1
|
Asymmetry Index Evaluation of Cerebral Volume and Cerebral Blood Flow in Neonatal Hypoxic–Ischemic Encephalopathy. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The aim of the present study was to longitudinally evaluate the differences in cerebral volume and cerebral blood flow (CBF) on the right and left sides in rats with neonatal hypoxic–ischemic encephalopathy (HIE) using magnetic resonance imaging and the Rice–Vannucci model. Unilateral ligation of the left common carotid artery was performed on 8-day-old rats, followed by mild (1 h, n = 6) or severe (2 h, n = 7) hypoxic exposure. T2-weighted (T2W) and CBF images were obtained at 1 h and 1, 3, and 7 days following the HI insult. The cerebral volume (Vlesion and Vcontrol), CBF in both hemispheres (lesion and control sides), and asymmetry indices of the cerebral volume (AIvolume) and CBF (AICBF) were calculated for each group. Slight hyperintensities were noted in the lesion-side hemispheres on T2W images at 1 h and 1 day in both groups, as were pronounced hyperintensities at days 3 and 7 in the severe group. AIvolume was positive (Vlesion > Vcontrol) in the mild and severe groups until days 1 and 3, respectively, and changed to negative on days 3 and 7 in the mild and severe groups. These results suggest that the prolonged positive AIvolume prior to day 3 in the severe group was caused by long-term cell swelling following severe HI insult.
Collapse
|
2
|
Binvignat O, Olloquequi J. Excitotoxicity as a Target Against Neurodegenerative Processes. Curr Pharm Des 2020; 26:1251-1262. [PMID: 31931694 DOI: 10.2174/1381612826666200113162641] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
The global burden of neurodegenerative diseases is alarmingly increasing in parallel to the aging of population. Although the molecular mechanisms leading to neurodegeneration are not completely understood, excitotoxicity, defined as the injury and death of neurons due to excessive or prolonged exposure to excitatory amino acids, has been shown to play a pivotal role. The increased release and/or decreased uptake of glutamate results in dysregulation of neuronal calcium homeostasis, leading to oxidative stress, mitochondrial dysfunctions, disturbances in protein turn-over and neuroinflammation. Despite the anti-excitotoxic drug memantine has shown modest beneficial effects in some patients with dementia, to date, there is no effective treatment capable of halting or curing neurodegenerative diseases such as Alzheimer's disease, Parkinson disease, Huntington's disease or amyotrophic lateral sclerosis. This has led to a growing body of research focusing on understanding the mechanisms associated with the excitotoxic insult and on uncovering potential therapeutic strategies targeting these mechanisms. In the present review, we examine the molecular mechanisms related to excitotoxic cell death. Moreover, we provide a comprehensive and updated state of the art of preclinical and clinical investigations targeting excitotoxic- related mechanisms in order to provide an effective treatment against neurodegeneration.
Collapse
Affiliation(s)
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autonoma de Chile, Talca, Chile
| |
Collapse
|
3
|
Bartollino S, Chiosi F, di Staso S, Uva M, Pascotto A, Rinaldi M, Hesselink JMK, Costagliola C. The retinoprotective role of phenytoin. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3485-3489. [PMID: 30410309 PMCID: PMC6198895 DOI: 10.2147/dddt.s169621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenytoin is a non-sedative barbiturate derivate and has been recently rediscovered as a neuroprotective and retinoprotective compound in patients affected by optic neuritis secondary to multiple sclerosis. However, currently there are still no neuroprotective compounds registered and available in the clinic. We reviewed the literature supporting the retinoprotective properties of phenytoin and analyzed the various approaches and definitions from the first research periods onwards. The retinoprotective role of phenytoin was already known in the 1970s, but only recently has this effect been rediscovered, confirming that it could indeed provide structural protection of the retinal cells.
Collapse
Affiliation(s)
- Silvia Bartollino
- Eye Clinic, Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy,
| | - Flavia Chiosi
- Eye Clinic, Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy,
| | - Silvio di Staso
- Department of Surgical Science, Ophthalmic Clinic, University of L'Aquila, L'Aquila, Italy
| | - Maurizio Uva
- Eye Clinic, University of Catania, Catania, Italy
| | - Arduino Pascotto
- Eye Clinic, Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy,
| | - Michele Rinaldi
- Department of Ophthalmology, University della Campania Luigi Vanvitelli, Naples, Italy
| | | | - Ciro Costagliola
- Eye Clinic, Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy,
| |
Collapse
|
4
|
Fraser JF, Maniskas M, Trout A, Lukins D, Parker L, Stafford WL, Alhajeri A, Roberts J, Bix GJ. Intra-arterial verapamil post-thrombectomy is feasible, safe, and neuroprotective in stroke. J Cereb Blood Flow Metab 2017; 37:3531-3543. [PMID: 28429604 PMCID: PMC5669346 DOI: 10.1177/0271678x17705259] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large vessel ischemic stroke represents the most disabling subtype. While t-PA and endovascular thrombectomy can recanalize the occluded vessel, good clinical outcomes are not uniformly achieved. We propose that supplementing endovascular thrombectomy with superselective intra-arterial (IA) verapamil immediately following recanalization could be safe and effective. Verapamil, a calcium channel blocker, has been shown to be an effective IA adjunct in a pre-clinical mouse focal ischemia model. To demonstrate translational efficacy, mechanism, feasibility, and safety, we conducted a group of translational experiments. We performed in vivo IA dose-response evaluation in our animal stroke model with C57/Bl6 mice. We evaluated neuroprotective mechanism through in vitro primary cortical neuron (PCN) cultures. Finally, we performed a Phase I trial, SAVER-I, to evaluate feasibility and safety of administration in the human condition. IA verapamil has a likely plateau or inverted-U dose-response with a defined toxicity level in mice (LD50 16-17.5 mg/kg). Verapamil significantly prevented PCN death and deleterious ischemic effects. Finally, the SAVER-I clinical trial showed no evidence that IA verapamil increased the risk of intracranial hemorrhage or other adverse effect/procedural complication in human subjects. We conclude that superselective IA verapamil administration immediately following thrombectomy is safe and feasible, and has direct, dose-response-related benefits in ischemia.
Collapse
Affiliation(s)
- Justin F Fraser
- 1 Department of Neurological Surgery, University of Kentucky, Lexington, KY, USA.,2 Department of Neurology, University of Kentucky, Lexington, KY, USA.,3 Department of Radiology, University of Kentucky, Lexington, KY, USA.,4 Department of Anatomy & Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Michael Maniskas
- 1 Department of Neurological Surgery, University of Kentucky, Lexington, KY, USA.,4 Department of Anatomy & Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Amanda Trout
- 4 Department of Anatomy & Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Doug Lukins
- 3 Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Lindsey Parker
- 1 Department of Neurological Surgery, University of Kentucky, Lexington, KY, USA
| | - W Lane Stafford
- 3 Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Abdulnasser Alhajeri
- 1 Department of Neurological Surgery, University of Kentucky, Lexington, KY, USA.,2 Department of Neurology, University of Kentucky, Lexington, KY, USA.,3 Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Jill Roberts
- 4 Department of Anatomy & Neurobiology, University of Kentucky, Lexington, KY, USA.,5 Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Gregory J Bix
- 1 Department of Neurological Surgery, University of Kentucky, Lexington, KY, USA.,2 Department of Neurology, University of Kentucky, Lexington, KY, USA.,4 Department of Anatomy & Neurobiology, University of Kentucky, Lexington, KY, USA.,5 Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Modification to the Rice-Vannucci perinatal hypoxic-ischaemic encephalopathy model in the P7 rat improves the reliability of cerebral infarct development after 48hours. J Neurosci Methods 2017. [PMID: 28648719 DOI: 10.1016/j.jneumeth.2017.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The Rice-Vannucci model of hypoxic-ischaemic encephalopathy (HIE) has been associated with a high degree of variability with respect to the development of cerebral infarction and infarct lesion volume. For this reason, we examined the occurrence of communicational blood flow within the common carotid (CCA), internal (ICA), and external (ECA) carotid arteries following CCA occlusion as a source of variability in the model. NEW METHOD We propose a novel modification to the Rice-Vannucci model, whereby both the CCA and ECA are permanently ligated; mitigating communicational blood flow. RESULTS Using magnetic resonance angiography, phase-contrast velocity encoding, and pulsed arterial spin labelling, the modified Rice-Vannucci model (CCA/ECA occlusion) was demonstrated to mitigate communicational blood flow, whilst significantly reducing ipsilateral hemispherical cerebral blood flow (CBF). Comparatively, the original Rice-Vannucci model (CCA occlusion) demonstrated anterograde and retrograde blood flow within the ICA and CCA, respectively, with a non-significant reduction in ipsilateral CBF. Furthermore, CCA/ECA occlusion plus hypoxia (8% O2/92% N2; 2.5h) resulted in 100% of animals presenting with an infarct (vs 87%), significantly larger infarct volume at 48h (18.5% versus 10.0%; p<0.01), reduced standard deviation (±10% versus ±15%), and significantly worsened functional outcomes when compared to CCA occlusion plus hypoxia. COMPARISON WITH EXISTING METHOD We compared a modified Rice-Vannucci model (CCA/ECA occlusion±hypoxia) to the commonly used Rice-Vannucci model (CCA occlusion±hypoxia). CONCLUSION This study demonstrates that CCA/ECA occlusion in the Rice-Vannucci model of HIE reduces infarct volume variability by limiting communicational blood flow.
Collapse
|
6
|
Grupke S, Hall J, Dobbs M, Bix GJ, Fraser JF. Understanding history, and not repeating it. Neuroprotection for acute ischemic stroke: from review to preview. Clin Neurol Neurosurg 2014; 129:1-9. [PMID: 25497127 DOI: 10.1016/j.clineuro.2014.11.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 11/07/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Neuroprotection for ischemic stroke is a growing field, built upon the elucidation of the biochemical pathways of ischemia first studied in the 1970s. Beginning in the early 1990s, means by which to pharmacologically intervene and counteract these pathways have been sought, though with little clinical success. Through a comprehensive review of translations from laboratory to clinic, we aim to evaluate individual mechanisms of action, while highlighting potential barriers to success that will guide future research. METHODS The MEDLINE database and The Internet Stroke Center clinical trials registry were queried for trials involving the use of neuroprotective agents in acute ischemic stroke in human subjects. For the purpose of the review, neuroprotective agents refer to medications used to preserve or protect the potentially ischemic tissue after an acute stroke, excluding treatments designed to re-establish perfusion. This excludes mechanical or pharmacological thrombolytics, anti-thrombic medications, or anti-platelet therapies. RESULTS This review summarizes previously trialed neuroprotective agents, including but not limited to glutamate neurotransmission blockers, anti-oxidants, GABA agonists, leukocyte migration blockers, various small cation channel modulators, narcotic antagonists, and phospholipid membrane stabilizers. We outline key biochemical steps in ischemic injury that are the proposed areas of intervention. The agents, time to administration of therapeutic agent, follow-up, and trial results are reported. DISCUSSION Stroke trials in humans are burdened with a marked heterogeneity of the patient population that is not seen in animal studies. Also, trials to date have included patients that are likely treated at a time outside of the window of efficacy for neuroprotective drugs, and have not effectively combined thrombolysis with neuroprotection. Through an evaluation of the accomplishments and failures in neuroprotection research, we propose new methodologies, agents, and techniques that may provide new routes for success.
Collapse
Affiliation(s)
- Stephen Grupke
- Department of Neurosurgery, University of Kentucky, Lexington, USA
| | - Jason Hall
- Department of Neurosurgery, University of Kentucky, Lexington, USA
| | - Michael Dobbs
- Department of Neurology, University of Kentucky, Lexington, USA
| | - Gregory J Bix
- Department of Neurology, University of Kentucky, Lexington, USA; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA
| | - Justin F Fraser
- Department of Neurosurgery, University of Kentucky, Lexington, USA; Department of Neurology, University of Kentucky, Lexington, USA; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA; Department of Radiology, University of Kentucky, Lexington, USA.
| |
Collapse
|
7
|
Sendrowski K, Rusak M, Sobaniec P, Iłendo E, Dąbrowska M, Boćkowski L, Koput A, Sobaniec W. Study of the protective effect of calcium channel blockers against neuronal damage induced by glutamate in cultured hippocampal neurons. Pharmacol Rep 2013; 65:730-6. [DOI: 10.1016/s1734-1140(13)71052-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 12/13/2012] [Indexed: 11/28/2022]
|
8
|
A program for solving the brain ischemia problem. Brain Sci 2013; 3:460-503. [PMID: 24961411 PMCID: PMC4061849 DOI: 10.3390/brainsci3020460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/23/2013] [Accepted: 03/26/2013] [Indexed: 02/01/2023] Open
Abstract
Our recently described nonlinear dynamical model of cell injury is here applied to the problems of brain ischemia and neuroprotection. We discuss measurement of global brain ischemia injury dynamics by time course analysis. Solutions to proposed experiments are simulated using hypothetical values for the model parameters. The solutions solve the global brain ischemia problem in terms of "master bifurcation diagrams" that show all possible outcomes for arbitrary durations of all lethal cerebral blood flow (CBF) decrements. The global ischemia master bifurcation diagrams: (1) can map to a single focal ischemia insult, and (2) reveal all CBF decrements susceptible to neuroprotection. We simulate measuring a neuroprotectant by time course analysis, which revealed emergent nonlinear effects that set dynamical limits on neuroprotection. Using over-simplified stroke geometry, we calculate a theoretical maximum protection of approximately 50% recovery. We also calculate what is likely to be obtained in practice and obtain 38% recovery; a number close to that often reported in the literature. The hypothetical examples studied here illustrate the use of the nonlinear cell injury model as a fresh avenue of approach that has the potential, not only to solve the brain ischemia problem, but also to advance the technology of neuroprotection.
Collapse
|
9
|
Comparison of intrathecal flunarizine and nimodipine treatments in cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. ACTA NEUROCHIRURGICA. SUPPLEMENT 2010. [PMID: 21125448 DOI: 10.1007/978-3-7091-0356-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
BACKGROUND the aim of this study was to assess and to compare the ability of intrathecal flunarizine and nimodipine to prevent vasospasm in a rabbit model of subarachnoid hemorrhage (SAH). METHOD forty male New Zealand white rabbits were allocated into 5 groups randomly. The treatment groups were as follows: (1) control (no SAH [n = 8]), (2) SAH only (n = 8), (3) SAH plus vehicle (n = 8), (4) SAH plus nimodipine (n = 8), and (5) SAH plus flunarizine (n = 8). Before sacrifice, all animals underwent femoral artery catheterization procedure by open surgery under anesthesia and angiography performed for each animal. FINDINGS there was a statistically significant difference between the mean basilar artery cross-sectional areas and the mean arterial wall thickness measurements of the control and SAH-only groups (p < 0.05). Basilar artery vessel diameter and luminal section areas in group 4 were significantly higher than in group 2 (p < 0.05). Basilar artery vessel diameter and basilar artery luminal section areas in group 5 were significantly higher than in group 2 (p < 0.05).Basilar artery vessel diameter and basilar artery luminal section areas in group 5 were significantly higher than in group 4 (p < 0.05). CONCLUSIONS these findings demonstrate that flunarizine has marked vasodilatatory effect in an experimental model of SAH in rabbits.
Collapse
|
10
|
Turner CP, Miller R, Smith C, Brown L, Blackstone K, Dunham SR, Strehlow R, Manfredi M, Slocum P, Iverson K, West M, Ringler SL, Berry ZC. Widespread Neonatal Brain Damage following Calcium Channel Blockade. Dev Neurosci 2006; 29:213-31. [PMID: 16921238 DOI: 10.1159/000095221] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/04/2006] [Indexed: 01/05/2023] Open
Abstract
An abundance of evidence exists that shows calcium channel blockade promotes injury in cultured neurons. However, few studies have addressed the in vivo toxicity of such agents. We now show that the L-type calcium channel antagonist nimodipine promotes widespread and robust injury throughout the neonatal rat brain, in an age-dependent manner. Using both isolated neuronal as well as brain slice approaches, we address mechanisms behind such injury. These expanded studies show a consistent pattern of injury using a variety of agents that lower intracellular calcium. Collectively, these observations indicate that postnatal brain development represents a transitional period for still developing neurons, from being highly sensitive to reductions in intracellular calcium to being less vulnerable to such changes. These observations directly relate to current therapeutic strategies targeting neonatal brain injury.
Collapse
Affiliation(s)
- C P Turner
- Department of Neurobiology and Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lema Tomé CM, Bauer C, Nottingham C, Smith C, Blackstone K, Brown L, Hlavaty C, Nelson C, Daker R, Sola R, Miller R, Bryan R, Turner CP. Mk801-induced caspase-3 in the postnatal brain: Inverse relationship with calcium binding proteins. Neuroscience 2006; 141:1351-63. [PMID: 16782280 DOI: 10.1016/j.neuroscience.2006.05.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022]
Abstract
Age-dependent, neuronal apoptosis following N-methyl-D-aspartate receptor blockade has been linked to loss of calcium. To further explore this relationship, we examined expression of activated caspase-3, as well as the calcium binding proteins, calbindin-D 28K, calretinin and parvalbumin, following injection of vehicle or the N-methyl-D-aspartate receptor blocker, MK801, in postnatal day 7 or 21 rats. At postnatal day 7, MK801-induced activated caspase-3 expression was most frequently found in mutually exclusive cell populations to those expressing any of the three calcium binding proteins. For example, in the somatosensory cortex, most immunoreactivity for activated caspase-3 was found in layers IV/V, layered between areas of high calbindin or calretinin expression. Further, in the caudate putamen, activated caspase-3 rarely invaded zones of intense calbindin immunoreactivity. Suggesting expression patterns of these proteins were inversely related, these same brain regions no longer displayed MK801-induced activated caspase-3 at postnatal day 21, but instead robustly expressed calcium binding proteins. This later surge in expression was especially true for parvalbumin in regions such as the somatosensory and retrosplenial cortex, as well as the subicular complex. Calbindin-D 28K was also found to increase in the same regions though not as impressively as parvalbumin. Thus, developmental regulation of calcium binding protein expression may be a critical factor in age-dependent sensitivity to agents that disrupt calcium homeostasis in maturing neurons, providing a possible mechanistic explanation for age-dependent MK801 toxicity.
Collapse
Affiliation(s)
- C M Lema Tomé
- Neurobiology and Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Makarewicz D, Gadamski R, Ziembowicz A, Kozikowski AP, Wroblewski JT, Lazarewicz JW. Neuroprotective effects of the agonist of metabotropic glutamate receptors ABHxD-I in two animal models of cerebral ischaemia. Resuscitation 2006; 68:119-26. [PMID: 16325990 DOI: 10.1016/j.resuscitation.2005.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/01/2005] [Accepted: 05/25/2005] [Indexed: 11/28/2022]
Abstract
The neuroprotective efficacy of 2-aminobicyclo[2.1.1]hexane-2,5-dicarboxylic acid-I (ABHxD-I), a rigid agonist of metabotropic glutamate receptors, was studied using a 3-min global cerebral ischaemia model in Mongolian gerbils and the hypoxia/ischaemia model in 7-day-old rats. The effects on brain damage of ABHxD-I (30 mg/kg, intraperitoneally or 7.5 microg intracerebroventricularly) administered 30 min before global ischaemia or 30 min after hypoxia/ischaemia was evaluated 14 days after the insults. Treatment of adult gerbils with ABHxD-I injected i.c.v. but not systemically, prevented post-ischaemic hyperthermia and substantially reduced brain damage. These effects may reflect low permeability of the adult blood-brain barrier to ABHxD-I, and the role of reduced body and brain temperature in neuroprotection after its i.c.v. administration. ABHxD-I given either i.p. or i.c.v. to developing rats reduced brain damage by 55 and 37%, respectively, without affecting the body temperature. Due to immaturity and increased post-ischaemic permeability of the blood-brain barrier in developing rats, ABHxD-I may induce neuroprotection by direct interference with brain metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Dorota Makarewicz
- Department of Neurochemistry, Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
13
|
Baumgartner RW, Keller S, Regard M, Bärtsch P. Flunarizine in prevention of headache, ataxia, and memory deficits during decompression to 4559 m. High Alt Med Biol 2004; 4:333-9. [PMID: 14561238 DOI: 10.1089/152702903769192287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our purpose was to study the preventive effect of the calcium channel blocker flunarizine on headache, postural ataxia, and memory deficits occurring during decompression to high altitude in a randomized, placebo-controlled, double-blind study. After 7-day pretreatment with the study drugs, 20 healthy men were investigated at 490 m and 0.5, 2, 4, and 6 h later at a simulated altitude of 4559 m. Headache severity was evaluated on a 4-point scale. Sway path and anteroposterior and lateral sway were recorded with open and closed eyes by static posturography. Short- and long-term memory was studied by testing the recall of verbal and figural material immediately and 2 h after presentation, respectively. Blood pressure (BP) and arterial oxygen saturation (Sa(O2)) were also assessed. Headache scores showed a trend to be lower in the flunarizine group that was significant after 4 and 6 h. Headache scores expressed as difference from baseline values showed a nonsignificant trend to be lower at 4 and 6 h in subjects treated with flunarizine. Postural stance, memory, BP, and Sa(O2) were similar in both treatment groups. Although the low number of investigated subjects may have prevented the detection of a significant therapeutic effect of flunarizine, the present data do not show that flunarizine is effective for prevention of headache, postural ataxia, and neurocognitive deficits occurring at simulated high altitude.
Collapse
Affiliation(s)
- Ralf W Baumgartner
- Neurovascular Division, Department of Neurology, University of Zürich, Frauenklinikstrasse 26, Zürich, Switzerland.
| | | | | | | |
Collapse
|
14
|
Grow J, Barks JDE. Pathogenesis of hypoxic-ischemic cerebral injury in the term infant: current concepts. Clin Perinatol 2002; 29:585-602, v. [PMID: 12516737 DOI: 10.1016/s0095-5108(02)00059-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Multiple, biochemical cascades contribute to the pathogenesis of neonatal hypoxic-ischemic brain injury. This article summarizes experimental evidence that supports the role of excitatory amino acids, calcium, free radicals, nitric oxide, proinflammatory cytokines, and bioactive lipids. Specific vulnerabilities that distinguish the response of the immature brain from that of the mature brain are highlighted. These include increased susceptibility to excitotoxicity and free radical injury, greater tendency to apoptotic death, and heightened vulnerability of developing oligodendrocytes. Available supportive evidence from human studies is also included. Implications for clinical neuroprotective strategies are discussed.
Collapse
Affiliation(s)
- Jennifer Grow
- The University of Michigan Medical Center, 1150 W Medical Center Drive, 8301 MSRB III, Box 0646, Ann Arbor, MI 48109-0646, USA
| | | |
Collapse
|
15
|
Tomimatsu T, Fukuda H, Endoh M, Mu J, Watanabe N, Kohzuki M, Fujii E, Kanzaki T, Oshima K, Doi K, Kubo T, Murata Y. Effects of neonatal hypoxic-ischemic brain injury on skilled motor tasks and brainstem function in adult rats. Brain Res 2002; 926:108-17. [PMID: 11814412 DOI: 10.1016/s0006-8993(01)03311-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In an attempt to establish more sensitive long-term neurofunctional measurements for neonatal hypoxic-ischemic brain injury, we examined skilled motor task and brainstem functions in adult rats after neonatal cerebral hypoxia-ischemia (H-I), using a staircase test and auditory brainstem response (ABR), respectively. Seven-day-old rats underwent a combination of left common carotid artery ligation and exposure to 8% O(2) for 1 h (n=16). The control animals only received sham operation (n=16). At 3 months of age, the staircase test and ABR were performed. In the staircase test, H-I animals showed marked impairment of skilled forelimb use in the side contralateral to the occluded artery, and the degree of brain damage correlated significantly to skilled forelimb use. In the ABR, H-I animals showed brainstem dysfunction assessed by measuring interpeak latencies for waves III-V and I-V. We also examined the brainstem with antibodies specific for activated caspase-3, a protein involved in initiation of apoptosis, and observed that caspase-3 was activated in the ipsilateral inferior colliculus at 24 h after H-I. The present study shows that both the staircase test and ABR are sensitive and objective long-term neurofunctional measurements that can be used in future studies to assess therapeutic intervention in this neonatal cerebral H-I model.
Collapse
Affiliation(s)
- Takuji Tomimatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Osaka University School of Medicine, 2-2, Yamada-oka, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Perinatal brain damage in the mature fetus is usually brought about by severe intrauterine asphyxia following an acute reduction of the uterine or umbilical circulation. The areas most heavily affected are the parasagittal region of the cerebral cortex and the basal ganglia. The fetus reacts to a severe lack of oxygen with activation of the sympathetic-adrenergic nervous system and a redistribution of cardiac output in favor of the central organs (brain, heart and adrenals). If the asphyxic insult persists, the fetus is unable to maintain circulatory centralization, and the cardiac output and extent of cerebral perfusion fall. Owing to the acute reduction in oxygen supply, oxidative phosphorylation in the brain comes to a standstill. The Na+/K+ pump at the cell membrane has no more energy to maintain the ionic gradients. In the absence of a membrane potential, large amounts of calcium ions flow through the voltage-dependent ion channels, down an extreme extra-/intracellular concentration gradient, into the cell. Current research suggests that the excessive increase in levels of intracellular calcium, so-called calcium overload, leads to cell damage through the activation of proteases, lipases and endonucleases. During ischemia, besides the influx of calcium ions into the cells via voltage-dependent calcium channels, more calcium enters the cells through glutamate-regulated ion channels. Glutamate, an excitatory neurotransmitter, is released from presynaptic vesicles during ischemia following anoxic cell depolarization. The acute lack of cellular energy arising during ischemia induces almost complete inhibition of cerebral protein biosynthesis. Once the ischemic period is over, protein biosynthesis returns to preischemic levels in non-vulnerable regions of the brain, while in more vulnerable areas it remains inhibited. The inhibition of protein synthesis, therefore, appears to be an early indicator of subsequent neuronal cell death. A second wave of neuronal cell damage occurs during the reperfusion phase. This cell damage is thought to be caused by the postischemic release of oxygen radicals, synthesis of nitric oxide (NO), inflammatory reactions and an imbalance between the excitatory and inhibitory neurotransmitter systems. Part of the secondary neuronal cell damage may be caused by induction of a kind of cellular suicide programme known as apoptosis. Interestingly, there is increasing evidence from recent clinical studies that perinatal brain damage is closely associated with ascending intrauterine infection before or during birth. However, a major part of this damage is likely to be of hypoxic-ischemic nature due to LPS-induced effects on fetal cerebral circulation. Knowledge of these pathophysiological mechanisms has enabled scientists to develop new therapeutic strategies with successful results in animal experiments. The potential of such therapies is discussed here, particularly the promising effects of intravenous administration of magnesium or postischemic induction of cerebral hypothermia.
Collapse
Affiliation(s)
- R Berger
- Department of Obstetrics and Gynecology, Ruhr-University, Bochum, Germany.
| | | |
Collapse
|
17
|
|
18
|
Hallak M, Kupsky WJ, Hotra JW, Evans JB. Fetal rat brain damage caused by maternal seizure activity: prevention by magnesium sulfate. Am J Obstet Gynecol 1999; 181:828-34. [PMID: 10521737 DOI: 10.1016/s0002-9378(99)70309-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Our purpose was to determine whether maternal rat seizure activity was associated with fetal histopathologic brain changes and whether magnesium sulfate reduced these changes. STUDY DESIGN Electrodes were stereotaxically implanted into the hippocampus of nonpregnant rats 1 week before breeding. Pregnant rats were randomly assigned to 1 of 4 groups: (1) sodium chloride solution and no seizure (n = 2), (2) magnesium sulfate and no seizure (n = 2), (3) sodium chloride solution and seizure (n = 5), and (4) magnesium sulfate and seizure (n = 5). On gestational days 9, 11, 13, 15, 17, and 19, subcutaneous doses of sodium chloride solution or magnesium sulfate were administered to all rats every 20 minutes for 4 hours (loading-maintenance-loading), followed by seizure induction. On gestational day 20, the rats were perfused with formalin and fetuses were delivered via cesarean. Fetuses were perfused with formalin, brains were obtained and embedded in paraffin, and the forebrain and hindbrain were sectioned in the coronal plane and stained with hematoxylin and eosin. A neuropathologist masked to the protocol performed histopathologic grading of each section, including extent and nature of cellular damage. Eleven brain regions were examined in each section. Scores were expressed as mean +/- SD. Kruskal-Wallis analysis of variance was used, and P <.05 was considered significant. RESULTS We evaluated 26 fetal brains in group 1, 9 in group 2, 72 in group 3, and 45 in group 4. Fetuses in the sodium chloride solution-and-seizure group (group 3) presented significantly higher grades of neuronal damage in the hippocampus (group 1, 0.50 +/- 0. 88; group 2, 0.22 +/- 0.66; group 3, 1.01 +/- 1.17; and group 4, 0. 48 +/- 0.72) and in the tegmentum region (group 1, 1.0 +/- 1.0; group 2, 0.8 +/- 1.0; group 3, 1.7 +/- 0.7; and group 4, 1.5 +/- 0. 8) (P <.05, group 3 compared with others). Isolated and patchy neuronal injury with shrinkage of cells, nuclear pyknosis, and karyorrhexis were the main histologic findings. CONCLUSIONS Maternal rat seizure activity was associated with histologic brain injury in the fetus. Maternal administration of magnesium sulfate before seizure prevented or significantly decreased this effect.
Collapse
Affiliation(s)
- M Hallak
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | |
Collapse
|
19
|
|
20
|
Berger R, Garnier Y. Pathophysiology of perinatal brain damage. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:107-34. [PMID: 10525170 DOI: 10.1016/s0165-0173(99)00009-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Perinatal brain damage in the mature fetus is usually brought about by severe intrauterine asphyxia following an acute reduction of the uterine or umbilical circulation. The areas most heavily affected are the parasagittal region of the cerebral cortex and the basal ganglia. The fetus reacts to a severe lack of oxygen with activation of the sympathetic-adrenergic nervous system and a redistribution of cardiac output in favour of the central organs (brain, heart and adrenals). If the asphyxic insult persists, the fetus is unable to maintain circulatory centralisation, and the cardiac output and extent of cerebral perfusion fall. Owing to the acute reduction in oxygen supply, oxidative phosphorylation in the brain comes to a standstill. The Na(+)/K(+) pump at the cell membrane has no more energy to maintain the ionic gradients. In the absence of a membrane potential, large amounts of calcium ions flow through the voltage-dependent ion channel, down an extreme extra-/intracellular concentration gradient, into the cell. Current research suggests that the excessive increase in levels of intracellular calcium, so-called calcium overload, leads to cell damage through the activation of proteases, lipases and endonucleases. During ischemia, besides the influx of calcium ions into the cells via voltage-dependent calcium channels, more calcium enters the cells through glutamate-regulated ion channels. Glutamate, an excitatory neurotransmitter, is released from presynaptic vesicles during ischemia following anoxic cell depolarisation. The acute lack of cellular energy arising during ischemia induces almost complete inhibition of cerebral protein biosynthesis. Once the ischemic period is over, protein biosynthesis returns to pre-ischemic levels in non-vulnerable regions of the brain, while in more vulnerable areas it remains inhibited. The inhibition of protein synthesis, therefore, appears to be an early indicator of subsequent neuronal cell death. A second wave of neuronal cell damage occurs during the reperfusion phase. This cell damage is thought to be caused by the post-ischemic release of oxygen radicals, synthesis of nitric oxide (NO), inflammatory reactions and an imbalance between the excitatory and inhibitory neurotransmitter systems. Part of the secondary neuronal cell damage may be caused by induction of a kind of cellular suicide programme known as apoptosis. Knowledge of these pathophysiological mechanisms has enabled scientists to develop new therapeutic strategies with successful results in animal experiments. The potential of such therapies is discussed here, particularly the promising effects of i.v. administration of magnesium or post-ischemic induction of cerebral hypothermia.
Collapse
Affiliation(s)
- R Berger
- Department of Obstetrics and Gynecology, University of Bochum, Bochum, Germany. richard.berger2ruhr-uni-bochum.de
| | | |
Collapse
|
21
|
Walker DW, Curtis B, Lacey B, Nitsos I. Kynurenic acid in brain and cerebrospinal fluid of fetal, newborn, and adult sheep and effects of placental embolization. Pediatr Res 1999; 45:820-6. [PMID: 10367772 DOI: 10.1203/00006450-199906000-00007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Concentrations of the endogenous glutamate receptor antagonist kynurenic acid (KA) were measured in various brain regions and in cisternal cerebrospinal fluid of fetal, newborn, and adult sheep. KA concentrations were significantly higher in the fetal brain and cerebrospinal fluid at 90 and 140 d gestation compared with postnatal ages. In fetuses of 132-139 d gestation, KA concentrations in cerebrospinal fluid collected by drainage from an indwelling cisternal catheter increased significantly after infusion of the organic acid transport inhibitor probenecid (100 or 200 mg/kg, i.v.) indicating active transport of KA out of the fetal brain. In fetuses in which the umbilical circulation had been chronically restricted from 120 to 140 d gestation by partial embolization of the placenta, plasma concentrations of the KA precursor kynurenine were significantly lower than in control fetuses, and KA concentrations in the hypothalamus and hippocampus were significantly reduced; other brain regions were not affected. These results indicate that the production of KA is higher in the fetal brain compared with the newborn and adult brain. Because KA diminishes the risk of excitotoxic neuronal damage under hypoxic-ischemic conditions, the high levels of KA in the brain before birth may have a neuroprotective function. The decrease of KA concentrations in the hypothalamus and hippocampus after umbilical embolization suggests that, after chronic hypoxia in utero, these regions of the brain may become more vulnerable to subsequent episodes of acute hypoxia or ischemia encountered in late gestation or during parturition.
Collapse
Affiliation(s)
- D W Walker
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
| | | | | | | |
Collapse
|
22
|
Abstract
To gain insights into the pathogenesis and management of perinatal hypoxic-ischemic brain damage, the authors have used an immature rat model which they developed many years ago. The model entails ligation of one common carotid artery followed thereafter by systemic hypoxia. The insult produces permanent hypoxic-ischemic brain damage limited to the cerebral hemisphere ipsilateral to the carotid artery occlusion. The mini-review describes recently accomplished research pertaining to the use of the immature rat model, specifically, investigations involving energy metabolism, glucose transporter proteins, free radical injury, and seizures superimposed upon cerebral hypoxia-ischemia. Future research will focus on molecular mechanisms of neuronal injury with a continuing focus on therapeutic strategies to prevent or minimize hypoxic-ischemic brain damage.
Collapse
Affiliation(s)
- R C Vannucci
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey 17033-0850, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Berger R, Lehmann T, Karcher J, Garnier Y, Jensen A. Low dose flunarizine protects the fetal brain from ischemic injury in sheep. Pediatr Res 1998; 44:277-82. [PMID: 9727701 DOI: 10.1203/00006450-199809000-00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Flunarizine, a calcium channel blocker, reduced cerebral damage caused by hypoxic-ischemic insults in neonatal rats and in fetal sheep near term. However, the high dose regimen used in these studies produced cardiovascular side effects that might have counteracted the neuroprotective properties of flunarizine. Therefore, the neuroprotective effect was tested in a low dose protocol (1 mg/kg estimated body weight). Twelve fetal sheep near term were instrumented chronically. Six fetuses were pretreated with 1 mg of flunarizine per kg of estimated body weight 1 h before ischemia, whereas the remainder (n=6) received solvent. Cerebral ischemia was induced by occluding both carotid arteries for 30 min. To exclude the possibility that the neuroprotective effects of flunarizine were caused by cerebrovascular alterations we measured cerebral blood flow by injecting radiolabeled microspheres before (-1 h), during (3 min and 27 min) and after (40 min, 3 h, and 72 h) cerebral ischemia. At the end of the experiment (72 h) the ewe was given a lethal dose of sodium pentobarbitone and saturated potassium chloride i.v., and the fetal brain was perfused with formalin. Neuronal cell damage was assessed in various brain structures by light microscopy after cresyl violet/fuchsin staining using a scoring system: 1, 0-5% damage; 2, 5-50% damage; 3, 50-95% damage; 4, 95-99% damage; and 5, 100% damage. In 10 other fetal sheep effects of low dose flunarizine on circulatory centralization caused by acute asphyxia could be excluded. In the treated group neuronal cell damage was reduced significantly in many cerebral areas to varying degrees (range for control group, 1.03-2.14 versus range for treated group, 1.00-1.13; p < 0.05 to p < 0.001, respectively). There were only minor differences in blood flow to the various brain structures between groups. We conclude that pretreatment with low dose flunarizine protects the brain of fetal sheep near term from ischemic injury. This neuroprotective effect is not mediated by changes in cerebral blood flow. We further conclude that low dose flunarizine may be clinically useful as a treatment providing fetal neuroprotection, particularly because the fetal cardiovascular side effects are minimal.
Collapse
Affiliation(s)
- R Berger
- Department of Obstetrics and Gynecology, Ruhr-Universität Bochum, Germany
| | | | | | | | | |
Collapse
|
24
|
Smith SL, Andrus PK, Gleason DD, Hall ED. Infant rat model of the shaken baby syndrome: preliminary characterization and evidence for the role of free radicals in cortical hemorrhaging and progressive neuronal degeneration. J Neurotrauma 1998; 15:693-705. [PMID: 9753217 DOI: 10.1089/neu.1998.15.693] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infants subjected to repeated episodes of violent shaking develop brain damage characterized by intracranial hemorrhage and progressive cortical atrophy. We have developed an animal model that mimics this pathological state and investigated its etiology and treatment. Anesthetized male rats, 6 days of age, were subjected to one episode of shaking per day for 3 consecutive days. Separate groups of rats were sacrificed 1 h postinjury on the third day of shaking for HPLC quantification of cortical .OH and vitamin E levels, and histological assessment of cortical hemorrhaging. Additional groups were sacrificed 7 or 14 days postinjury to demonstrate progressive neuronal degeneration via cortical wet weight comparisons. In comparison to noninjured shams, the results indicated that cortical vitamin E and .OH levels rose 53.7% (p < 0.005) and 457.1% (p < 0.001), respectively, in shaken infant rats. Brain histologies revealed a moderate-to-severe degree of cortical hemorrhaging in these animals 1 h postinjury. By 7 and 14 days postinjury, there was a 13.3% and 28.7% (p < 0.0001 vs. sham) loss of cortical tissue in shaken infants, respectively, indicating progressive neuronal degeneration. Treatment with 10 mg/kg (ip) of the 21-aminosteroid antioxidant, tirilazad mesylate, 10 min before and 2 h after each episode of shaking, resulted in a 53.1% attenuation of cortical .OH levels and a 34.9% decrease in brain hemorrhaging (p < 0.05 vs. vehicle). Tirilazad treatment did not, however, significantly effect cortical vitamin E concentrations at 1 h postinjury or the extent of progressive neuronal degeneration at either 7 or 14 days postinjury. The present animal model mimics the brain pathology seen in abused children. Our observation that tirilazad mesylate, an antioxidant-lipid peroxidation inhibitor, significantly reduces cortical .OH levels and brain hemorrhaging in shaken infant rats supports a role for oxygen radicals in the pathophysiology of this type of CNS injury. The failure of tirilazad to block progressive cortical degeneration suggests that mechanisms other than free radicals may be of prime importance in the mediation of this aspect of the pathology.
Collapse
Affiliation(s)
- S L Smith
- CNS Disease Research, Pharmacia & Upjohn, Inc., Kalamazoo, Michigan 49001, USA
| | | | | | | |
Collapse
|
25
|
Rees S, Mallard C, Breen S, Stringer M, Cock M, Harding R. Fetal brain injury following prolonged hypoxemia and placental insufficiency: a review. Comp Biochem Physiol A Mol Integr Physiol 1998; 119:653-60. [PMID: 9683403 DOI: 10.1016/s1095-6433(98)01001-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It is well-established that severe, acute episodes of hypoxemia can damage the brain before birth, but the effects of more sustained hypoxemia are less well understood. We have used fetal fetal sheep in a series of studies aimed at determining the effects of prolonged hypoxemia, induced by placental insufficiency of differing severity and duration, on fetal brain structure. Restriction of placental, and hence fetal, growth by carunclectomy caused impaired development of neural processes and connections in the hippocampus, cerebellum, and visual cortex; neuronal migration and neuronal numbers did not appear to be affected. Twenty days of placental insufficiency during late gestation induced by umbilicoplacental embolisation also caused abnormalities in brain structure; the cerebellum, which develops late in gestation, was particularly affected. In the cortex, there was evidence of white matter lesions, an increase in the size of capillaries and a proliferation of astroglia. We also examined the effects of shorter periods of hypoxemia (6-12 hr) near mid-gestation on brain structure; fetuses were allowed to recover for 7 or 35 days after the hypoxemic challenge. The major changes were mild focal damage in the cortical white matter, a reduction in the number of Purkinje cells, a delay in the growth of neural processes in the cerebellum and proliferation of blood vessels. The hippocampus was also affected, in particular the areal density of pyramidal cells was reduced. The use of several classes of pharmacological agents with the potential to protect neurons from hypoxemic injury is discussed in relation to the developing brain.
Collapse
Affiliation(s)
- S Rees
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Zumkeller M, Heissler HE, Dietz H. On the effect of calcium antagonists on cerebral blood flow in rats. A comparison of nimodipine and flunarizine. Neurosurg Rev 1998; 20:259-68. [PMID: 9457721 DOI: 10.1007/bf01105897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To assess the influence of nimodipine treatment in brain tissue at different levels of blood pressure, we estimated the cerebral blood flow using hydrogen clearance. Rats were treated with nimodipine (n = 8), its placebo (n = 10), flunarizine (n = 11) and its placebo (n = 10), and a group of controls (n = 10). Cerebral blood flow was estimated during arterial normo-, hyper- and hypotension. The lowest cerebral blood flow estimates calculated for nimodipine were 43.8 +/- 7.8, 90.9 +/- 13.3, and 33.6 +/- 6.1 ml/min/100 g for normo-, hyper- and hypotension, respectively. Cerebral blood flow in the nimodipine placebo group was 84.1 +/- 10.3, 139.9 +/- 19.9, and 55.2 +/- 10.5 ml/min/100 g. In the flunarizine group, the blood flow was 77.3 +/- 15.2, 144.7 +/- 15.0, and 43.8 +/- 5.9 ml/min/100 g. In the control group, cerebral blood flow was 90.0 +/- 29.1, 143.0 +/- 42.1, and 75.5 +/- 29.8 ml/min/100 g. The low blood flow in the nimodipine group might have been a consequence of brain edema caused by extravasates. Thus impaired blood flow reduces the usefulness of nimodipine in the prevention of vasospasm. Flunarizine is a potential alternative treatment of vasospasm treatment as well as for cerebral blood flow improvement, as shown in our experimental study.
Collapse
Affiliation(s)
- M Zumkeller
- Neurosurgical Clinic, Hannover Medical School, Fed. Rep. of Germany
| | | | | |
Collapse
|
27
|
Abstract
In conclusion, our immature rat model has gained wide acceptance as the animal model of choice to study basic physiologic, biochemical, and molecular mechanisms of perinatal hypoxic-ischemic brain damage. In addition, the model has been used extensively to study those physiologic and therapeutic variables which either are deleterious or beneficial to the perinatal brain undergoing hypoxia-ischemia. As therapeutic interventions are tested in the animal setting, the results will provide important information regarding the effect of these agents in the human setting.
Collapse
Affiliation(s)
- R C Vannucci
- Department of Pediatrics (Pediatric Neurology), Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033-0850, USA
| | | |
Collapse
|
28
|
Affiliation(s)
- R C Vannucci
- Department of Pediatrics, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | | |
Collapse
|
29
|
Bona E, Johansson BB, Hagberg H. Sensorimotor function and neuropathology five to six weeks after hypoxia-ischemia in seven-day-old rats. Pediatr Res 1997; 42:678-83. [PMID: 9357943 DOI: 10.1203/00006450-199711000-00021] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Various therapeutic interventions after hypoxia-ischemia (HI) have been shown to reduce brain injury in the short-term perspective, but it remains uncertain whether such findings are accompanied by long-term functional and structural improvements. HI was induced in 7-d-old rats as follows. The left carotid artery was ligated, and the rat was exposed to 100 min of hypoxia (7.70% oxygen in nitrogen). At postnatal d 42 the rats were assessed using four sensorimotor tests. The results were correlated with the extent of brain damage expressed as volume of deficit of the left hemisphere as percent of the right hemisphere. In the grip-traction test, the time to falling was 2.2 times shorter in the HI animals compared with controls (p < 0.01). Asymmetries of limb-placing and foot-faults (p < 0.001) were detected in HI animals, and the motor function was abnormal in the postural reflex test (p < 0.001). We found a moderate correspondence between functional and neuropathologic outcome (r = 0.842, p < 0.001). A set of four easily performed sensorimotor tests is presented for the long-term evaluation of neurologic function in the 7-d-old rat model of HI.
Collapse
Affiliation(s)
- E Bona
- Department of Anatomy and Cell Biology, Göteborg University, Sweden
| | | | | |
Collapse
|
30
|
Hagberg H, Bona E, Gilland E, Puka-Sundvall M. Hypoxia-ischaemia model in the 7-day-old rat: possibilities and shortcomings. ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 1997; 422:85-8. [PMID: 9298801 DOI: 10.1111/j.1651-2227.1997.tb18353.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Levene model in 7-day-old rats is the most often used model of hypoxia-ischaemia (HI) in immature animals. The rat central nervous system is immature at birth and corresponds neurodevelopmentally to the term human infant during the second postnatal week. The Levene model of HI differs from clinical asphyxia with respect to the unilateral distribution of brain injury and lack of multi-organ dysfunction. Furthermore, it does not allow cardiovascular monitoring or repeated blood sampling. On the other hand, the progressive nature of HI bears many similarities to birth asphyxia with regard to blood flow changes and cellular metabolic derangements. The model is well characterized, easy to carry out and the low cost allows inclusion of a sufficient number of animals for dose-response evaluation of neuroprotective agents. In addition, it provides the unique opportunity of long-term evaluation of neuropathological and functional outcome.
Collapse
Affiliation(s)
- H Hagberg
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | |
Collapse
|
31
|
Klein MD, Lessin MS, Whittlesey GC, Chang CH, Becker CJ, Meyer SL, Smith AM. Carotid artery and jugular vein ligation with and without hypoxia in the rat. J Pediatr Surg 1997; 32:565-70. [PMID: 9126755 DOI: 10.1016/s0022-3468(97)90708-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A continuing concern about the use of extracorporeal membrane oxygenation (ECMO) is the cannulation of the common carotid artery or the internal jugular vein. The authors investigated the changes that might occur in the brain with neck vessel ligation in the normal and the hypoxic rat. Two groups of 60 rats each were studied. The first group was divided into three subgroups of 20 animals each. Subgroup 1 (HH) was hypoxic both 24 hours before and 24 hours after operation. Subgroup 2 (HN) (the ECMO model) was hypoxic before operation and recovered for 24 hours in room air. Subgroup 3 (NN) underwent the entire procedure in room air. For each oxygen environment, four different operations were performed: carotid artery ligation, jugular vein ligation, carotid artery and jugular vein ligation, and dissection of the vessels without ligation (sham). Thus each subgroup was further divided into four sub-subgroups based on the operation performed. Rats were again anesthetized after a 24-hour recovery period and killed using low, blunt cervical dislocation. In the first group of 60 rats, the skull was opened and the brain was carefully removed from the cranial vault and placed in a fixative. The brains were placed in a small magnetic resonance imaging (MRI) head coil in groups of five and scans were obtained to provide T1 and T2 images that correlated with histological sections. MRI scans were reviewed in random, blinded fashion by an imager unaware of how these animals had been treated. The brains were then sectioned coronally at six corresponding levels: frontal, mid and posterior cerebrum, midbrain, pons, and medulla. Histological examination was performed in blinded fashion. The number of lesions (usually ischemic as noted by a decrease in the number of neurons) was totaled for each area of the brain. There were no differences that were consistent or statistically significant in the MR images of brains removed from the head, although it would appear that rats with jugular vein and carotid artery ligation were relatively protected. In the HN group jugular vein ligation was worst, and adding carotid artery ligation was best. In the histological studies the NN group had significantly more lesions than the HH group (P < .01). The second group of 60 rats was divided and treated as the first group in all respects except that MRI was conducted immediately after death on intact heads, and no histological studies were performed. This was done to control for lesions that might have been produced by removal of the brains from the skulls. In this group all findings were right sided. One animal in the HN group showed midcerebral white matter edema after jugular and carotid ligation. Focal anterior cerebral edema was seen in another animal (HH) after isolated carotid ligation. An occipital infarct was found in one animal (HH) after both carotid and jugular ligation. The authors conclude that neck vessel ligation in the hypoxic or normoxic rat causes only occasional and sporadic brain injury much as is seen clinically in newborn ECMO patients.
Collapse
Affiliation(s)
- M D Klein
- Department of Surgery, Wayne State University School of Medicine and the Children's Hospital of Michigan, Detroit 48201, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Roohey T, Raju TN, Moustogiannis AN. Animal models for the study of perinatal hypoxic-ischemic encephalopathy: a critical analysis. Early Hum Dev 1997; 47:115-46. [PMID: 9039963 DOI: 10.1016/s0378-3782(96)01773-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We critically evaluated various design features from 292 animal studies related to perinatal hypoxic-ischemic encephalopathy (HIE). Rodents were the most frequently used animals in HIE research (26%), followed by piglets (23%) and sheep (22%). Asphyxia with or without ischemia was the most predominant method of producing experimental brain damage, but there were significant variations in specific details, particularly regarding the method and duration of brain insult. In 71% (207/292) of studies the CNS outcomes were tested within 24 h of experimental insult and in 29% (85/292) they were tested 24 h or more after the insult. Acute CNS metabolic end-points were assessed in 82-100% of all studies. In 90% of studies the chronological age of the animal was equivalent to that of human term newborn infant. However, in only 23% (67/292) were clinical neurological, developmental or behavioral outcomes evaluated, and in only 26% (76/292) was neuropathology assessed. While no single animal model was found to be ideal for all HIE research, some models were distinctly superior to others, depending upon the specific research question. The fetal sheep, newborn lamb and piglet models are well suited for the study of acute and subacute metabolic and physiologic endpoints, whereas the rodent and primate models could be used for long-term neurological and behavioral outcome experiments as well. We also feel that standardizing the study design features, including an HI insult method that produces consistent and predictable brain damage is urgently needed. Studies in neuro-ethology should explore how well brains of various animals compare with that of the newborn human infant. There is also a need for developing animal models that mimic clinical entities in which long-term neuro-developmental and behavioral outcomes can be assessed.
Collapse
Affiliation(s)
- T Roohey
- Department of Pediatrics, University of Illinois, Chicago 60612, USA
| | | | | |
Collapse
|
33
|
|
34
|
Vartanian MG, Cordon JJ, Kupina NC, Schielke GP, Posner A, Raser KJ, Wang KK, Taylor CP. Phenytoin pretreatment prevents hypoxic-ischemic brain damage in neonatal rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 95:169-75. [PMID: 8874891 DOI: 10.1016/0165-3806(96)00073-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study was performed to investigate whether the anticonvulsant phenytoin has neuroprotective effect in a model of hypoxia-ischemia with neonatal rats. The left carotid artery of each rat was ligated, followed by 3 h of hypoxic exposure (8% O2) in a temperature-regulated environment (36 degrees C). Two weeks later, brain damage was assessed by measuring loss of brain hemisphere weight. Phenytoin had no effect on body temperature or plasma glucose, but attenuated brain damage in a dose-dependent manner (3, 10, and 30 mg/kg i.p.) when administered before the hypoxic episode. Phenytoin administered during or after hypoxia did not alter hypoxic brain damage significantly. A parallel experiment using histological examination of frozen brain sections demonstrated less brain infarction after phenytoin treatment (30 mg/kg i.p.). In an additional experiment measuring breakdown of an endogenous brain calpain substrate, spectrin, phenytoin treatment reduced this measure of early cellular damage. Our results indicate that pretreatment with phenytoin is neuroprotective at a plasma phenytoin concentration of approximately 12 micrograms/ml. These results are consistent with the hypothesis that blockade of voltage-dependent sodium channels reduces brain damage following ischemia.
Collapse
Affiliation(s)
- M G Vartanian
- Department of Neurological and Neurodegenerative Diseases, Division of Warner-Lambert Company, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Jansen EM, Low WC. Long-term effects of neonatal ischemic-hypoxic brain injury on sensorimotor and locomotor tasks in rats. Behav Brain Res 1996; 78:189-94. [PMID: 8864051 DOI: 10.1016/0166-4328(95)00248-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Perinatal ischemia and/or hypoxia in humans are major risk factors for neurologic injury that often manifest as sensorimotor and locomotor deficits throughout development and into maturity. In these studies, we utilized an established model of neonatal ischemic-hypoxia that creates unilateral striatal, cortical, and hippocampal damage (Rice III, J.E., Vanucci, R.C. and Brierley, J.B., Ann. Neurol., 9 (1981) 131-141) to investigate sensorimotor and locomotor deficits in these animals during development and as adults. Sensorimotor deficits were examined by measuring the amount of time that the animals were able to remain on a rotating treadmill. Locomotor abnormalities were assessed by measuring apomorphine-induced rotational asymmetry. Following the neonatal ischemic-hypoxic episode, at 3-9 weeks of age, animals were not able to remain on the treadmill as long as their normal littermate controls. In addition, these animals demonstrated an abnormal, ipsiversive rotational asymmetry in response to systemic administration of apomorphine. When these animals reached adulthood, the degree of atrophy in specific regions of the damaged hemisphere was quantified using measurements of cross-sectional area. The mean cross-sectional area of the striatum was decreased by 29%, the sensorimotor cortex area by 26%, and the dorsal hippocampus cross-sectional area was approximately 6% of its normal size. These data suggest that this rodent model of neonatal ischemic-hypoxic brain injury results in cerebral atrophy and long-lasting sensorimotor and locomotor deficits. These particular behavioral tasks may be used in future studies to assess locomotor and sensorimotor deficits following neonatal ischemic-hypoxic brain injury.
Collapse
Affiliation(s)
- E M Jansen
- Department of Neurosurgery, Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, USA
| | | |
Collapse
|
36
|
Abstract
Hypoxia threatens brain function during the entire life-span starting from early fetal age up to senescence. This review compares the short-term, long-term and life-spanning effects of fetal chronic hypoxia and neonatal anoxia on several behavioural paradigms including novelty-induced spontaneous and learning behaviours. Furthermore, it reveals that perinatal hypoxia is an additional threat to neurodegeneration and decline of cognitive and other behaviours during the aging process. Prenatal hypoxia evokes a temporary delay of ingrowth of cholinergic and serotonergic fibres into the hippocampus and neocortex, and causes an enhanced neurodegeneration of 5-HT-ir axons during aging. Neonatal anoxia suppresses hippocampal ChAT activity and up-regulates muscarinic receptor sites for 3H-QNB and 3H-pirenzepine binding in the hippocampus in the early postnatal age. The altered development of axonal arborization and pre- and postsynaptic cholinergic functions may be an important underlying mechanism to explain the behavioural deficits. As far as the cellular mechanisms of perinatal hypoxia is concerned, our primary aim was to study the putative importance of Ca2+ homeostasis of developing neurons by means of pharmacological interventions and by measuring the development of immunoexpression of Ca(2+)-binding proteins. We assessed that nimodipine, an L-type calcium channel blocker, prevented or attenuated the adverse behavioural and neurochemical effects of perinatal hypoxias, while it enhanced the early postnatal development of ir-Ca(2+)-binding proteins. The results are discussed in the context of different related research areas on brain development and hypoxia and ischaemia.
Collapse
Affiliation(s)
- C Nyakas
- Department of Animal Physiology, University of Groningen, Haren, The Netherlands
| | | | | |
Collapse
|
37
|
Rosen GD, Sigel EA, Sherman GF, Galaburda AM. The neuroprotective effects of MK-801 on the induction of microgyria by freezing injury to the newborn rat neocortex. Neuroscience 1995; 69:107-14. [PMID: 8637609 DOI: 10.1016/0306-4522(95)00262-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Four-layered microgyria is associated with many developmental disorders, including mental retardation, epilepsy, and developmental dyslexia. Freezing lesions to the newborn rodent neocortex result in the formation of four-layered microgyria. Previous research had suggested this type of injury acts as an hypoxic/ischemic event to the developing cortical plate. The current study examines the effectiveness of the non-competitive N-methyl-D-aspartate receptor antagonist dizocilpine (MK-801) in protecting against freezing injury to the newborn rat cortical plate. Three groups of rats received freezing injury to the cortical plate on the first day of life (postnatal day 1). Two groups were treated with MK-801 (1 or 2 mg/kg) 0.5 h before the lesion and 6 and 14 h after, while one group received saline injections. A fourth group received MK-801 injections, but did not have a freezing lesion. The volume of neocortical abnormality was determined for all three groups in rats killed after postnatal day 7. Treatment with the higher dose of MK-801 (3 x 2 mg/kg) dramatically reduced the effects of freezing injury but also resulted in over 50% mortality in both lesioned and unlesioned groups. Animals in the lesioned group, however, had a decreased volume of abnormal cortex, and there were fewer animals with microsulci than in the untreated group. This is the first demonstration of a significant anatomical neuroprotective effect in newborns leading to a reduction of cortical malformation.
Collapse
Affiliation(s)
- G D Rosen
- Dyslexia Research Laboratory, Beth Israel Hospital, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
38
|
Tuor UI. Dexamethasone and the prevention of neonatal hypoxic-ischemic brain damage. Ann N Y Acad Sci 1995; 765:179-95; discussion 196-7. [PMID: 7486605 DOI: 10.1111/j.1749-6632.1995.tb16574.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- U I Tuor
- Institute for Biodiagnostics, National Research Council of Canada (NRC), Winnipeg, Manitoba
| |
Collapse
|
39
|
Abstract
Drugs that block voltage-dependent Na+ channels are well known as local anaesthetics, antiarrhythmics and anticonvulsants. Recent studies show that these compounds also provide a powerful mechanism of cytoprotection in animal models of cerebral ischaemia, hypoxia or head trauma. In this article Charles Taylor and Brian Meldrum review evidence indicating that Na+ channel modulators are neuroprotective and describe recent ideas for the molecular sites of action of voltage-dependent Na+ channel blockers. Clinical trials with several compounds are now in progress for stroke and traumatic head injury, and the therapeutic potential for this group of compounds is discussed.
Collapse
Affiliation(s)
- C P Taylor
- Department of Neurological and Neurodegenerative Diseases. Parke-Davis Pharmaceutical Research Division, Warner-Lambert, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
40
|
Imai T, Kondo M, Kusaka T, Sugihara S, Isobe K, Itoh S, Onishi S. Effect of calcium antagonist, nicardipine, on cerebral blood flow in postasphyxial newborn piglets. ACTA PAEDIATRICA JAPONICA : OVERSEAS EDITION 1995; 37:297-301. [PMID: 7645376 DOI: 10.1111/j.1442-200x.1995.tb03318.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An experiment was carried out in nine piglets within 24 h after birth (control group: four, nicardipine group: five) for the purpose of evaluating the effects of a calcium antagonist, nicardipine, on cerebral blood flow changes induced by asphyxia neonatorum. Under respiratory control with a mechanical ventilator, the animals were exposed to hypoxia. The inspiratory oxygen level was lowered at 15 min intervals from 0.08 to 0.06 and then to 0.05. When bradycardia (heart rate; 60/min or less) was observed, 100% oxygen, adrenaline, and sodium bicarbonate were administered for resuscitation. Nicardipine was administered at a dosage of 10 micrograms/kg via bolus injection 30 min after the resuscitation. It was administered thereafter at a rate of 10 micrograms/kg per h. The cerebral blood flow was measured using a laser Doppler velocimeter. The cerebral blood flow, electroencephalograph (EEG), blood pressure, and heart rate were continuously measured for 120 min after the resuscitation. In the control group, the mean arterial pressure 35 min after the resuscitation was 60 mmHg or more. However, the cerebral blood flow was lower than the prehypoxia value in the animals with a mean arterial pressure of 75 mmHg or less. In the nicardipine group, the mean arterial pressure was lower, but the cerebral blood flow was higher than the prehypoxia value and cerebral ischemia was not induced. The mean arterial pressure 120 min after the resuscitation was 72.0 +/- 8.2 mmHg in the control group, while it was 56.7 +/- 7.5 mmHg in the nicardipine group. It was significantly lower in the latter.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Imai
- Department of Pediatrics, Kagawa Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Ashwal S, Cole DJ, Osborne S, Osborne TN, Pearce WJ. A new model of neonatal stroke: reversible middle cerebral artery occlusion in the rat pup. Pediatr Neurol 1995; 12:191-6. [PMID: 7619184 DOI: 10.1016/0887-8994(95)00006-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neonatal stroke remains a complex pathophysiologic process that is poorly understood and difficult to investigate. The primary animal model used to study this phenomenon is that of unilateral carotid artery ligation with 2-3 hours exposure to severe hypoxia. A new model of neonatal stroke was developed based on transient middle cerebral artery occlusion without craniectomy. In this model a #6-0 (0.07 mm) nylon filament is passed via the carotid artery to occlude reversibly the middle cerebral artery for 4 hours under conditions of normoxia in 14- to 18-day-old spontaneously hypertensive rat pups. After removal of the filament and reperfusion for 24 hours, the infarct volume was determined using the mitochondrial stain, 2,3,5-triphenyltetrazolium chloride. Using this technique, a neocortical and caudoputamenal infarct affecting 49% of hemispheric volume that measured 180 +/- 29 mm3 (hemisphere volume = 359 +/- 16 mm3, mean +/- SEM) was created in 90% of animals (n = 8) undergoing this procedure. This model has the advantage of being relatively noninvasive, of not requiring global exposure of brain to hypoxia, and of using temporary rather than permanent occlusion. This technique should improve the ability to study the acute and long-term pathophysiology of neonatal stroke, particularly the phenomenon of reperfusion injury, as well as its sequelae in the developing nervous system.
Collapse
Affiliation(s)
- S Ashwal
- Department of Pediatrics, Loma Linda University School of Medicine, California, USA
| | | | | | | | | |
Collapse
|
42
|
Painter MJ. Animal models of perinatal asphyxia: contributions, contradictions, clinical relevance. Semin Pediatr Neurol 1995; 2:37-56. [PMID: 9422233 DOI: 10.1016/s1071-9091(05)80004-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Animal models have contributed immensely to our understanding of hypoxic ischemic encephalopathy in the newborn. A number of animal models have been used, including both primate and subprimate species. Although the Rhesus monkey model has a dramatically similar pathological distribution of brain injury when compared with the human, other pathologic processes secondary to asphyxia may be more appropriately assessed in other species. The maxim that because primates are closer on the phylogenetic tree to humans than are subprimates all observations in the primate are applicable to the human is simply not true. Understanding of the neurochemical consequences of asphyxia in the past decade have arisen from experiments primarily in the neonatal rat. We have come to understand that not only is the hypoxic event of major significance, but that, once reperfused, reoxygenation causes further injury. Free-radical generation following reperfusion may be massive and may further contribute to cell membrane injury. These observations have lead to rational theoretic approaches to the treatment of hypoxic ischemic brain injury. On the other hand, previously used treatments such as osmotic agents and glucocorticoids would appear to be not only inefficacious but hazardous in the treatment of hypoxic ischemic brain injury. The role of nitric oxide (NO) in the pathogenesis of brain injury is yet uncertain, but there is little doubt that it plays a significant role. Although survival of the immature animal subjected to hypoxic environment is longer than in the mature animal, the central nervous system of the immature animal is more sensitive to glutamate and N-Methyl-D-aspartate (NMDA) receptor-mediated injury.
Collapse
Affiliation(s)
- M J Painter
- Division of Child Neurology, Children's Hospital of Pittsburgh, PA 15213, USA
| |
Collapse
|
43
|
el-Sabban F, Reid KH, Zhang YP, Edmonds HL. Stability of thrombosis induced by electrocoagulation of rat middle cerebral artery. Stroke 1994; 25:2241-5. [PMID: 7974551 DOI: 10.1161/01.str.25.11.2241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE Although it is often assumed in experimental stroke studies that cautery-induced occlusion is permanent, surgeons commonly expect cauterized vessels to recanalize spontaneously. We used the rat middle cerebral artery to determine if electrocoagulation would produce a permanent occlusion in this preparation. METHODS AND RESULTS A standard bipolar coagulator, calibrated to determine actual power output, was adjusted to induce platelet aggregation in the middle cerebral artery of anesthetized Sprague-Dawley rats without inducing bleeding through the arterial wall. A reliable temporary thrombosis was induced by a Malis Bipolar Coagulator set to deliver 10 bursts of 1.5 seconds each at a rate of 24 min-1 and a power setting of 3 W. This thrombus was responsive to the antithrombotic agent flunarizine. An apparently permanent occlusion was produced by 30 bursts at 3 W followed by 20 bursts at 5 W. To our surprise, seven of seven such occlusions recanalized spontaneously within 4 hours. CONCLUSIONS The electrocoagulation process commonly used in experimental stroke studies may produce only a temporary occlusion of the rat middle cerebral artery.
Collapse
Affiliation(s)
- F el-Sabban
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Ky
| | | | | | | |
Collapse
|
44
|
Rosenberg GA, Navratil MJ. (S)-emopamil reduces brain edema from collagenase-induced hemorrhage in rats. Stroke 1994; 25:2067-71. [PMID: 8091453 DOI: 10.1161/01.str.25.10.2067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE Calcium channel blockers reduce edema due to cerebral ischemia, but little is known about their usefulness in hemorrhage. Therefore, we studied the effect of the calcium channel blocker (S)-emopamil in collagenase-induced hemorrhage. METHODS Adult rats had hemorrhagic necrosis induced by the intracerebral injection of 0.4 U of bacterial collagenase. Six groups of rats were given either 10 or 20 mg/kg (S)-emopamil at different times after induction of the lesion. Brain water and electrolyte levels in these rats were measured 24 hours after collagenase injection. Also, lesion volume in other rats was measured either 4 or 24 hours after formation of the lesion with the drug given at 1 hour or both 1 and 5 hours, respectively. RESULTS Administration of 20 mg/kg (S)-emopamil 1 hour after lesion induction significantly decreased water and electrolyte content in both posterior regions (P < .05). This beneficial effect was lost when a second 20-mg/kg dose was given at 5 hours. A single 20-mg/kg injection at 1 hour had no effect on lesion volume at 4 hours. Two doses significantly increased volume at 24 hours (P < .05). CONCLUSIONS Early administration of (S)-emopamil is beneficial in hemorrhagic lesions, but a subsequent delayed injection may be deleterious. Knowledge of the time of hemorrhage will be important in use of these agents in treating hemorrhage.
Collapse
Affiliation(s)
- G A Rosenberg
- Neurology and Research Service, Veterans Medical Center, Albuquerque, NM
| | | |
Collapse
|
45
|
Grafe MR. Developmental changes in the sensitivity of the neonatal rat brain to hypoxic/ischemic injury. Brain Res 1994; 653:161-6. [PMID: 7982049 DOI: 10.1016/0006-8993(94)90385-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Developmental changes in the response of the neonatal rat brain to hypoxic/ischemic injury were examined. Hypoxic/ischemic injury was produced by unilateral carotid ligation followed by exposure to hypoxia in 1- (D1), 3- (D3), 5- (D5) and 7-day-old (D7) rats. Injury was produced in most D7 animals exposed to > or = 120 min of 7.6 or 8% oxygen after carotid ligation. The extent of neuronal injury was variable, ranging from focal neuronal death to massive infarction. In D5 and D3 animals, there was a progressive decline in the extent of neuronal injury in response to hypoxia/ischemia. In the younger animals, bilateral injury was occasionally seen. Sham-operated animals exposed to hypoxia alone had numbers of karyorrhectic neurons similar to normal control animals in all age groups. The underlying developmental changes which account for these differences are not yet known but are likely to be multiple.
Collapse
Affiliation(s)
- M R Grafe
- Department of Pathology, 0612, University of California, San Diego School of Medicine, La Jolla 92093-0612
| |
Collapse
|
46
|
Ito C, Im WB, Takagi H, Takahashi M, Tsuzuki K, Liou SY, Kunihara M. U-92032, a T-type Ca2+ channel blocker and antioxidant, reduces neuronal ischemic injuries. Eur J Pharmacol 1994; 257:203-10. [PMID: 8088342 DOI: 10.1016/0014-2999(94)90130-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several diphenylmethylpiperazine derivatives are potential therapeutic agents for prevention of ischemic injuries in the heart and brain, because of their ability to block Ca2+ currents and their antioxidant activity. In this study, the current lead compound, U-92032 ((7-((bis-4-fluorophenyl)methyl)-1-piperazinyl)-2-(2-hydroxyethylamin o)- 4-(1-methylethyl)-2,4,6-cycloheptatrien-1-one), has been compared with flunarizine and nifedipine (well-known T- and L-type Ca2+ channel antagonists, respectively) for their effects on Ca2+ channels in a mouse neuronal cell line, N1E-115 cells, and their ability to preserve the phenomenon of long-term potentiation and to improve neurological symptoms in gerbil ischemic models. U-92032, like flunarizine, blocked transient Ba2+ currents (IBa) through T-type Ca2+ channels with no effect on nifedipine-sensitive non-inactivating currents. Transient IBa was reduced by U-92032 at a constant rate, the magnitude of which depended on the drug concentration, probably because of a time-dependent accumulation of the lipophilic drug in the membrane phase. For instance, the drug at 6 microM reduced IBa by 21% per min and abolished it in less than 5 min, about 3 times faster than flunarizine at the same concentration. Otherwise, U-92032 behaved like flunarizine, showing a use-dependent block without noticeable effects on the current-voltage relationship for transient IBa. Oral administration of U-92032 (1 and 25 mg/kg) or flunarizine (25 mg/kg), but not nifedipine (50 mg/kg), to gerbils 1 h prior to bilateral carotid artery occlusion, preserved long-term potentiation in hippocampal CA1 neurons, which were largely abolished by ischemia without the drug treatment.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Ito
- Upjohn Tsukuba Laboratory, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Ferrer I, Tortosa A, Macaya A, Sierra A, Moreno D, Munell F, Blanco R, Squier W. Evidence of nuclear DNA fragmentation following hypoxia-ischemia in the infant rat brain, and transient forebrain ischemia in the adult gerbil. Brain Pathol 1994; 4:115-22. [PMID: 8061857 DOI: 10.1111/j.1750-3639.1994.tb00821.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Wistar rats, eight days old, were subjected to permanent bilateral forebrain ischemia, followed by hypoxia for 15 minutes. A cerebral infarct, mainly involving the cerebral neocortex, hippocampus, amygdala, striatum and subcortical white matter was produced. Neurons and glia showing punctate chromatin condensation and karyorrhectic cells were observed 12 hours after hypoxia-ischemia. Their number increased during the first two days and recruitment of cells with degenerating nuclei occurred until day five. In situ labeling of nuclear DNA fragmentation stained many normal-appearing nuclei, as well as punctate chromatin condensations and nuclear fragments in karyorrhectic cells. Delayed neuronal death in the CA1 area of the hippocampus was observed after 20 minutes of transient forebrain ischemia in the adult gerbil. In situ labeling of nuclear DNA fragmentation demonstrated stained punctate chromatin condensation in a few degenerating cells at 48 hours post-ischemia. Substantial labeling of CA1 neurons occurred in the fourth day. Agarose gel electrophoresis of extracted brain DNA from ischemic infant rats and adult gerbils showed a ladder-type pattern which is typical of nuclear DNA fragmentation into oligonucleosomal fragments (internucleosomal cleavage). These findings suggest that endonuclease(s) activation may play a role in cell death induced by different forms of hypoxia-ischemia.
Collapse
Affiliation(s)
- I Ferrer
- Unidad Neuropatología, Hospital Príncipes de España, Universidad de Barcelone, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Nishizawa K, Inoue O, Saito Y, Suzuki A. Protective effects of kamikihi-to, a traditional Chinese medicine, against cerebral ischemia, hypoxia and anoxia in mice and gerbils. JAPANESE JOURNAL OF PHARMACOLOGY 1994; 64:171-7. [PMID: 8022119 DOI: 10.1254/jjp.64.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The protective effects of Kamikihi-To (KMK), a traditional Chinese medicine, against cerebral ischemia, hypoxia and anoxia were investigated with various experimental models in mice and gerbils. KMK (2.0 g/kg/day, p.o. for 5 days) significantly prolonged the survival time of mice subjected to bilateral common carotid artery occlusion. KMK (0.5 and 2.0 g/kg/day, p.o. for 5 days) also prolonged the survival time of mice injected with N-methyl-D-aspartic acid (NMDA: 80 mg/kg, i.v.). Furthermore, KMK (in a diet containing 8% KMK given orally for 34 days) showed protective effects against delayed neuronal death in CA1 pyramidal cells in the gerbil hippocampus after transient forebrain ischemia. On the other hand, we failed to show any protective effects of KMK (0.5-2.0 g/kg/day, p.o. for 5 days) against normobaric hypoxia and KCN-induced cytotoxic anoxia in mice. These results suggest that KMK may have protective effects against cerebral ischemic disorders, but not against severe hypoxic and anoxic disorders.
Collapse
Affiliation(s)
- K Nishizawa
- Traditional Chinese Medicine Research Laboratories, Kanebo, Ltd., Osaka, Japan
| | | | | | | |
Collapse
|
49
|
Puka-Sundvall M, Hagberg H, Andiné P. Changes in extracellular calcium concentration in the immature rat cerebral cortex during anoxia are not influenced by MK-801. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 77:146-50. [PMID: 8131260 DOI: 10.1016/0165-3806(94)90223-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The extracellular calcium concentration ([Ca2+]ec) was recorded by calcium-sensitive microelectrodes in the parietal cortex of 9-11 day old rats during anoxia. During the first 10 min of anoxia, [Ca2+]ec increased from 1.1 mM to 1.5 +/- 0.23 mM, and thereafter it started to decrease reaching below basal level after around 13 min. The [Ca2+]ec decrease was either slow and continuous, or biphased with a rapid initial decrease followed by a continuous slow decrease. After 60 min of anoxia, the [Ca2+]ec had reached 0.2-0.3 mM. Changes in [Ca2+]ec in animals treated with the NMDA receptor antagonist MK-801 (0.3 mg/kg i.p.) did not display any significant differences compared to controls. Thus, the strong neuroprotective effect of MK-801 in ischemic situations in the immature brain can not be explained by a prevention of calcium entry during anoxic depolarization.
Collapse
Affiliation(s)
- M Puka-Sundvall
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | |
Collapse
|
50
|
Cohan SL, Redmond DJ, Chen M, Wilson D, Cyr P. Flunarizine blocks elevation of free cytosolic calcium in synaptosomes following sustained depolarization. J Cereb Blood Flow Metab 1993; 13:947-54. [PMID: 8408319 DOI: 10.1038/jcbfm.1993.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Gerbil cerebral cortical synaptosomes loaded with the fluorescent calcium probe FURA-2 were used to study depolarization-induced presynaptic cytosolic free calcium concentration, as an in vitro model of cerebral ischemia. The depolarization-induced increase in intrasynaptosomal cytosolic free calcium concentration is not sodium-dependent or sodium channel-dependent and may be due to an influx of extrasynaptosomal calcium resulting from a cadmium- and omega-conotoxin-sensitive, nickel-, nifedipine-, and nimodipine-insensitive voltage-regulated channel. The depolarization-induced increase in intrasynaptosomal free cytosolic calcium concentration is also inhibited by flunarizine, a calcium antagonist that has protective effects in animal models of cerebral anoxia and ischemia. Our results suggest that presynaptic calcium uptake following depolarization may be mediated in part by an N-type channel. Flunarizine may block presynaptic calcium accumulation, in part, by blocking this N-type channel; this blockade may be just one of several mechanisms by which flunarizine exerts protective effects following cerebral ischemia.
Collapse
Affiliation(s)
- S L Cohan
- Department of Neurology, Georgetown University School of Medicine, Washington, D.C. 20007
| | | | | | | | | |
Collapse
|