1
|
Mascarenhas A, Braga A, Majernikova SM, Nizari S, Marletta D, Theparambil SM, Aziz Q, Marina N, Gourine AV. On the mechanisms of brain blood flow regulation during hypoxia. J Physiol 2025; 603:2263-2280. [PMID: 38843467 PMCID: PMC12013793 DOI: 10.1113/jp285060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/20/2024] [Indexed: 04/23/2025] Open
Abstract
The brain requires an uninterrupted supply of oxygen and nutrients to support the high metabolic needs of billions of nerve cells processing information. In low oxygen conditions, increases in cerebral blood flow maintain brain oxygen delivery, but the cellular and molecular mechanisms responsible for dilation of cerebral blood vessels in response to hypoxia are not fully understood. This article presents a systematic review and analysis of data reported in studies of these mechanisms. Our primary outcome measure was the percent reduction of the cerebrovascular response to hypoxia in conditions of pharmacological or genetic blockade of specific signaling mechanisms studied in experimental animals or in humans. Selection criteria were met by 28 articles describing the results of animal studies and six articles describing the results of studies conducted in humans. Selected studies investigated the potential involvement of various neurotransmitters, neuromodulators, vasoactive molecules and ion channels. Of all the experimental conditions, blockade of adenosine-mediated signaling and inhibition of ATP-sensitive potassium (KATP) channels had the most significant effect in reducing the cerebrovascular response to hypoxia (by 49% and 37%, respectively). Various degree reductions of the hypoxic response were also reported in studies which investigated the roles of nitric oxide, arachidonic acid derivates, catecholamines and hydrogen sulphide, amongst others. However, definitive conclusions about the importance of these signaling pathways cannot be drawn from the results of this analysis. In conclusion, there is significant evidence that one of the key mechanisms of hypoxic cerebral vasodilation (accounting for ∼50% of the response) involves the actions of adenosine and modulation of vascular KATP channels. However, recruitment of other vasodilatory signaling mechanisms is required for the full expression of the cerebrovascular response to hypoxia.
Collapse
Affiliation(s)
- Alexander Mascarenhas
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Alice Braga
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Sara Maria Majernikova
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | | | - Shefeeq M. Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Qadeer Aziz
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
- Translational Medicine and Therapeutics, William Harvey Research InstituteQueen Mary University of LondonLondonUnited Kingdom
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
- Division of MedicineUniversity College LondonLondonUnited Kingdom
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Carr JMJR, Hoiland RL, Fernandes IA, Schrage WG, Ainslie PN. Recent insights into mechanisms of hypoxia-induced vasodilatation in the human brain. J Physiol 2024; 602:5601-5618. [PMID: 37655827 DOI: 10.1113/jp284608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
The cerebral vasculature manages oxygen delivery by adjusting arterial blood in-flow in the face of reductions in oxygen availability. Hypoxic cerebral vasodilatation, and the associated hypoxic cerebral blood flow reactivity, involve many vascular, erythrocytic and cerebral tissue mechanisms that mediate elevations in cerebral blood flow via micro- and macrovascular dilatation. This contemporary review focuses on in vivo human work - with reference to seminal preclinical work where necessary - on hypoxic cerebrovascular reactivity, particularly where recent advancements have been made. We provide updates with the following information: in humans, hypoxic cerebral vasodilatation is partially mediated via a - likely non-obligatory - combination of: (1) nitric oxide synthases, (2) deoxygenation-coupled S-nitrosothiols, (3) potassium channel-related vascular smooth muscle hyperpolarization, and (4) prostaglandin mechanisms with some contribution from an interrelationship with reactive oxygen species. And finally, we discuss the fact that, due to the engagement of deoxyhaemoglobin-related mechanisms, reductions in O2 content via haemoglobin per se seem to account for ∼50% of that seen with hypoxic cerebral vasodilatation during hypoxaemia. We further highlight the issue that methodological impediments challenge the complete elucidation of hypoxic cerebral reactivity mechanisms in vivo in healthy humans. Future research is needed to confirm recent advancements and to reconcile human and animal findings. Further investigations are also required to extend these findings to address questions of sex-, heredity-, age-, and disease-related differences. The final step is to then ultimately translate understanding of these mechanisms into actionable, targetable pathways for the prevention and treatment of cerebral vascular dysfunction and cerebral hypoxic brain injury.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for Researching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor A Fernandes
- Department of Health and Kinesiology, Purdue University, Indiana, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
3
|
Daoud HAS, Kokoti L, Al-Karagholi MAM. K ATP channels in cerebral hemodynamics: a systematic review of preclinical and clinical studies. Front Neurol 2024; 15:1417421. [PMID: 39022739 PMCID: PMC11252034 DOI: 10.3389/fneur.2024.1417421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Cumulative evidence suggests that ATP-sensitive potassium (KATP) channels act as a key regulator of cerebral blood flow (CBF). This implication seems to be complicated, since KATP channels are expressed in several vascular-related structures such as smooth muscle cells, endothelial cells and pericytes. In this systematic review, we searched PubMed and EMBASE for preclinical and clinical studies addressing the involvement of KATP channels in CBF regulation. A total of 216 studies were screened by title and abstract. Of these, 45 preclinical and 6 clinical studies were included. Preclinical data showed that KATP channel openers (KCOs) caused dilation of several cerebral arteries including pial arteries, the middle cerebral artery and basilar artery, and KATP channel inhibitor (KCI) glibenclamide, reversed the dilation. Glibenclamide affected neither the baseline CBF nor the baseline vascular tone. Endothelium removal from cerebral arterioles resulted in an impaired response to KCO/KCI. Clinical studies showed that KCOs dilated cerebral arteries and increased CBF, however, glibenclamide failed to attenuate these vascular changes. Endothelial KATP channels played a major role in CBF regulation. More studies investigating the role of KATP channels in CBF-related structures are needed to further elucidate their actual role in cerebral hemodynamics in humans. Systematic review registration: Prospero: CRD42023339278 (preclinical data) and CRD42022339152 (clinical data).
Collapse
Affiliation(s)
- Hassan Ali Suleiman Daoud
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
| | - Lili Kokoti
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Nordsjaellands Hospital- Hilleroed, Hilleroed, Denmark
| |
Collapse
|
4
|
Baroudi M, Rezk A, Daher M, Balmaceno-Criss M, Gregoryczyk JG, Sharma Y, McDonald CL, Diebo BG, Daniels AH. Management of traumatic spinal cord injury: A current concepts review of contemporary and future treatment. Injury 2024; 55:111472. [PMID: 38460480 DOI: 10.1016/j.injury.2024.111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/11/2024]
Abstract
Spinal Cord Injury (SCI) is a condition leading to inflammation, edema, and dysfunction of the spinal cord, most commonly due to trauma, tumor, infection, or vascular disturbance. Symptoms include sensory and motor loss starting at the level of injury; the extent of damage depends on injury severity as detailed in the ASIA score. In the acute setting, maintaining mean arterial pressure (MAP) higher than 85 mmHg for up to 7 days following injury is preferred; although caution must be exercised when using vasopressors such as phenylephrine due to serious side effects such as pulmonary edema and death. Decompression surgery (DS) may theoretically relieve edema and reduce intraspinal pressure, although timing of surgery remains a matter of debate. Methylprednisolone (MP) is currently used due to its ability to reduce inflammation but more recent studies question its clinical benefits, especially with inconsistency in recommending it nationally and internationally. The choice of MP is further complicated by conflicting evidence for optimal timing to initiate treatment, and by the reported observation that higher doses are correlated with increased risk of complications. Thyrotropin-releasing hormone may be beneficial in less severe injuries. Finally, this review discusses many options currently being researched and have shown promising pre-clinical results.
Collapse
Affiliation(s)
- Makeen Baroudi
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Anna Rezk
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mohammad Daher
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mariah Balmaceno-Criss
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jerzy George Gregoryczyk
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Yatharth Sharma
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Christopher L McDonald
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bassel G Diebo
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alan H Daniels
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Sharkey JM, Quarrington RD, Krieg JL, Kaukas L, Turner RJ, Leonard A, Jones CF, Corrigan F. Evaluating the effect of post-traumatic hypoxia on the development of axonal injury following traumatic brain injury in sheep. Brain Res 2023; 1817:148475. [PMID: 37400012 DOI: 10.1016/j.brainres.2023.148475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Damage to the axonal white matter tracts within the brain is a key cause of neurological impairment and long-term disability following traumatic brain injury (TBI). Understanding how axonal injury develops following TBI requires gyrencephalic models that undergo shear strain and tissue deformation similar to the clinical situation and investigation of the effects of post-injury insults like hypoxia. The aim of this study was to determine the effect of post-traumatic hypoxia on axonal injury and inflammation in a sheep model of TBI. Fourteen male Merino sheep were allocated to receive a single TBI via a modified humane captive bolt animal stunner, or sham surgery, followed by either a 15 min period of hypoxia or maintenance of normoxia. Head kinematics were measured in injured animals. Brains were assessed for axonal damage, microglia and astrocyte accumulation and inflammatory cytokine expression at 4 hrs following injury. Early axonal injury was characterised by calpain activation, with significantly increased SNTF immunoreactivity, a proteolytic fragment of alpha-II spectrin, but not with impaired axonal transport, as measured by amyloid precursor protein (APP) immunoreactivity. Early axonal injury was associated with an increase in GFAP levels within the CSF, but not with increases in IBA1 or GFAP+ve cells, nor in levels of TNFα, IL1β or IL6 within the cerebrospinal fluid or white matter. No additive effect of post-injury hypoxia was noted on axonal injury or inflammation. This study provides further support that axonal injury post-TBI is driven by different pathophysiological mechanisms, and detection requires specific markers targeting multiple injury mechanisms. Treatment may also need to be tailored for injury severity and timing post-injury to target the correct injury pathway.
Collapse
Affiliation(s)
- Jessica M Sharkey
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Ryan D Quarrington
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| | - Justin L Krieg
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Lola Kaukas
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Renee J Turner
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Anna Leonard
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Claire F Jones
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia; Department of Orthopaedics & Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Frances Corrigan
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia.
| |
Collapse
|
6
|
Giofrè S, Renda A, Sesana S, Formicola B, Vergani B, Leone BE, Denti V, Paglia G, Groppuso S, Romeo V, Muzio L, Balboni A, Menegon A, Antoniou A, Amenta A, Passarella D, Seneci P, Pellegrino S, Re F. Dual Functionalized Liposomes for Selective Delivery of Poorly Soluble Drugs to Inflamed Brain Regions. Pharmaceutics 2022; 14:pharmaceutics14112402. [PMID: 36365220 PMCID: PMC9698607 DOI: 10.3390/pharmaceutics14112402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Dual functionalized liposomes were developed to cross the blood−brain barrier (BBB) and to release their cargo in a pathological matrix metalloproteinase (MMP)-rich microenvironment. Liposomes were surface-functionalized with a modified peptide deriving from the receptor-binding domain of apolipoprotein E (mApoE), known to promote cargo delivery to the brain across the BBB in vitro and in vivo; and with an MMP-sensitive moiety for an MMP-triggered drug release. Different MMP-sensitive peptides were functionalized at both ends with hydrophobic stearate tails to yield MMP-sensitive lipopeptides (MSLPs), which were assembled into mApoE liposomes. The resulting bi-functional liposomes (i) displayed a < 180 nm diameter with a negative ζ-potential; (ii) were able to cross an in vitro BBB model with an endothelial permeability of 3 ± 1 × 10−5 cm/min; (iii) when exposed to functional MMP2 or 9, efficiently released an encapsulated fluorescein dye; (iv) showed high biocompatibility when tested in neuronal cultures; and (v) when loaded with glibenclamide, a drug candidate with poor aqueous solubility, reduced the release of proinflammatory cytokines from activated microglial cells.
Collapse
Affiliation(s)
- Sabrina Giofrè
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Antonio Renda
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Silvia Sesana
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Beatrice Formicola
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Vanna Denti
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Serena Groppuso
- San Raffaele Scientific Institute, INSPE-Institute of Experimental Neurology, 20132 Milan, Italy
| | - Valentina Romeo
- San Raffaele Scientific Institute, INSPE-Institute of Experimental Neurology, 20132 Milan, Italy
| | - Luca Muzio
- San Raffaele Scientific Institute, INSPE-Institute of Experimental Neurology, 20132 Milan, Italy
| | - Andrea Balboni
- San Raffaele Scientific Institute, Experimental Imaging Centre, 20132 Milan, Italy
| | - Andrea Menegon
- San Raffaele Scientific Institute, Experimental Imaging Centre, 20132 Milan, Italy
| | - Antonia Antoniou
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Arianna Amenta
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Pierfausto Seneci
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze farmaceutiche, DISFARM, Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence: (S.P.); (F.R.); Tel.: +39-0250314467 (S.P.); +39-0264488311 (F.R.)
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
- Correspondence: (S.P.); (F.R.); Tel.: +39-0250314467 (S.P.); +39-0264488311 (F.R.)
| |
Collapse
|
7
|
Abstract
The cerebral microcirculation undergoes dynamic changes in parallel with the development of neurons, glia, and their energy metabolism throughout gestation and postnatally. Cerebral blood flow (CBF), oxygen consumption, and glucose consumption are as low as 20% of adult levels in humans born prematurely but eventually exceed adult levels at ages 3 to 11 years, which coincide with the period of continued brain growth, synapse formation, synapse pruning, and myelination. Neurovascular coupling to sensory activation is present but attenuated at birth. By 2 postnatal months, the increase in CBF often is disproportionately smaller than the increase in oxygen consumption, in contrast to the relative hyperemia seen in adults. Vascular smooth muscle myogenic tone increases in parallel with developmental increases in arterial pressure. CBF autoregulatory response to increased arterial pressure is intact at birth but has a more limited range with arterial hypotension. Hypoxia-induced vasodilation in preterm fetal sheep with low oxygen consumption does not sustain cerebral oxygen transport, but the response becomes better developed for sustaining oxygen transport by term. Nitric oxide tonically inhibits vasomotor tone, and glutamate receptor activation can evoke its release in lambs and piglets. In piglets, astrocyte-derived carbon monoxide plays a central role in vasodilation evoked by glutamate, ADP, and seizures, and prostanoids play a large role in endothelial-dependent and hypercapnic vasodilation. Overall, homeostatic mechanisms of CBF regulation in response to arterial pressure, neuronal activity, carbon dioxide, and oxygenation are present at birth but continue to develop postnatally as neurovascular signaling pathways are dynamically altered and integrated. © 2021 American Physiological Society. Compr Physiol 11:1-62, 2021.
Collapse
|
8
|
Griepp DW, Lee J, Moawad CM, Davati C, Runnels J, Fiani B. BIIB093 (intravenous glibenclamide) for the prevention of severe cerebral edema. Surg Neurol Int 2021; 12:80. [PMID: 33767884 PMCID: PMC7982107 DOI: 10.25259/sni_933_2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Vasogenic edema in the setting of acute ischemic stroke can be attributed to the opening of transient receptor potential 4 channels, which are expressed in the setting of injury and regulated by sulfonylurea receptor 1 (SUR1) proteins. Glibenclamide, also known as glyburide, RP-1127, Cirara, and BIIB093, is a second-generation sulfonylurea that binds SUR1 at potassium channels and may significantly reduce cerebral edema following stroke, as evidenced by recent clinical trials. This review provides a comprehensive analysis of clinical considerations of glibenclamide use and current patient outcomes when administered in the setting of acute ischemic stroke to reduce severe edema. Methods: National databases (MEDLINE, EMBASE, Cochrane, and Google scholar databases) were searched to identify studies that reported on the clinical outcomes of glibenclamide administered immediately following acute ischemic stroke. Results: The pharmacological mechanism of glibenclamide was reviewed in depth as well as the known indications and contraindications to receiving treatment. Eight studies were identified as having meaningful clinical outcome data, finding statistically significant differences in glibenclamide treatment groups ranging from matrix metalloproteinase-9 serum levels, midline shift, modified Rankin Scores, National Institute of Health Stroke Score, and mortality endpoints. Conclusion: Studies analyzing the GAMES-Pilot and GAMES-PR trials suggest that glibenclamide has a moderate, however, measurable effect on intermediate biomarkers and clinical endpoints. Meaningful conclusions are limited by the small sample size of patients studied.
Collapse
Affiliation(s)
- Daniel W Griepp
- College of Osteopathic Medicine, New York Institute of Technology, Glen Head, New York, United States
| | - Jason Lee
- College of Osteopathic Medicine, New York Institute of Technology, Glen Head, New York, United States
| | - Christina M Moawad
- Department of Biomedical Engineering, Carle Illinois College of Medicine, University of Illinois at Urbana Champaign, Champaign, Illinois, United States
| | - Cyrus Davati
- College of Osteopathic Medicine, New York Institute of Technology, Glen Head, New York, United States
| | - Juliana Runnels
- School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| | - Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California, United States
| |
Collapse
|
9
|
Rocha MP, Campos MO, Mattos JD, Mansur DE, Rocha HNM, Secher NH, Nóbrega ACL, Fernandes IA. K ATP channels modulate cerebral blood flow and oxygen delivery during isocapnic hypoxia in humans. J Physiol 2020; 598:3343-3356. [PMID: 32463117 DOI: 10.1113/jp279751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS ATP-sensitive K+ (KATP ) channels mediate hypoxia-induced cerebral vasodilatation and hyperperfusion in animals. We tested whether KATP channels blockade affects the increase in human cerebral blood flow (CBF) and the maintenance of oxygen delivery (CDO2 ) during hypoxia. Hypoxia-induced increases in the anterior circulation and total cerebral perfusion were attenuated under KATP channels blockade affecting the relative changes of brain oxygen delivery. Therefore, in humans, KATP channels activation modulates the vascular tone in the anterior circulation of the brain, contributing to CBF and CDO2 responses to hypoxia. ABSTRACT ATP-sensitive K+ (KATP ) channels mediate hypoxia-induced cerebral vasodilatation and hyperperfusion in animals. We tested whether KATP channels blockade affects the increase in cerebral blood flow (CBF) and the maintenance of oxygen delivery (CDO2 ) during hypoxia in humans. Nine healthy men were exposed to 5-min trials of normoxia and isocapnic hypoxia (IHX, 10% O2 ) before (BGB) and 3 h after glibenclamide ingestion (AGB). Mean arterial pressure (MAP), arterial saturation ( S a O 2 ), partial pressure of oxygen ( P a O 2 ) and carbon dioxide ( P aC O 2 ), internal carotid artery blood flow (ICABF), vertebral artery blood flow (VABF), total (t)CBF (Doppler ultrasound) and CDO2 were quantified during the trials. IHX provoked similar reductions in S a O 2 and P a O 2 , while MAP was not affected by oxygen desaturation or KATP blockade. A smaller increase in ICABF (ΔBGB: 36 ± 23 vs. ΔAGB 11 ± 18%, p = 0.019) but not in VABF (∆BGB 26 ± 21 vs. ∆AGB 27 ± 27%, p = 0.893) was observed during the hypoxic trial under KATP channels blockade. Thus, IHX-induced increases in tCBF (∆BGB 32 ± 19 vs. ∆AGB 14 ± 13%, p = 0.012) and CDO2 relative changes (∆BGB 7 ± 13 vs. ∆AGB -6 ± 14%, p = 0.048) were attenuated during the AGB hypoxic trial. In a separate protocol, 6 healthy men (5 from protocol 1) underwent a 5-min exposure to normoxia and IHX before and 3 h after placebo (5 mg of cornstarch) ingestion. IHX reduced S a O 2 and P a O 2 , but placebo did not affect the ICABF, VABF, tCBF, or CDO2 responses. Therefore, in humans, KATP channels activation modulates vascular tone in the anterior rather than the posterior circulation of the brain, contributing to tCBF and CDO2 responses to hypoxia.
Collapse
Affiliation(s)
- Marcos P Rocha
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Monique O Campos
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - João D Mattos
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Daniel E Mansur
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Helena N M Rocha
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Niels H Secher
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Antonio C L Nóbrega
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Igor A Fernandes
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brazil
| |
Collapse
|
10
|
Wood CE, Keller-Wood M. Current paradigms and new perspectives on fetal hypoxia: implications for fetal brain development in late gestation. Am J Physiol Regul Integr Comp Physiol 2019; 317:R1-R13. [PMID: 31017808 DOI: 10.1152/ajpregu.00008.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The availability of oxygen to the fetus is limited by the route taken by oxygen from the atmosphere to fetal tissues, aided or diminished by pregnancy-associated changes in maternal physiology and, ultimately, a function of atmospheric pressure and composition of the mother's inspired gas. Much of our understanding of the fetal physiological response to hypoxia comes from experiments designed to elucidate the cardiovascular and endocrine responses to transient hypoxia. Complementing this work is equally impactful research into the origins of intrauterine growth restriction in which animal models designed to restrict the transfer of oxygen from the maternal to the fetal circulation were used. A common assumption has been that outcomes measured after a period of hypoxia are related to cellular deprivation of oxygen and reoxygenation: an assumption based on a focus on what we can see "under the streetlights." Recent studies demonstrate that availability of oxygen may not tell the whole story. Transient hypoxia in the fetal sheep stimulates transcriptomics responses that mirror inflammation. This response is accompanied by the appearance of bacteria in the fetal brain and other tissues, likely resulting from a hypoxia-stimulated release of bacteria from the placenta. The appearance of bacteria in the fetus after transient hypoxia complements the recent discovery of bacterial DNA in the normal human placenta and in the tissues of fetal sheep. An understanding of the mechanism of the physiological, cellular, and molecular responses to hypoxia requires an appreciation of stimuli other than cellular oxygen deprivation: stimuli that we would have never known about without looking "between the streetlights," illuminating direct responses to the manipulated variables.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine , Gainesville, Florida
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida College of Pharmacy , Gainesville, Florida
| |
Collapse
|
11
|
King ZA, Sheth KN, Kimberly WT, Simard JM. Profile of intravenous glyburide for the prevention of cerebral edema following large hemispheric infarction: evidence to date. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2539-2552. [PMID: 30147301 PMCID: PMC6101021 DOI: 10.2147/dddt.s150043] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glyburide (also known as glibenclamide) is a second-generation sulfonylurea drug that inhibits sulfonylurea receptor 1 (Sur1) at nanomolar concentrations. Long used to target KATP (Sur1–Kir6.2) channels for the treatment of diabetes mellitus type 2, glyburide was recently repurposed to target Sur1–transient receptor potential melastatin 4 (Trpm4) channels in acute central nervous system injury. Discovered nearly two decades ago, SUR1–TRPM4 has emerged as a critical target in stroke, specifically in large hemispheric infarction, which is characterized by edema formation and life-threatening brain swelling. Following ischemia, SUR1–TRPM4 channels are transcriptionally upregulated in all cells of the neurovascular unit, including neurons, astrocytes, microglia, oligodendrocytes and microvascular endothelial cells. Work by several independent laboratories has linked SUR1–TRPM4 to edema formation, with blockade by glyburide reducing brain swelling and death in preclinical models. Recent work showed that, following ischemia, SUR1–TRPM4 co-assembles with aquaporin-4 to mediate cellular swelling of astrocytes, which contributes to brain swelling. Additionally, recent work linked SUR1–TRPM4 to secretion of matrix metalloproteinase-9 (MMP-9) induced by recombinant tissue plasminogen activator in activated brain endothelial cells, with blockade of SUR1–TRPM4 by glyburide reducing MMP-9 and hemorrhagic transformation in preclinical models with recombinant tissue plasminogen activator. The recently completed GAMES (Glyburide Advantage in Malignant Edema and Stroke) clinical trials on patients with large hemispheric infarctions treated with intravenous glyburide (RP-1127) revealed promising findings with regard to brain swelling (midline shift), MMP-9, functional outcomes and mortality. Here, we review key elements of the basic science, preclinical experiments and clinical studies, both retrospective and prospective, on glyburide in focal cerebral ischemia and stroke.
Collapse
Affiliation(s)
- Zachary A King
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin N Sheth
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - W Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA,
| |
Collapse
|
12
|
Jiang E, Chapp AD, Fan Y, Larson RA, Hahka T, Huber MJ, Yan J, Chen QH, Shan Z. Expression of Proinflammatory Cytokines Is Upregulated in the Hypothalamic Paraventricular Nucleus of Dahl Salt-Sensitive Hypertensive Rats. Front Physiol 2018. [PMID: 29520237 PMCID: PMC5826963 DOI: 10.3389/fphys.2018.00104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence indicates that inflammation is implicated in hypertension. However, the role of brain proinflammatory cytokines (PICs) in salt sensitive hypertension remains to be determined. Thus, the objective of this study was to test the hypothesis that high salt (HS) diet increases PICs expression in the paraventricular nucleus (PVN) and leads to PVN neuronal activation. Eight-week-old male Dahl salt sensitive (Dahl S) rats, and age and sex matched normal Sprague Dawley (SD) rats were divided into two groups and fed with either a HS (4% NaCl) or normal salt (NS, 0.4% NaCl) diet for 5 consecutive weeks. HS diet induced hypertension and significantly increased cerebrospinal fluid (CSF) sodium concentration ([Na+]) in Dahl S rats, but not in normal SD rats. In addition, HS diet intake triggered increases in mRNA levels and immunoreactivities of PVN PICs including TNF-α, IL-6, and IL-1β, as well as Fra1, a chronic marker of neuronal activation, in Dahl S rats, but not in SD rats. Next, we investigated whether this increase in the expression of PVN PICs and Fra1 was induced by increased CSF [Na+]. Adult male SD rats were intracerebroventricular (ICV) infused with 8 μl of either hypertonic salt (4 μmol NaCl), mannitol (8 μmol, as osmolarity control), or isotonic salt (0.9% NaCl as vehicle control). Three hours following the ICV infusion, rats were euthanized and their PVN PICs expression was measured. The results showed that central administration of hypertonic saline in SD rats significantly increased the expression of PICs including TNF-α, IL-6, and IL-1β, as well as neuronal activation marker Fra1, compared to isotonic NaCl controls and osmolarity controls. Finally, we tested whether the increase in PICs expression occurred in neurons. Incubation of hypothalamic neurons with 10 mM NaCl in a culture medium for 6 h elicited significant increases in TNF-α, IL-6, and Fra1 mRNA levels. These observations, coupled with the important role of PICs in modulating neuronal activity and stimulating vasopressin release, suggest that HS intake induces an inflammatory state in the PVN, which, may in turn, augments sympathetic nerve activity and vasopressin secretion, contributing to the development of salt sensitive hypertension.
Collapse
Affiliation(s)
- Enshe Jiang
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Institute for Nursing and Health Research, Henan University, Kaifeng, China
| | - Andrew D Chapp
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Yuanyuan Fan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Robert A Larson
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Taija Hahka
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
13
|
Abstract
Cardiovascular atherosclerotic disease is the leading cause of death in China and in Western nations. People with plaque or stenosis in the coronary artery or the carotid artery are the most susceptible population to suffer from acute events. Current investigations showed that plaque with the characteristics of intra-plaque hemorrhage or a thin cap with a large lipid core was causally associated with vulnerable plaque and plaque rupture. Of the many plaque ruptures occurring in patients with atherosclerotic disease, very few will trigger symptomatic events, rendering it exceedingly difficult to predict adverse outcomes. The assumption that identifying lesions prone to rupture will prevent acute coronary events was unrealistic. Factors in blood, especially those risk factors associated with thrombosis, play an important role as a bridge between plaque rupture and subsequent clinical events. Since there is little management to efficiently decrease the frequency of plaque rupture or erosion, blood healthy therapy, as a therapeutic apheresis to decrease the blood hypercoagulability to modulate the blood to be thrombosis resisting, should be considered as a potential therapeutic approach to reducing the incidence of acute coronary syndrome and stroke.
Collapse
Affiliation(s)
- Sun Yuhua
- 1 Department of Coronary Artery Disease, Cardiovascular Institute & Fu Wai Heart Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Center for Cardiovascular Disease, Beijing, China
| | - Wang Baoping
- 2 Hemodilution Institute of Jining Medical College, Jining Cardiovascular & Cerebral Disease Hospital, Jining City, Shandong Province, China
| |
Collapse
|
14
|
Huber MJ, Fan Y, Jiang E, Zhu F, Larson RA, Yan J, Li N, Chen QH, Shan Z. Increased activity of the orexin system in the paraventricular nucleus contributes to salt-sensitive hypertension. Am J Physiol Heart Circ Physiol 2017; 313:H1075-H1086. [PMID: 28667055 DOI: 10.1152/ajpheart.00822.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/08/2017] [Accepted: 06/22/2017] [Indexed: 01/29/2023]
Abstract
The orexin system is involved in arginine vasopressin (AVP) regulation, and its overactivation has been implicated in hypertension. However, its role in salt-sensitive hypertension (SSHTN) is unknown. Here, we tested the hypothesis that hyperactivity of the orexin system in the paraventricular nucleus (PVN) contributes to SSHTN via enhancing AVP signaling. Eight-week-old male Dahl salt-sensitive (Dahl S) and age- and sex-matched Sprague-Dawley (SD) rats were placed on a high-salt (HS; 8% NaCl) or normal-salt (NS; 0.4% NaCl) diet for 4 wk. HS intake did not alter mean arterial pressure (MAP), PVN mRNA levels of orexin receptor 1 (OX1R), or OX2R but slightly increased PVN AVP mRNA expression in SD rats. HS diet induced significant increases in MAP and PVN mRNA levels of OX1R, OX2R, and AVP in Dahl S rats. Intracerebroventricular infusion of orexin A (0.2 nmol) dramatically increased AVP mRNA levels and immunoreactivity in the PVN of SD rats. Incubation of cultured hypothalamus neurons from newborn SD rats with orexin A increased AVP mRNA expression, which was attenuated by OX1R blockade. In addition, increased cerebrospinal fluid Na+ concentration through intracerebroventricular infusion of NaCl solution (4 µmol) increased PVN OX1R and AVP mRNA levels and immunoreactivity in SD rats. Furthermore, bilateral PVN microinjection of the OX1R antagonist SB-408124 resulted in a greater reduction in MAP in HS intake (-16 ± 5 mmHg) compared with NS-fed (-4 ± 4 mmHg) anesthetized Dahl S rats. These results suggest that elevated PVN OX1R activation may contribute to SSHTN by enhancing AVP signaling.NEW & NOTEWORTHY To our best knowledge, this study is the first to investigate the involvement of the orexin system in salt-sensitive hypertension. Our results suggest that the orexin system may contribute to the Dahl model of salt-sensitive hypertension by enhancing vasopressin signaling in the hypothalamic paraventricular nucleus.
Collapse
Affiliation(s)
- Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Yuanyuan Fan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Enshe Jiang
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Institute for Nursing and Health Research, Henan University, Kaifeng, China
| | - Fengli Zhu
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Robert A Larson
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia; and
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Biotech Research Center, Michigan Technological University, Houghton, Michigan
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan; .,Biotech Research Center, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
15
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
16
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
17
|
Hypoxia and Neonatal Haemorrhagic Stroke: Experimental Study of Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [PMID: 27526140 DOI: 10.1007/978-3-319-38810-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
We studied the level of blood oxygen saturation (SpO2) in the brain in newborn rats in the pre- and post-stroke periods, as well as the changes in cerebral blood flow and beta-arrestin-1 as a marker of hypoxic stress. Our results show that mild hypoxia precedes the stroke development and is associated with venous relaxation and decrease blood outflow from the brain resulting in the elevation of synthesis of beta-arrestin-1 in the brain. The incidence of stroke is characterized by severe hypoxia, which is accompanied by the progression of pathological changes in cerebral veins and the high level of beta-arrestin-1.
Collapse
|
18
|
Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 2015; 310:R398-413. [PMID: 26676248 DOI: 10.1152/ajpregu.00270.2015] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
Abstract
This review highlights the influence of oxygen (O2) availability on cerebral blood flow (CBF). Evidence for reductions in O2 content (CaO2 ) rather than arterial O2 tension (PaO2 ) as the chief regulator of cerebral vasodilation, with deoxyhemoglobin as the primary O2 sensor and upstream response effector, is discussed. We review in vitro and in vivo data to summarize the molecular mechanisms underpinning CBF responses during changes in CaO2 . We surmise that 1) during hypoxemic hypoxia in healthy humans (e.g., conditions of acute and chronic exposure to normobaric and hypobaric hypoxia), elevations in CBF compensate for reductions in CaO2 and thus maintain cerebral O2 delivery; 2) evidence from studies implementing iso- and hypervolumic hemodilution, anemia, and polycythemia indicate that CaO2 has an independent influence on CBF; however, the increase in CBF does not fully compensate for the lower CaO2 during hemodilution, and delivery is reduced; and 3) the mechanisms underpinning CBF regulation during changes in O2 content are multifactorial, involving deoxyhemoglobin-mediated release of nitric oxide metabolites and ATP, deoxyhemoglobin nitrite reductase activity, and the downstream interplay of several vasoactive factors including adenosine and epoxyeicosatrienoic acids. The emerging picture supports the role of deoxyhemoglobin (associated with changes in CaO2 ) as the primary biological regulator of CBF. The mechanisms for vasodilation therefore appear more robust during hypoxemic hypoxia than during changes in CaO2 via hemodilution. Clinical implications (e.g., disorders associated with anemia and polycythemia) and future study directions are considered.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Anthony R Bain
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Mathew G Rieger
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Damian M Bailey
- Neurovascular Research Laboratory, Research Institute of Science and Health, University of South Wales, Glamorgan, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and Neurovascular Research Laboratory, Research Institute of Science and Health, University of South Wales, Glamorgan, United Kingdom
| |
Collapse
|
19
|
Semyachkina-Glushkovskaya O, Pavlov A, Kurths J, Borisova E, Gisbrecht A, Sindeeva O, Abdurashitov A, Shirokov A, Navolokin N, Zinchenko E, Gekalyuk A, Ulanova M, Zhu D, Luo Q, Tuchin V. Optical monitoring of stress-related changes in the brain tissues and vessels associated with hemorrhagic stroke in newborn rats. BIOMEDICAL OPTICS EXPRESS 2015; 6:4088-97. [PMID: 26504656 PMCID: PMC4605065 DOI: 10.1364/boe.6.004088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/26/2015] [Accepted: 09/18/2015] [Indexed: 05/04/2023]
Abstract
Stress is a major factor for a risk of cerebrovascular catastrophes. Studying of mechanisms underlying stress-related brain-injures in neonates is crucial for development of strategy to prevent of neonatal stroke. Here, using a model of sound-stress-induced intracranial hemorrhages in newborn rats and optical methods, we found that cerebral veins are more sensitive to the deleterious effect of stress than arteries and microvessels. The development of venous insufficiency with decreased blood outflow from the brain accompanied by hypoxia, reduction of complexity of venous blood flow and high production of beta-arrestin-1 are possible mechanisms responsible for a risk of neonatal hemorrhagic stroke.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Huazhong University of Science and Technology, Wuhan 430074, China
| | - Alexey Pavlov
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Jürgen Kurths
- Huazhong University of Science and Technology, Wuhan 430074, China
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| | - Ekaterina Borisova
- Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, Sofia 1784, Bulgaria
| | - Alexander Gisbrecht
- Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, Sofia 1784, Bulgaria
| | - Olga Sindeeva
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | | | - Alexander Shirokov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Entusiastov Str.13, Saratov 410049, Russia
| | | | | | - Artem Gekalyuk
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Maria Ulanova
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - Dan Zhu
- Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- Huazhong University of Science and Technology, Wuhan 430074, China
| | - Valery Tuchin
- Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Huazhong University of Science and Technology, Wuhan 430074, China
- Laboratory of Biophotonics, Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
20
|
Liu X, Gebremedhin D, Harder DR, Koehler RC. Contribution of epoxyeicosatrienoic acids to the cerebral blood flow response to hypoxemia. J Appl Physiol (1985) 2015; 119:1202-9. [PMID: 25792716 DOI: 10.1152/japplphysiol.01043.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/17/2015] [Indexed: 02/01/2023] Open
Abstract
Adenosine A2A receptors and ATP-activated K(+) (KATP) channels contribute to part of the cerebral vasodilatory response to systemic hypoxia, but other mediators are likely involved. Epoxyeicosatrienoic acids (EETs) are cerebral vasodilators and are released from astrocytes exposed to hypoxia. Moreover, stimulation of metabotropic glutamate receptors (mGluR) produces vasodilation by an EET-dependent mechanism. Here, we tested the hypothesis that EET signaling and mGluR activation contribute to hypoxic vasodilation. Laser-Doppler flow was measured over cerebral cortex of anesthetized rats subjected to stepwise reductions in arterial oxygen saturation to 50-70%. Hypoxic reactivity was calculated as the slope of the change in laser-Doppler flow vs. the reciprocal of arterial oxygen content. Hypoxic reactivity significantly decreased from 9.2 ± 1.9 (±95% confidence interval) in controls with vehicle treatment to 2.6 ± 1.4 with the EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid, to 3.0 ± 1.5 with the EET synthesis inhibitor MS-PPOH, to 1.9 ± 2.3 with the combined mGluR subtype 1 and 5 antagonists 2-methyl-6-(phenylethynyl)pyridine and LY367385, to 5.6 ± 1.2 with the KATP channel inhibitor glibenclamide, and to 5.8 ± 2.3 with the A2A receptor antagonist SCH58261. However, reactivity was not significantly altered by the A2B receptor antagonist MRS1754 (6.7 ± 1.8; P = 0.28 Dunnett's test) or by the 20-hydroxyeicosatetraenoic acid synthesis inhibitor HET0016 (7.5 ± 2.3; P = 0.6). These data indicate that, in addition to the known contributions of A2A receptors and KATP channels to the increase in cerebral blood flow during hypoxia, EETs and mGluRs make a major contribution, possibly by mGluR stimulation and hypoxia-induced release of EETs. In contrast, A2B receptors do not make a major contribution, and 20-hydroxyeicosatetraenoic acid does not significantly limit hypoxic vasodilation.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Debebe Gebremedhin
- Department of Physiology and the Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - David R Harder
- Department of Physiology and the Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland;
| |
Collapse
|
21
|
Glibenclamide for the treatment of ischemic and hemorrhagic stroke. Int J Mol Sci 2015; 16:4973-84. [PMID: 25749474 PMCID: PMC4394459 DOI: 10.3390/ijms16034973] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 11/16/2022] Open
Abstract
Ischemic and hemorrhagic strokes are associated with severe functional disability and high mortality. Except for recombinant tissue plasminogen activator, therapies targeting the underlying pathophysiology of central nervous system (CNS) ischemia and hemorrhage are strikingly lacking. Sur1-regulated channels play essential roles in necrotic cell death and cerebral edema following ischemic insults, and in neuroinflammation after hemorrhagic injuries. Inhibiting endothelial, neuronal, astrocytic and oligodendroglial sulfonylurea receptor 1-transient receptor potential melastatin 4 (Sur1-Trpm4) channels and, in some cases, microglial KATP (Sur1-Kir6.2) channels, with glibenclamide is protective in a variety of contexts. Robust preclinical studies have shown that glibenclamide and other sulfonylurea agents reduce infarct volumes, edema and hemorrhagic conversion, and improve outcomes in rodent models of ischemic stroke. Retrospective studies suggest that diabetic patients on sulfonylurea drugs at stroke presentation fare better if they continue on drug. Additional laboratory investigations have implicated Sur1 in the pathophysiology of hemorrhagic CNS insults. In clinically relevant models of subarachnoid hemorrhage, glibenclamide reduces adverse neuroinflammatory and behavioral outcomes. Here, we provide an overview of the preclinical studies of glibenclamide therapy for CNS ischemia and hemorrhage, discuss the available data from clinical investigations, and conclude with promising preclinical results that suggest glibenclamide may be an effective therapeutic option for ischemic and hemorrhagic stroke.
Collapse
|
22
|
Simard JM, Sheth KN, Kimberly WT, Stern BJ, del Zoppo GJ, Jacobson S, Gerzanich V. Glibenclamide in cerebral ischemia and stroke. Neurocrit Care 2014; 20:319-33. [PMID: 24132564 DOI: 10.1007/s12028-013-9923-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The sulfonylurea receptor 1 (Sur1)-transient receptor potential 4 (Trpm4) channel is an important molecular element in focal cerebral ischemia. The channel is upregulated in all cells of the neurovascular unit following ischemia, and is linked to microvascular dysfunction that manifests as edema formation and secondary hemorrhage, which cause brain swelling. Activation of the channel is a major molecular mechanism of cytotoxic edema and "accidental necrotic cell death." Blockade of Sur1 using glibenclamide has been studied in different types of rat models of stroke: (i) in conventional non-lethal models (thromboembolic, 1-2 h temporary, or permanent middle cerebral artery occlusion), glibenclamide reduces brain swelling and infarct volume and improves neurological function; (ii) in lethal models of malignant cerebral edema, glibenclamide reduces edema, brain swelling, and mortality; (iii) in models with rtPA, glibenclamide reduces swelling, hemorrhagic transformation, and death. Retrospective studies of diabetic patients who present with stroke have shown that those whose diabetes is managed with a sulfonylurea drug and who are maintained on the sulfonylurea drug during hospitalization for stroke have better outcomes at discharge and are less likely to suffer hemorrhagic transformation. Here, we provide a comprehensive review of the basic science, preclinical experiments, and retrospective clinical studies on glibenclamide in focal cerebral ischemia and stroke. We also compare the preclinical work in stroke models to the updated recommendations of the Stroke Therapy Academic Industry Roundtable (STAIR). The findings reviewed here provide a strong foundation for a translational research program to study glibenclamide in patients with ischemic stroke.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA,
| | | | | | | | | | | | | |
Collapse
|
23
|
Smith KJ, MacLeod D, Willie CK, Lewis NCS, Hoiland RL, Ikeda K, Tymko MM, Donnelly J, Day TA, MacLeod N, Lucas SJE, Ainslie PN. Influence of high altitude on cerebral blood flow and fuel utilization during exercise and recovery. J Physiol 2014; 592:5507-27. [PMID: 25362150 PMCID: PMC4270509 DOI: 10.1113/jphysiol.2014.281212] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/18/2014] [Indexed: 11/08/2022] Open
Abstract
We examined the hypotheses that: (1) during incremental exercise and recovery following 4-6 days at high altitude (HA) global cerebral blood flow (gCBF) increases to preserve cerebral oxygen delivery (CDO2) in excess of that required by an increasing cerebral metabolic rate of oxygen ( CM RO2); (2) the trans-cerebral exchange of oxygen vs. carbohydrates (OCI; carbohydrates = glucose + ½lactate) would be similar during exercise and recovery at HA and sea level (SL). Global CBF, intra-cranial arterial blood velocities, extra-cranial blood flows, and arterial-jugular venous substrate differences were measured during progressive steady-state exercise (20, 40, 60, 80, 100% maximum workload (Wmax)) and through 30 min of recovery. Measurements (n = 8) were made at SL and following partial acclimatization to 5050 m. At HA, absolute Wmax was reduced by ∼50%. During submaximal exercise workloads (20-60% Wmax), despite an elevated absolute gCBF (∼20%, P < 0.05) the relative increases in gCBF were not different at HA and SL. In contrast, gCBF was elevated at HA compared with SL during 80 and 100% Wmax and recovery. Notwithstanding a maintained CDO2 and elevated absolute CM RO2 at HA compared with SL, the relative increase in CM RO2 was similar during 20-80% Wmax but half that of the SL response (i.e. 17 vs. 27%; P < 0.05 vs. SL) at 100% Wmax. The OCI was reduced at HA compared with SL during 20, 40, and 60% Wmax but comparable at 80 and 100% Wmax. At HA, OCI returned almost immediately to baseline values during recovery, whereas at SL it remained below baseline. In conclusion, the elevations in gCBF during exercise and recovery at HA serve to maintain CDO2. Despite adequate CDO2 at HA the brain appears to increase non-oxidative metabolism during exercise and recovery.
Collapse
Affiliation(s)
- K J Smith
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - D MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - C K Willie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - N C S Lewis
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - R L Hoiland
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - K Ikeda
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - M M Tymko
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - J Donnelly
- University of Otago, Dunedin, New Zealand University Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - T A Day
- Department of Biology, Mount Royal Univeristy, Calgary, AB, Canada
| | - N MacLeod
- Carolina Friends School, Durham, NC, USA
| | - S J E Lucas
- University of Otago, Dunedin, New Zealand University of Birmingham, Birmingham, UK
| | - P N Ainslie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
24
|
Boggs DH, Simard JM, Steven A, Mehta MP. Potential of glyburide to reduce intracerebral edema in brain metastases. Expert Rev Neurother 2014; 14:379-88. [DOI: 10.1586/14737175.2014.890891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Harrell JW, Schrage WG. Cyclooxygenase-derived vasoconstriction restrains hypoxia-mediated cerebral vasodilation in young adults with metabolic syndrome. Am J Physiol Heart Circ Physiol 2013; 306:H261-9. [PMID: 24213610 DOI: 10.1152/ajpheart.00709.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Poor cerebrovascular function in metabolic syndrome (MetSyn) likely contributes to elevated risk of cerebrovascular disease in this growing clinical population. Younger MetSyn adults without clinical evidence of cerebrovascular disease exhibit preserved hypercapnic vasodilation yet markedly impaired hypoxic vasodilation, but the mechanisms behind reduced hypoxic vasodilation are unknown. Based on data from rats, we tested the hypothesis that younger adults with MetSyn exhibit reduced cerebral hypoxic vasodilation due to loss of vasodilating prostaglandins. Middle cerebral artery velocity (MCAv) was measured with transcranial Doppler ultrasound in adults with MetSyn (n = 13, 33 ± 3 yr) and healthy controls (n = 15, 31 ± 2 yr). Isocapnic hypoxia was induced by titrating inspired oxygen to lower arterial saturation to 90% and 80% for 5 min each. Separately, hypercapnia was induced by increasing end-tidal CO2 10 mmHg above baseline levels. Cyclooxygenase inhibition (100 mg indomethacin) was conducted in a randomized double-blind, placebo controlled design. MCAv was normalized for group differences in blood pressure (healthy: 89 ± 2 mmHg vs. MetSyn: 102 ± 2 mmHg) as cerebrovascular conductance index (CVCi), and used to assess cerebral vasodilation. Hypoxia increased CVCi in both groups; however, vasodilation was ∼55% lower in MetSyn at SpO2 = 80% (P < 0.05). Indomethacin tended to decrease hypoxic vasodilation in healthy controls, and unexpectedly increased dilation in MetSyn (P < 0.05). In contrast to hypoxia, hypercapnia-mediated vasodilation was similar between groups, as was the decrease in vasodilation with indomethacin. These data indicate increased production of vasoconstrictor prostaglandins restrains hypoxic cerebral vasodilation in MetSyn, preventing them from responding appropriately to this important physiological stressor.
Collapse
Affiliation(s)
- John W Harrell
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | | |
Collapse
|
26
|
Kurland DB, Tosun C, Pampori A, Karimy JK, Caffes NM, Gerzanich V, Simard JM. Glibenclamide for the treatment of acute CNS injury. Pharmaceuticals (Basel) 2013; 6:1287-303. [PMID: 24275850 PMCID: PMC3817601 DOI: 10.3390/ph6101287] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/17/2013] [Accepted: 09/23/2013] [Indexed: 12/22/2022] Open
Abstract
First introduced into clinical practice in 1969, glibenclamide (US adopted name, glyburide) is known best for its use in the treatment of diabetes mellitus type 2, where it is used to promote the release of insulin by blocking pancreatic KATP [sulfonylurea receptor 1 (Sur1)-Kir6.2] channels. During the last decade, glibenclamide has received renewed attention due to its pleiotropic protective effects in acute CNS injury. Acting via inhibition of the recently characterized Sur1-Trpm4 channel (formerly, the Sur1-regulated NCCa-ATP channel) and, in some cases, via brain KATP channels, glibenclamide has been shown to be beneficial in several clinically relevant rodent models of ischemic and hemorrhagic stroke, traumatic brain injury, spinal cord injury, neonatal encephalopathy of prematurity, and metastatic brain tumor. Glibenclamide acts on microvessels to reduce edema formation and secondary hemorrhage, it inhibits necrotic cell death, it exerts potent anti-inflammatory effects and it promotes neurogenesis—all via inhibition of Sur1. Two clinical trials, one in TBI and one in stroke, currently are underway. These recent findings, which implicate Sur1 in a number of acute pathological conditions involving the CNS, present new opportunities to use glibenclamide, a well-known, safe pharmaceutical agent, for medical conditions that heretofore had few or no treatment options.
Collapse
Affiliation(s)
- David B. Kurland
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Adam Pampori
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Jason K. Karimy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Nicholas M. Caffes
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-410-328-0850; Fax: +1-410-328-0124
| |
Collapse
|
27
|
Glibenclamide Administration Attenuates Infarct Volume, Hemispheric Swelling, and Functional Impairments following Permanent Focal Cerebral Ischemia in Rats. Stroke Res Treat 2012; 2012:460909. [PMID: 22988544 PMCID: PMC3440943 DOI: 10.1155/2012/460909] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022] Open
Abstract
Studies from a single laboratory have shown that in rodent models of permanent stroke, administration of the sulfonylurea glibenclamide (Glib) is highly effective in reducing edema, mortality, and lesion volume. The Stroke Therapy Academic Industry Roundtable (STAIR) recommends that new acute treatments for ischemic stroke to be replicated across different laboratories. Accordingly, we examined the effect of low-dose Glib in a permanent suture occlusion model of stroke. Male Sprague-Dawley rats underwent permanent middle cerebral artery occlusion (pMCAO) followed by an initial intraperitoneal injection of Glib (10 μg/kg) and the start of a constant infusion (200 ng/h) via miniosmotic pump at the onset of ischemia. Functional deficits were assessed by Neurological Severity Score (NSS) and grip-strength meter at 24 and 48 h after pMCAO. Glib-treated rats showed a significant reduction in infarct volume, lower NSS, and less hemispheric swelling compared to vehicle. Grip strength was decreased significantly in pMCAO rats compared to shams and significantly improved by treatment with Glib. Taken together, these data indicate that Glib has strong neuroprotective effects following ischemic stroke and may warrant further testing in future clinical trials for human stroke.
Collapse
|
28
|
Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab 2012; 32:1699-717. [PMID: 22714048 PMCID: PMC3434627 DOI: 10.1038/jcbfm.2012.91] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 01/13/2023]
Abstract
The sulfonylurea receptor 1 (Sur1)-regulated NC(Ca-ATP) channel is a nonselective cation channel that is regulated by intracellular calcium and adenosine triphosphate. The channel is not constitutively expressed, but is transcriptionally upregulated de novo in all cells of the neurovascular unit, in many forms of central nervous system (CNS) injury, including cerebral ischemia, traumatic brain injury (TBI), spinal cord injury (SCI), and subarachnoid hemorrhage (SAH). The channel is linked to microvascular dysfunction that manifests as edema formation and delayed secondary hemorrhage. Also implicated in oncotic cell swelling and oncotic (necrotic) cell death, the channel is a major molecular mechanism of 'accidental necrotic cell death' in the CNS. In animal models of SCI, pharmacological inhibition of Sur1 by glibenclamide, as well as gene suppression of Abcc8, prevents delayed capillary fragmentation and tissue necrosis. In models of stroke and TBI, glibenclamide ameliorates edema, secondary hemorrhage, and tissue damage. In a model of SAH, glibenclamide attenuates the inflammatory response due to extravasated blood. Clinical trials of an intravenous formulation of glibenclamide in TBI and stroke underscore the importance of recent advances in understanding the role of the Sur1-regulated NC(Ca-ATP) channel in acute ischemic, traumatic, and inflammatory injury to the CNS.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA.
| | | | | | | |
Collapse
|
29
|
Simard JM, Yurovsky V, Tsymbalyuk N, Melnichenko L, Ivanova S, Gerzanich V. Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke. Stroke 2009; 40:604-9. [PMID: 19023097 PMCID: PMC2744391 DOI: 10.1161/strokeaha.108.522409] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/24/2008] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Ischemia/hypoxia induces de novo expression of the sulfonylurea receptor 1-regulated NC(Ca-ATP) channel. In rodent models of ischemic stroke, early postevent administration of the sulfonylurea, glibenclamide, is highly effective in reducing edema, mortality, and lesion volume, and in patients with diabetes presenting with ischemic stroke, pre-event plus postevent use of sulfonylureas is associated with better neurological outcome. However, the therapeutic window for treatment with glibenclamide has not been studied. METHODS We examined the effect of low-dose (nonhypoglycemogenic) glibenclamide in 3 rat models of ischemic stroke, all involving proximal middle cerebral artery occlusion (MCAo): a thromboembolic model, a permanent suture occlusion model, and a temporary suture occlusion model with reperfusion (105 minutes occlusion, 2-day reperfusion). Treatment was started at various times up to 6 hours post-MCAo. Lesion volumes were measured 48 hours post-MCAo using 2,3,5-triphenyltetrazolium chloride. RESULTS Glibenclamide reduced total lesion volume by 53% in the thromboembolic MCAo model at 6 hours, reduced corrected cortical lesion volume by 51% in the permanent MCAo model at 4 hours, and reduced corrected cortical lesion volume by 41% in the temporary MCAo model at 5.75 hours (P<0.05 for all 3). Analysis of pooled data from the permanent MCAo and temporary MCAo series indicated a sigmoidal relationship between hemispheric swelling and corrected cortical lesion volume with the half-maximum cortical lesion volume being observed with 10% hemispheric swelling. CONCLUSIONS Low-dose glibenclamide has a strong beneficial effect on lesion volume and has a highly favorable therapeutic window in several models of ischemic stroke.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201-1595, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Omeis I, Chen W, Jhanwar-Uniyal M, Rozental R, Murali R, Abrahams JM. Prevention of cerebral vasospasm by local delivery of cromakalim with a biodegradable controlled-release system in a rat model of subarachnoid hemorrhage. J Neurosurg 2009; 110:1015-20. [PMID: 19119878 DOI: 10.3171/2008.8.jns08202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT One mechanism that contributes to cerebral vasospasm is the impairment of potassium channels in vascular smooth muscles. Adenosine triphosphate-sensitive potassium channel openers (PCOs) appear to be particularly effective for dilating cerebral arteries in experimental models of subarachnoid hemorrhage (SAH). A mode of safe administration that provides timed release of PCO drugs is still a subject of investigation. The authors tested the efficacy of locally delivered intrathecal cromakalim, a PCO, incorporated into a controlled-release system to prevent cerebral vasospasm in a rat model of SAH. METHODS Cromakalim was coupled to a viscous carrier, hyaluronan, 15% by weight. In vitro release kinetics studies showed a steady release of cromakalim over days. Fifty adult male Sprague-Dawley rats weighing 350-400 g each were divided into 10 groups and treated with various doses of cromakalim or cromakalim/hyaluronan in a rat double SAH model. Treatment was started 30 minutes after the second SAH induction. Animals were killed 3 days after treatment, and the basilar arteries were processed for morphometric measurements and histological analysis. RESULTS Controlled release of cromakalim from the cromakalim/hyaluronan implant at a dose of 0.055 mg/kg significantly increased lumen patency in a dose-dependent manner up to 94 +/- 8% (mean +/- standard error of the mean) of the basilar arteries of the sham group compared with the empty polymer group (p = 0.006). Results in the empty polymer group were not different from those in the SAH-only group, with a lumen patency of 65 +/- 12%. Lumen patencies of the cromakalim-only groups did not differ in statistical significance at low (64 +/- 9%) or high (66 +/- 7%) doses compared to the SAH-only group. CONCLUSIONS Treatment of SAH with a controlled-release cromakalim/hyaluronan implant prevented experimental cerebral vasospasm in this rat double hemorrhage model; this inhibition was dose-dependent. The authors' results confirm that sustained delivery of cromakalim perivascularly to cerebral vessels could be an effective therapeutic strategy in the treatment of cerebral vasospasm after SAH.
Collapse
Affiliation(s)
- Ibrahim Omeis
- Departments of Neurosurgery, New York Medical College, Munger Pavilion, 3rd Floor, Valhalla, New York 10595, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Hare GMT, Tsui AKY, McLaren AT, Ragoonanan TE, Yu J, Mazer CD. Anemia and cerebral outcomes: many questions, fewer answers. Anesth Analg 2008; 107:1356-70. [PMID: 18806052 DOI: 10.1213/ane.0b013e318184cfe9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A number of clinical studies have associated acute anemia with cerebral injury in perioperative patients. Evidence of such injury has been observed near the currently accepted transfusion threshold (hemoglobin [Hb] concentration, 7-8 g/dL), and well above the threshold for cerebral tissue hypoxia (Hb 3-4 g/dL). However, hypoxic and nonhypoxic mechanisms of anemia-induced cerebral injury have not been clearly elucidated. In addition, protective mechanisms which may minimize cerebral injury during acute anemia have not been well defined. Vasodilatory mechanisms, including nitric oxide (NO), may help to maintain cerebral oxygen delivery during anemia as all three NO synthase (NOS) isoforms (neuronal, endothelial, and inducible NOS) have been shown to be up-regulated in different experimental models of acute hemodilutional anemia. Recent experimental evidence has also demonstrated an increase in an important transcription factor, hypoxia inducible factor (HIF)-1alpha, in the cerebral cortex of anemic rodents at clinically relevant Hb concentrations (Hb 6-7 g/dL). This suggests that cerebral oxygen homeostasis may be in jeopardy during acute anemia. Under hypoxic conditions, cytoplasmic HIF-1alpha degradation is inhibited, thereby allowing it to accumulate, dimerize, and translocate into the nucleus to promote transcription of a number of hypoxic molecules. Many of these molecules, including erythropoietin, vascular endothelial growth factor, and inducible NOS have also been shown to be up-regulated in the anemic brain. In addition, HIF-1alpha transcription can be increased by nonhypoxic mediators including cytokines and vascular hormones. Furthermore, NOS-derived NO may also stabilize HIF-1alpha in the absence of tissue hypoxia. Thus, during anemia, HIF-1alpha has the potential to regulate cerebral cellular responses under both hypoxic and normoxic conditions. Experimental studies have demonstrated that HIF-1alpha may have either neuroprotective or neurotoxic capacity depending on the cell type in which it is up-regulated. In the current review, we characterize these cellular processes to promote a clearer understanding of anemia-induced cerebral injury and protection. Potential mechanisms of anemia-induced injury include cerebral emboli, tissue hypoxia, inflammation, reactive oxygen species generation, and excitotoxicity. Potential mechanisms of cerebral protection include NOS/NO-dependent optimization of cerebral oxygen delivery and cytoprotective mechanisms including HIF-1alpha, erythropoietin, and vascular endothelial growth factor. The overall balance of these activated cellular mechanisms may dictate whether or not their up-regulation leads to cytoprotection or cellular injury during anemia. A clearer understanding of these mechanisms may help us target therapies that will minimize anemia-induced cerebral injury in perioperative patients.
Collapse
Affiliation(s)
- Gregory M T Hare
- Department of Anesthesia, University of Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Injeti ER, Sandoval RJ, Williams JM, Smolensky AV, Ford LE, Pearce WJ. Maximal stimulation-induced in situ myosin light chain kinase activity is upregulated in fetal compared with adult ovine carotid arteries. Am J Physiol Heart Circ Physiol 2008; 295:H2289-98. [PMID: 18835918 DOI: 10.1152/ajpheart.00606.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Postnatal decreases in vascular reactivity involve decreases in the thick filament component of myofilament calcium sensitivity, which is measured as the relationship between cytosolic calcium concentration and myosin light chain (MLC20) phosphorylation. The present study tests the hypothesis that downregulation of thick filament reactivity is due to downregulation of myosin light chain kinase (MLCK) activity in adult compared with fetal arteries. Total MLCK activity, calculated as %MLC20 phosphorylated per second in intact arteries during optimal inhibition of myosin light chain phosphatase activity, was significantly less in adult (6.56+/-0.29%) than in fetal preparations (7.39+/-0.53%). In situ MLC20 concentrations (microM) in adult (198+/-28) and fetal arteries (236+/-44) did not differ significantly. In situ MLCK concentrations (microM), however, were significantly greater in adult (8.21+/-0.59) than in fetal arteries (1.83+/-0.13). In situ MLCK activities (ng MLC20 phosphorylated.s(-1).ng MLCK(-1)) were significantly less in adult (0.26+/-0.01) than in fetal arteries (1.52+/-0.11). In contrast, MLCK activities in adult (15.8+/-1.5) and fetal artery homogenates (17.3+/-1.3) were not significantly different. When in situ fractional activation was calculated, adult values (1.72+/-0.17%) were significantly less than fetal values (9.08+/-0.83%). Together, these results indicate that decreased thick filament reactivity in adult compared with fetal ovine carotid arteries is due at least in part to greater MLCK activity in fetal arteries, which in turn cannot be explained by differences in MLCK, MLC20, or calmodulin concentrations. Instead, this difference appears to involve age-related differences in fractional activation of the MLCK enzyme.
Collapse
Affiliation(s)
- Elisha R Injeti
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | | | |
Collapse
|
33
|
Liou HH, Hsu HJ, Tsai YF, Shih CY, Chang YC, Lin CJ. Interaction between nicotine and MPTP/MPP+ in rat brain endothelial cells. Life Sci 2007; 81:664-72. [PMID: 17689566 DOI: 10.1016/j.lfs.2007.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/21/2007] [Accepted: 07/04/2007] [Indexed: 11/25/2022]
Abstract
To examine the interaction between nicotine and MPTP/MPP+ in the blood-brain barrier, cellular uptake of MPTP and MPP+ was studied in the presence of nicotine and several compounds, including MPTP/MPP+ analogs and a specific inhibitor of organic cation transporter (OCT) in an adult rat brain microvascular endothelial cell line (ARBEC). The kinetic properties of the uptake of MPTP, MPP+, and nicotine were also examined. In addition, a microdialysis study was performed to evaluate the in vivo effect of nicotine (i.p.) on extracellular levels of MPTP and MPP+ in the brain after intravenous administration of MPTP. The results showed that uptake of MPTP, MPP+, and nicotine was partly mediated by a carrier system that was sensitive to decynium22, a specific OCT inhibitor. RT-PCR showed the presence of OCT1 mRNA in ARBEC. Capacity for uptake of MPTP and nicotine was much higher than that for MPP+ (Km and Vm values of 10.94+/-1.44 microM and 0.049+/-0.007 pmol/mg s, respectively, for MPP+, compared to values of 35.75+/-0.85 microM and 40.95+/-3.56 pmol/mg s for MPTP and 25.29+/-6.44 microM and 51.15+/-14.18 pmol/mg s for nicotine). In addition, nicotine competitively inhibited the uptake of both MPTP and MPP+, with inhibition constants (Ki) of 328 microM and 210 microM, respectively. In vivo microdialysis results showed that nicotine significantly reduced brain extracellular levels of MPTP in the first 30 min (507.4+/-8.5 ng/ml vs. 637.9+/-30.8 ng/ml with and without nicotine pre-treatment, respectively), but did not have significant effect on those of MPP+. In conclusion, nicotine can inhibit in vitro cellular uptake and in vivo transfer of MPTP across the blood-brain barrier, which can be mediated by multiple pathways including OCT1.
Collapse
Affiliation(s)
- Horng-Huei Liou
- Department of Pharmacology, College of Medicine, National Taiwan University, and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW This article reviews the physiological and pathophysiological effects of anaemia on the brain, focusing on the hypothesis that anaemia-induced cerebral hypoxia contributes to anaemic cerebral dysfunction and injury. It also reviews evidence that the regulated increase in cerebral blood flow observed during anaemia represents a compensatory neuroprotective mechanism invoked to optimize cerebral oxygen delivery, thereby protecting the brain from hypoxic injury. RECENT FINDINGS Severe anaemia, or low haematocrit, has been associated with cognitive dysfunction, impaired cerebral vascular regulation, neurological injury, and increased mortality, which suggests that the brain is vulnerable to anaemia-induced injury. Reduced cerebral tissue oxygen tension has been measured directly at haemoglobin concentrations near 35 g/l, suggesting that hypoxia may contribute to anaemic cerebral injury. A demonstration of increased hypoxic cerebral gene expression, including neuronal nitric oxide synthase, may provide a more sensitive means of determining the minimum haemoglobin concentration at which anaemia-induced cerebral hypoxia can be detected. The measurement of increased cerebral cortical neuronal nitric oxide synthase messenger RNA and protein levels in rats, at haemoglobin concentrations between 50 and 60 g/l, suggests that cerebral hypoxia occurred at these higher haemoglobin concentrations. Mechanisms regulating anaemic cerebral vasodilation and increased cerebral oxygen delivery, including nitric oxide, require further elucidation to establish their role in protecting the brain during anaemia. SUMMARY Characterization of mechanisms of anaemia-induced cerebral injury will contribute to the development of optimal therapeutic strategies for anaemic patients. Such strategies would include a clearer definition of transfusion triggers based on physiological endpoints. The overall goal of these efforts would be to minimize morbidity and mortality associated with anaemia.
Collapse
Affiliation(s)
- Gregory M T Hare
- Department of Anesthesia, University of Toronto, St Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, Tsymbalyuk N, West GA, Gerzanich V. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med 2006; 12:433-40. [PMID: 16550187 PMCID: PMC2740734 DOI: 10.1038/nm1390] [Citation(s) in RCA: 333] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 01/26/2006] [Indexed: 12/25/2022]
Abstract
Pathological conditions in the central nervous system, including stroke and trauma, are often exacerbated by cerebral edema. We recently identified a nonselective cation channel, the NC(Ca-ATP) channel, in ischemic astrocytes that is regulated by sulfonylurea receptor 1 (SUR1), is opened by depletion of ATP and, when opened, causes cytotoxic edema. Here, we evaluated involvement of this channel in rodent models of stroke. SUR1 protein and mRNA were newly expressed in ischemic neurons, astrocytes and capillaries. Upregulation of SUR1 was linked to activation of the transcription factor Sp1 and was associated with expression of functional NC(Ca-ATP) but not K(ATP) channels. Block of SUR1 with low-dose glibenclamide reduced cerebral edema, infarct volume and mortality by 50%, with the reduction in infarct volume being associated with cortical sparing. Our findings indicate that the NC(Ca-ATP) channel is crucially involved in development of cerebral edema, and that targeting SUR1 may provide a new therapeutic approach to stroke.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, School of Medicine, University of Maryland at Baltimore, 22 South Greene Street, Suite 12SD, Baltimore, Maryland 21201-1595, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Qin X, Kwansa H, Bucci E, Roman RJ, Koehler RC. Role of 20-HETE in the pial arteriolar constrictor response to decreased hematocrit after exchange transfusion of cell-free polymeric hemoglobin. J Appl Physiol (1985) 2005; 100:336-42. [PMID: 16166237 PMCID: PMC1826914 DOI: 10.1152/japplphysiol.00890.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebrovascular response to decreases in hematocrit and viscosity depends on accompanying changes in arterial O2 content. This study examines whether 1) the arteriolar dilation seen after exchange transfusion with a 5% albumin solution can be reduced by the K(ATP) channel antagonist glibenclamide (known to inhibit hypoxic dilation), and 2) the arteriolar constriction seen after exchange transfusion with a cell-free hemoglobin polymer to improve O2-carrying capacity can be blocked by inhibitors of the synthesis or vasoconstrictor actions of 20-HETE. In anesthetized rats, decreasing hematocrit by one-third with albumin exchange transfusion dilated pial arterioles (14 +/- 2%; SD), whereas superfusion of the surface of the brain with 10 muM glibenclamide blocked this response (-10 +/- 7%). Exchange transfusion with polymeric hemoglobin decreased the diameter of pial arterioles by 20 +/- 3% without altering arterial pressure. This constrictor response was attenuated by superfusing the surface of the brain with a 20-HETE antagonist, WIT-002 (10 microM; -5 +/- 1%), and was blocked by two chemically dissimilar selective inhibitors of the synthesis of 20-HETE, DDMS (50 microM; 0 +/- 4%) and HET-0016 (1 microM; +6 +/- 4%). The constrictor response to hemoglobin transfusion was not blocked by an inhibitor of nitric oxide (NO) synthase, and the inhibition of the constrictor response by DDMS was not altered by coadministration of the NO synthase inhibitor. We conclude 1) that activation of K(ATP) channels contributes to pial arteriolar dilation during anemia, whereas 2) constriction to polymeric hemoglobin transfusion at reduced hematocrit represents a regulatory response that limits increased O2 transport and that is mediated by increased formation of 20-HETE, rather than by NO scavenging.
Collapse
Affiliation(s)
- Xinyue Qin
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | | | | | |
Collapse
|
37
|
Lockman PR, McAfee G, Geldenhuys WJ, Van der Schyf CJ, Abbruscato TJ, Allen DD. Brain uptake kinetics of nicotine and cotinine after chronic nicotine exposure. J Pharmacol Exp Ther 2005; 314:636-42. [PMID: 15845856 DOI: 10.1124/jpet.105.085381] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blood-brain barrier (BBB) nicotine transfer has been well documented in view of the fact that this alkaloid is a cerebral blood flow marker. However, limited data are available that describe BBB penetration of the major tobacco alkaloids after chronic nicotine exposure. This question needs to be addressed, given long-term nicotine exposure alters both BBB function and morphology. In contrast to nicotine, it has been reported that cotinine (the major nicotine metabolite) does not penetrate the BBB, yet cotinine brain distribution has been well documented after nicotine exposure. Surprisingly, therefore, the literature indirectly suggests that central nervous system cotinine distribution occurs secondarily to nicotine brain metabolism. The aims of the current report are to define BBB transfer of nicotine and cotinine in naive and nicotine-exposed animals. Using an in situ brain perfusion model, we assessed the BBB uptake of [3H]nicotine and [3H]cotinine in naive animals and in animals exposed chronically to S-(-)nicotine (4.5 mg/kg/day) through osmotic minipump infusion. Our data demonstrate that 1) [3H]nicotine BBB uptake is not altered in the in situ perfusion model after chronic nicotine exposure, 2) [3H]cotinine penetrates the BBB, and 3) similar to [3H]nicotine, [3H]cotinine BBB transfer is not altered by chronic nicotine exposure. To our knowledge, this is the first report detailing the uptake of nicotine and cotinine after chronic nicotine exposure and quantifying the rate of BBB penetration by cotinine.
Collapse
Affiliation(s)
- P R Lockman
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 So. Coulter Drive, Amarillo, TX 79106-1712, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Sampei K, Ulatowski JA, Asano Y, Kwansa H, Bucci E, Koehler RC. Role of nitric oxide scavenging in vascular response to cell-free hemoglobin transfusion. Am J Physiol Heart Circ Physiol 2005; 289:H1191-201. [PMID: 15894576 PMCID: PMC1819403 DOI: 10.1152/ajpheart.00251.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modified Hb solutions have been developed as O(2) carrier transfusion fluids, but of concern is the possibility that increased scavenging of nitric oxide (NO) within the plasma will alter vascular reactivity even if the Hb does not readily extravasate. The effect of decreasing hematocrit from approximately 30% to 18% by an exchange transfusion of a 6% sebacyl cross-linked tetrameric Hb solution on the diameter of pial arterioles possessing tight endothelial junctions was examined through a cranial window in anesthetized cats with and without a NO synthase (NOS) inhibitor. Superfusion of a NOS inhibitor decreased diameter, and subsequent Hb transfusion produced additional constriction that was not different from Hb transfusion alone but was different from the dilation observed by exchange transfusion of an albumin solution after NOS inhibition. In contrast, abluminal application of the cross-linked Hb produced constriction that was attenuated by the NOS inhibitor. Neither abluminal nor intraluminal cross-linked Hb interfered with pial arteriolar dilation to cromakalim, an activator of ATP-sensitive potassium channels. Pial vascular reactivity to hypocapnia and hypercapnia was unaffected by Hb transfusion. Microsphere-determined regional blood flow indicated selective decreases in perfusion after Hb transfusion in the kidney, small intestine, and neurohypophysis, which does not have tight endothelial junctions. Administration of a NOS inhibitor to reduce the basal level of NO available for scavenging before Hb transfusion prevented further decreases in blood flow to these regions compared with NOS inhibition alone. In contrast, blood flow to skeletal and left ventricular muscle increased, and cerebral blood flow was unchanged after Hb transfusion. This cross-linked Hb tetramer is known to appear in renal lymph but not in urine. We conclude that cell-free tetrameric Hb does not scavenge sufficient NO in the plasma space to significantly affect baseline tone in vascular beds with tight endothelial junctions but does produce substantial constriction in beds with porous endothelium. The data support increasing the molecular size of Hb by polymerization or conjugation to limit extravasation in all vascular beds to preserve normal vascular reactivity.
Collapse
Affiliation(s)
- Kenji Sampei
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, 600 N. Wolfe St., Blalock 1404, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
39
|
Milton SL, Lutz PL. Adenosine and ATP-sensitive potassium channels modulate dopamine release in the anoxic turtle (Trachemys scripta) striatum. Am J Physiol Regul Integr Comp Physiol 2005; 289:R77-83. [PMID: 15718391 DOI: 10.1152/ajpregu.00647.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive dopamine (DA) is known to cause hypoxic/ischemic damage to mammalian brain. The freshwater turtle Trachemys scripta, however, maintains basal striatal DA levels in anoxia. We investigated DA balance during early anoxia when energy status in the turtle brain is compromised. The roles of ATP-sensitive potassium (K(ATP)) channels and adenosine (AD) receptors were investigated as these factors affect DA balance in mammalian neurons. Striatal extracellular DA was determined by microdialysis with HPLC in the presence or absence of the specific DA transport blocker GBR-12909, the K(ATP) blocker 2,3-butanedione monoxime, or the nonspecific AD receptor blocker theophylline. We found that in contrast to long-term anoxia, blocking DA reuptake did not significantly increase extracellular levels in 1-h anoxic turtles. Low DA levels in early anoxia were maintained instead by activation of K(ATP) channels and AD receptors. Blocking K(ATP) resulted in a 227% increase in extracellular DA in 1-h anoxic turtles but had no effect after 4 h of anoxia. Similarly, blocking AD receptors increased DA during the first hour of anoxia but did not change DA levels at 4-h anoxia. Support for the role of K(ATP) channels in DA balance comes from normoxic animals treated with K(ATP) opener; infusing diazoxide but not adenosine into the normoxic turtle striatum resulted in an immediate DA decrease to 14% of basal values within 1.5 h. Alternative strategies to maintain low extracellular levels may prevent catastrophic DA increases when intracellular energy is compromised while permitting the turtle to maintain a functional neuronal network during long-term anoxia.
Collapse
Affiliation(s)
- Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA.
| | | |
Collapse
|
40
|
Johnston AJ, Steiner LA, Gupta AK, Menon DK. Cerebral oxygen vasoreactivity and cerebral tissue oxygen reactivity. Br J Anaesth 2003; 90:774-86. [PMID: 12765894 DOI: 10.1093/bja/aeg104] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
There has long been an appreciation that cerebral blood flow is modulated to ensure adequate cerebral oxygen delivery in the face of systemic hypoxaemia. There is increasing appreciation of the modulatory role of hyperoxia in the cerebral circulation and a consideration of the effects of such modulation on the maintenance of cerebral tissue oxygen concentration. These newer findings are particularly important in view of the fact that cerebrovascular and tissue oxygen responses to hyperoxia may change in disease. Such alterations provide important insights into pathophysiological mechanisms and may provide novel targets for therapy. However, before the modulatory effects of hyperoxia can be used for diagnosis, to predict prognosis or to direct therapy, a more detailed analysis and understanding of the physiological concepts behind this modulation are required, as are the limitations of the measurement tools used to define the modulation. This overview summarizes the available information in this area and suggests some avenues for further research.
Collapse
Affiliation(s)
- A J Johnston
- University of Cambridge Department of Anaesthetics, Box 93 and Academic Neurosurgery, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK.
| | | | | | | |
Collapse
|
41
|
Gerrits RJ, Stein EA, Greene AS. Ca(2+)-activated potassium (K(Ca)) channel inhibition decreases neuronal activity-blood flow coupling. Brain Res 2002; 948:108-16. [PMID: 12383961 DOI: 10.1016/s0006-8993(02)02957-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A number of possible mediators have been proposed to couple neuronal activity with local cerebral metabolic activity and blood flow, but the mechanisms by which these mediators act is still unclear. In order to explore these coupling mechanisms, we used the rodent whisker-barrel cortex (WBC) model to test the hypothesis that modulation of K(Ca) channels is an important step in this coupling process. Anesthetized rats were prepared for laser-Doppler flowmetry (LDF) or evoked potential recordings utilizing a thinned cranial window over WBC. Superfusion of the K(Ca) channel blockers tetraethylammonium (TEA) or iberiotoxin directly onto WBC attenuated the magnitude of the whisker evoked LDF changes. Similar effects were seen after intravenous administration of TEA. Although attenuated, neither the temporal profile of the elicited blood flow responses nor the evoked electrical activity in WBC were affected by K(Ca) blockade. These data suggest that the process of cerebral metabolism/blood flow coupling in the rodent WBC involves K(Ca) channels.
Collapse
Affiliation(s)
- Ronald J Gerrits
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
42
|
Esaki T, Itoh Y, Shimoji K, Cook M, Jehle J, Sokoloff L. Blockade of K(ATP) channels with glibenclamide does not alter functional activation of cerebral blood flow in the unanesthetized rat. Brain Res 2002; 948:56-63. [PMID: 12383955 DOI: 10.1016/s0006-8993(02)02948-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Possible involvement of ATP-sensitive K(+) (K(ATP)) channels in the cerebral blood flow (CBF) response to neuronal functional activation was investigated in unanesthetized rats. Glibenclamide (1, 2, or 10 micromol/l), a specific inhibitor of K(ATP) channels, was infused intracisternally continuously for 30 min prior to and during the 1-min period of measurement of CBF. Unilateral functional activation was maintained throughout the measurement of CBF by continuous stroking of the vibrissae on the left side of the face. Local CBF was determined bilaterally by the quantitative autoradiographic [14C]iodoantipyrine method in four structures of the whisker-to-barrel cortex pathway and in 18 structures unrelated to the pathway. Glibenclamide tended to lower baseline CBF in almost all regions examined, statistically significantly (P<0.05) in the cerebellar lobules with all doses, in the cerebellar cortex with 10 micromol/l, in the pontine nuclei with 2 and 10 micromol/l, and in the spinal trigeminal nucleus of the unstimulated side with all doses. Vibrissal stimulation increased CBF unilaterally in all the stations of the pathway, but the percent increases were not statistically significantly affected by the glibenclamide treatment, except in the spinal trigeminal nucleus where it was reduced statistically significantly (P<0.05) only by 2 micromol/l glibenclamide. These results indicate that K(ATP) channels may play a role in the tonic regulation of baseline CBF in some regions but provide no support for their role in the increases in CBF evoked by functional activation.
Collapse
Affiliation(s)
- Takanori Esaki
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Building #36, Rm 1A07, 36 Convent Drive, MSC 4030, Bethesda, MD 20892-4030, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Pathological states (i.e. stroke, cardiac arrest) can lead to reduced blood flow to the brain potentially altering blood-brain barrier (BBB) permeability and regulatory transport functions. BBB disruption leads to increased cerebrovascular permeability, an important factor in the development of ischemic brain injury and edema formation. In this study, reduced flow was investigated to determine the effects on cerebral blood flow (CBF), pressure, basal BBB permeability, and transport of insulin and K+ across the BBB. Anesthetized adult female Sprague-Dawley rats were measured at normal flow (3.1 ml min(-1)), half flow (1.5 ml min(-1)), and quarter flow (0.75 ml min(-1)), using bilateral in situ brain perfusion for 20 min followed by capillary depletion analysis. Reduction in perfusion flow rates demonstrated a modest reduction in CBF (1.27-1.56 ml min(-1) g(-1)), a decrease in pressure, and no significant effect on basal BBB permeability indicating that autoregulation remained functional. In contrast, there was a concomittant decrease in BBB transport of both insulin and K+ with reduced flow. At half and quarter flow, insulin transport was significantly reduced (R(Br)%=17.2 and R(Br)%=16.2, respectively) from control (R(Br)%=30.4). Additionally, a significant reduction in [86Rb+] was observed at quarter flow (R(Br)%=2.5) as compared to control (R(Br)%=4.8) suggesting an alteration in ion homeostasis as a result of low flow. This investigation suggests that although autoregulation maintains CBF, BBB transport mechanisms were significantly compromised in states of reduced flow. These flow alterations may have a significant impact on brain homeostasis in pathological states.
Collapse
Affiliation(s)
- S Hom
- Department of Pharmacology, University of Arizona, College of Medicine, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
44
|
Abstract
We hypothesized that the response of cerebral blood flow (CBF) to changing viscosity would be dependent on "baseline" CBF, with a greater influence of viscosity during high-flow conditions. Plasma viscosity was adjusted to 1.0 or 3.0 cP in rats by exchange transfusion with red blood cells diluted in lactated Ringer solution or with dextran. Cortical CBF was measured by H(2) clearance. Two groups of animals remained normoxic and normocarbic and served as controls. Other groups were made anemic, hypercapnic, or hypoxic to increase CBF. Under baseline conditions before intervention, CBF did not differ between groups and averaged 49.4 +/- 10.2 ml. 100 g(-1). min(-1) (+/-SD). In control animals, changing plasma viscosity to 1. 0 or 3.0 cP resulted in CBF of 55.9 +/- 8.6 and 42.5 +/- 12.7 ml. 100 g(-1). min(-1), respectively (not significant). During hemodilution, hypercapnia, and hypoxia with a plasma viscosity of 1. 0 cP, CBF varied from 98 to 115 ml. 100 g(-1). min(-1). When plasma viscosity was 3.0 cP during hemodilution, hypercapnia, and hypoxia, CBF ranged from 56 to 58 ml. 100 g(-1). min(-1) and was significantly reduced in each case (P < 0.05). These results support the hypothesis that viscosity has a greater role in regulation of CBF when CBF is increased. In addition, because CBF more closely followed changes in plasma viscosity (rather than whole blood viscosity), we believe that plasma viscosity may be the more important factor in controlling CBF.
Collapse
Affiliation(s)
- Y Tomiyama
- Department of Anesthesia, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
45
|
|