases and AVMs are present in different organs, with frequencies which differ among affected individuals. By itself, HHT gene heterozygosity does not account for the focal nature and varying presentation of the vascular lesions leading to the hypothesis of a “second-hit” that triggers the lesions. Accumulating research has identified a variety of triggers that may synergize with HHT gene heterozygosity to generate the vascular lesions. Among the postulated second-hits are: mechanical trauma, light, inflammation, vascular injury, angiogenic stimuli, shear stress, modifier genes, and somatic mutations in the wildtype HHT gene allele. The aim of this review is to summarize these triggers, as well as the functional mechanisms involved.
Collapse
|
9
|
Aerobic exercise increases sprouting angiogenesis in the male rat motor cortex. Brain Struct Funct 2020; 225:2301-2314. [PMID: 32918614 DOI: 10.1007/s00429-020-02100-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Exercise is beneficial to brain health, and historically, the advantageous effects of exercise on the brain have been attributed to neuronal plasticity. However, it has also become clear that the brain vascular system also exhibits plasticity in response to exercise. This plasticity occurs in areas involved in movement, such as the motor cortex. This experiment aimed to further characterize the effects of exercise on structural vascular plasticity in the male rat motor cortex, by specifically identifying whether features of angiogenesis, the growth of new capillaries, or changes in vessel diameter were present. Male rats in the exercise group engaged in a 5-week bout of voluntary wheel running, while a second group of rats remained sedentary. After the exercise regimen, vascular corrosion casts, resin replicas of the brain vasculature, were made for all animals and imaged using a scanning electron microscope. Results indicate sprouting angiogenesis was the primary form of structural vascular plasticity detected in the motor cortex under these aerobic exercise parameters. Additionally, exercised rats displayed a slight increase in capillary diameter and expanded endothelial cell nuclei diameters in this region.
Collapse
|
10
|
Barbosa Do Prado L, Han C, Oh SP, Su H. Recent Advances in Basic Research for Brain Arteriovenous Malformation. Int J Mol Sci 2019; 20:ijms20215324. [PMID: 31731545 PMCID: PMC6862668 DOI: 10.3390/ijms20215324] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Arteriovenous malformations (AVMs) are abnormal connections of vessels that shunt blood directly from arteries into veins. Rupture of brain AVMs (bAVMs) can cause life-threatening intracranial bleeding. Even though the majority of bAVM cases are sporadic without a family history, some cases are familial. Most of the familial cases of bAVMs are associated with a genetic disorder called hereditary hemorrhagic telangiectasia (HHT). The mechanism of bAVM formation is not fully understood. The most important advances in bAVM basic science research is the identification of somatic mutations of genes in RAS-MAPK pathways. However, the mechanisms by which mutations of these genes lead to AVM formation are largely unknown. In this review, we summarized the latest advance in bAVM studies and discussed some pathways that play important roles in bAVM pathogenesis. We also discussed the therapeutic implications of these pathways.
Collapse
Affiliation(s)
- Leandro Barbosa Do Prado
- Center for Cerebrovascular Research, Department of Anesthesia, University of California, San Francisco, CA 94143, USA;
| | - Chul Han
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute/Dignity Health, Phoenix, AZ 85013, USA; (C.H.); (S.P.O.)
| | - S. Paul Oh
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute/Dignity Health, Phoenix, AZ 85013, USA; (C.H.); (S.P.O.)
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia, University of California, San Francisco, CA 94143, USA;
- Correspondence: ; Tel.: +01-415-206-3162
| |
Collapse
|
11
|
Bioengineering an Artificial Human Blood⁻Brain Barrier in Rodents. Bioengineering (Basel) 2019; 6:bioengineering6020038. [PMID: 31052208 PMCID: PMC6630638 DOI: 10.3390/bioengineering6020038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Our group has recently created a novel in-vivo human brain organoid vascularized with human iPSC-derived endothelial cells. In this review article, we discuss the challenges of creating a perfused human brain organoid model in an immunosuppressed rodent host and discuss potential applications for neurosurgical disease modeling.
Collapse
|
12
|
Oka M, Kushamae M, Aoki T, Yamaguchi T, Kitazato K, Abekura Y, Kawamata T, Mizutani T, Miyamoto S, Takagi Y. KRAS G12D or G12V Mutation in Human Brain Arteriovenous Malformations. World Neurosurg 2019; 126:e1365-e1373. [PMID: 30902772 DOI: 10.1016/j.wneu.2019.03.105] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Brain arteriovenous malformations (BAVMs) are vascular malformations composed of tangles of abnormally developed vasculature without capillaries. Abnormal shunting of arteries and veins is formed, resulting in high-pressure vascular channels, which potentially lead to rupture. BAVMs are generally considered a congenital disorder. But clinical evidence regarding involution, regrowth, and de novo formation argue against the static condition of this disease. Recently, the presence of the somatic activating KRAS mutations in more than half of BAVM cases was reported, suggesting the role of KRAS function in the pathogenesis. METHODS KRAS mutation in codon35 (G→A, G12D; G→T, G12V) was examined by a digital polymerase chain reaction analysis using genome purified from paraffin-embedded slides of human BAVMs. We also examined protein expression of KRAS G12D in lesions to corroborate results from digital polymerase chain reaction analysis. RESULTS We detected codon35 G→A mutation in 15 (39.5%) among 38 samples and codon35 G→T mutation in 10 (27.0%) among 37 samples we could assess mutations. There were no samples positive for both codon35 G→A and G→T mutation. The ratio of codon35 G→A mutation ranged from 0.60% to 12.28% and that of G→T was from 1.20% to 8.99%. We next examined protein expression of KRAS G12D in BAVM lesions in immunohistochemistry. A KRAS G12D mutant was detected mainly in endothelial cells of dilated vessels in lesions. CONCLUSIONS KRAS mutations in codon35 were detected in about two thirds of specimens examined. KRAS function may actively contribute to the pathobiology of BAVM and can become a therapeutic target.
Collapse
Affiliation(s)
- Mieko Oka
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan; Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan; Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Mika Kushamae
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan; Department of Neurosurgery, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan; Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan
| | - Tadashi Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Keiko Kitazato
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Yu Abekura
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto City, Kyoto, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Tohru Mizutani
- Department of Neurosurgery, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto City, Kyoto, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima, Japan.
| |
Collapse
|
13
|
Masamoto K, Vazquez A. Optical imaging and modulation of neurovascular responses. J Cereb Blood Flow Metab 2018; 38:2057-2072. [PMID: 30334644 PMCID: PMC6282226 DOI: 10.1177/0271678x18803372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/02/2018] [Indexed: 12/17/2022]
Abstract
The cerebral microvasculature consists of pial vascular networks, parenchymal descending arterioles, ascending venules and parenchymal capillaries. This vascular compartmentalization is vital to precisely deliver blood to balance continuously varying neural demands in multiple brain regions. Optical imaging techniques have facilitated the investigation of dynamic spatial and temporal properties of microvascular functions in real time. Their combination with transgenic animal models encoding specific genetic targets have further strengthened the importance of optical methods for neurovascular research by allowing for the modulation and monitoring of neuro vascular function. Image analysis methods with three-dimensional reconstruction are also helping to understand the complexity of microscopic observations. Here, we review the compartmentalized cerebral microvascular responses to global perturbations as well as regional changes in response to neural activity to highlight the differences in vascular action sites. In addition, microvascular responses elicited by optical modulation of different cell-type targets are summarized with emphasis on variable spatiotemporal dynamics of microvascular responses. Finally, long-term changes in microvascular compartmentalization are discussed to help understand potential relationships between CBF disturbances and the development of neurodegenerative diseases and cognitive decline.
Collapse
Affiliation(s)
- Kazuto Masamoto
- Faculty of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
| | - Alberto Vazquez
- Departments of Radiology and Bioengineering, University of Pittsburgh, PA, USA
| |
Collapse
|
14
|
Wang K, Zhao S, Liu B, Zhang Q, Li Y, Liu J, Shen Y, Ding X, Lin J, Wu Y, Yan Z, Chen J, Li X, Song X, Niu Y, Liu J, Chen W, Ming Y, Du R, Chen C, Long B, Zhang Y, Tong X, Zhang S, Posey JE, Zhang B, Wu Z, Wythe JD, Liu P, Lupski JR, Yang X, Wu N. Perturbations of BMP/TGF-β and VEGF/VEGFR signalling pathways in non-syndromic sporadic brain arteriovenous malformations (BAVM). J Med Genet 2018; 55:675-684. [PMID: 30120215 PMCID: PMC6161649 DOI: 10.1136/jmedgenet-2017-105224] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Brain arteriovenous malformations (BAVM) represent a congenital anomaly of the cerebral vessels with a prevalence of 10-18/100 000. BAVM is the leading aetiology of intracranial haemorrhage in children. Our objective was to identify gene variants potentially contributing to disease and to better define the molecular aetiology underlying non-syndromic sporadic BAVM. METHODS We performed whole-exome trio sequencing of 100 unrelated families with a clinically uniform BAVM phenotype. Pathogenic variants were then studied in vivo using a transgenic zebrafish model. RESULTS We identified four pathogenic heterozygous variants in four patients, including one in the established BAVM-related gene, ENG, and three damaging variants in novel candidate genes: PITPNM3, SARS and LEMD3, which we then functionally validated in zebrafish. In addition, eight likely pathogenic heterozygous variants (TIMP3, SCUBE2, MAP4K4, CDH2, IL17RD, PREX2, ZFYVE16 and EGFR) were identified in eight patients, and 16 patients carried one or more variants of uncertain significance. Potential oligogenic inheritance (MAP4K4 with ENG, RASA1 with TIMP3 and SCUBE2 with ENG) was identified in three patients. Regulation of sma- and mad-related proteins (SMADs) (involved in bone morphogenic protein (BMP)/transforming growth factor beta (TGF-β) signalling) and vascular endothelial growth factor (VEGF)/vascular endotheliual growth factor recepter 2 (VEGFR2) binding and activity (affecting the VEGF signalling pathway) were the most significantly affected biological process involved in the pathogenesis of BAVM. CONCLUSIONS Our study highlights the specific role of BMP/TGF-β and VEGF/VEGFR signalling in the aetiology of BAVM and the efficiency of intensive parallel sequencing in the challenging context of genetically heterogeneous paradigm.
Collapse
Affiliation(s)
- Kun Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sen Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qianqian Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaqi Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Shen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xinghuan Ding
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiachen Lin
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weisheng Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Ming
- PET-CT Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Cong Chen
- PET-CT Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Long
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Shuyang Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Joshua D Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia. Angiogenesis 2018; 21:363-380. [PMID: 29460088 PMCID: PMC5878194 DOI: 10.1007/s10456-018-9602-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/28/2018] [Indexed: 12/18/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members ALK1, ENG and SMAD4 lead to HHT. However, a Smad4 mouse model of HHT does not currently exist. We aimed to create and characterize a Smad4 endothelial cell (EC)-specific, inducible knockout mouse (Smad4f/f;Cdh5-CreERT2) that could be used to study AVM development in HHT. We found that postnatal ablation of Smad4 caused various vascular defects, including the formation of distinct AVMs in the neonate retina. Our analyses demonstrated that increased EC proliferation and size, altered mural cell coverage and distorted artery-vein gene expression are associated with Smad4 deficiency in the vasculature. Furthermore, we show that depletion of Smad4 leads to decreased Vegfr2 expression, and concurrent loss of endothelial Smad4 and Vegfr2 in vivo leads to AVM enlargement. Our work provides a new model in which to study HHT-associated phenotypes and links the TGFβ and VEGF signaling pathways in AVM pathogenesis.
Collapse
|
16
|
Abstract
Correct organization of the vascular tree requires the balanced activities of several signaling pathways that regulate tubulogenesis and vascular branching, elongation, and pruning. When this balance is lost, the vessels can be malformed and fragile, and they can lose arteriovenous differentiation. In this review, we concentrate on the transforming growth factor (TGF)-β/bone morphogenetic protein (BMP) pathway, which is one of the most important and complex signaling systems in vascular development. Inactivation of these pathways can lead to altered vascular organization in the embryo. In addition, many vascular malformations are related to deregulation of TGF-β/BMP signaling. Here, we focus on two of the most studied vascular malformations that are induced by deregulation of TGF-β/BMP signaling: hereditary hemorrhagic telangiectasia (HHT) and cerebral cavernous malformation (CCM). The first of these is related to loss-of-function mutation of the TGF-β/BMP receptor complex and the second to increased signaling sensitivity to TGF-β/BMP. In this review, we discuss the potential therapeutic targets against these vascular malformations identified so far, as well as their basis in general mechanisms of vascular development and stability.
Collapse
Affiliation(s)
- Sara I Cunha
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Peetra U Magnusson
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Elisabetta Dejana
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.).
| | - Maria Grazia Lampugnani
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| |
Collapse
|
17
|
Thomas JM, Surendran S, Abraham M, Rajavelu A, Kartha CC. Genetic and epigenetic mechanisms in the development of arteriovenous malformations in the brain. Clin Epigenetics 2016; 8:78. [PMID: 27453762 PMCID: PMC4957361 DOI: 10.1186/s13148-016-0248-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/12/2016] [Indexed: 12/05/2022] Open
Abstract
Vascular malformations are developmental congenital abnormalities of the vascular system which may involve any segment of the vascular tree such as capillaries, veins, arteries, or lymphatics. Arteriovenous malformations (AVMs) are congenital vascular lesions, initially described as “erectile tumors,” characterized by atypical aggregation of dilated arteries and veins. They may occur in any part of the body, including the brain, heart, liver, and skin. Severe clinical manifestations occur only in the brain. There is absence of normal vascular structure at the subarteriolar level and dearth of capillary bed resulting in aberrant arteriovenous shunting. The causative factor and pathogenic mechanisms of AVMs are unknown. Importantly, no marker proteins have been identified for AVM. AVM is a high flow vascular malformation and is considered to develop because of variability in the hemodynamic forces of blood flow. Altered local hemodynamics in the blood vessels can affect cellular metabolism and may trigger epigenetic factors of the endothelial cell. The genes that are recognized to be associated with AVM might be modulated by various epigenetic factors. We propose that AVMs result from a series of changes in the DNA methylation and histone modifications in the genes connected to vascular development. Aberrant epigenetic modifications in the genome of endothelial cells may drive the artery or vein to an aberrant phenotype. This review focuses on the molecular pathways of arterial and venous development and discusses the role of hemodynamic forces in the development of AVM and possible link between hemodynamic forces and epigenetic mechanisms in the pathogenesis of AVM.
Collapse
Affiliation(s)
- Jaya Mary Thomas
- Cardiovascular Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala India
| | - Sumi Surendran
- Cardiovascular Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala India
| | - Mathew Abraham
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala India
| | - Arumugam Rajavelu
- Cardiovascular Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala India ; Tropical Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala India
| | - Chandrasekharan C Kartha
- Cardiovascular Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala India
| |
Collapse
|
18
|
Abstract
Brain arteriovenous malformations (bAVMs) represent a high risk of intracranial hemorrhages, which are substantial causes of morbidity and mortality of bAVMs, especially in children and young adults. Although a variety of factors leading to hemorrhages of bAVMs are investigated extensively, their pathogenesis is still not well elucidated. The author has reviewed the updated data of genetic aspects of bAVMs, especially focusing on clinical and experimental knowledge from hereditary hemorrhagic telangiectasia, which is the representative genetic disease presenting with bAVMs caused by loss-of-function in one of the two genes: endoglin and activin receptor-like kinase 1. This knowledge may allow us to infer the pathogensis of sporadic bAVMs and in the development of new medical therapies for them.
Collapse
Affiliation(s)
- Masaki Komiyama
- Department of Neuro-Intervention, Osaka City General Hospital
| |
Collapse
|
19
|
Kim H, Pawlikowska L, Su H, Young WL. Genetics and Vascular Biology of Angiogenesis and Vascular Malformations. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Animal Models in Studying Cerebral Arteriovenous Malformation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:178407. [PMID: 26649296 PMCID: PMC4663287 DOI: 10.1155/2015/178407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/11/2015] [Accepted: 10/25/2015] [Indexed: 12/13/2022]
Abstract
Brain arteriovenous malformation (AVM) is an important cause of hemorrhagic stroke. The etiology is largely unknown and the therapeutics are controversial. A review of AVM-associated animal models may be helpful in order to understand the up-to-date knowledge and promote further research about the disease. We searched PubMed till December 31, 2014, with the term “arteriovenous malformation,” limiting results to animals and English language. Publications that described creations of AVM animal models or investigated AVM-related mechanisms and treatments using these models were reviewed. More than 100 articles fulfilling our inclusion criteria were identified, and from them eight different types of the original models were summarized. The backgrounds and procedures of these models, their applications, and research findings were demonstrated. Animal models are useful in studying the pathogenesis of AVM formation, growth, and rupture, as well as in developing and testing new treatments. Creations of preferable models are expected.
Collapse
|
21
|
Nielsen CM, Huang L, Murphy PA, Lawton MT, Wang RA. Mouse Models of Cerebral Arteriovenous Malformation. Stroke 2015; 47:293-300. [PMID: 26351360 DOI: 10.1161/strokeaha.115.002869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Corinne M Nielsen
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Lawrence Huang
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Patrick A Murphy
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Michael T Lawton
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Rong A Wang
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.).
| |
Collapse
|
22
|
Raj JA, Stoodley M. Experimental Animal Models of Arteriovenous Malformation: A Review. Vet Sci 2015; 2:97-110. [PMID: 29061934 PMCID: PMC5644622 DOI: 10.3390/vetsci2020097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 12/17/2022] Open
Abstract
Arteriovenous malformations (AVMs) are congenital lesions that cause brain haemorrhage in children and young adults. Current treatment modalities include surgery, radiosurgery and embolization. These treatments are generally effective only for small AVMs. Over one third of AVMs cannot be treated safely and effectively with existing options. Several animal models have been developed with the aims of understanding AVM pathophysiology and improving treatment. No animal model perfectly mimics a human AVM. Each model has limitations and advantages. Models contribute to the understanding of AVMs and hopefully to the development of improved therapies. This paper reviews animal models of AVMs and their advantages and disadvantages.
Collapse
Affiliation(s)
- Jude Amal Raj
- The Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia.
| | - Marcus Stoodley
- The Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
23
|
Lin JB, Phillips EH, Riggins TE, Sangha GS, Chakraborty S, Lee JY, Lycke RJ, Hernandez CL, Soepriatna AH, Thorne BRH, Yrineo AA, Goergen CJ. Imaging of small animal peripheral artery disease models: recent advancements and translational potential. Int J Mol Sci 2015; 16:11131-77. [PMID: 25993289 PMCID: PMC4463694 DOI: 10.3390/ijms160511131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic.
Collapse
Affiliation(s)
- Jenny B Lin
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Ti'Air E Riggins
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Gurneet S Sangha
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Sreyashi Chakraborty
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Janice Y Lee
- Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Roy J Lycke
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Clarissa L Hernandez
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Bradford R H Thorne
- School of Sciences, Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexa A Yrineo
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| |
Collapse
|
24
|
Dingenouts CKE, Goumans MJ, Bakker W. Mononuclear cells and vascular repair in HHT. Front Genet 2015; 6:114. [PMID: 25852751 PMCID: PMC4369645 DOI: 10.3389/fgene.2015.00114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) or Rendu–Osler–Weber disease is a rare genetic vascular disorder known for its endothelial dysplasia causing arteriovenous malformations and severe bleedings. HHT-1 and HHT-2 are the most prevalent variants and are caused by heterozygous mutations in endoglin and activin receptor-like kinase 1, respectively. An undervalued aspect of the disease is that HHT patients experience persistent inflammation. Although endothelial and mural cells have been the main research focus trying to unravel the mechanism behind the disease, wound healing is a process with a delicate balance between inflammatory and vascular cells. Inflammatory cells are part of the mononuclear cells (MNCs) fraction, and can, next to eliciting an immune response, also have angiogenic potential. This biphasic effect of MNC can hold a promising mechanism to further elucidate treatment strategies for HHT patients. Before MNC are able to contribute to repair, they need to home to and retain in ischemic and damaged tissue. Directed migration (homing) of MNCs following tissue damage is regulated by the stromal cell derived factor 1 (SDF1). MNCs that express the C-X-C chemokine receptor 4 (CXCR4) migrate toward the tightly regulated gradient of SDF1. This directed migration of monocytes and lymphocytes can be inhibited by dipeptidyl peptidase 4 (DPP4). Interestingly, MNC of HHT patients express elevated levels of DPP4 and show impaired homing toward damaged tissue. Impaired homing capacity of the MNCs might therefore contribute to the impaired angiogenesis and tissue repair observed in HHT patients. This review summarizes recent studies regarding the role of MNCs in the etiology of HHT and vascular repair, and evaluates the efficacy of DPP4 inhibition in tissue integrity and repair.
Collapse
Affiliation(s)
- Calinda K E Dingenouts
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| | - Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| | - Wineke Bakker
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| |
Collapse
|
25
|
Roman BL, Finegold DN. Genetic and Molecular Basis for Hereditary Hemorrhagic Telangiectasia. CURRENT GENETIC MEDICINE REPORTS 2014. [DOI: 10.1007/s40142-014-0061-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Shen F, Degos V, Chu PL, Han Z, Westbroek EM, Choi EJ, Marchuk D, Kim H, Lawton MT, Maze M, Young WL, Su H. Endoglin deficiency impairs stroke recovery. Stroke 2014; 45:2101-6. [PMID: 24876084 DOI: 10.1161/strokeaha.114.005115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Endoglin deficiency causes hereditary hemorrhagic telangiectasia-1 and impairs myocardial repair. Pulmonary arteriovenous malformations in patients with hereditary hemorrhagic telangiectasia-1 are associated with a high incidence of paradoxical embolism in the cerebral circulation and ischemic brain injury. We hypothesized that endoglin deficiency impairs stroke recovery. METHODS Eng heterozygous (Eng+/-) and wild-type mice underwent permanent distal middle cerebral artery occlusion (pMCAO). Pial collateral vessels were quantified before pMCAO. Infarct/atrophic volume, vascular density, and macrophages were quantified in various days after pMCAO, and behavioral function was assessed using corner and adhesive removal tests on days 3, 15, 30, and 60 after pMCAO. The association between ENG 207G>A polymorphism and brain arteriovenous malformation rupture and surgery outcome was analyzed using logistic regression analysis in 256 ruptured and 157 unruptured patients. RESULTS After pMCAO, Eng+/- mice showed larger infarct/atrophic volumes at all time points (P<0.05) and showed worse behavior performance (P<0.05) at 15, 30, and 60 days when compared with wild-type mice. Eng+/- mice had fewer macrophages on day 3 (P=0.009) and more macrophages on day 60 (P=0.02) in the peri-infarct region. Although Eng+/- and wild-type mice had similar numbers of pial collateral vessels before pMCAO, Eng+/- mice had lower vascular density in the peri-infarct region (P=0.05) on day 60 after pMCAO. In humans, ENG 207A allele has been associated with worse outcomes after arteriovenous malformation rupture or surgery of patients with unruptured arteriovenous malformation. CONCLUSIONS Endoglin deficiency impairs brain injury recovery. Reduced angiogenesis, impaired macrophage homing, and delayed inflammation resolution could be the underlying mechanism.
Collapse
MESH Headings
- Alleles
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Behavior, Animal/physiology
- Disease Models, Animal
- Endoglin
- Humans
- Infarction, Middle Cerebral Artery/etiology
- Infarction, Middle Cerebral Artery/metabolism
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracranial Arteriovenous Malformations/genetics
- Intracranial Arteriovenous Malformations/metabolism
- Intracranial Arteriovenous Malformations/surgery
- Mice
- Mice, Knockout
- Polymorphism, Genetic/genetics
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Recovery of Function/genetics
- Recovery of Function/physiology
- Time Factors
Collapse
Affiliation(s)
- Fanxia Shen
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Vincent Degos
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Pei-Lun Chu
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Zhenying Han
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Erick M Westbroek
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Eun-Jung Choi
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Douglas Marchuk
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Helen Kim
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Michael T Lawton
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Mervyn Maze
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - William L Young
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.)
| | - Hua Su
- From the Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research (F.S., V.D., Z.H., E.M.W., E.-J.C., H.K., M.M., W.L.Y., H.S.) and Departments of Neurological Surgery (M.T.L., W.L.Y.) and Neurology (W.L.Y.), University of California, San Francisco; Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (F.S.); Department of Anesthesia and Intensive Care, INSERM, U676, Hôpital Robert Debré, Paris, France (V.D.); and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (P.-L.C., D.M.).
| |
Collapse
|
27
|
Brain arteriovenous malformation modeling, pathogenesis, and novel therapeutic targets. Transl Stroke Res 2014; 5:316-29. [PMID: 24723256 DOI: 10.1007/s12975-014-0343-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
Abstract
Patients harboring brain arteriovenous malformation (bAVM) are at life-threatening risk of rupture and intracranial hemorrhage (ICH). The pathogenesis of bAVM has not been completely understood. Current treatment options are invasive, and ≈ 20 % of patients are not offered interventional therapy because of excessive treatment risk. There are no specific medical therapies to treat bAVMs. The lack of validated animal models has been an obstacle for testing hypotheses of bAVM pathogenesis and testing new therapies. In this review, we summarize bAVM model development and bAVM pathogenesis and potential therapeutic targets that have been identified during model development.
Collapse
|
28
|
Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res 2014; 355:687-99. [PMID: 24590145 PMCID: PMC3972432 DOI: 10.1007/s00441-014-1811-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/13/2014] [Indexed: 01/20/2023]
Abstract
The blood-brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β-catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.
Collapse
Affiliation(s)
- Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt/Main, Germany
| |
Collapse
|
29
|
Hou F, Dai Y, Suen JY, Fan C, Saad AG, Richter GT. A xenograft animal model of human arteriovenous malformations. Orphanet J Rare Dis 2013; 8:199. [PMID: 24377858 PMCID: PMC3879430 DOI: 10.1186/1750-1172-8-199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/19/2013] [Indexed: 12/18/2022] Open
Abstract
Background Arteriovenous malformations (AVMs) are a type of high-flow vascular malformations that most commonly occurs in the head and neck. They are present at birth but are usually clinically asymptomatic until later in life. The pathogenesis of AVMs remains unclear and therapeutic approaches to AVMs are unsatisfied. In order to provide a tool for studying the pathogenesis and therapies of this disease, we established and studied a xenograft animal model of human AVMs. Methods Fresh human AVMs specimens harvested from 4 patients were sectioned (5x5x5 mm) and xenografted subcutaneously in 5 immunologically naïve nude mice (Athymic Nude-Foxn1nu). Each mouse had four pieces specimens in four quadrants along the back. The grafts were observed weekly for volume, color and texture. The grafts were harvested at every 30 days intervals for histologic examination. All grafts (n = 20) were sectioned and stained for hematoxylin and eosin (H&E). Comparative pathologic evaluation of the grafts and native AVMs were performed by two blinded pathologists. Immunohistochemical examination of human-specific nuclear antigen, vascular endothelial growth factor receptor-2 (VEGFR-2) and Ki-67 was performed. Results Clinical characteristics and pathologic diagnosis of native human derived AVMs were confirmed. 85% (n = 17) of AVM xenografts survived although the sizes decreased after implantation. Histological examination demonstrated numerous small and medium-size vessels and revealed structural characteristics matching the native AVMs tissue.76.5% (n = 13) of the surviving xenografts were positive for Ki-67 and human-specific nuclear antigen suggesting survival of the human derived tissue, 52.9% (n = 9) were positive for VEGFR-2. Conclusions This preliminary xenograft animal model suggests that AVMs can survive in the nude mouse. The presence of human-specific nuclear antigen, VEGFR-2, and Ki-67 demonstrates the stability of native tissue qualities within the xenografts.
Collapse
Affiliation(s)
| | | | | | | | | | - Gresham T Richter
- Center for the Investigation of Congenital Aberrancies of Vascular Development, Little Rock, AR, USA.
| |
Collapse
|
30
|
Atri D, Larrivée B, Eichmann A, Simons M. Endothelial signaling and the molecular basis of arteriovenous malformation. Cell Mol Life Sci 2013; 71:10.1007/s00018-013-1475-1. [PMID: 24077895 PMCID: PMC3969452 DOI: 10.1007/s00018-013-1475-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 12/21/2022]
Abstract
Arteriovenous malformations occur when abnormalities of vascular patterning result in the flow of blood from arteries to veins without an intervening capillary bed. Recent work has revealed the importance of the Notch and TGF-β signaling pathways in vascular patterning. Specifically, Notch signaling has an increasingly apparent role in arterial specification and suppression of branching, whereas TGF-β is implicated in vascular smooth muscle development and remodeling under angiogenic stimuli. These physiologic roles, consequently, have implicated both pathways in the pathogenesis of arteriovenous malformation. In this review, we summarize the studies of endothelial signaling that contribute to arteriovenous malformation and the roles of genes implicated in their pathogenesis. We further discuss how endothelial signaling may contribute to vascular smooth muscle development and how knowledge of signaling pathways may provide us targets for medical therapy in these vascular lesions.
Collapse
Affiliation(s)
- Deepak Atri
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
| | - Bruno Larrivée
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
- Department of Ophthalmology, Hôpital Maisonneuve-Rosemont Research Centre, University of Montreal, Montreal, Canada
| | - Anne Eichmann
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
31
|
Attenuating Cardiac Pulsations within the Cochlea: Structure and Function of Tortuous Vessels Feeding Stria Vascularis. ISRN OTOLARYNGOLOGY 2013; 2013:941757. [PMID: 23762624 PMCID: PMC3671538 DOI: 10.1155/2013/941757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/18/2013] [Indexed: 11/17/2022]
Abstract
The mammalian ear has an extraordinary capacity to detect very low-level acoustic signals from the environment. Sound pressures as low as a few μ Pa (-10 dB SPL) can activate cochlear hair cells. To achieve this sensitivity, biological noise has to be minimized including that generated by cardiovascular pulsation. Generally, cardiac pressure changes are transmitted to most peripheral capillary beds; however, such signals within the stria vascularis of the cochlea would be highly disruptive. Not least, it would result in a constant auditory sensation of heartbeat. We investigate special adaptations in cochlear vasculature that serve to attenuate cardiac pulse signals. We describe the structure of tortuous arterioles that feed stria vascularis as seen in corrosion casts of the cochlea. We provide a mathematical model to explain the role of this unique vascular anatomy in dampening pulsatile blood flow to the stria vascularis.
Collapse
|
32
|
Walker EJ, Su H, Shen F, Degos V, Amend G, Jun K, Young WL. Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke 2012; 43:1925-30. [PMID: 22569934 DOI: 10.1161/strokeaha.111.647982] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Vascular endothelial growth factor (VEGF) expression is elevated in human brain arteriovenous malformations (bAVM). We have developed a bAVM model in the adult mouse by focal Alk1 gene deletion and human VEGF stimulation. We hypothesized that once the abnormal vasculature has been established, tonic VEGF stimulation is necessary to maintain the abnormal phenotype, and VEGF antagonism by bevacizumab (Avastin) would reduce vessel density and attenuate the dysplastic vascular phenotype. METHODS Angiogenesis and bAVM were induced by injection of adeno-associated viral vector expressing human VEGF alone into the brain of wild-type mice or with adenoviral vector expressing Cre recombinase (Ad-Cre) into Alk1(2f/2f) mice. Six weeks later, bevacizumab or trastuzumab (Herceptin, bevacizumab control) was administered. Vessel density, dysplasia index, vascular cell proliferation and apoptosis, and human IgG were assessed (n=6/group). RESULTS Compared with trastuzumab (15 mg/kg), administration of 5, 10, and 15 mg/kg of bevacizumab to adeno-associated viral vector expressing human VEGF treated wild-type mice reduced focal vessel density (P<0.05); administration of 5 mg/kg bevacizumab decreased proliferating vascular cells (P=0.04) and increased TUNEL-positive vascular cells (P=0.03). More importantly, bevacizumab (5 mg/kg) treatment reduced both vessel density (P=0.01) and dysplasia index (P=0.02) in our bAVM model. Human IgG was detected in the vessel wall and in the parenchyma in the angiogenic foci of bevacizumab-treated mice. CONCLUSIONS We provide proof-of-principle that, once abnormal AVM vessels have formed, VEGF antagonism may reduce the number of dysplastic vessels and should be evaluated further as a therapeutic strategy for the human disease.
Collapse
Affiliation(s)
- Espen J Walker
- Center for Cerebrovascular Research, University of California, San Francisco, Department of Anesthesia and Perioperative Care, 1001 Potrero Avenue, Room 3C-38, San Francisco, CA 94110, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Latimer CS, Searcy JL, Bridges MT, Brewer LD, Popović J, Blalock EM, Landfield PW, Thibault O, Porter NM. Reversal of glial and neurovascular markers of unhealthy brain aging by exercise in middle-aged female mice. PLoS One 2011; 6:e26812. [PMID: 22046366 PMCID: PMC3201977 DOI: 10.1371/journal.pone.0026812] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/04/2011] [Indexed: 01/14/2023] Open
Abstract
Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.
Collapse
Affiliation(s)
- Caitlin S. Latimer
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - James L. Searcy
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Michael T. Bridges
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Lawrence D. Brewer
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jelena Popović
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Eric M. Blalock
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Philip W. Landfield
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Olivier Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Nada M. Porter
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| |
Collapse
|
34
|
Iizuka Y, Murata N, Kohda E, Tsutsumi Y, Nosaka S, Morota N, Konishi Y. High-flow Neonatal Macrocerebral Arteriovenous Fistulas in Hereditary Hemorrhagic Telangiectasia. Neuroradiol J 2011; 24:772-8. [PMID: 24059775 DOI: 10.1177/197140091102400517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 05/15/2011] [Indexed: 11/16/2022] Open
Abstract
Although some cases of vein of Galen aneurysmal malformation (VGAM) present initial clinical symptoms such as cardiopulmonary disturbance in the neonatal period, pial arteriovenous fistula is very seldom present as a clinical symptom immediately after birth. A neonatal patient, the first-born to his family, presented with tachypnea postpartum. This baby had a family history of hereditary hemorrhagic telangiectasia. A cerebral MR image revealed multiple macrocerebral arteriovenous fistulas (MCAVFs), resulting in a large partially thrombosed venous pouch within the cerebral cortex. Trans-arterial embolizations of the main two fistulas were performed using N-butyl cyanoacrylate (NBCA) with tantalum powder six months after birth. Post-embolization angiography confirmed the obliteration of the fistulas and magnetic resonance imaging (MRI) revealed thrombosis and reduction in size of the venous component. His tachypnea disappeared completely. There were no neurological complications due to the treatment. The prognosis of multiple MCAVFs mainly depends on the presence of medullar signs and symptoms and a delay before treatment. Pure glue endovascular intervention, as used in our case, is considered to be the first therapeutic choice to decrease the risk of neurological consequences.
Collapse
Affiliation(s)
- Y Iizuka
- Department of Radiology, Toho University Ohashi Medical Center; Tokyo, Japan -
| | | | | | | | | | | | | |
Collapse
|
35
|
Kim H, Su H, Weinsheimer S, Pawlikowska L, Young WL. Brain arteriovenous malformation pathogenesis: a response-to-injury paradigm. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:83-92. [PMID: 21725736 PMCID: PMC3187860 DOI: 10.1007/978-3-7091-0693-8_14] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain arteriovenous malformations (AVMs) are a rare but important cause of intracranial hemorrhage (ICH) in young adults. In this paper, we review both human and animal studies of brain AVM, focusing on the: (1) natural history of AVM hemorrhage, (2) genetic and expression studies of AVM susceptibility and hemorrhage, and (3) strategies for development of a brain AVM model in adult mice. These data target various mechanisms that must act in concert to regulate normal angiogenic response to injury. Based on the various lines of evidence reviewed in this paper, we propose a "response-to-injury" model of brain AVM pathogenesis.
Collapse
Affiliation(s)
- Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Shantel Weinsheimer
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Ludmila Pawlikowska
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - William L. Young
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
36
|
Abstract
Hereditary haemorrhagic telangiectasia, inherited as an autosomal dominant trait, affects approximately 1 in 5000 people. The abnormal vascular structures in HHT result from mutations in genes (most commonly endoglin or ACVRL1) whose protein products influence TGF-ß superfamily signalling in vascular endothelial cells. The cellular mechanisms underlying the generation of HHT telangiectasia and arteriovenous malformations are being unravelled, with recent data focussing on a defective response to angiogenic stimuli in particular settings. For affected individuals, there is often substantial morbidity due to sustained and repeated haemorrhages from telangiectasia in the nose and gut. Particular haematological clinical challenges include the management of severe iron deficiency anaemia; handling the intricate balance of antiplatelet or anticoagulants for HHT patients in whom there are often compelling clinical reasons to use such agents; and evaluation of apparently attractive experimental therapies promoted in high profile publications when guidelines and reviews are quickly superseded. There is also a need for sound screening programmes for silent arteriovenous malformations. These occur commonly in the pulmonary, cerebral, and hepatic circulations, may haemorrhage, but predominantly result in more complex pathophysiology due to consequences of defective endothelium, or shunts that bypass specific capillary beds. This review will focus on the new evidence and concepts in this complex and fascinating condition, placing these in context for both clinicians and scientists, with a particular emphasis on haematological settings.
Collapse
Affiliation(s)
- Claire L Shovlin
- NHLI Cardiovascular Sciences, Imperial College London, UK and HHTIC London, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
37
|
Hao Q, Zhu Y, Su H, Shen F, Yang GY, Kim H, Young WL. VEGF Induces More Severe Cerebrovascular Dysplasia in Endoglin than in Alk1 Mice. Transl Stroke Res 2010; 1:197-201. [PMID: 20640035 PMCID: PMC2902730 DOI: 10.1007/s12975-010-0020-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/16/2010] [Accepted: 03/19/2010] [Indexed: 11/02/2022]
Abstract
Brain arteriovenous malformations (BAVMs) are an important cause of intracranial hemorrhage (ICH) in young adults. A small percent of BAVMs is due to hereditary hemorrhagic telangiectasia 1 and 2 (HHT1 and 2), which are caused by mutations in two genes involved in TGF-β signaling: endoglin (ENG) and activin-like kinase 1 (ALK1). The BAVM phenotype is an incomplete penetrant in HHT patients, and the mechanism is unknown. We tested the hypothesis that a "response-to-injury" triggers abnormal vascular (dysplasia) development, using Eng and Alk1 haploinsufficient mice. Adeno-associated virus (AAV) expressing vascular endothelial growth factor (VEGF) was used to mimic the injury conditions. VEGF overexpression caused a similar degree of angiogenesis in the brain of all groups, except that the cortex of Alk1(+/-) mice had a 33% higher capillary density than other groups. There were different levels of cerebrovascular dysplasia in haploinsufficient mice (Eng(+/)>Alk1(+/-)), which simulates the relative penetrance of BAVM in HHT patients (HHT1>HHT2). Few dysplastic capillaries were observed in AAV-LacZ-injected mice. Our data indicate that both angiogenic stimulation and genetic alteration are necessary for the development of dysplasia, suggesting that anti-angiogenic therapies might be adapted to slow the progression of the disease and decrease the risk of spontaneous ICH.
Collapse
Affiliation(s)
- Qi Hao
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Room 3C-38, San Francisco, CA 94110 USA
| | - Yiqian Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Room 3C-38, San Francisco, CA 94110 USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Room 3C-38, San Francisco, CA 94110 USA
| | - Fanxia Shen
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Room 3C-38, San Francisco, CA 94110 USA
| | - Guo-Yuan Yang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Room 3C-38, San Francisco, CA 94110 USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Room 3C-38, San Francisco, CA 94110 USA
| | - William L. Young
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Room 3C-38, San Francisco, CA 94110 USA
- Department of Neurological Surgery & Department of Neurology, University of California, San Francisco, 1001 Potrero Avenue Room 3C-38, San Francisco, CA USA
| |
Collapse
|
38
|
Ozduman K, Ozkan A, Yildirim O, Pamir MN, Gunel M, Kilic T. Temporal expression of angiogenesis-related genes in developing neonatal rodent retina: a novel in vivo model to study cerebral vascular development. Neurosurgery 2010; 66:538-43; discussion 543. [PMID: 20173549 DOI: 10.1227/01.neu.0000365615.24973.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Experimental models to study cerebrovascular malformations are limited therefore we used the neonatal rodent retina as a model to study cerebral angiogenesis. OBJECTIVE We performed a gene expression analysis to define temporal changes in the expression of 96 angiogenesis-related genes during retinal vascularization. METHODS A total of 72 retinas from 36 newborn C57BL/6 mice were used. Sets of neonatal mouse retinas were surgically isolated by 2-day intervals starting from postnatal day 0 to day 20 and at the 32nd day (representing adult retinas). For each of these 12 time points in the postnatal developmental period of mouse retinas, separate sets of 6 retinas from 3 mice were pooled, and their RNA was hybridized to an angiogenesis-specific gene array. Temporal expression patterns of each of the 96 angiogenesis-related genes were analyzed. For confirmation, vascular endothelial growth factor protein expression was also studied by immunohistochemistry. RESULTS Twenty-two of the 96 genes analyzed displayed a significantly different temporal expression profile, and the rest exhibited a static expression, as compared to the human glyceraldehyde-3-phosphate dehydrogenase gene. Among these genes, the temporal pattern of expression was variable, but peaks were seen mostly on days 8, 10, 12, and 16. This timing corresponds well to morphologic changes that occur in the retina during different stages of angiogenesis. CONCLUSION The neonatal rodent retina, which has a cellular architecture similar to that of the brain, has active and quantifiable angiogenic activity during the neonatal period and can be used as a simple and convenient model to study cerebral angiogenesis.
Collapse
Affiliation(s)
- Koray Ozduman
- Laboratory of Molecular Neurosurgery, Marmara University Institute of Neurological Sciences, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
39
|
Leblanc GG, Golanov E, Awad IA, Young WL. Biology of vascular malformations of the brain. Stroke 2009; 40:e694-702. [PMID: 19834013 DOI: 10.1161/strokeaha.109.563692] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE This review discusses recent research on the genetic, molecular, cellular, and developmental mechanisms underlying the etiology of vascular malformations of the brain (VMBs), including cerebral cavernous malformation, sporadic brain arteriovenous malformation, and the arteriovenous malformations of hereditary hemorrhagic telangiectasia. Summary of Review- The identification of gene mutations and genetic risk factors associated with cerebral cavernous malformation, hereditary hemorrhagic telangiectasia, and sporadic arteriovenous malformation has enabled the development of animal models for these diseases and provided new insights into their etiology. All of the genes associated with VMBs to date have known or plausible roles in angiogenesis and vascular remodeling. Recent work suggests that the angiogenic process most severely disrupted by VMB gene mutation is that of vascular stabilization, the process whereby vascular endothelial cells form capillary tubes, strengthen their intercellular junctions, and recruit smooth muscle cells to the vessel wall. In addition, there is now good evidence that in some cases, cerebral cavernous malformation lesion formation involves a genetic 2-hit mechanism in which a germline mutation in one copy of a cerebral cavernous malformation gene is followed by a somatic mutation in the other copy. There is also increasing evidence that environmental second hits can produce lesions when there is a mutation to a single allele of a VMB gene. CONCLUSIONS Recent findings begin to explain how mutations in VMB genes render vessels vulnerable to rupture when challenged with other inauspicious genetic or environmental factors and have suggested candidate therapeutics. Understanding of the cellular mechanisms of VMB formation and progression in humans has lagged behind that in animal models. New knowledge of lesion biology will spur new translational work. Several well-established clinical and genetic database efforts are already in place, and further progress will be facilitated by collaborative expansion and standardization of these.
Collapse
Affiliation(s)
- Gabrielle G Leblanc
- National Institute of Neurological Disorders and Stroke, Bethesda, Md., USA.
| | | | | | | | | |
Collapse
|
40
|
Gao P, Zhu Y, Ling F, Shen F, Lee B, Gabriel RA, Hao Q, Yang GY, Su H, Young WL. Nonischemic cerebral venous hypertension promotes a pro-angiogenic stage through HIF-1 downstream genes and leukocyte-derived MMP-9. J Cereb Blood Flow Metab 2009; 29:1482-90. [PMID: 19471278 PMCID: PMC2745831 DOI: 10.1038/jcbfm.2009.67] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebral venous hypertension (VH) and angiogenesis are implicated in the pathogenesis of brain arteriovenous malformation and dural arteriovenous fistulae. We studied the association of VH and angiogenesis using a mouse brain VH model. Sixty mice underwent external jugular vein and common carotid artery (CCA) anastomosis (VH model), CCA ligation, or sham dissection (n=20). Hypoxia-inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF) and stromal-cell-derived factor-1alpha (SDF-1alpha) expression, and matrix metalloproteinase (MMP) activity were analyzed. We found VH animals had higher (P<0.05) sagittal sinus pressure (8+/-1 mm Hg) than control groups (1+/-1 mm Hg). Surface cerebral blood flow and mean arterial pressure did not change. Hypoxia-inducible factor-1alpha, VEGF, and SDF-1alpha expression increased (P<0.05). Neutrophils and MMP-9 activity increased 10-fold 1 day after surgery, gradually decreased afterward, and returned to baseline 2 weeks after surgery. Macrophages began to increase 3 days after surgery (P<0.05), which coincided with the changes in SDF-1alpha expression. Capillary density in the parasagittal cortex increased 17% compared with the controls. Our findings suggest that mild nonischemic VH results in a pro-angiogenic stage in the brain by upregulating HIF-1 and its downstream targets, VEGF and SDF-1alpha, increasing leukocyte infiltration and MMP-9 activity.
Collapse
Affiliation(s)
- Peng Gao
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California,San Francisco, CA
- Department of Neurosurgery, Xuanwu Hospital, Capital University of Medical Sciences, Beijing, China
- Department of Neurosurgery, Tongji Hospital, Tongji University, Shanghai, China
| | - Yiqian Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California,San Francisco, CA
| | - Feng Ling
- Department of Neurosurgery, Xuanwu Hospital, Capital University of Medical Sciences, Beijing, China
| | - Fanxia Shen
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California,San Francisco, CA
| | - Brian Lee
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California,San Francisco, CA
| | - Rodney Allanigue Gabriel
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California,San Francisco, CA
| | - Qi Hao
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California,San Francisco, CA
| | - Guo-Yuan Yang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California,San Francisco, CA
- Med-X Research Institute, Shanghai JiaoTong University, Shanghai, China
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California,San Francisco, CA
| | - William L. Young
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California,San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, CA
- Department of Neurology, University of California, San Francisco, CA
| |
Collapse
|
41
|
Chen Y, Hao Q, Kim H, Su H, Letarte M, Karumanchi SA, Lawton MT, Barbaro NM, Yang GY, Young WL. Soluble endoglin modulates aberrant cerebral vascular remodeling. Ann Neurol 2009; 66:19-27. [PMID: 19670444 PMCID: PMC2773229 DOI: 10.1002/ana.21710] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Brain arteriovenous malformations (AVMs) are an important cause of neurological morbidity in young adults. The pathophysiology of these lesions is poorly understood. A soluble form of endoglin (sEng) has been shown to cause endothelial dysfunction and induce preeclampsia. We tested if sEng would be elevated in brain AVM tissues relative to epilepsy brain tissues, and also investigated whether sEng overexpression via gene transfer in the mouse brain would induce vascular dysplasia and associated changes in downstream signaling pathways. METHODS Expression levels of sEng in surgical specimens were determined by Western blot assay and enzyme-linked immunosorbent assay. Vascular dysplasia, levels of matrix metalloproteinase (MMP), and oxidative stress were determined by immunohistochemistry and gelatin zymography. RESULTS Brain AVMs (n = 33) had higher mean sEng levels (245 +/- 175 vs 100 +/- 60, % of control, p = 0.04) compared with controls (n = 8), as determined by Western blot. In contrast, membrane-bound Eng was not significantly different (108 +/- 79 vs 100 +/- 63, % of control, p = 0.95). sEng gene transduction in the mouse brain induced abnormal vascular structures. It also increased MMP activity by 490 +/- 30% (MMP-9) and 220 +/- 30% (MMP-2), and oxidants by 260 +/- 20% (4-hydroxy-2-nonenal) at 2 weeks after injection, suggesting that MMPs and oxidative radicals may mediate sEng-induced pathological vascular remodeling. INTERPRETATION The results suggest that elevated sEng may play a role in the generation of sporadic brain AVMs. Our findings may provide new targets for therapeutic intervention for patients with brain AVMs. Ann Neurol 2009;66:19-27.
Collapse
Affiliation(s)
- Yongmei Chen
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco
| | - Qi Hao
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco
| | | | | | - Michael T. Lawton
- Department of Neurological Surgery, University of California San Francisco
| | | | - Guo-Yuan Yang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco
- Department of Neurological Surgery, University of California San Francisco
| | - William L. Young
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco
- Department of Neurological Surgery, University of California San Francisco
- Department of Neurology, University of California San Francisco
| |
Collapse
|
42
|
MacDonald RL. Soluble endoglin linking eclamptic women and brain vascular malformations? Ann Neurol 2009; 66:2-4. [DOI: 10.1002/ana.21763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Meng H, Peng Y, Hasan R, Yu G, Wang MM. Nuclear contrast angiography: a simple method for morphological characterization of cerebral arteries. Brain Res 2009; 1261:75-81. [PMID: 19401159 PMCID: PMC2784114 DOI: 10.1016/j.brainres.2009.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/10/2009] [Accepted: 01/12/2009] [Indexed: 01/01/2023]
Abstract
Visualization of the cerebral vascular tree is important in experimental stroke and cerebral vascular malformation research. We describe a simple method, nuclear contrast angiography, that enables simultaneous visualization of the arterial tree and cerebral endothelial cells in rodent brain whole mounts. A mixture of latex and black ink was injected into the arterial system of rodents, resulting in high contrast demarcation of the arterial tree of the brain. This method clearly differentiates arteries from veins. We applied this method to demonstrate that 14 days of unilateral carotid artery occlusion induces increases in the caliber of (1) bilateral anterior communicating arteries, (2) bilateral anterior cerebral arteries, and (3) ipsilateral proximal middle cerebral artery of the circle of Willis. Unlike other methods, this procedure selectively stains endothelial nuclei of arteries. Thus, cerebral endothelial nuclei can be visualized, quantitated, and morphologically characterized at the same time the cortical arterial tree is delineated. This method should be useful in studies of stroke and cerebral arteriogenesis, which require the accurate assessment of both arterial diameters and endothelial cell density.
Collapse
Affiliation(s)
- He Meng
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109-5622, USA
| | | | | | | | | |
Collapse
|
44
|
Hashimoto N, Nozaki K, Takagi Y, Kikuta KI, Mikuni N. Surgery of cerebral arteriovenous malformations. Neurosurgery 2008; 61:375-87; discussion 387-9. [PMID: 18813152 DOI: 10.1227/01.neu.0000255491.95944.eb] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite remarkable progress, the microsurgical extirpation of cerebral arteriovenous malformations (AVMs) even by experienced neurosurgeons is not always easy or safe. This article focuses on how to render AVM surgery safer, and offers strategies and tactics for avoiding perilous bleeding and preserving postoperative neurological function. Our treatment strategies and surgical techniques are offered from the operating surgeon's perspective. An understanding of pathophysiology of cerebral AVMs is important for their appropriate surgical treatment. Sophisticated neuroimaging techniques and scrupulous neurophysiological examinations alert to possible complications, and improved surgical approaches help to minimize the sequelae of unanticipated complications. At the early stage of cerebral AVM surgery, extensive dissection of the sulci, fissures, and subarachnoid cistern should be performed to expose feeders, nidus, and drainers. Problems with the surgery of large and/or deep-seated lesions are exacerbated when arterial bleeding from the nidus continues even after all major feeders are thought to have been occluded. We routinely place catheters for angiography at the surgery of complex AVMs to find missing feeding arteries or to identify the real-time hemodynamic status of the lesion. Temporary clip application on feeders and less coagulation of the nidus is necessary to control intranidal pressure and to avoid uncontrollable bleeding from the nidus and adjacent brain. Intraoperative navigation images superimposed on tractography images can provide us with valuable information to minimize neurological deficits. Deeper insight into AVM nature and into events that occur during AVM surgery as well as the inclusion of molecular biological approaches will open new horizons for the safe and effective treatment of AVMs.
Collapse
Affiliation(s)
- Nobuo Hashimoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | |
Collapse
|
45
|
Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice. Proc Natl Acad Sci U S A 2008; 105:10901-6. [PMID: 18667694 DOI: 10.1073/pnas.0802743105] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain arteriovenous malformations (BAVMs) can cause devastating stroke in young people and contribute to half of all hemorrhagic stroke in children. Unfortunately, the pathogenesis of BAVMs is unknown. In this article we show that activation of Notch signaling in the endothelium during brain development causes BAVM in mice. We turned on constitutively active Notch4 (int3) expression in endothelial cells from birth by using the tetracycline-regulatable system. All mutants developed hallmarks of BAVMs, including cerebral arteriovenous shunting and vessel enlargement, by 3 weeks of age and died by 5 weeks of age. Twenty-five percent of the mutants showed signs of neurological dysfunction, including ataxia and seizure. Affected mice exhibited hemorrhage and neuronal cell death within the cerebral cortex and cerebellum. Strikingly, int3 repression resolved ataxia and reversed the disease progression, demonstrating that int3 is not only sufficient to induce, but also required to sustain the disease. We show that int3 expression results in widespread enlargement of the microvasculature, which coincided with a reduction in capillary density, linking vessel enlargement to Notch's known function of inhibiting vessel sprouting. Our data suggest that the Notch pathway is a molecular regulator of BAVM pathogenesis in mice, and offer hope that their regression might be possible by targeting the causal molecular lesion.
Collapse
|
46
|
Kim H, Marchuk DA, Pawlikowska L, Chen Y, Su H, Yang GY, Young WL. Genetic considerations relevant to intracranial hemorrhage and brain arteriovenous malformations. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 105:199-206. [PMID: 19066109 PMCID: PMC2640934 DOI: 10.1007/978-3-211-09469-3_38] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Brain arteriovenous malformations (AVMs) cause intracranial hemorrhage (ICH), especially in young adults. Molecular characterization of lesional tissue provides evidence for involvement of both angiogenic and inflammatory pathways, but the pathogenesis remains obscure and medical therapy is lacking. Abnormal expression patterns have been observed for proteins related to angiogenesis (e.g., vascular endothelial growth factor, angiopoietin-2, matrix metalloproteinase-9), and inflammation (e.g., interleukin-6 [IL-6] and myeloperoxidase). Macrophage and neutrophil invasion have also been observed in the absence of prior ICH. Candidate gene association studies have identified a number of germline variants associated with clinical ICH course and AVM susceptibility. A single nucleotide polymorphism (SNP) in activin receptor-like kinase-1 (ALK-1) is associated with AVM susceptibility, and SNPs in IL-6, tumor necrosis factor-alpha (TNF-alpha), and apolipoprotein-E (APOE) are associated with AVM rupture. These observations suggest that even without a complete understanding of the determinants of AVM development, the recent discoveries of downstream derangements in vascular function and integrity may offer potential targets for therapy development. Further, biomarkers can now be established for assessing ICH risk. These data will generate hypotheses that can be tested mechanistically in model systems, including surrogate phenotypes, such as vascular dysplasia and/or models recapitulating the clinical syndrome of recurrent spontaneous ICH.
Collapse
Affiliation(s)
- Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94110, USA
- Department of Institute for Human Genetics, University of California, San Francisco, CA 94110, USA
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ludmila Pawlikowska
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94110, USA
| | - Yongmei Chen
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94110, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94110, USA
| | - GY Yang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94110, USA
- Department of Neurological Surgery, University of California, San Francisco, CA 94110, USA
| | - William L. Young
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94110, USA
- Department of Neurological Surgery, University of California, San Francisco, CA 94110, USA
- Department of Neurology, University of California, San Francisco, CA 94110, USA
| |
Collapse
|
47
|
Storer K, Tu J, Karunanayaka A, Smee R, Short R, Thorpe P, Stoodley M. Coadministration of low-dose lipopolysaccharide and soluble tissue factor induces thrombosis after radiosurgery in an animal arteriovenous malformation model. Neurosurgery 2007; 61:604-10; discussion 610-1. [PMID: 17881975 DOI: 10.1227/01.neu.0000290909.32600.a8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Radiosurgery for arteriovenous malformations is limited to small lesions and may take 3 years to produce total occlusion. It has recently been shown that coadministration of low-dose lipopolysaccharide (LPS) and soluble tissue factor (sTF) selectively induces thrombosis in murine tumor models, attributable perhaps to the prothrombotic phenotype of tumor vasculature. Radiosurgery may induce changes in endothelial prothrombotic molecules similar to those found in tumors. This study aimed to determine if a similar strategy could be used to stimulate thrombus formation in an animal arteriovenous malformation model. METHODS Seventeen rats underwent creation of a carotid-to-jugular anastomosis. Animals were intravenously injected with sTF, low-dose LPS, a combination of both, or placebo 24 hours after stereotactic irradiation of the anastomosis. Control animals received both agents after sham irradiation. RESULTS Coadministration of sTF and LPS led to the formation of thrombi in up to 69% of small vessels and 39% of medium-sized vessels within the target region. The irradiated vasculature demonstrated intermediate rates of thrombosis after treatment with either sTF or LPS alone as did vessels within the fistula in the control group. Logistic regression analysis demonstrated significant associations between development of thrombi and treatment with radiation, sTF, or LPS (P < 0.005). There was no evidence of systemic thrombus formation or toxicity in any group. CONCLUSION Treatment with sTF and LPS selectively induces thrombosis of irradiated vessels in a rat model of arteriovenous malformation. Stimulation of thrombosis may improve the efficacy of radiosurgery, increasing the treatable lesion size and reducing latency.
Collapse
Affiliation(s)
- Kingsley Storer
- Prince of Wales Medical Research Institute, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Tanaka Y, Marumo T, Omura T, Yoshida S. Quantitative assessments of cerebral vascular damage with a silicon rubber casting method in photochemically-induced thrombotic stroke rat models. Life Sci 2007; 81:1381-8. [PMID: 17936852 DOI: 10.1016/j.lfs.2007.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 11/16/2022]
Abstract
Previous studies have described microvascular disturbances downstream of occluded large vessels arising during the acute phase (several hours) following cerebral ischemic insult. Prolonged microvascular disturbances may cause delayed neuronal cell death in ischemic penumbral regions, leading to expanded brain infarctions and poor neurological and functional outcomes. The lack of simple and quantitative methods for investigating this microcirculation failure suggests the need to develop a new method for clarifying the precise distribution and persistence of post-ischemic microvascular disturbances. The present study used a silicone rubber casting method in quantitative analyses of microvascular conditions in photochemically-induced thromboembolic (PIT) stroke rat models. After the casting procedure in rats with PIT stroke, a 6 microm-thick coronal section was obtained, and quantitative analyses of microvascular density and measurements of the infarct area in the serial section were performed. The major findings of the present study are as follows: (1) Silicone rubber casting techniques can be applied to precise quantitative analyses of microvessels in the same individual in whom brain infarct volume was measured; (2) the persistence and spatial distribution of microvascular disturbances assessed at the ischemic core, ischemic penumbra, and non-ischemic regions strongly suggest that microvascular disturbances affect brain infarct expansion; (3) the current method demonstrated the protective effects of MK-801 on microvessels, indicating that the technique may be useful in investigating factors that provide vascular protection. The experimental procedure introduced here would facilitate future evaluations of vascular protective agents.
Collapse
Affiliation(s)
- Yu Tanaka
- Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan.
| | | | | | | |
Collapse
|
49
|
Abstract
The central nervous system (CNS) is a sanctuary site and is protected by various barriers. These regulate brain homeostasis and the transport of endogenous and exogenous compounds by controlling their selective and specific uptake, efflux, and metabolism in the brain. Unfortunately, potential drugs for the treatment of most brain diseases are therefore often not able to cross these barriers. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. Here we discuss briefly the biology and physiology of the blood-brain barrier (BBB) and the blood-cerebro-spinal-fluid barrier (BCSFB), and, in more detail, the possibilities for delivering large-molecular-weight drugs by local and global delivery and by viral and receptor-mediated nonviral drug delivery to the (human) brain.
Collapse
Affiliation(s)
- A G de Boer
- Blood-Brain Barrier Research Group, Division of Pharmacology, Leiden-Amsterdam Center for Drug Research, University of Leiden, 2300 RA Leiden, The Netherlands.
| | | |
Collapse
|
50
|
Du R, Hashimoto T, Tihan T, Young WL, Perry V, Lawton MT. Growth and regression of arteriovenous malformations in a patient with hereditary hemorrhagic telangiectasia. Case report. J Neurosurg 2007; 106:470-7. [PMID: 17367071 DOI: 10.3171/jns.2007.106.3.470] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Data on the growth, regression, and de novo formation of arteriovenous malformations (AVMs) suggest that some of these lesions are not formed and developed only during embryogenesis. Patients with hereditary hemorrhagic telangiectasia (HHT) have a genetic propensity to form AVMs. The authors report on the growth and regression of AVMs in a single patient with HHT. This 26-day-old boy with a family history of HHT1 and a mutation in ENG on chromosome 9 presented with a generalized seizure. Results of computed tomography revealed a left frontoparietal intraparenchymal hemorrhage. Cerebral angiography revealed multiple AVMs. Follow-up angiograms obtained 5 months later showed both growth and regression of the AVMs. A craniotomy was performed for complete resection of the left parietal AVM. Histopathological features of the surgical specimen were examined. Active angiogenesis, as indicated by increased endothelial proliferation, might be a part of the underlying pathophysiology of the growth and regression of AVMs.
Collapse
Affiliation(s)
- Rose Du
- Department of Neurological Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|