1
|
Singla R, Mishra A, Joshi R, Kumar R, Sarma P, Sharma AR, Kaur G, Bhatia A, Medhi B. Inhibition of the ERK1/2 Phosphorylation by Dextromethorphan Protects against Core Autistic Symptoms in VPA Induced Autistic Rats: In Silico and in Vivo Drug Repurposition Study. ACS Chem Neurosci 2021; 12:1749-1767. [PMID: 33913688 DOI: 10.1021/acschemneuro.0c00672] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The imbalance between excitatory and inhibitory neurotransmitters is explicitly related to the pathophysiology of autism spectrum disorder (ASD). The role of an NMDA receptor antagonist, dextromethorphan, was studied in ameliorating the ASD-like symptoms by regulating the excitatory and inhibitory imbalance using the valproic acid (VPA) model of ASD. Female Wistar rats were administered VPA [600 mg/kg on embryonic day ED-12.5] through intraperitoneal (ip) injection to induce ASD in pups. Autistic pups were then given dextromethorphan (10, 15, and 30 mg/kg; ip) and risperidone (2.5 mg/kg; ip) from PND 23 to 43 in different groups. Behavioral tests (three chamber sociability, self-grooming, Morris water maze, elevated plus maze, open field, rotarod, grip strength), oxidative stress and inflammatory markers, histological evaluation (H&E, Nissil staining), and NMDA and ERK1/2 expression by immunohistochemistry and RT-PCR were done. The in silico modeling of dextromethorphan against PPDA, TCN-201, MK-22, EVT-101 on NMDA receptors was also performed. Dextromethorphan (30 mg/kg) rescued the impaired behavioral patterns including social excitability, hyperactivity, repetitive and restricted behaviors as well as mitigation of the memory and motor coordination. The levels of various oxidative stress markers (GSH, SOD, catalase, MDA) and inflammatory markers (IL-1β, IL-6, IL-10, TNF-α) were ameliorated by different doses of dextromethorphan. It also reduced the neuronal injury score and rescued the overly expressed pERK1/2 and NMDA signaling in both the prefrontal cortex and hippocampus of the autistic pups. In silico results showed favorable binding of dextromethorphan against TCN-201 and MK-22 binding sites. The present study provided experimental evidence for the potential therapeutic role of dextromethorphan in attenuating autism symptomatology in the ASD model of rats. Thus, modulation of the glutamatergic signaling can be a potential target for ASD treatment.
Collapse
Affiliation(s)
- Rubal Singla
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Abhishek Mishra
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rohit Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Amit Raj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Gurjeet Kaur
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
2
|
Huang S, Wang H, Turlova E, Abussaud A, Ji X, Britto LR, Miller SP, Martinez A, Sun HS, Feng ZP. GSK-3β inhibitor TDZD-8 reduces neonatal hypoxic-ischemic brain injury in mice. CNS Neurosci Ther 2017; 23:405-415. [PMID: 28256059 DOI: 10.1111/cns.12683] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
Abstract
AIMS Glycogen synthase kinase 3β (GSK-3β) is activated following hypoxic-ischemic (HI) brain injury. TDZD-8 is a specific GSK-3β inhibitor. Currently, the impact of inhibiting GSK-3β in neonatal HI injury is unknown. We aimed to investigate the effect of TDZD-8 following neonatal HI brain injury. METHODS Unilateral common carotid artery ligation followed by hypoxia was used to induce HI injury in postnatal day 7 mouse pups pretreated with TDZD-8 or vehicle. The infarct volume, whole-brain imaging, Nissl staining, and behavioral tests were used to evaluate the protective effect of TDZD-8 on the neonatal brain and assess functional recovery after injury. Western blot was used to evaluate protein levels of phosphorylated protein kinase B (Akt), GSK-3β, and cleaved caspase-3. Protein levels of cleaved caspase-3, neuronal marker, and glial fibrillary acidic protein were detected through immunohistochemistry. RESULTS Pretreatment with TDZD-8 significantly reduced brain damage and improved neurobehavioral outcomes following HI injury. TDZD-8 reversed the reduction of phosphorylated Akt and GSK-3β, and the activation of caspase-3 induced by hypoxia-ischemia. In addition, TDZD-8 suppressed apoptotic cell death and reduced reactive astrogliosis. CONCLUSION TDZD-8 has the therapeutic potential for hypoxic-ischemic brain injury in neonates. The neuroprotective effect of TDZD-8 appears to be mediated through its antiapoptotic activity and by reducing astrogliosis.
Collapse
Affiliation(s)
- Sammen Huang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Haitao Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Ekaterina Turlova
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Ahmed Abussaud
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Xiang Ji
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Luiz R Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Steven P Miller
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Ana Martinez
- Centro de Investigaciones Biologicas-CSIC, Madrid, Spain
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Ma KH, Liu TT, Weng SJ, Chen CFF, Huang YS, Chueh SH, Liao MH, Chang KW, Sung CC, Hsu TH, Huang WS, Cheng CY. Effects of dextromethorphan on MDMA-induced serotonergic aberration in the brains of non-human primates using [ 123I]-ADAM/SPECT. Sci Rep 2016; 6:38695. [PMID: 27941910 PMCID: PMC5150522 DOI: 10.1038/srep38695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/11/2016] [Indexed: 11/15/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA), a common recreational drug, is known to cause serotonergic neurotoxicity in the brain. Dextromethorphan (DM) is a widely used antitussive reported to exert anti-inflammatory effect in vivo. In this study, we examined the long-term effect of MDMA on the primate serotonergic system and the protective property of DM against MDMA-induced serotonergic abnormality using single photon emission computed tomography (SPECT). Nine monkeys (Macaca cyclopis) were divided into three groups, namely control, MDMA and co-treatment (MDMA/DM). [123I]-ADAM was used as the radioligand for serotonin transporters (SERT) in SPECT scans. SERT levels of the brain were evaluated and presented as the uptake ratios (URs) of [123I]-ADAM in several regions of interest of the brain including midbrain, thalamus and striatum. We found that the URs of [123I]-ADAM were significantly lower in the brains of MDMA than control group, indicating lower brain SERT levels in the MDMA-treated monkeys. This MDMA-induced decrease in brain SERT levels could persist for over four years. However, the loss of brain SERT levels was not observed in co-treatment group. These results suggest that DM may exert a protective effect against MDMA-induced serotonergic toxicity in the brains of the non-human primate.
Collapse
Affiliation(s)
- Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Ta Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Fu F Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Sheau-Huei Chueh
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Mei-Hsiu Liao
- Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | | | - Chi-Chang Sung
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Te-Hung Hsu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Garay RP, Grossberg GT. AVP-786 for the treatment of agitation in dementia of the Alzheimer's type. Expert Opin Investig Drugs 2016; 26:121-132. [PMID: 27936965 DOI: 10.1080/13543784.2017.1267726] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Agitation is common and distressing in patients with Alzheimer-type dementia, but safe, effective treatments remain elusive. Psychological treatments are first-line options, but they have limited efficacy. Off-label psychotropic medications are frequently used, but they also have limited effectiveness, and their use may have harmful side effects, including death. Areas covered: This review discusses the history leading to the conception of AVP-786 (deuterated (d6)-dextromethorphan/quinidine), its pharmacokinetic and pharmacodynamic profiles and safety issues, together with an overview of recent clinical trials. Data were found in the medical literature, in US and EU clinical trial registries and in information provided by the manufacturer. Expert opinion: AVP-786 is one of six investigational compounds in recent phase III clinical development for agitation in Alzheimer disease (AD). Quinidine and deuteration appear to prolong dextromethorphan's plasma half-life and facilitate brain penetration. The FDA granted fast-track designation to AVP-786 and allowed use of data generated on dextromethorphan-quinidine (AVP-923, Nuedexta®) for regulatory filings. AVP-923 reduced agitation in AD and was well tolerated in a phase II RCT that included more than 200 patients. A phase III clinical development program of AVP-786 for AD agitation was recently initiated. This program is expected to start generating results in July 2018.
Collapse
Affiliation(s)
- Ricardo P Garay
- a Geriatric Psychiatry, Department of Psychiatry and Behavioural Neuroscience , Pharmacology and Therapeutics, Craven , Villemoisson-sur-Orge , France
| | - George T Grossberg
- b Department of Psychiatry and Behavioural Neuroscience , St Louis University School of Medicine , St Louis , MO , USA
| |
Collapse
|
5
|
Abstract
Ischemic brain injury produced by stroke or cardiac arrest is a major cause of human neurological disability. Steady advances in the neurosciences have elucidated pathophysiological mechanisms of brain ischemia and have suggested many therapeutic approaches directed at specific injury mechanisms to achieve neuroprotection of the acutely ischemic brain. The first portion of this two-part review highlights the differentiating features and pathological mechanisms of focal and global cerebral ischemic injury and summarizes a wealth of recent evidence as to how antagonism of excitatory amino acid neurotoxicity, mediated via NMDA as well as non-NMDA receptors, may offer a means of diminishing the extent of ischemic injury. The Neuroscientist 1:95-103, 1995
Collapse
Affiliation(s)
- Myron D. Ginsberg
- Cerebral Vascular Disease Research Center Department
of Neurology University of Miami School of Medicine Miami, Florida
| |
Collapse
|
6
|
Brennan-Minnella AM, Won SJ, Swanson RA. NADPH oxidase-2: linking glucose, acidosis, and excitotoxicity in stroke. Antioxid Redox Signal 2015; 22:161-74. [PMID: 24628477 PMCID: PMC4281853 DOI: 10.1089/ars.2013.5767] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Neuronal superoxide production contributes to cell death in both glutamate excitotoxicity and brain ischemia (stroke). NADPH oxidase-2 (NOX2) is the major source of neuronal superoxide production in these settings, and regulation of NOX2 activity can thereby influence outcome in stroke. RECENT ADVANCES Reduced NOX2 activity can rescue cells from oxidative stress and cell death that otherwise occur in excitotoxicity and ischemia. NOX2 activity is regulated by several factors previously shown to affect outcome in stroke, including glucose availability, intracellular pH, protein kinase ζ/δ, casein kinase 2, phosphoinositide-3-kinase, Rac1/2, and phospholipase A2. The newly identified functions of these factors as regulators of NOX2 activity suggest alternative mechanisms for their effects on ischemic brain injury. CRITICAL ISSUES Key aspects of these regulatory influences remain unresolved, including the mechanisms by which rac1 and phospholipase activities are coupled to N-methyl-D-aspartate (NMDA) receptors, and whether superoxide production by NOX2 triggers subsequent superoxide production by mitochondria. FUTURE DIRECTIONS It will be important to establish whether interventions targeting the signaling pathways linking NMDA receptors to NOX2 in brain ischemia can provide a greater neuroprotective efficacy or a longer time window to treatment than provided by NMDA receptor blockade alone. It will likewise be important to determine whether dissociating superoxide production from the other signaling events initiated by NMDA receptors can mitigate the deleterious effects of NMDA receptor blockade.
Collapse
|
7
|
Schoedel KA, Morrow SA, Sellers EM. Evaluating the safety and efficacy of dextromethorphan/quinidine in the treatment of pseudobulbar affect. Neuropsychiatr Dis Treat 2014; 10:1161-74. [PMID: 25061302 PMCID: PMC4079824 DOI: 10.2147/ndt.s30713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pseudobulbar affect (PBA) is a common manifestation of brain pathology associated with many neurological diseases, including amyotrophic lateral sclerosis, Alzheimer's disease, stroke, multiple sclerosis, Parkinson's disease, and traumatic brain injury. PBA is defined by involuntary and uncontrollable expressed emotion that is exaggerated and inappropriate, and also incongruent with the underlying emotional state. Dextromethorphan/quinidine (DM/Q) is a combination product indicated for the treatment of PBA. The quinidine component of DM/Q inhibits the cytochrome P450 2D6-mediated metabolic conversion of dextromethorphan to its active metabolite dextrorphan, thereby increasing dextromethorphan systemic bioavailability and driving the pharmacology toward that of the parent drug and away from adverse effects of the dextrorphan metabolite. Three published efficacy and safety studies support the use of DM/Q in the treatment of PBA; significant effects were seen on the primary end point, the Center for Neurologic Study-Lability Scale, as well as secondary efficacy end points and quality of life. While concentration-effect relationships appear relatively weak for efficacy parameters, concentrations of DM/Q may have an impact on safety. Some special safety concerns exist with DM/Q, primarily because of the drug interaction and QT prolongation potential of the quinidine component. However, because concentrations of dextrorphan (which is responsible for many of the parent drug's side effects) and quinidine are lower than those observed in clinical practice with these drugs administered alone, some of the perceived safety issues may not be as relevant with this low dose combination product. However, since patients with PBA have a variety of other medical problems and are on numerous other medications, they may not tolerate DM/Q adverse effects, or may be at risk for drug interactions. Some caution is warranted when initiating DM/Q treatment, particularly in patients with underlying risk factors for torsade de pointes and in those receiving medications that may interact with DM/Q.
Collapse
Affiliation(s)
| | | | - Edward M Sellers
- DL Global Partners, Inc., Toronto, Canada ; University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Mitochondrial dysfunction induced by nuclear poly(ADP-ribose) polymerase-1: a treatable cause of cell death in stroke. Transl Stroke Res 2013; 5:136-44. [PMID: 24323707 DOI: 10.1007/s12975-013-0283-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Many drugs targeting excitotoxic cell death have demonstrated robust neuroprotective effects in animal models of cerebral ischemia. However, these neuroprotective effects have almost universally required drug administration at relatively short time intervals after ischemia onset. This finding has translated to clinical trial results; interventions targeting excitotoxicity have had no demonstrable efficacy when initiated hours after ischemia onset, but beneficial effects have been reported with more rapid initiation. Consequently, there continues to be a need for interventions with efficacy at later time points after ischemia. Here, we focus on mitochondrial dysfunction as both a relatively late event in ischemic neuronal death and a recognized cause of delayed neuronal death. Activation of poly(ADP-ribose) polymerase-1 (PARP-1) is a primary cause of mitochondrial depolarization and subsequent mitochondria-triggered cell death in ischemia reperfusion. PARP-1 consumes cytosolic NAD(+), thereby blocking both glycolytic ATP production and delivery of glucose carbon to mitochondria for oxidative metabolism. However, ketone bodies such as pyruvate, beta- and gamma-hydroxybutyrate, and 1,4-butanediol can fuel mitochondrial metabolism in cells with depleted cytosolic NAD(+) as long as the mitochondria remain functional. Ketone bodies have repeatedly been shown to be highly effective in preventing cell death in animal models of ischemia, but a rigorous study of the time window of opportunity for this approach remains to be performed.
Collapse
|
9
|
Wu TC, Chao CY, Lin SJ, Chen JW. Low-dose dextromethorphan, a NADPH oxidase inhibitor, reduces blood pressure and enhances vascular protection in experimental hypertension. PLoS One 2012; 7:e46067. [PMID: 23049937 PMCID: PMC3457948 DOI: 10.1371/journal.pone.0046067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/28/2012] [Indexed: 01/10/2023] Open
Abstract
Background Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM), a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP) and vascular protection in aged spontaneous hypertensive rats (SHRs). Methodology/Principal Findings Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker) monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. Conclusions/Significance Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension.
Collapse
Affiliation(s)
- Tao-Cheng Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chih-Yu Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|
10
|
Wu WN, Wu PF, Chen XL, Zhang Z, Gu J, Yang YJ, Xiong QJ, Ni L, Wang F, Chen JG. Sinomenine protects against ischaemic brain injury: involvement of co-inhibition of acid-sensing ion channel 1a and L-type calcium channels. Br J Pharmacol 2012; 164:1445-59. [PMID: 21585344 DOI: 10.1111/j.1476-5381.2011.01487.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Sinomenine (SN), a bioactive alkaloid, has been utilized clinically to treat rheumatoid arthritis in China. Our preliminary experiments indicated that it could protect PC12 cells from oxygen-glucose deprivation-reperfusion (OGD-R), we thus investigated the possible effects of SN on cerebral ischaemia and the related mechanism. EXPERIMENTAL APPROACH Middle cerebral artery occlusion in rats was used as an animal model of ischaemic stroke in vivo. The mechanisms of the effects of SN were investigated in vitro using whole-cell patch-clamp recording, calcium imaging in PC12 cells and rat cortical neurons subjected to OGD-R. KEY RESULTS Pretreatment with SN (10 and 30 mg·kg(-1) , i.p.) significantly decreased brain infarction and the overactivation of calcium-mediated events in rats subjected to 2 h ischaemia followed by 24 h reperfusion. Extracellular application of SN inhibited the currents mediated by acid-sensing ion channel 1a and L-type voltage-gated calcium channels, in the rat cultured neurons, in a concentration-dependent manner. These inhibitory effects contribute to the neuroprotection of SN against OGD-R and extracellular acidosis-induced cytotoxicity. More importantly, administration of SN (30 mg·kg(-1) , i.p.) at 1 and 2 h after cerebral ischaemia also decreased brain infarction and improved functional recovery. CONCLUSION AND IMPLICATIONS SN exerts potent protective effects against ischaemic brain injury when administered before ischaemia or even after the injury. The inhibitory effects of SN on acid-sensing ion channel 1a and L-type calcium channels are involved in this neuroprotection.
Collapse
Affiliation(s)
- Wen-Ning Wu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chechneva OV, Mayrhofer F, Daugherty DJ, Pleasure DE, Hong JS, Deng W. Low dose dextromethorphan attenuates moderate experimental autoimmune encephalomyelitis by inhibiting NOX2 and reducing peripheral immune cells infiltration in the spinal cord. Neurobiol Dis 2011; 44:63-72. [PMID: 21704706 DOI: 10.1016/j.nbd.2011.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/28/2011] [Accepted: 06/10/2011] [Indexed: 11/24/2022] Open
Abstract
Dextromethorphan (DM) is a dextrorotary morphinan and a widely used component of cough medicine. Relatively high doses of DM in combination with quinidine are used for the treatment of mood disorders for patients with multiple sclerosis (MS). However, at lower doses, morphinans exert anti-inflammatory activities through the inhibition of NOX2-dependent superoxide production in activated microglia. Here we investigated the effects of high (10 mg/kg, i.p., "DM-10") and low (0.1 mg/kg, i.p., "DM-0.1") doses of DM on the development and progression of mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We found no protection by high dose DM treatment. Interestingly, a minor late attenuation by low dose DM treatment was seen in severe EAE that was characterized by a chronic disease course and a massive spinal cord infiltration of CD45(+) cells including T-lymphocytes, macrophages and neutrophils. Furthermore, in a less severe form of EAE, where lower levels of CD4(+) and CD8(+) T-cells, Iba1(+) microglia/macrophages and no significant infiltration of neutrophils were seen in the spinal cord, the treatment with DM-0.1 was remarkably more beneficial. The effect was the most significant at the peak of disease and was associated with an inhibition of NOX2 expression and a decrease in infiltration of monocytes and lymphocytes into the spinal cord. In addition, chronic treatment with low dose DM resulted in decreased demyelination and reduced axonal loss in the lumbar spinal cord. Our study is the first report to show that low dose DM is effective in treating EAE of moderate severity. Our findings reveal that low dose morphinan DM treatment may represent a new promising protective strategy for treating MS.
Collapse
Affiliation(s)
- Olga V Chechneva
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California-Davis, 2425 Stockton Blvd, Sacramento, 95817 CA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Mousavi SA, Saadatnia M, Khorvash F, Hoseini T, Sariaslani P. Evaluation of the neuroprotective effect of dextromethorphan in the acute phase of ischaemic stroke. Arch Med Sci 2011; 7:465-9. [PMID: 22295030 PMCID: PMC3258743 DOI: 10.5114/aoms.2011.23413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/10/2010] [Accepted: 12/05/2010] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Stroke is the second leading cause of death in the world. However, there is still no approved neuroprotective drug for acute ischaemic stroke. To clarify the neuroprotective efficacy and safety of dextromethorphan in stroke, the following study was carried out. MATERIAL AND METHODS Forty patients with acute stroke causing moderate deficit were randomized to be treated with either dextromethorphan 300 mg per day or placebo for 5 days. Plasma level of dextromethorphan and its active metabolite was not evaluated in this study. The NIHSS score was calculated on day 5 and the Barthel activities of daily living index and Rankin score were checked after 3 months by a blinded investigator. Collected data were analysed using the t-test and χ(2) test. RESULTS In the dextromethorphan-treated group, the mean NIHSS score was 16.8 ±3.9 at baseline, and was 14.2 ±4.8 for the placebo-treated group (p = 0.069). At day 5, there was also no significant difference regarding NIHSS score (p = 0.167). At the 3-month follow-up, there was no significant difference regarding Barthel scale and Rankin score between the dextromethorphan and placebo groups. CONCLUSIONS The results of our study suggest that although low-dose and short-term oral administration of dextromethorphan seems to be not neuroprotective, it does not worsen either patients' condition or NIHSS score. Moreover, patients treated with dextromethorphan showed a significant reduction in seizures (complication after stroke), but had increased chance of MI and renal failure by almost 5% when compared to the placebo-treated groups. More prolonged studies with a higher number of cases are recommended.
Collapse
|
13
|
Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 2010; 460:525-42. [PMID: 20229265 DOI: 10.1007/s00424-010-0809-1] [Citation(s) in RCA: 834] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/16/2010] [Accepted: 02/18/2010] [Indexed: 02/07/2023]
Abstract
Glutamate excitotoxicity is a hypothesis that states excessive glutamate causes neuronal dysfunction and degeneration. As glutamate is a major excitatory neurotransmitter in the central nervous system (CNS), the implications of glutamate excitotoxicity are many and far-reaching. Acute CNS insults such as ischaemia and traumatic brain injury have traditionally been the focus of excitotoxicity research. However, glutamate excitotoxicity has also been linked to chronic neurodegenerative disorders such as amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease and others. Despite the continued research into the mechanisms of excitotoxicity, there are currently no pharmacological interventions capable of providing significant neuroprotection in the clinical setting of brain ischaemia or injury. This review addresses the current state of excitotoxic research, focusing on the structure and physiology of glutamate receptors; molecular mechanisms underlying excitotoxic cell death pathways and their interactions with each other; the evidence for glutamate excitotoxicity in acute neurologic diseases; laboratory and clinical attempts at modulating excitotoxicity; and emerging targets for excitotoxicity research.
Collapse
Affiliation(s)
- Anthony Lau
- Division of Applied and Interventional Research, Toronto Western Research Institute, 399 Bathurst Street, Toronto, ON, Canada, M5T 2S8
| | | |
Collapse
|
14
|
Shi F, Cavitt J, Bailey CA, Malick AW, Audus KL. Characterization of Dextromethorphan and Dextrorphan Uptake by a Putative Glutamic Acid Carrier and Passive Diffusion across Brain Microvessel Endothelium. Drug Deliv 2008. [DOI: 10.3109/10717549309022764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Werling LL, Lauterbach EC, Calef U. Dextromethorphan as a Potential Neuroprotective Agent With Unique Mechanisms of Action. Neurologist 2007; 13:272-93. [PMID: 17848867 DOI: 10.1097/nrl.0b013e3180f60bd8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Dextromethorphan (DM) is a widely-used antitussive. DM's complex central nervous system (CNS) pharmacology became of interest when it was discovered to be neuroprotective due to its low-affinity, uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonism. REVIEW SUMMARY Mounting preclinical evidence has proven that DM has important neuroprotective properties in various CNS injury models, including focal and global ischemia, seizure, and traumatic brain injury paradigms. Many of these protective actions seem functionally related to its inhibitory effects on glutamate-induced neurotoxicity via NMDA receptor antagonist, sigma-1 receptor agonist, and voltage-gated calcium channel antagonist actions. DM's protection of dopamine neurons in parkinsonian models may be due to inhibition of neurodegenerative inflammatory responses. Clinical findings are limited, with preliminary evidence indicating that DM protects against neuronal damage. Negative findings seem to relate to attainment of inadequate DM brain concentrations. Small studies have shown some promise for treatment of perioperative brain injury, amyotrophic lateral sclerosis, and symptoms of methotrexate neurotoxicity. DM safety/tolerability trials in stroke, neurosurgery, and amyotrophic lateral sclerosis patients demonstrated a favorable safety profile. DM's limited clinical benefit is proposed to be associated with its rapid metabolism to dextrorphan, which restricts its central bioavailability and therapeutic utility. Systemic concentrations of DM can be increased via coadministration of low-dose quinidine (Q), which reversibly inhibits its first-pass elimination. Potential drug interactions with DM/Q are discussed. CONCLUSIONS Given the compelling preclinical evidence for neuroprotective properties of DM, initial clinical neuroprotective findings, and clinical demonstrations that the DM/Q combination is well tolerated, this strategy may hold promise for the treatment of various acute and degenerative neurologic disorders.
Collapse
Affiliation(s)
- Linda L Werling
- The Institute for Biomedical Sciences, The George Washington University Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
16
|
Miller A, Panitch H. Therapeutic use of dextromethorphan: Key learnings from treatment of pseudobulbar affect. J Neurol Sci 2007; 259:67-73. [PMID: 17433820 DOI: 10.1016/j.jns.2006.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 06/02/2006] [Accepted: 06/12/2006] [Indexed: 11/17/2022]
Abstract
A variety of neurological conditions and disease states are accompanied by pseudobulbar affect (PBA), an emotional disorder characterized by uncontrollable outbursts of laughing and crying. The causes of PBA are unclear but may involve lesions in neural circuits regulating the motor output of emotional expression. Several agents used in treating other psychiatric disorders have been applied in the treatment of PBA with some success but data are limited and these agents are associated with unpleasant side effects due to nonspecific activity in diffuse neural networks. Dextromethorphan (DM), a widely used cough suppressant, acts at receptors in the brainstem and cerebellum, brain regions implicated in the regulation of emotional output. The combination of DM and quinidine (Q), an enzyme inhibitor that blocks DM metabolism, has recently been tested in phase III clinical trials in patients with multiple sclerosis and amyotrophic lateral sclerosis and was both safe and effective in palliating PBA symptoms. In addition, clinical studies pertaining to the safety and efficacy of DM/Q in a variety of neurological disease states are ongoing.
Collapse
Affiliation(s)
- Ariel Miller
- Center for Multiple Sclerosis, Carmel Medical Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
17
|
Yang SN, Liu CA, Chung MY, Huang HC, Yeh GC, Wong CS, Lin WW, Yang CH, Tao PL. Alterations of postsynaptic density proteins in the hippocampus of rat offspring from the morphine-addicted mother: Beneficial effect of dextromethorphan. Hippocampus 2006; 16:521-30. [PMID: 16598705 DOI: 10.1002/hipo.20179] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Infants passively exposed to morphine or heroin through their addicted mothers usually develop characteristic withdrawal syndrome of morphine after birth. In such early life, the central nervous system exhibits significant plasticity and can be altered by various prenatal influences, including prenatal morphine exposure. Here we studied the effects of prenatal morphine exposure on postsynaptic density protein 95 (PSD-95), an important cytoskeletal specialization involved in the anchoring of the NMDAR and neuronal nitric oxide synthase (nNOS), of the hippocampal CA1 subregion from young offspring at postnatal day 14 (P14). We also evaluated the therapeutic efficacy of dextromethorphan, a widely used antitussive drug with noncompetitive antagonistic effects on NMDARs, for such offspring. The results revealed that prenatal morphine exposure caused a maximal decrease in PSD-95 expression at P14 followed by an age-dependent improvement. In addition, prenatal morphine exposure reduced not only the expression of nNOS and the phosphorylation of cAMP responsive element-binding protein at serine 133 (CREB(Serine-133)), but also the magnitude of long-term depression (LTD) at P14. Subsequently, the morphine-treated offspring exhibited impaired performance in long-term learning and memory at later ages (P28-29). Prenatal coadministration of dextromethorphan with morphine during pregnancy and throughout lactation could significantly attenuate the adverse effects as described above. Collectively, the study demonstrates that maternal exposure to morphine decreases the magnitude of PSD-95, nNOS, the phosphorylation of CREB(Serine-133), and LTD expression in hippocampal CA1 subregion of young offspring (e.g., P14). Such alterations within the developing brain may play a role for subsequent neurological impairments (e.g., impaired performance of long-term learning and memory). The results raise a possibility that postsynaptic density proteins could serve an important role, at least in part, for the neurobiological pathogenesis in offspring from the morphine-addicted mother and provide tentative therapeutic strategy.
Collapse
Affiliation(s)
- San Nan Yang
- Department of Pediatrics, Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li G, Cui G, Tzeng NS, Wei SJ, Wang T, Block ML, Hong JS. Femtomolar concentrations of dextromethorphan protect mesencephalic dopaminergic neurons from inflammatory damage. FASEB J 2005; 19:489-96. [PMID: 15790998 DOI: 10.1096/fj.04-2555com] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inflammation in the brain has increasingly been recognized to play an important role in the pathogenesis of several neurodegenerative disorders, including Parkinson's disease (PD). Progress in the search for effective therapeutic strategies that can halt this degenerative process remains limited. We previously showed that micromolar concentrations of dextromethorphan (DM), a major ingredient of widely used antitussive remedies, reduced the inflammation-mediated degeneration of dopaminergic neurons through the inhibition of microglial activation. In this study, we report that femto- and micromolar concentrations of DM (both pre- and post-treatment) showed equal efficacy in protecting lipopolysaccharide (LPS) -induced dopaminergic neuron death in midbrain neuron-glia cultures. Both concentrations of DM decreased LPS-induced release of nitric oxide, tumor necrosis factor-alpha, prostaglandin E2 and superoxide from microglia in comparable degrees. The important role of superoxide was demonstrated by DM's failure to show a neuroprotective effect in neuron-glia cultures from NADPH oxidase-deficient mice. These results suggest that the neuroprotective effect elicited by femtomolar concentrations of DM is mediated through the inhibition of LPS-induced proinflammatory factors, especially superoxide. These findings suggest a novel therapeutic concept of using "ultra-low" drug concentrations for the intervention of inflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Guorong Li
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Ion channels are membrane proteins that flicker open and shut to regulate the flow of ions down their electrochemical gradient across the membrane and consequently regulate cellular excitability. Every living cell expresses ion channels, as they are critical life-sustaining proteins. Ion channels are generally either activated by voltage or by ligand interaction. For each group of ion channels the channels' molecular biology and biophysics will be introduced and the pharmacology of that group of channels will be reviewed. The in vitro and in vivo literature will be reviewed and, for ion channel groups in which clinical trials have been conducted, the efficacy and therapeutic potential of the neuroprotective compounds will be reviewed. A large part of this article will deal with glutamate receptors, focusing specifically on N-methyl-D-aspartate (NMDA) receptors. Although the outcome of clinical trials for NMDA receptor antagonists as therapeutics for acute stroke is disappointing, the culmination of these failed trials was preceded by a decade of efforts to develop these agents. Sodium and calcium channel antagonists will be reviewed and the newly emerging efforts to develop therapeutics targeting potassium channels will be discussed. The future development of stroke therapeutics targeting ion channels will be discussed in the context of the failures of the last decade in hopes that this decade will yield successful stroke therapeutics.
Collapse
Affiliation(s)
- D L Small
- Institute or Biological Sciences, National Research Council of Canada, Building M-54, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6.
| |
Collapse
|
20
|
Zhang W, Wang T, Qin L, Gao HM, Wilson B, Ali SF, Zhang W, Hong JS, Liu B. Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase. FASEB J 2004; 18:589-91. [PMID: 14734632 DOI: 10.1096/fj.03-0983fje] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra and depletion of the neurotransmitter dopamine in the striatum. Progress in the search for effective therapeutic strategies that can halt this degenerative process remains limited. Mechanistic studies using animal systems such as the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent PD model have revealed the involvement of the brain's immune cells and free radical-generating processes. We recently reported that dextromethorphan (DM), a widely used anti-tussive agent, attenuated endotoxin-induced dopaminergic neurodegeneration in vitro. In the current study, we investigated the potential neuroprotective effect of DM and the underlying mechanism of action in the MPTP rodent PD model. Mice (C57BL/6J) that received daily MPTP injections (15 mg free base/kg body weight, s.c.) for 6 consecutive days exhibited significant degeneration of the nigrostriatal dopaminergic pathway. However, the MPTP-induced loss of nigral dopaminergic neurons was significantly attenuated in those mice receiving DM (10 mg/kg body weight, s.c.). In mesencephalic neuron-glia cultures, DM significantly reduced the MPTP-induced production of both extracellular superoxide free radicals and intracellular reactive oxygen species (ROS). Because NADPH oxidase is the primary source of extracellular superoxide and intracellular ROS, we investigated the involvement of NADPH oxidase in the neuroprotective effect of DM. Indeed, the neuroprotective effect of DM was only observed in the wild-type but not in the NADPH oxidase-deficient mice, indicating that NADPH oxidase is a critical mediator of the neuroprotective activity of DM. More importantly, due to its proven safety record of long-term clinical use in humans, DM may be a promising agent for the treatment of degenerative neurological disorders such as PD.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/antagonists & inhibitors
- Animals
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Coculture Techniques
- Dextromethorphan/pharmacology
- Dextromethorphan/therapeutic use
- Dopamine/metabolism
- Drug Evaluation, Preclinical
- Mice
- Mice, Inbred C57BL
- NADPH Oxidases/antagonists & inhibitors
- NADPH Oxidases/metabolism
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Oxidative Stress/drug effects
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/pathology
- Parkinsonian Disorders/prevention & control
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Substantia Nigra/pathology
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Science, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu Y, Qin L, Li G, Zhang W, An L, Liu B, Hong JS. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther 2003; 305:212-8. [PMID: 12649371 DOI: 10.1124/jpet.102.043166] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammation in the brain has increasingly been recognized to play an important role in the pathogenesis of several neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease. Inflammation-mediated neurodegeneration involves activation of the brain's resident immune cells, the microglia, which produce proinflammatory and neurotoxic factors, including cytokines, reactive oxygen intermediates, nitric oxide, and eicosanoids that impact on neurons to induce neurodegeneration. Hence, identification of compounds that prevent microglial activation may be highly desirable in the search for therapeutic agents for inflammation-mediated neurodegenerative diseases. In this study, we report that dextromethorphan (DM), an ingredient widely used in antitussive remedies, reduced the inflammation-mediated degeneration of dopaminergic neurons through inhibition of microglial activation. Pretreatment (30 min) of rat mesencephalic neuron-glia cultures with DM (1-10 micro M) reduced, in a dose-dependent manner, the microglia-mediated degeneration of dopaminergic neurons induced by lipopolysaccharide (LPS, 10 ng/ml). Significant neuroprotection by DM was also evident when DM was applied to cultures up to 60 min after the addition of LPS. The neuroprotective effect of DM was attributed to inhibition of LPS-stimulated microglial activation because DM significantly inhibited the LPS-induced production of tumor necrosis factor-alpha, nitric oxide, and superoxide free radicals. This conclusion was further supported by the finding that DM failed to prevent 1-methyl-4-phenylpyridinium- or beta-amyloid peptide (1-42)-induced dopaminergic neurotoxicity in neuron-enriched cultures. In addition, because LPS did not produce any significant increase in the release of excitatory amino acids from neuron-glia cultures and N-methyl-D-aspartate antagonist dizocilpine maleate failed to afford significant neuroprotection, it is unlikely that the neuroprotective effect of DM is mediated through N-methyl-D-aspartate receptors. These results suggest that DM may be a promising therapeutic agent for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Yuxin Liu
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. J Neurosci 2003. [PMID: 12533598 DOI: 10.1523/jneurosci.23-02-00384.2003] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate receptors and calcium have been implicated as triggering factors in the induction of tolerance by ischemic preconditioning (IPC) in the brain. However, little is known about the signal transduction pathway that ensues after the IPC induction pathway. The main goals of the present study were to determine whether NMDA induces preconditioning via a calcium pathway and promotes translocation of the protein kinase C epsilon (epsilonPKC) isozyme and whether this PKC isozyme is key in the IPC signal transduction pathway. We corroborate here that IPC and a sublethal dose of NMDA were neuroprotective, whereas blockade of NMDA receptors during IPC diminished IPC-induced neuroprotection. Calcium chelation blocked the protection afforded by both NMDA and ischemic preconditioning significantly, suggesting a significant role of calcium. Pharmacological preconditioning with the nonselective PKC isozyme activator phorbol myristate acetate could not emulate IPC, but blockade of PKC activation with chelerythrine during IPC blocked its neuroprotection. These results suggested that there might be a dual involvement of PKC isozymes during IPC. This was corroborated when neuroprotection was blocked when we inhibited epsilonPKC during IPC and NMDA preconditioning, and IPC neuroprotection was emulated with the activator of epsilonPKC. The possible correlation between NMDA, Ca2+, and epsilonPKC was found when we emulated IPC with the diacylglycerol analog oleoylacetyl glycerol, suggesting an indirect pathway by which Ca2+ could activate the calcium-insensitive epsilonPKC isozyme. These results demonstrated that the epsilonPKC isozyme played a key role in both IPC- and NMDA-induced tolerance.
Collapse
|
23
|
Naish HJ, Marsh WL, Davies JA. Effect of low-affinity NMDA receptor antagonists on electrical activity in mouse cortical slices. Eur J Pharmacol 2002; 443:79-83. [PMID: 12044795 DOI: 10.1016/s0014-2999(02)01579-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this study was to investigate the effects of three low-affinity NMDA receptor antagonists, MRZ 2/279 (1-amino-1,3,3,5,5-pentamethyl-cyclohexane HCl), AR-R 15896AR ([+]-alpha-phenyl-2-pyridine-ethanamine diHCl) and dextromethorphan on epileptiform activity in vitro. Epileptiform discharges were elicited in DBA/2 mouse cortical slices by perfusion with Mg(2+)-free artificial cerebrospinal fluid. MRZ 2/279, AR-R 15896AR and dextromethorphan all reversibly decreased the frequency of the discharges in a concentration-dependent manner. The IC(50)'s for MRZ 2/279, AR-R 15896AR and dextromethorphan were 5.2, 10.8 and 55.9 microM, respectively. These low-affinity NMDA receptor antagonists may be proved to be clinically effective with fewer adverse effects than drugs with high-affinity for the NMDA receptor-operated channel.
Collapse
Affiliation(s)
- Hywel J Naish
- Department of Pharmacology, Therapeutics and Toxicology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | | |
Collapse
|
24
|
Calzada JI, Jones BE, Netland PA, Johnson DA. Glutamate-induced excitotoxicity in retina: neuroprotection with receptor antagonist, dextromethorphan, but not with calcium channel blockers. Neurochem Res 2002; 27:79-88. [PMID: 11926279 DOI: 10.1023/a:1014854606309] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of our studies was to evaluate different strategies for possible neuroprotection in glutamate-induced neurotoxicity in the retina. In a first set of experiments we attempted to determine if dextrorphan antagonism of glutamate action on NMDA receptors would protect against excitotoxic injury associated with secondary damage seen after surgical laser treatment in retina. In a second set of experiments, the effects of different calcium channel blockers in an in-vitro model of N-methyl-D-aspartate (NMDA)-induced retinal ganglion cell excitotoxicity that utilized rabbit retinal explants were evaluated. Dextrorphan infusion prior to laser treatment of rabbit retina produced a significant decrease in the area of neural retinal damage. We attribute the apparent dextrorphan protection to attenuation of glutamate mediated excitotoxicity secondary to laser induced cell death. Preincubation of rabbit retinal explants with verapamil, nimodipine or omega-conotoxin MVIIA did not cause a significant change in NMDA induced cell death in the ganglion cell layer.
Collapse
Affiliation(s)
- Jorge I Calzada
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis 38163, USA
| | | | | | | |
Collapse
|
25
|
Perez-Pinzon MA, Yenari MA, Sun GH, Kunis DM, Steinberg GK. SNX-111, a novel, presynaptic N-type calcium channel antagonist, is neuroprotective against focal cerebral ischemia in rabbits. J Neurol Sci 1997; 153:25-31. [PMID: 9455974 DOI: 10.1016/s0022-510x(97)00196-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytosolic Ca2+ overload has been proposed as a main cause of neuronal injury during cerebral ischemia. SNX-111, a synthetic product of the naturally occurring omega-conotoxin MVIIA, is a novel, presynaptic N-type Ca2+ channel antagonist and has been reported to be neuroprotective against cerebral ischemia. We studied the neuroprotective effects of SNX-111 in a rabbit model of focal cerebral ischemia. New Zealand white male rabbits (2.5-3.5 kg) were given 1 mg/kg/h i.v. SNX-111 (n=8) or normal saline (n=8) 10 min after onset of a 2-h period of transient focal cerebral ischemia induced by occlusion of the left middle cerebral, anterior cerebral and internal carotid arteries followed by 4 h reperfusion. SNX-111 significantly attenuated overall cortical ischemic neuronal damage by 44% (saline, 38.7+/-3.0%; SNX-111, 21.5+/-6.0%, P<0.05) and regions of hyperintensity on T2-weighted MRI by 30% (saline, 70.6+/-4.0%; SNX-111, 49.3+/-11.0%, P<0.05). No significant difference in (regional cerebral blood flow) rCBF or MAP (mean arterial blood pressure) was found between SNX-111- and saline-treated rabbits suggesting that neuroprotection is due to a cellular effect. We conclude that SNX-111 reduces ischemic injury in this model. Its use as a clinical neuroprotective agent for cerebrovascular surgery or stroke should be investigated further.
Collapse
Affiliation(s)
- M A Perez-Pinzon
- Department of Neurosurgery and Stanford Stroke Center, Stanford University Medical Center, CA 94305, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Voltage-gated calcium currents play important roles in controlling neuronal excitability. They also contribute to the epileptogenic discharge, including seizure maintenance and propagation. In the past decade, selective calcium channel blockers have been synthesized, aiding in the analysis of calcium channel subtypes by patch-clamp recordings. It is still a matter of debate whether whether any of the currently available antiepileptic drugs (AEDs) inhibit these conductances as part of their mechanism of action. We tested oxcarbazepine, lamotrigine, and felbamate and found that they consistently inhibited voltage-activated calcium currents in cortical and striatal neurons at clinically relevant concentrations. Low micromolar concentrations of GP 47779 (the active metabolite of oxcarbazepine) and lamotrigine reduced calcium conductances involved in the regulation of transmitter release. In contrast, felbamate blocked nifedipine-sensitive conductances at concentrations significantly lower than those required to modify N-methyl-D-aspartate (NMDA) responses or sodium currents. Aside from contributing to AED efficacy, this mechanism of action may have profound implications for preventing fast-developing cellular damage related to ischemic and traumatic brain injuries. Moreover, the effects of AEDs on voltage-gated calcium signals may lead to new therapeutic strategies for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- A Stefani
- IRCCS Ospedale S. Lucia and Clinica Neurologica, Università di Tor Vergata, Rome, Italy
| | | | | |
Collapse
|
27
|
Britton P, Lu XC, Laskosky MS, Tortella FC. Dextromethorphan protects against cerebral injury following transient, but not permanent, focal ischemia in rats. Life Sci 1997; 60:1729-40. [PMID: 9150412 DOI: 10.1016/s0024-3205(97)00132-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dextromethorphan (DM) has been observed to afford neuroprotection in a variety of in vitro and in vivo experimental models of CNS injury. We have evaluated the neuroprotective activity of DM following both transient (2 h) and permanent focal cerebral ischemia in the rat. Middle cerebral artery occlusion (MCAO) was produced in male Sprague-Dawley rats using the intraluminal filament technique. Animals were dosed s.c with 20 mg/kg DM at 0.5, 1, 2, 4, and 6 hours post occlusion. Analysis of brain injury was performed 24 hours after permanent occlusion or reperfusion. Following transient MCAO, vehicle treated rats exhibited a total infarct volume of 203 +/- 33 mm3. DM produced a 61% reduction in infarct volume to 79 +/- 13 mm3. Permanent MCAO produced a larger infarct volume (406 +/- 44 mm3) which was not significantly reduced in size by treatment with DM (313 +/- 58 mm3). Infarcted hemispheric oedema was not different in vehicle treated rats following transient or permanent MCAO and was not reduced by DM in either group. Following transient MCAO, rectal temperature was elevated 1,2 and 5 hours post occlusion. While not inducing hypothermia or altering physiological parameters such as blood pressure and blood gases, DM attenuated this injury-related increase in temperature, an effect which appeared to correlate with its ability to protect neurons in temperature regulating hypothalamic centres. The DM-induced reduction in infarction demonstrated in our model of transient focal cerebral ischemia provides further support for the in vivo neuroprotective activity of this compound. Importantly, these data demonstrate the limited neuroprotective efficacy of DM when attempting to combat more severe focal ischemic injuries and imply that drug-induced hypothermia is not ultimately responsible for its protective action.
Collapse
Affiliation(s)
- P Britton
- Department of Neuropharmacology and Molecular Biology, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA.
| | | | | | | |
Collapse
|
28
|
Block F, Schwarz M. Dextromethorphan reduces functional deficits and neuronal damage after global ischemia in rats. Brain Res 1996; 741:153-9. [PMID: 9001717 DOI: 10.1016/s0006-8993(96)00916-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glutamate antagonists have been shown to be neuroprotective in animal models of cerebral ischemia. Global cerebral ischemia in rats leads to selective neuronal damage in the hippocampus and striatum. Following ischemia a transient locomotor hyperactivity and a deficit in spatial learning and memory occurs. The aim of the present study was to investigate the potential neuroprotective effect of dextromethorphan, an antagonist at the N-methyl-D-aspartate receptor, with behavioural and histological measures of global ischemia in rats. Global ischemia was induced by four-vessel occlusion (4VO) for 20 min in rats. Dextromethorphan was administered 20 min before induction of ischemia at a dose of 10 or 50 mg/kg. Before and on day 1, 3 and 5 after operation the spontaneous locomotor activity was measured. One week after surgery spatial learning was tested in the Morris water maze. After behavioural testing the animals were sacrificed and the neuronal damage was assessed. Treatment with 50 mg/kg of dextromethorphan reduced the increase in locomotor activity observed on day 1 and 3 after ischemia. In the water maze dextromethorphan reduced the increase in escape latency and in swim distance induced by 4VO. Furthermore, the ischemia-induced reduction in time spent in the quadrant of the former platform position during the probe trial was increased by treatment with dextromethorphan. Neuronal damage in the CA1 sector of the hippocampus and in the dorsolateral striatum produced by 4VO was significantly attenuated by dextromethorphan. The present results demonstrate that protective effects on neuronal damage may be related to an attenuation of deficits in spatial leaning and memory following global ischemia.
Collapse
Affiliation(s)
- F Block
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
29
|
Yenari MA, Palmer JT, Sun GH, de Crespigny A, Mosely ME, Steinberg GK. Time-course and treatment response with SNX-111, an N-type calcium channel blocker, in a rodent model of focal cerebral ischemia using diffusion-weighted MRI. Brain Res 1996; 739:36-45. [PMID: 8955922 DOI: 10.1016/s0006-8993(96)00808-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is capable of noninvasively imaging acute cerebral ischemia. We demonstrate the utility of this technique by evaluating SNX-111, a novel N-type calcium channel blocker with potential neuroprotective properties, in a rodent model of transient focal ischemia. Twenty-four Sprague-Dawley rats weighing between 310-350 g underwent occlusion of the middle cerebral artery (MCAO) for 105 min followed by 22.5 h of reperfusion. Thirty minutes following MCAO, animals were randomized to receive SNX-111 5 mg/kg intravenously over 1 h vs. placebo. DWI and T2-weighted MRIs (T2W) were performed at 0.5, 1.5 and 24 h after the onset of ischemia. Area fractions of increased signal intensity on the DWI and T2W images were measured. DWI area fractions at 1.5 and 24 h were also normalized to the initial, pre-treatment scans. Apparent diffusion coefficients (ADC) were calculated from fitted maps. Tri-phenyl tetrazolium chloride (TTC) staining was performed on brains at 24 h and infarct area fractions were measured. SNX-111 treated animals showed significantly improved 1.5-h DWI scan ratios compared to controls (ratios of 1.06 +/- 0.25 vs. 2.98 +/- 0.78 SNX vs. controls respectively, P < 0.05). A trend toward improved DWI ratios was seen by 24 h in the SNX-111 group (2.5 +/- 0.75 vs. 4.12 +/- 1.6, N.S.) DWI, T2W and TTC area fractions at 24 h also showed trends favoring a neuroprotective effect of SNX-111. Bright areas on DWI corresponded to ADC decreases of about 30% compared to the non-ischemic hemisphere. These decreases were the same in both treatment groups and at each time point. DWI, T2W and TTC area fractions at 24 h were strongly correlated (r = 0.98, DWI and TTC; r = 0.99, T2W and TTC; r = 0.97, T2W and DWI, P < 0.0001). We conclude that in this ischemic model, SNX-111 provides early neuroprotection and that serial DWI is a useful way of demonstrating this.
Collapse
Affiliation(s)
- M A Yenari
- Department of Neurology, Stanford University Medical Center, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
30
|
Mao J, Price DD, Caruso FS, Mayer DJ. Oral administration of dextromethorphan prevents the development of morphine tolerance and dependence in rats. Pain 1996; 67:361-8. [PMID: 8951930 DOI: 10.1016/0304-3959(96)03120-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Combined oral administration of morphine sulfate (MS) and the over-the-counter antitussive drug and N-methyl-D-aspartate receptor antagonist dextromethorphan (DM) prevented the development of tolerance to the antinociceptive effects of MS (15, 24, or 32 mg/kg) in rats. This combined oral treatment regimen also attenuated signs of naloxone-precipitated physical dependence on morphine in the same rats. A wide range of ratios of MS to DM (2:1, 1:1, and 1:2) were effective for preventing the development of morphine tolerance and dependence. In addition, we provide evidence that under certain circumstances DM increases the acute antinociceptive effects of MS. All of these results indicate that oral treatment that combines DM with opiate analgesics may be a powerful approach for simultaneously preventing opiate tolerance and dependence and enhancing analgesia in humans.
Collapse
Affiliation(s)
- J Mao
- Department of Anesthesiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA
| | | | | | | |
Collapse
|
31
|
Jiang N, Chopp M, Stein D, Feit H. Progesterone is neuroprotective after transient middle cerebral artery occlusion in male rats. Brain Res 1996; 735:101-7. [PMID: 8905174 DOI: 10.1016/0006-8993(96)00605-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Progesterone (PROG) is a neurosteroid, possessing a variety of functions in the central nervous system. Exogenous PROG has been shown to reduce secondary neuronal loss in conjunction with attenuated brain edema after cerebral contusion and to reduce brain edema after focal cerebral ischemia. In the present study, we assessed the neuroprotective potential of PROG in a model of focal cerebral ischemia in the rat. Forty-eight male Wistar rats were randomly assigned to 4 groups, i.e. pretreatment with water soluble PROG, or dimethyl sulfoxide (DMSO) dissolved PROG, or DMSO as control or delayed treatment with DMSO dissolved PROG. Middle cerebral artery occlusion (MCAO) was induced by insertion of an intraluminal suture and reperfusion was performed by withdrawing the suture. Pretreatments were initiated 30 min before MCAO via intraperitoneal injection. Delayed treatment was initiated upon reperfusion following 2 h of MCAO. Infarct volume, body weight loss, and neurological deficit were measured 48 h after MCAO. Pre- and delayed treatment with DMSO dissolved PROG resulted in a 39% (P < 0.05) and 34% (P < 0.05) reduction in cerebral infarction, respectively, along with decreased body weight loss and improved neurological function as compared to control animals, whereas no statistically significant reduction in infarct volume by water soluble PROG was found. We demonstrated that administration of PROG to the male rat before or 2 hours after onset of MCAO reduces ischemic cell damage and improves physiological and neurological function 2 days after stroke. These results suggests potential therapeutic properties of PROG in the management of stroke.
Collapse
Affiliation(s)
- N Jiang
- Henry Ford Health Science Center, Neurology Department, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
32
|
Ogilvy CS, Chu D, Kaplan S. Mild hypothermia, hypertension, and mannitol are protective against infarction during experimental intracranial temporary vessel occlusion. Neurosurgery 1996; 38:1202-9; discussion 1209-10. [PMID: 8727152 DOI: 10.1097/00006123-199606000-00030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A rabbit model of focal temporary ischemia was used to test the protection provided by mild hypothermia, hypertension, mannitol and the combination of the three methods. Twenty-four New Zealand White rabbits were divided into five groups as follows: a control group, a hypertension group (mean arterial blood pressure increased by 42 mm Hg), a hypothermic group (rectal temperature decreased by 6 degrees C), a mannitol group (1 g/kg of body weight, administered intravenously), and the triple-therapy group. The intracranial internal carotid artery, the middle cerebral artery, and the anterior cerebral artery were clipped for 2 hours and then underwent 4 hours of reperfusion. Blood pressure, rectal and brain temperature, blood glucose level, hematocrit, and arterial blood gases were monitored during the experiment. For measuring the infarction size, the brain was divided into 4-mm slices and stained with 2,3,5-triphenyltetrazolium chloride. The severity of the neuronal damage was also evaluated by conventional histological examination with hematoxylin and eosin staining. The infarct volume was 193.2 +/- 34.8 (standard error of the mean) mm3 for the control group, 32.3 +/- 22.6 mm3 for the hypertension group (P < 0.0005 versus control), 40.9 +/- 17.6 mm3 for the hypothermia group (P < 0.0005), 58.0 +/- 41.0 mm3 for the mannitol group (P < 0.005), and 0.9 +/- 0.9 mm3 for the triple-therapy group (P < 0.0001). The infarct volume of the triple-therapy group was smaller than that of the hypertension, hypothermia, and mannitol groups but the difference was not statistically significant. The combination of hypertension, mild hypothermia, and mannitol to protect against temporary focal ischemia provides a set of manipulations that is readily available for neurovascular procedures.
Collapse
Affiliation(s)
- C S Ogilvy
- Cerebrovascular Surgery, Neurosurgical Service, Massachusetts General Hospital, Boston, USA
| | | | | |
Collapse
|
33
|
Aronowski J, Strong R, Grotta JC. Treatment of experimental focal ischemia in rats with lubeluzole. Neuropharmacology 1996; 35:689-93. [PMID: 8887977 DOI: 10.1016/0028-3908(96)84640-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lubeluzole is a neuroprotective compound in the final stages of clinical evaluation. We evaluated the effects of intravenous followed by intraperitoneal doses of lubeluzole on histological outcome after reversible tandem middle cerebral/common carotid artery occlusion in Long-Evans rats, with particular emphasis on the time window of efficacy. Lubeluzole, started 15 min after the onset of ischemia, had no adverse physiological or behavioral effects and reduce maximal infarct volume produced by 120 min or more of arterial occlusion by approximately 50%, from 143.2 +/- 11.8 mm3 (p < 0.05). Lubeluzole did not prolong the duration of middle cerebral artery occlusion which could be tolerated before histological damage occurred. Lubeluzole was still effective if started 30 min after the onset of ischemia (34% reduction of maximal infarct volume; p < 0.05), but not after delays of 60 or 120 min. we conclude that lubeluzole has promise as a neuroprotective drug, particularly for more severe strokes, but must be started very rapidly after the onset of ischemia to be effective.
Collapse
Affiliation(s)
- J Aronowski
- Department of Neurology, University of Texas-Houston Medical School, 77030, USA
| | | | | |
Collapse
|
34
|
Jiang N, Zhang RL, Baron BM, Chopp M. Administration of a competitive NMDA antagonist MDL-100,453 reduces infarct size after permanent middle cerebral artery occlusion in rat. J Neurol Sci 1996; 138:36-41. [PMID: 8791236 DOI: 10.1016/0022-510x(95)00352-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The competitive N-methyl-D-aspartate antagonist MDL-100,453 has been shown to attenuate ischemic cell damage when administered after permanent focal cerebral ischemia. The aim of the present study was to measure the dose-response of cerebral infarcted volume to the agent administered 30 min after permanent middle cerebral artery occlusion and to test whether short-term infusion of this drug reduces ischemic cell damage. Thirty-five Sprague-Dawley rats were randomly assigned to 4 groups: low dose group, a bolus of 12.4 mg/kg MDL-100,453 followed by infusion of 31.7 mg/kg/h MDL-100,453; middle and high dose groups, bolus and infusion doses increased to 24.8 mg/kg, 63.3 mg/kg/h and 49.6 mg/kg, 126.7 mg/kg/h, respectively; and control group, saline used for bolus and infusion. Middle cerebral artery occlusion (MCAO) was induced by insertion of intraluminal suture. The infusion was accomplished by a microprocessor controlled pump connected to a jugular vein, which delivered drug or saline over a period of 9 h. Infarct volume was calculated using 2,3,5-triphenyltetrazolium chloride staining 24 h after MCAO. The infarct volumes were significantly reduced in both middle (46%) and high (52%) dose groups compared with the saline group (p < 0.05). No reduction of infarct volume was found in the low dose group. A statistically significant (p < 0.05), but poor inverse correlation existed between the average blood level of MDL-100,453 and infarct volume. We demonstrated that a short-term (9 h) intravenous administration of an appropriate dose of MDL-100,453 beginning 30 min after MCAO significantly reduces ischemic lesion volume at 24 h after onset of permanent focal cerebral ischemia.
Collapse
Affiliation(s)
- N Jiang
- Department of Neurology, Henry Ford Health Science Center, Detroit, MI 482202, USA
| | | | | | | |
Collapse
|
35
|
Ogilvy CS, Chu D, Kaplan S. Mild Hypothermia, Hypertension, and Mannitol Are Protective against Infarction during Experimental Intracranial Temporary Vessel Occlusion. Neurosurgery 1996. [DOI: 10.1227/00006123-199606000-00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
36
|
Steinberg GK, Bell TE, Yenari MA. Dose escalation safety and tolerance study of the N-methyl-D-aspartate antagonist dextromethorphan in neurosurgery patients. J Neurosurg 1996; 84:860-6. [PMID: 8622162 DOI: 10.3171/jns.1996.84.5.0860] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Experimental studies have shown that dextromethorphan, a noncompetitive N-methyl-D-aspartate antagonist is neuroprotective in experimental models of ischemic cerebral injury. The authors studied the safety and tolerability of oral dextromethorphan (DM) in humans, and correlated serum levels of this drug with cerebrospinal fluid (CSF) and brain levels. Neurosurgical patients undergoing intracranial surgery or endovascular procedures were given ascending doses of oral DM prior to and 24 hours after surgery. Serum, CSF, and brain levels of DM and its active metabolite, dextrorphan, were measured. One hundred eighty-one patients received a total of 212 courses of DM treatment in dose ranges of 0.8 to 9.64 mg/kg. Serum DM levels correlated highly with CSF and brain DM levels. Brain levels were 68-fold higher than serum levels, whereas CSF levels were fourfold lower than serum levels. The maximum DM levels attained were 1514 ng/ml (serum) 118 ng/ml (CSF), and 92,700 ng/g (brain). The maximum dextrorphan levels were 501 ng/ml (serum), 167 ng/ml (CSF), and 6840 ng/g (brain). In 11 patients, brain and plasma levels of DM were comparable to levels that have been shown to be neuroprotective in animal studies. Frequent side effects occurring at neuroprotective levels of DM included nystagmus (64%), nausea and vomiting (27%) distorted vision (27%), feeling "drunk" (27%), ataxia (27%), and dizziness (27%). All symptoms were reversible and no patient suffered severe adverse reactions. This study demonstrates that potentially neuroprotective doses of DM can be administered safely to neurosurgical patients. Brain and CSF levels of DM can be estimated from serum levels of the drug. Side effects, even at the highest levels, proved to be tolerable and reversible. Administration of DM to patients at risk for cerebral injury should be further explored.
Collapse
Affiliation(s)
- G K Steinberg
- Department of Neurosurgery, Stanford University Medical Center, California, USA
| | | | | |
Collapse
|
37
|
Du C, Hu R, Csernansky CA, Liu XZ, Hsu CY, Choi DW. Additive neuroprotective effects of dextrorphan and cycloheximide in rats subjected to transient focal cerebral ischemia. Brain Res 1996; 718:233-6. [PMID: 8773794 DOI: 10.1016/0006-8993(96)00162-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies have implicated both excitotoxicity and apoptosis in the pathogenesis of cerebral infarction induced by focal ischemic insults. Here we tested the possibility that the NMDA antagonist, dextrorphan, and the protein synthesis inhibitor, cycloheximide, would produce additive protective effects in a rodent model of focal ischemia-reperfusion. Transient focal cerebral ischemia was induced by a 90 min period of ligation of the right middle cerebral artery and both common carotid arteries. Administration of either 30 mg/kg dextrorphan or 0.5 mg/kg cycloheximide, given i.p. 15 min before ischemia, reduced infarct volume by about 65%. When optimal concentrations of each drug were given together, infarct volume was reduced by 87% as measured 14 days later. These observations support the idea that both excitotoxicity, and apoptosis dependent on new protein synthesis, contribute to cerebral infarction after transient focal ischemia in the rat.
Collapse
Affiliation(s)
- C Du
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
38
|
Duhaime AC, Gennarelli LM, Boardman C. Neuroprotection by dextromethorphan in acute experimental subdural hematoma in the rat. J Neurotrauma 1996; 13:79-84. [PMID: 9094378 DOI: 10.1089/neu.1996.13.79] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Experimental acute subdural hematoma in the rat has been shown to produce a zone of apparent infarction under the clot, and excitatory amino acid toxicity appears to play a role in the damage observed. We report the effect of dextromethorphan, a commonly used antitussive and a noncompetitive NMDA-type glutamate receptor antagonist, on the volume of histologic damage seen at 72 h after acute subdural hematoma in the rat. Sixty-five Long-Evans rats underwent placement of acute subdural hematoma using the "cranial window" model. Fourteen animals received oral dextromethorphan, 10 mg/kg/dose, twice daily for 3 days, and an additional 20 animals also received a single 20 mg/kg intraperitoneal dose 15 min after clot placement in addition to the oral regimen. Control animals received equal volumes of sterile water. Brain lesions in all animals were characterized by well-circumscribed infarctions underlying the subdural hematoma. Lesion volume in control animals was 88.3 +/- 9.3 mm3 (mean +/- standard error of the mean), while animals receiving dextromethorphan had significantly smaller lesions, which was independent of dosing schedule (59.9 +/- 9.2 mm3)(p = 0.0403). Animal weight was also found to be a significant covariate (p = 0.038). Because of its safety in humans and efficacy as a neuroprotectant in a variety of models, dextromethorphan may be a promising agent for clinical use, particularly in children.
Collapse
Affiliation(s)
- A C Duhaime
- Division of Neurosurgery, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine 19104, USA
| | | | | |
Collapse
|
39
|
Small DL, Buchan AM. NMDA antagonists: their role in neuroprotection. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 40:137-71. [PMID: 8989620 DOI: 10.1016/s0074-7742(08)60719-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- D L Small
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada
| | | |
Collapse
|
40
|
Wahlgren NG. A review of earlier clinical studies on neuroprotective agents and current approaches. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 40:337-63. [PMID: 8989628 DOI: 10.1016/s0074-7742(08)60727-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- N G Wahlgren
- Karolinska Stroke Research, Department of Neurology, Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
41
|
Pérez-Pinzón MA, Maier CM, Yoon EJ, Sun GH, Giffard RG, Steinberg GK. Correlation of CGS 19755 neuroprotection against in vitro excitotoxicity and focal cerebral ischemia. J Cereb Blood Flow Metab 1995; 15:865-76. [PMID: 7673380 DOI: 10.1038/jcbfm.1995.108] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The in vivo neuroprotective effect and brain levels of cis-4-phosphonomethyl-2-piperidine carboxylic acid (CGS 19755), a competitive N-methyl-D-aspartate (NMDA) antagonist, were compared with its in vitro neuroprotective effects. The dose-response for in vitro neuroprotection against both NMDA toxicity and combined oxygen-glucose deprivation (OGD) was determined in murine neocortical cultures. Primary cultures of neocortical cells from feta mice were injured by exposure to 500 microM NMDA for 10 min or to OGD for 45 min. The effect of CGS 19755 in both injury paradigms was assessed morphologically and quantitated by determination of lactate dehydrogenase release. Near complete neuroprotection was found at high doses of CGS 19755. The ED50 for protection against NMDA toxicity was 25.4 micro M, and against OGD the ED50 was 15.2 microM. For the in vivo paradigm rabbits underwent 2 h of left internal carotid, anterior cerebral, and middle cerebral artery occlusion followed by 4 h reperfusion; ischemic injury was assessed by magnetic resonance imaging and histopathology. The rabbits were treated with 40 mg/kg i.v. CGS 19755 or saline 10 min after arterial occlusion. CSF and brain levels of CGS 19755 were 12 microM and 5 microM, respectively, at 1 h, 6 microM and 5 microM at 2 h, and 13 microM and 7 microM at 4 h. These levels were neuroprotective in this model, reducing cortical ischemic edema by 48% and ischemic neuronal damage by 76%. These results suggest that a single i.v. dose penetrates the blood-brain barrier, attaining sustained neuroprotective levels that are in the range for in vitro neuroprotection.
Collapse
Affiliation(s)
- M A Pérez-Pinzón
- Department of Neurosurgery, Stanford University Medical Center, California, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sakaki T, Kakizaki T, Takeshima T, Miyamoto K, Tsujimoto S. Importance of prevention of intravenous thrombosis and preservation of the venous collateral flow in bridging vein injury during surgery: an experimental study. SURGICAL NEUROLOGY 1995; 44:158-62. [PMID: 7502206 DOI: 10.1016/0090-3019(95)00160-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Venous infarction (cerebral edema and/or hemorrhage) may occur several hours after sacrifice of the bridging vein during surgery. However, in our experience, severe venous infarction is often produced by prolonged brain retraction in addition to sacrifice of the vein. METHODS The experiment was carried out using 20 adult cats. In five cats, all bridging veins were coagulated near the superior sagittal sinus and 12 hours later the surgical wound was closed (group A). In five other cats, a round plate weighing 45 g was placed on the center of the Sylvian fissure for 12 hours and then the wound was closed (group B). In the remaining 10 cats, both of these interventions were performed (group C). All 20 animals were sacrificed 12 hours after the wound closure. RESULTS The degree of Evans-blue dye leakage and brain edema was much more marked in the group C than in groups A and B. The endothelial intactness of the bridging veins studied by staining with a factor VIII-related antigen was much more disturbed in group C than in the other groups. CONCLUSIONS The endothelium of the cortical veins is damaged much more by the combination of sacrifice of the vein and brain retraction, and this endothelial damage of the cortical vein leads to extensive venous infarction.
Collapse
Affiliation(s)
- T Sakaki
- Department of Neurosurgery, Nara Medical University, Japan
| | | | | | | | | |
Collapse
|
43
|
Newell DW, Barth A, Malouf AT. Glycine site NMDA receptor antagonists provide protection against ischemia-induced neuronal damage in hippocampal slice cultures. Brain Res 1995; 675:38-44. [PMID: 7796152 DOI: 10.1016/0006-8993(95)00039-s] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ischemia-induced neuronal injury can be reduced by glutamate antagonists acting at the N-methyl-D-aspartate (NMDA) receptor. 7-Chlorokynurenic acid and the recently synthesized compound Acea 1021 block NMDA receptors by acting at the strychnine-insensitive glycine site. The anti-ischemic properties of these compounds were tested by evaluating their ability to reduce CA1 neuronal damage in hippocampal slice cultures deprived of oxygen and glucose. Acea 1021 and 7-chlorokynurenic acid significantly reduced CA1 injury produced by oxygen and glucose deprivation in a dose-dependent manner. The neuroprotective effect of these compounds was reversed by the addition of glycine. The phencyclidine site NMDA antagonist MK-801 also provided significant protection to CA1 neurons against the same insult, and this protection was not affected by the addition of glycine. These results indicate that Acea 1021 and 7-chlorokynurenic acid can provide protection to CA1 neurons against ischemia-induced injury by a glycine-sensitive mechanism.
Collapse
Affiliation(s)
- D W Newell
- Department of Neurological Surgery, University of Washington, School of Medicine, Seattle 98195, USA
| | | | | |
Collapse
|
44
|
Memezawa H, Zhao Q, Smith ML, Siesjö BK. Hyperthermia nullifies the ameliorating effect of dizocilpine maleate (MK-801) in focal cerebral ischemia. Brain Res 1995; 670:48-52. [PMID: 7719723 DOI: 10.1016/0006-8993(94)01251-c] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was inspired by two previous findings from the laboratory. The first was that dizocilpine maleate (MK-801) fails to reduce infarct size when the middle cerebral artery (MCA) is permanently occluded by an intraluminal filament technique in rats. In seeking the reasons for this we measured temperature and found that the body temperature of occluded animals increases to 39.0-39.5 degrees C during the first 2-3 h. In order to explore whether the rise in temperature was responsible for the lack of effect of MK-801, two groups of animals were studied, both containing animals which were subjected to 2 h of transient MCA occlusion and given MK-801 15 min before, as well as 6 and 24 h after ischemia. In one group, temperature was allowed to rise spontaneously during ischemia (39.0-39.5 degrees C). In the other, body temperature was maintained close to normal during ischemia, and for the first 6 h postischemically, by cooling of the ambient air. Infarct volume was assessed by triphenyltetrazolium chloride staining after 48 h of recovery. The results showed that MK-801 failed to reduce infarct size in animals whose body temperature rose during ischemia. In contrast, the drug markedly reduced infarct volume in temperature-controlled animals; in fact, 5/8 animals had no infarcts but selective neuronal damage only. The results suggest that amelioration of focal ischemic damage cannot be expected if body and brain temperature is allowed to rise above normal.
Collapse
Affiliation(s)
- H Memezawa
- Laboratory for Experimental Brain Research, University of Lund, University Hospital, Sweden
| | | | | | | |
Collapse
|
45
|
Steinberg GK, Yoon EJ, Kunis DM, Sun GH, Maier CM, Grant GA. Neuroprotection by N-methyl-D-aspartate antagonists in focal cerebral ischemia is dependent on continued maintenance dosing. Neuroscience 1995; 64:99-107. [PMID: 7708219 DOI: 10.1016/0306-4522(94)00374-e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
While N-methyl-D-aspartate antagonists have been shown to attenuate neuronal damage in focal cerebral ischemia, few studies have examined whether continuous or multiple dose treatment is necessary for maximum efficacy. We studied the effect of a loading dose only or load plus maintenance infusion using several non-competitive N-methyl-D-aspartate antagonists (dextromethorphan, dextrorphan, MK-801) and the levorotatory enantiomer of dextromethorphan (levomethorphan) in a rabbit model of focal cerebral ischemia. Forty-seven anesthetized rabbits underwent occlusion of the left internal carotid, anterior cerebral and middle cerebral arteries for 2 h followed by 4 h of reperfusion. Drugs were administered 10 min after occlusion. Dextromethorphan and dextrorphan protected against ischemic edema only when given as load plus maintenance (29% and 31% reduction, respectively), while both load only and load plus maintenance of MK-801 protected against edema (26% and 31% reduction, respectively). Levomethorphan load plus maintenance also protected against ischemic edema (25% reduction). However, dextromethorphan and dextrorphan both required maintenance infusion to protect against ischemic neuronal damage (24% and 27% reduction in area of ischemic neuronal damage, respectively), while levomethorphan failed to protect against neuronal injury even when given as load plus maintenance. Administration of MK-801 as load plus maintenance reduced ischemic neuronal damage by 23%, but this difference was not quite statistically significant. These results suggest that processes of ischemic damage, such as excitotoxic injury, continue for several hours beyond the initial period of focal ischemia, and that non-competitive N-methyl-D-aspartate antagonists require more prolonged administration to achieve neuroprotection.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
46
|
Lombardi G, Moroni F, Moroni F. Glutamate receptor antagonists protect against ischemia-induced retinal damage. Eur J Pharmacol 1994; 271:489-95. [PMID: 7705449 DOI: 10.1016/0014-2999(94)90810-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of intravitreal injections of excitatory amino acid receptor antagonists have been studied on the ischemic neuronal damage induced by photochemical occlusion of the retinal vessels. Rats were systemically injected with rose bengal fluorescein dye and one of their eyes was exposed to bright light. The activities of the enzymes, choline-acetyltransferase and glutamate decarboxylase, were measured as an index of neuronal loss in the lesioned tissue. Lesioned retinas had a 75 +/- 5% reduction in choline-acetyltransferase activity and a 72 +/- 8% reduction in glutamate-decarboxylase activity, suggesting that the lesion causes a massive loss of retinal neurons, which use acetylcholine or gamma-aminobutyric acid (GABA) as neurotransmitter. A single intravitreal injection of excitatory amino acid receptor antagonists, performed immediately after the lesion, significantly reduced this loss. Both alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate) (NMDA) types of ionotropic glutamate receptor antagonists were active in a dose-dependent manner. Almost complete protection was also obtained with relatively large doses of thiokynurenic acid (400 nmol), a non-selective antagonist of both AMPA and NMDA glutamate receptors, while 7-Cl-thiokynurenic acid, a potent and selective glycine receptor antagonist, was not active up to 200 nmol. These results strongly suggest that excitotoxic mechanisms are involved in ischemia-induced neuronal death in the retina and that appropriate treatments with antagonists of both AMPA and NMDA receptor types may significantly reduce this damage.
Collapse
Affiliation(s)
- G Lombardi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | |
Collapse
|
47
|
Hollander D, Pradas J, Kaplan R, McLeod HL, Evans WE, Munsat TL. High-dose dextromethorphan in amyotrophic lateral sclerosis: phase I safety and pharmacokinetic studies. Ann Neurol 1994; 36:920-4. [PMID: 7998781 DOI: 10.1002/ana.410360619] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Much interest has focused on the role of glutamate-mediated excitotoxicity in the etiopathogenesis of amyotrophic lateral sclerosis (ALS). We therefore conducted a phase I study of high-dose dextromethorphan (DM) in ALS. DM is a selective, noncompetitive antagonist of the N-methyl-D-aspartate subtype of the glutamate receptor. Thirteen patients were given DM in an escalating dose fashion, to a target of 10 mg/kg/day or the maximum tolerable dose, and then maintained on this dose for up to 6 months. Total daily doses ranged from 4.8 to 10 mg/kg (median, 7 mg/kg). Side effects were dose limiting in most patients. The most common side effects were light-headedness, slurred speech, and fatigue. Detailed pharmacokinetic and neuropsychology studies were performed. This study demonstrates the feasibility of long-term administration of high-dose DM in ALS, as well as in other conditions associated with glutamate excitotoxicity.
Collapse
Affiliation(s)
- D Hollander
- Department of Neurology, Tufts University School of Medicine, Boston, MA
| | | | | | | | | | | |
Collapse
|
48
|
Steinberg GK, Panahian N, Sun GH, Maier CM, Kunis D. Cerebral damage caused by interrupted, repeated arterial occlusion versus uninterrupted occlusion in a focal ischemic model. J Neurosurg 1994; 81:554-9. [PMID: 7931589 DOI: 10.3171/jns.1994.81.4.0554] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Temporary intracranial arterial occlusion is often utilized during the surgical treatment of intracranial aneurysms. Although numerous experimental studies have suggested that repetitive, brief periods of global ischemia cause more severe cerebral injury than a similar single period of global ischemia, this issue has not been extensively studied in relation to focal ischemia. It remains controversial whether it is safer to use brief periods of interrupted, temporary occlusion separated by reperfusion periods, or a more prolonged, single temporary occlusion. This question is addressed in studies on a rabbit model of transient, focal cerebral ischemia. Sixteen anesthetized rabbits underwent transorbital occlusion of the left internal carotid, middle cerebral, and anterior cerebral arteries, with one of two paradigms:uninterrupted occlusion (1 hour of temporary occlusion followed by 5 hours of reperfusion in eight rabbits), or interrupted occlusion (three separate 20-minute periods of occlusion, with 10 minutes of reperfusion between occlusions, followed by 4 hours, 40 minutes of reperfusion in eight rabbits). Histopathological evaluation for ischemic neuronal damage and magnetic resonance imaging studies for ischemic edema were conducted 6 hours after the initial arterial occlusion. The animals in the interrupted, repeated occlusion group showed a 59% decrease in the area of cortical ischemic neuronal damage (mean +/- standard error of the mean 10.0% +/- 1.7%) compared with the uninterrupted occlusion group (24.4% +/- 5%, p = 0.016). There was no difference between the groups in the extent of striatal ischemic damage or area of ischemic edema. These results suggest that interrupted, repeated focal ischemia causes less cortical ischemic injury than uninterrupted transient ischemia of a similar total duration. Although caution should be exercised in extrapolating from these results to the clinical situation, they may have important implications for temporary arterial occlusion during intracranial surgery.
Collapse
Affiliation(s)
- G K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, California
| | | | | | | | | |
Collapse
|
49
|
Abstract
Dextromethorphan is a dextrorotary morphinan without affinity for opioid receptors, commonly used as an antitussive medication. During the past 5 years, interest in the compound and its demethylated derivative, dextrorphan, has been revived because additional neuroprotective and antiepileptic properties were found in in vitro studies, animal experiments, and a few clinical cases. Both morphinans are able to inhibit N-methyl-D-aspartate (NMDA) receptor channels and voltage-operated calcium and sodium channels with different potencies. The inhibition of the NMDA receptor is believed to be the predominant mechanism of action responsible for the anticonvulsant and neuroprotective properties of the compounds.
Collapse
Affiliation(s)
- G Trube
- Pharma Division, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | |
Collapse
|
50
|
Park CK, McCulloch J, Kang JK, Choi CR. Pretreatment with a competitive NMDA antagonist D-CPPene attenuates focal cerebral infarction and brain swelling in awake rats. Acta Neurochir (Wien) 1994; 127:220-6. [PMID: 7942207 DOI: 10.1007/bf01808770] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of the study was to assess effects of the competitive N-methyl-D-aspartate (NMDA) receptor antagonist D-(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic acid (D-CPPene) upon focal cerebral infarction and brain oedema in the rat. Focal cerebral ischaemia was produced by permanent occlusion of the middle cerebral artery under halothane anaesthesia. The anaesthetic gas was discontinued immediately after the occlusion and the rats were killed 24 hours later. Cerebral infarction and brain swelling were each assessed on the frozen brain sections at 8 predetermined coronal planes. Pretreatment with D-CPPene (4.5 mg/kg i.v. followed by continuous infusion at 3 mg/kg/h until sacrifice) 15 minutes prior to MCA occlusion, significantly reduced the volume of infarction in the cerebral hemisphere by 29% (p < 0.05). Brain swelling, obtained by subtracting the nonischaemic hemispheric volume from the ischaemic hemispheric volume, was significantly reduced with D-CPPene treatment and the mean reduction in swelling (34% less than the controls: p < 0.001) proportionately similar to the decrease in infarct volume in the same animals. These data indicate that systemic administration of the competitive NMDA receptor antagonist D-CPPene has neuroprotective effects against ischaemic brain damage, and the reduction in brain swelling occurs in parallel with the reduction in ischaemic damage.
Collapse
Affiliation(s)
- C K Park
- Department of Neurosurgery, Catholic University Medical College, Seoul, Korea
| | | | | | | |
Collapse
|