1
|
Tian X, Peng Z, Wu Y, Cao Y, Li X, Li Y, Tang S, Chen AF, Li X. Loss of Type 2 Bone Morphogenetic Protein Receptor Activates NOD-Like Receptor Family Protein 3/Gasdermin E-Mediated Pyroptosis in Pulmonary Arterial Hypertension. J Am Heart Assoc 2025; 14:e034726. [PMID: 39846318 PMCID: PMC12074700 DOI: 10.1161/jaha.124.034726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is an incurable disease initiated by endothelial dysfunction, secondary to vascular inflammation and occlusive pulmonary arterial vascular remodeling, resulting in elevated pulmonary arterial pressure and right heart failure. Previous research has reported that dysfunction of type 2 bone morphogenetic protein receptor (BMPR2) signaling pathway in endothelium is inclined to prompt inflammation in PAH models, but the underlying mechanism of BMPR2 deficiency-mediated inflammation needs further investigation. This study was designed to investigate whether BMPR2 deficiency contributes to pulmonary arterial hypertension via the NLRP3 (NOD-like receptor family protein 3)/GSDME (gasdermin E)-mediated pyroptosis pathway. METHODS AND RESULTS NLRP3 knockout or short hairpin RNA interference of GSDME was performed in PAH animal models to investigate its effect on PAH progression. In addition, the effects of BMPR2 deficiency and restoration of BMPR2 by BMP9 (bone morphogenetic protein 9) or FK506 on pyroptosis were explored both in animal and cell models. Knockout of NLRP3 or short hairpin RNA interference of GSDME in animal models can alleviate the development of pyroptosis, accompanied with improved endothelial integrity, vascular remodeling, and right ventricular systolic pressure. Blocking BMPR2 is sufficient to induce NLRP3 upregulation and release of inflammatory factor IL-1β (interleukin-1β) in pulmonary arterial endothelial cells. Moreover, BMPR2 deficiency can induce GSDME-mediated pyroptosis through NLRP3 activation in 2 animal models, whereas activation of BMPR2 signaling by FK506 or BMP9 can reverse these phenotypes. CONCLUSIONS These findings provide evidence that loss of BMPR2 signaling promotes endothelial cell pyroptosis by enhancing NLRP3/GSDME signaling in PAH. Our findings may provide new insights to explore the inflammatory mechanism of PAH treatment.
Collapse
MESH Headings
- Animals
- Pyroptosis
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- Bone Morphogenetic Protein Receptors, Type II/deficiency
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Disease Models, Animal
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/pathology
- Signal Transduction
- Mice, Knockout
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Pulmonary Artery/pathology
- Mice, Inbred C57BL
- Male
- Humans
- Mice
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Arterial Pressure
Collapse
Affiliation(s)
- Xiao‐ting Tian
- The Center for Vascular Disease and Translational Medicine, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of Pharmacology, Xiangya School of Pharmaceutical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory for Bioanalysis of Complex Matrix SamplesChangshaChina
| | - Zhou‐yang‐fan Peng
- The Center for Vascular Disease and Translational Medicine, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of Health Management Center, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Yu‐si Wu
- The Center for Vascular Disease and Translational Medicine, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, School of MedicineHunan Normal UniversityChangshaChina
| | - Yuan‐yuan Cao
- Department of Pharmacology, Xiangya School of Pharmaceutical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory for Bioanalysis of Complex Matrix SamplesChangshaChina
| | - Xue‐chun Li
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ying Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix SamplesChangshaChina
- Department of Health Management Center, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Si‐Yuan Tang
- Xiangya Nursing SchoolCentral South UniversityChangshaChina
| | - Alex F. Chen
- The Center for Vascular Disease and Translational Medicine, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiao‐hui Li
- The Center for Vascular Disease and Translational Medicine, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of Pharmacology, Xiangya School of Pharmaceutical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory for Bioanalysis of Complex Matrix SamplesChangshaChina
| |
Collapse
|
2
|
Chen Y, Li Y, Leng B, Cao C, Wu G, Ye S, Deng L. LncRNA MYOSLID contributes to PH via targeting BMPR2 signaling in pulmonary artery smooth muscle cell. Vascul Pharmacol 2024; 157:107439. [PMID: 39549862 DOI: 10.1016/j.vph.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND/OBJECTIVE The pathogenesis and vascular remodeling during pulmonary hypertension (PH) have been associated with dysregulation of bone morphogenetic protein receptor type 2 (BMPR2) and transforming growth factor-β (TGF-β) signaling in pulmonary artery smooth muscle cells (PASMCs). Evidence suggests that the human-specific lncRNA MYOSLID is a transcriptional target of the TGF-β/SMAD pathway. In this study, we investigated the involvement of MYOSLID in the pathogenesis of PH. METHODS Lung tissues from PH patients and rat PH models were analyzed to assess clinical relevance. RNA-Seq was performed to identify target genes. Pulmonary artery smooth muscle cells (PASMCs) were used to evaluate function and underlying mechanisms. RESULTS RNA-Seq analysis of PASMCs stimulated by TGF-β1 revealed significantly dysregulated lncRNAs. MYOSLID expression was markedly elevated in lung tissues from PH patients and in PASMCs stimulated with TGF-β1. Mechanistically, loss of MYOSLID inhibited the TGF-β pathway by reducing SMAD2/3 PHosphorylation and activated the BMPR2 pathway by enhancing SMAD1/5/9 phosphorylation and increasing ID genes expression in PASMCs. DAZAP2, a target gene of MYOSLID, functions as an inhibitor of BMPR2 signaling. Moreover, DAZAP2 expression was significantly elevated in lung tissues from PH patients and rat PH models. Functionally, knockdown of MYOSLID and DAZAP2 reduced proliferation, migration, and apoptosis resistance in PASMCs. CONCLUSION The activation of the MYOSLID-DAZAP2-BMPR2 axis contributes to pulmonary vascular remodeling, and targeting MYOSLID and DAZAP2 may represent novel therapeutic strategies for PH treatment.
Collapse
Affiliation(s)
- Yuan Chen
- Wuxi Lung Transplant Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, Jiangsu, China
| | - Yuan Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bin Leng
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chengrui Cao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guifu Wu
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Shenzhen, Guangdong, China; NHC Key Laboratory on Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shugao Ye
- Wuxi Lung Transplant Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, Jiangsu, China.
| | - Lin Deng
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
3
|
Mou K, Chan SMH, Vlahos R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol Ther 2024; 257:108635. [PMID: 38508342 DOI: 10.1016/j.pharmthera.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifaceted respiratory disorder characterized by progressive airflow limitation and systemic implications. It has become increasingly apparent that COPD exerts its influence far beyond the respiratory system, extending its impact to various organ systems. Among these, the musculoskeletal system emerges as a central player in both the pathogenesis and management of COPD and its associated comorbidities. Muscle dysfunction and osteoporosis are prevalent musculoskeletal disorders in COPD patients, leading to a substantial decline in exercise capacity and overall health. These manifestations are influenced by systemic inflammation, oxidative stress, and hormonal imbalances, all hallmarks of COPD. Recent research has uncovered an intricate interplay between COPD and musculoskeletal comorbidities, suggesting that muscle and bone tissues may cross-communicate through the release of signalling molecules, known as "myokines" and "osteokines". We explored this dynamic relationship, with a particular focus on the role of the immune system in mediating the cross-communication between muscle and bone in COPD. Moreover, we delved into existing and emerging therapeutic strategies for managing musculoskeletal disorders in COPD. It underscores the development of personalized treatment approaches that target both the respiratory and musculoskeletal aspects of COPD, offering the promise of improved well-being and quality of life for individuals grappling with this complex condition. This comprehensive review underscores the significance of recognizing the profound impact of COPD on the musculoskeletal system and its comorbidities. By unravelling the intricate connections between these systems and exploring innovative treatment avenues, we can aspire to enhance the overall care and outcomes for COPD patients, ultimately offering hope for improved health and well-being.
Collapse
Affiliation(s)
- Kevin Mou
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Dignam JP, Sharma S, Stasinopoulos I, MacLean MR. Pulmonary arterial hypertension: Sex matters. Br J Pharmacol 2024; 181:938-966. [PMID: 37939796 DOI: 10.1111/bph.16277] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua P Dignam
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Smriti Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ioannis Stasinopoulos
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
5
|
Wang MT, Weng KP, Chang SK, Huang WC, Chen LW. Hemodynamic and Clinical Profiles of Pulmonary Arterial Hypertension Patients with GDF2 and BMPR2 Variants. Int J Mol Sci 2024; 25:2734. [PMID: 38473983 DOI: 10.3390/ijms25052734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Asians have a higher carrier rate of pulmonary arterial hypertension (PAH)-related genetic variants than Caucasians do. This study aimed to identify PAH-related genetic variants using whole exome sequencing (WES) in Asian idiopathic and heritable PAH cohorts. A WES library was constructed, and candidate variants were further validated by polymerase chain reaction and Sanger sequencing in the PAH cohort. In a total of 69 patients, the highest incidence of variants was found in the BMPR2, ATP13A3, and GDF2 genes. Regarding the BMPR2 gene variants, there were two nonsense variants (c.994C>T, p. Arg332*; c.1750C>T, p. Arg584*), one missense variant (c.1478C>T, p. Thr493Ile), and one novel in-frame deletion variant (c.877_888del, p. Leu293_Ser296del). Regarding the GDF2 variants, there was one likely pathogenic nonsense variant (c.259C>T, p. Gln87*) and two missense variants (c.1207G>A, p. Val403Ile; c.38T>C, p. Leu13Pro). The BMPR2 and GDF2 variant subgroups had worse hemodynamics. Moreover, the GDF2 variant patients were younger and had a significantly lower GDF2 value (135.6 ± 36.2 pg/mL, p = 0.002) in comparison to the value in the non-BMPR2/non-GDF2 mutant group (267.8 ± 185.8 pg/mL). The BMPR2 variant carriers had worse hemodynamics compared to the patients with the non-BMPR2/non-GDF2 mutant group. Moreover, there was a significantly lower GDF2 value in the GDF2 variant carriers compared to the control group. GDF2 may be a protective or corrected modifier in certain genetic backgrounds.
Collapse
Affiliation(s)
- Mei-Tzu Wang
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ken-Pen Weng
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | | | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Physical Therapy, Fooyin University, Kaohsiung 813, Taiwan
| | - Lee-Wei Chen
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 813, Taiwan
| |
Collapse
|
6
|
Singh N, Eickhoff C, Garcia-Agundez A, Bertone P, Paudel SS, Tambe DT, Litzky LA, Cox-Flaherty K, Klinger JR, Monaghan SF, Mullin CJ, Pereira M, Walsh T, Whittenhall M, Stevens T, Harrington EO, Ventetuolo CE. Transcriptional profiles of pulmonary artery endothelial cells in pulmonary hypertension. Sci Rep 2023; 13:22534. [PMID: 38110438 PMCID: PMC10728171 DOI: 10.1038/s41598-023-48077-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by endothelial cell (EC) dysfunction. There are no data from living patients to inform whether differential gene expression of pulmonary artery ECs (PAECs) can discern disease subtypes, progression and pathogenesis. We aimed to further validate our previously described method to propagate ECs from right heart catheter (RHC) balloon tips and to perform additional PAEC phenotyping. We performed bulk RNA sequencing of PAECs from RHC balloons. Using unsupervised dimensionality reduction and clustering we compared transcriptional signatures from PAH to controls and other forms of pulmonary hypertension. Select PAEC samples underwent single cell and population growth characterization and anoikis quantification. Fifty-four specimens were analyzed from 49 subjects. The transcriptome appeared stable over limited passages. Six genes involved in sex steroid signaling, metabolism, and oncogenesis were significantly upregulated in PAH subjects as compared to controls. Genes regulating BMP and Wnt signaling, oxidative stress and cellular metabolism were differentially expressed in PAH subjects. Changes in gene expression tracked with clinical events in PAH subjects with serial samples over time. Functional assays demonstrated enhanced replication competency and anoikis resistance. Our findings recapitulate fundamental biological processes of PAH and provide new evidence of a cancer-like phenotype in ECs from the central vasculature of PAH patients. This "cell biopsy" method may provide insight into patient and lung EC heterogeneity to advance precision medicine approaches in PAH.
Collapse
Affiliation(s)
- Navneet Singh
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Carsten Eickhoff
- Department of Computer Science, Brown University, Providence, RI, USA
| | | | - Paul Bertone
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Dhananjay T Tambe
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Department of Mechanical Aerospace and Biomedical Engineering, College of Engineering, University of South Alabama, Mobile, AL, USA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - James R Klinger
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sean F Monaghan
- Department of Surgery, Alpert Medical School of Brown University, Providence, RI, USA
| | - Christopher J Mullin
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | - Mary Whittenhall
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Elizabeth O Harrington
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Corey E Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Health Services, Policy and Practice, Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Pokharel MD, Marciano DP, Fu P, Franco MC, Unwalla H, Tieu K, Fineman JR, Wang T, Black SM. Metabolic reprogramming, oxidative stress, and pulmonary hypertension. Redox Biol 2023; 64:102797. [PMID: 37392518 PMCID: PMC10363484 DOI: 10.1016/j.redox.2023.102797] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Mitochondria are highly dynamic organelles essential for cell metabolism, growth, and function. It is becoming increasingly clear that endothelial cell dysfunction significantly contributes to the pathogenesis and vascular remodeling of various lung diseases, including pulmonary arterial hypertension (PAH), and that mitochondria are at the center of this dysfunction. The more we uncover the role mitochondria play in pulmonary vascular disease, the more apparent it becomes that multiple pathways are involved. To achieve effective treatments, we must understand how these pathways are dysregulated to be able to intervene therapeutically. We know that nitric oxide signaling, glucose metabolism, fatty acid oxidation, and the TCA cycle are abnormal in PAH, along with alterations in the mitochondrial membrane potential, proliferation, and apoptosis. However, these pathways are incompletely characterized in PAH, especially in endothelial cells, highlighting the urgent need for further research. This review summarizes what is currently known about how mitochondrial metabolism facilitates a metabolic shift in endothelial cells that induces vascular remodeling during PAH.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - David P Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Maria Clara Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-Medicine, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, The University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
8
|
Kuramoto K, Ogawa A, Kiyama K, Matsubara H, Ohno Y, Fuchikami C, Hayashi K, Kosugi K, Kuwano K. Antiproliferative effect of selexipag active metabolite MRE-269 on pulmonary arterial smooth muscle cells from patients with chronic thromboembolic pulmonary hypertension. Pulm Circ 2023; 13:e12231. [PMID: 37180827 PMCID: PMC10173849 DOI: 10.1002/pul2.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a group 4 pulmonary hypertension (PH) characterized by nonresolving thromboembolism in the central pulmonary artery and vascular occlusion in the proximal and distal pulmonary artery. Medical therapy is chosen for patients who are ineligible for pulmonary endarterectomy or balloon pulmonary angioplasty or who have symptomatic residual PH after surgery or intervention. Selexipag, an oral prostacyclin receptor agonist and potent vasodilator, was approved for CTEPH in Japan in 2021. To evaluate the pharmacological effect of selexipag on vascular occlusion in CTEPH, we examined how its active metabolite MRE-269 affects platelet-derived growth factor-stimulated pulmonary arterial smooth muscle cells (PASMCs) from CTEPH patients. MRE-269 showed a more potent antiproliferative effect on PASMCs from CTEPH patients than on those from normal subjects. DNA-binding protein inhibitor (ID) genes ID1 and ID3 were found by RNA sequencing and real-time quantitative polymerase chain reaction to be expressed at lower levels in PASMCs from CTEPH patients than in those from normal subjects and were upregulated by MRE-269 treatment. ID1 and ID3 upregulation by MRE-269 was blocked by co-incubation with a prostacyclin receptor antagonist, and ID1 knockdown by small interfering RNA transfection attenuated the antiproliferative effect of MRE-269. ID signaling may be involved in the antiproliferative effect of MRE-269 on PASMCs. This is the first study to demonstrate the pharmacological effects on PASMCs from CTEPH patients of a drug approved for the treatment of CTEPH. Both the vasodilatory and the antiproliferative effect of MRE-269 may contribute to the efficacy of selexipag in CTEPH.
Collapse
Affiliation(s)
- Kazuya Kuramoto
- Discovery Research LaboratoriesNippon Shinyaku Co., LtdKyotoJapan
| | - Aiko Ogawa
- Department of Clinical ScienceNational Hospital Organization Okayama Medical CenterOkayamaJapan
| | - Kazuko Kiyama
- Department of Clinical ScienceNational Hospital Organization Okayama Medical CenterOkayamaJapan
| | - Hiromi Matsubara
- Department of CardiologyNational Hospital Organization Okayama Medical CenterOkayamaJapan
| | - Yuji Ohno
- Discovery Research LaboratoriesNippon Shinyaku Co., LtdKyotoJapan
| | - Chiaki Fuchikami
- Discovery Research LaboratoriesNippon Shinyaku Co., LtdKyotoJapan
| | - Kyota Hayashi
- Discovery Research LaboratoriesNippon Shinyaku Co., LtdKyotoJapan
| | - Keiji Kosugi
- Discovery Research LaboratoriesNippon Shinyaku Co., LtdKyotoJapan
| | - Keiichi Kuwano
- Discovery Research LaboratoriesNippon Shinyaku Co., LtdKyotoJapan
| |
Collapse
|
9
|
Abstract
Patients with heart failure (HF) often have pulmonary hypertension (PH), which is mainly post-capillary; however, some of them also develop a pre-capillary component. The exact mechanisms leading to combined pre- and post-capillary PH are not yet clear, but the phenomenon seems to start from a passive transmission of increased pressure from the left heart to the lungs, and then continues with the remodeling of both the alveolar and vascular components through different pathways. More importantly, it is not yet clear which patients are predisposed to develop the disease. These patients have some characteristics similar to those with idiopathic pulmonary arterial hypertension (e.g., young age and frequent incidence in female gender), but they share cardiovascular risk factors with patients with HF (e.g., obesity and diabetes), with both reduced and preserved ejection fraction. Thanks to echocardiography parameters and newly introduced scores, more tools are available to distinguish between idiopathic pulmonary arterial hypertension and combined PH and to guide patients' management. It may be hypothesized to treat patients in whom the pre-capillary component is predominant with specific therapies such as those for idiopathic pulmonary arterial hypertension; however, no adequately powered trials of PH-specific treatment are available in combined PH. Early evidence of clinical benefit has been proven in some trials on phosphodiesterase type 5 inhibitors, while data on prostacyclin analogues, endothelin-1 receptor antagonists, and soluble guanylate cyclase stimulators are still controversial.
Collapse
|
10
|
Abstract
Pulmonary hypertension (PH) describes heterogeneous population of patients with a mean pulmonary arterial pressure >20 mm Hg. Rarely, PH presents as a primary disorder but is more commonly part of a complex phenotype associated with comorbidities. Regardless of the cause, PH reduces life expectancy and impacts quality of life. The current clinical classification divides PH into 1 of 5 diagnostic groups to assign treatment. There are currently no pharmacological cures for any form of PH. Animal models are essential to help decipher the molecular mechanisms underlying the disease, to assign genotype-phenotype relationships to help identify new therapeutic targets, and for clinical translation to assess the mechanism of action and putative efficacy of new therapies. However, limitations inherent of all animal models of disease limit the ability of any single model to fully recapitulate complex human disease. Within the PH community, we are often critical of animal models due to the perceived low success upon clinical translation of new drugs. In this review, we describe the characteristics, advantages, and disadvantages of existing animal models developed to gain insight into the molecular and pathological mechanisms and test new therapeutics, focusing on adult forms of PH from groups 1 to 3. We also discuss areas of improvement for animal models with approaches combining several hits to better reflect the clinical situation and elevate their translational value.
Collapse
Affiliation(s)
- Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Université Laval, Québec, QC, Canada
| | - Vineet Agrawal
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allan Lawrie
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK & Insigneo institute for in silico medicine, Sheffield, UK
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
11
|
Kabwe JC, Sawada H, Mitani Y, Oshita H, Tsuboya N, Zhang E, Maruyama J, Miyasaka Y, Ko H, Oya K, Ito H, Yodoya N, Otsuki S, Ohashi H, Okamoto R, Dohi K, Nishimura Y, Mashimo T, Hirayama M, Maruyama K. CRISPR-mediated Bmpr2 point mutation exacerbates late pulmonary vasculopathy and reduces survival in rats with experimental pulmonary hypertension. Respir Res 2022; 23:87. [PMID: 35395852 PMCID: PMC8994407 DOI: 10.1186/s12931-022-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Patients with pulmonary arterial hypertension (PAH) carrying bone morphogenetic protein receptor type 2 (Bmpr2) mutations present earlier with severe hemodynamic compromise and have poorer survival outcomes than those without mutation. The mechanism underlying the worsening clinical phenotype of PAH with Bmpr2 mutations has been largely unaddressed in rat models of pulmonary hypertension (PH) because of the difficulty in reproducing progressive PH in mice and genetic modification in rats. We tested whether a clinically-relevant Bmpr2 mutation affects the progressive features of monocrotaline (MCT) induced-PH in rats. Methods A monoallelic single nucleotide insertion in exon 1 of Bmpr2 (+/44insG) was generated in rats using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9, then PH, pulmonary vascular disease (PVD) and survival after MCT injection with or without a phosphodiesterase type 5 inhibitor, tadalafil, administration were assessed. Results The +/44insG rats had reduced BMPR2 signalling in the lungs compared with wild-type. PH and PVD assessed at 3-weeks after MCT injection were similar in wild-type and +/44insG rats. However, survival at 4-weeks after MCT injection was significantly reduced in +/44insG rats. Among the rats surviving at 4-weeks after MCT administration, +/44insG rats had increased weight ratio of right ventricle to left ventricle plus septum (RV/[LV + S]) and % medial wall thickness (MWT) in pulmonary arteries (PAs). Immunohistochemical analysis showed increased vessels with Ki67-positive cells in the lungs, decreased mature and increased immature smooth muscle cell phenotype markers in the PAs in +/44insG rats compared with wild-type at 3-weeks after MCT injection. Contraction of PA in response to prostaglandin-F2α and endothelin-1 were significantly reduced in the +/44insG rats. The +/44insG rats that had received tadalafil had a worse survival with a significant increase in RV/(LV + S), %MWT in distal PAs and RV myocardial fibrosis compared with wild-type. Conclusions The present study demonstrates that the Bmpr2 mutation promotes dedifferentiation of PA smooth muscle cells, late PVD and RV myocardial fibrosis and adversely impacts both the natural and post-treatment courses of MCT-PH in rats with significant effects only in the late stages and warrants preclinical studies using this new genetic model to optimize treatment outcomes of heritable PAH. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02005-w.
Collapse
Affiliation(s)
- Jane Chanda Kabwe
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan
| | - Hirofumi Sawada
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan. .,The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan.
| | - Yoshihide Mitani
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hironori Oshita
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan.,The Department of Pediatrics, Nagoya City University School of Medicine, Aichi, Japan
| | - Naoki Tsuboya
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Erquan Zhang
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan.,The Department of Neonatology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University, Fujian, China
| | - Junko Maruyama
- The Department of Clinical Engineering, Suzuka University of Medical Science, Mie, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideyoshi Ko
- The Department of Clinical Engineering, Suzuka University of Medical Science, Mie, Japan
| | - Kazunobu Oya
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiromasa Ito
- The Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Noriko Yodoya
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Shoichiro Otsuki
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroyuki Ohashi
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Ryuji Okamoto
- The Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kaoru Dohi
- The Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuhei Nishimura
- The Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Mie, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Hirayama
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Kazuo Maruyama
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan
| |
Collapse
|
12
|
Yu Z, Xiao J, Chen X, Ruan Y, Chen Y, Zheng X, Wang Q. Bioactivities and mechanisms of natural medicines in the management of pulmonary arterial hypertension. Chin Med 2022; 17:13. [PMID: 35033157 PMCID: PMC8760698 DOI: 10.1186/s13020-022-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and rare disease without obvious clinical symptoms that shares characteristics with pulmonary vascular remodeling. Right heart failure in the terminal phase of PAH seriously threatens the lives of patients. This review attempts to comprehensively outline the current state of knowledge on PAH its pathology, pathogenesis, natural medicines therapy, mechanisms and clinical studies to provide potential treatment strategies. Although PAH and pulmonary hypertension have similar pathological features, PAH exhibits significantly elevated pulmonary vascular resistance caused by vascular stenosis and occlusion. Currently, the pathogenesis of PAH is thought to involve multiple factors, primarily including genetic/epigenetic factors, vascular cellular dysregulation, metabolic dysfunction, even inflammation and immunization. Yet many issues regarding PAH need to be clarified, such as the "oestrogen paradox". About 25 kinds monomers derived from natural medicine have been verified to protect against to PAH via modulating BMPR2/Smad, HIF-1α, PI3K/Akt/mTOR and eNOS/NO/cGMP signalling pathways. Yet limited and single PAH animal models may not corroborate the efficacy of natural medicines, and those natural compounds how to regulate crucial genes, proteins and even microRNA and lncRNA still need to put great attention. Additionally, pharmacokinetic studies and safety evaluation of natural medicines for the treatment of PAH should be undertaken in future studies. Meanwhile, methods for validating the efficacy of natural drugs in multiple PAH animal models and precise clinical design are also urgently needed to promote advances in PAH.
Collapse
Affiliation(s)
- Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiao Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yi Ruan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yang Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China.
| | - Qiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
13
|
Xing Y, Zhao J, Zhou M, Jing S, Zhao X, Mao P, Qian J, Huang C, Tian Z, Wang Q, Zeng X, Li M, Yang J. The LPS induced pyroptosis exacerbates BMPR2 signaling deficiency to potentiate SLE-PAH. FASEB J 2021; 35:e22044. [PMID: 34818449 DOI: 10.1096/fj.202100851rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a common and fatal complication of systemic lupus erythematosus (SLE). Whether the BMP receptor deficiency found in the genetic form of PAH is also involved in SLE-PAH patients remains to be identified. In this study, we employed patient-derived samples from SLE-associated PAH (SLE-PAH) and established comparable mouse models to clarify the role of BMP signaling in the pathobiology of SLE-PAH. Firstly, serum levels of LPS and autoantibodies (auto-Abs) directed at BMP receptors were significantly increased in patients with SLE-PAH compared with control subjects, measured by ELISA. Mass cytometry was applied to compare peripheral blood leukocyte phenotype in patients prior to and after treatment with steroids, which demonstrated inflammatory cells alteration in SLE-PAH. Furthermore, BMPR2 signaling and pyroptotic factors were examined in human pulmonary arterial endothelial cells (PAECs) in response to LPS stimulation. Interleukin-8 (IL-8) and E-selectin (SELE) expressions were up-regulated in autologous BMPR2+/R899X endothelial cells and siBMPR2-interfered PAECs. A SLE-PH model was established in mice induced with pristane and hypoxia. Moreover, the combination of endothelial specific BMPR2 knockout in SLE mice exacerbated pulmonary hypertension. Pyroptotic factors including gasdermin D (GSDMD) were elevated in the lungs of SLE-PH mice, and the pyroptotic effects of serum samples isolated from SLE-PAH patients on PAECs were analyzed. BMPR2 signaling upregulator (BUR1) showed anti-pyroptotic effects in SLE-PH mice and PAECs. Our results implied that deficiencies of BMPR2 signaling and proinflammatory factors together contribute to the development of PAH in SLE.
Collapse
Affiliation(s)
- Yanjiang Xing
- Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiuliang Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Meijun Zhou
- Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuliang Jing
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Zhao
- Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pei Mao
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyan Qian
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Can Huang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Qian Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jun Yang
- Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Bisserier M, Mathiyalagan P, Zhang S, Elmastour F, Dorfmüller P, Humbert M, David G, Tarzami S, Weber T, Perros F, Sassi Y, Sahoo S, Hadri L. Regulation of the Methylation and Expression Levels of the BMPR2 Gene by SIN3a as a Novel Therapeutic Mechanism in Pulmonary Arterial Hypertension. Circulation 2021; 144:52-73. [PMID: 34078089 PMCID: PMC8293289 DOI: 10.1161/circulationaha.120.047978] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 03/17/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. METHODS We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. RESULTS SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. CONCLUSIONS All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prabhu Mathiyalagan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Firas Elmastour
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Dorfmüller
- Hôpital Marie Lannelongue, Department of Pathology, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Sud, and Université Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
- Service de Pneumologie et Soins Intensifs Respiratoires and INSERM U999, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, Paris, France
| | - Gregory David
- New York University School of Medicine, New York, NY, USA
| | - Sima Tarzami
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington DC, USA
| | - Thomas Weber
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Mukherjee D, Konduri GG. Pediatric Pulmonary Hypertension: Definitions, Mechanisms, Diagnosis, and Treatment. Compr Physiol 2021; 11:2135-2190. [PMID: 34190343 PMCID: PMC8289457 DOI: 10.1002/cphy.c200023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pediatric pulmonary hypertension (PPH) is a multifactorial disease with diverse etiologies and presenting features. Pulmonary hypertension (PH), defined as elevated pulmonary artery pressure, is the presenting feature for several pulmonary vascular diseases. It is often a hidden component of other lung diseases, such as cystic fibrosis and bronchopulmonary dysplasia. Alterations in lung development and genetic conditions are an important contributor to pediatric pulmonary hypertensive disease, which is a distinct entity from adult PH. Many of the causes of pediatric PH have prenatal onset with altered lung development due to maternal and fetal conditions. Since lung growth is altered in several conditions that lead to PPH, therapy for PPH includes both pulmonary vasodilators and strategies to restore lung growth. These strategies include optimal alveolar recruitment, maintaining physiologic blood gas tension, nutritional support, and addressing contributing factors, such as airway disease and gastroesophageal reflux. The outcome for infants and children with PH is highly variable and largely dependent on the underlying cause. The best outcomes are for neonates with persistent pulmonary hypertension (PPHN) and reversible lung diseases, while some genetic conditions such as alveolar capillary dysplasia are lethal. © 2021 American Physiological Society. Compr Physiol 11:2135-2190, 2021.
Collapse
Affiliation(s)
- Devashis Mukherjee
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| | - Girija G. Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| |
Collapse
|
16
|
Dignam JP, Scott TE, Kemp-Harper BK, Hobbs AJ. Animal models of pulmonary hypertension: Getting to the heart of the problem. Br J Pharmacol 2021; 179:811-837. [PMID: 33724447 DOI: 10.1111/bph.15444] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite recent therapeutic advances, pulmonary hypertension (PH) remains a fatal disease due to the development of right ventricular (RV) failure. At present, no treatments targeted at the right ventricle are available, and RV function is not widely considered in the preclinical assessment of new therapeutics. Several small animal models are used in the study of PH, including the classic models of exposure to either hypoxia or monocrotaline, newer combinational and genetic models, and pulmonary artery banding, a surgical model of pure RV pressure overload. These models reproduce selected features of the structural remodelling and functional decline seen in patients and have provided valuable insight into the pathophysiology of RV failure. However, significant reversal of remodelling and improvement in RV function remains a therapeutic obstacle. Emerging animal models will provide a deeper understanding of the mechanisms governing the transition from adaptive remodelling to a failing right ventricle, aiding the hunt for druggable molecular targets.
Collapse
Affiliation(s)
- Joshua P Dignam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tara E Scott
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
Sanada TJ, Sun XQ, Happé C, Guignabert C, Tu L, Schalij I, Bogaard HJ, Goumans MJ, Kurakula K. Altered TGFβ/SMAD Signaling in Human and Rat Models of Pulmonary Hypertension: An Old Target Needs Attention. Cells 2021; 10:cells10010084. [PMID: 33419137 PMCID: PMC7825543 DOI: 10.3390/cells10010084] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Recent translational studies highlighted the inhibition of transforming growth factor (TGF)-β signaling as a promising target to treat pulmonary arterial hypertension (PAH). However, it remains unclear whether alterations in TGF-β signaling are consistent between PAH patients and animal models. Therefore, we compared TGF-β signaling in the lungs of PAH patients and rats with experimental PAH induced by monocrotaline (MCT) or SU5416+hypoxia (SuHx). In hereditary PAH (hPAH) patients, there was a moderate increase in both TGFβR2 and pSMAD2/3 protein levels, while these were unaltered in idiopathic PAH (iPAH) patients. Protein levels of TGFβR2 and pSMAD2/3 were locally increased in the pulmonary vasculature of PAH rats under both experimental conditions. Conversely, the protein levels of TGFβR2 and pSMAD2/3 were reduced in SuHx while slightly increased in MCT. mRNA levels of plasminogen activator inhibitor (PAI)-1 were increased only in MCT animals and such an increase was not observed in SuHx rats or in iPAH and hPAH patients. In conclusion, our data demonstrate considerable discrepancies in TGFβ-SMAD signaling between iPAH and hPAH patients, as well as between patients and rats with experimental PAH.
Collapse
MESH Headings
- Animals
- Blood Pressure
- Disease Models, Animal
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Phosphorylation
- Plasminogen Activator Inhibitor 1/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Signal Transduction
- Smad Proteins/metabolism
- Systole
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Takayuki Jujo Sanada
- Amsterdam UMC, Department of Pulmonology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.J.S.); (X.-Q.S.); (C.H.); (I.S.); (H.-J.B.)
| | - Xiao-Qing Sun
- Amsterdam UMC, Department of Pulmonology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.J.S.); (X.-Q.S.); (C.H.); (I.S.); (H.-J.B.)
| | - Chris Happé
- Amsterdam UMC, Department of Pulmonology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.J.S.); (X.-Q.S.); (C.H.); (I.S.); (H.-J.B.)
| | - Christophe Guignabert
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France; (C.G.); (L.T.)
- School of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France; (C.G.); (L.T.)
- School of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Ingrid Schalij
- Amsterdam UMC, Department of Pulmonology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.J.S.); (X.-Q.S.); (C.H.); (I.S.); (H.-J.B.)
| | - Harm-Jan Bogaard
- Amsterdam UMC, Department of Pulmonology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.J.S.); (X.-Q.S.); (C.H.); (I.S.); (H.-J.B.)
| | - Marie-José Goumans
- Laboratory for Cardiovascular Cell Biology, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Kondababu Kurakula
- Laboratory for Cardiovascular Cell Biology, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Correspondence: ; Tel.: +31-715-269-265; Fax: +31-715-268-270
| |
Collapse
|
18
|
Mirhadi E, Roufogalis BD, Banach M, Barati M, Sahebkar A. Resveratrol: Mechanistic and therapeutic perspectives in pulmonary arterial hypertension. Pharmacol Res 2021; 163:105287. [PMID: 33157235 DOI: 10.1016/j.phrs.2020.105287] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022]
Abstract
Resveratrol, trans 3,5,4'-trihydroxystilbene, is a stilbenoid polyphenol with a wide range of properties including antioxidant, neuroprotective, cardioprotective, anti-inflammatory and anticancer activities. It is found in the skins of grape (50-100 μg/mL), red wine, peanuts, bilberries, blueberries and cranberries. The most important effects of resveratrol have been found in cardiovascular disease, with pulmonary arterial hypertension (PAH) being a major severe and progressive component. Many factors are involved in the pathogenesis of PAH, including enzymes, transcription factors, proteins, chemokines, cytokines, hypoxia, oxidative stress and others. Resveratrol treats PAH through its actions on various signaling pathways. These signaling pathways are mainly suppressed SphK1-mediated NF-κB activation, BMP/SMAD signaling pathway, miR-638 and NR4A3/cyclin D1 pathway, SIRT1 pathway, Nrf-2, HIF-1 α expression, MAPK/ERK1 and PI3K/AKT pathways, and RhoA-ROCK signaling pathway. Resveratrol efficiently inhibits the proliferation of pulmonary arterial smooth muscle cells and right ventricular remodeling, which are underlying processes leading to enhanced PAH. While supportive evidence from randomized controlled trials is yet to be available, current in vitro and in vivo studies seem to be convincing and suggest a therapeutic promise for the use of resveratrol in PAH.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Mehdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Halal Research Center of IRI, FDA, Tehran, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Yeo Y, Yi ES, Kim JM, Jo EK, Seo S, Kim RI, Kim KL, Sung JH, Park SG, Suh W. FGF12 (Fibroblast Growth Factor 12) Inhibits Vascular Smooth Muscle Cell Remodeling in Pulmonary Arterial Hypertension. Hypertension 2020; 76:1778-1786. [PMID: 33100045 DOI: 10.1161/hypertensionaha.120.15068] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Loss of BMP (bone morphogenic protein) signaling induces a phenotype switch of pulmonary arterial smooth muscle cells (PASMCs), which is the pathological basis of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). Here, we identified FGF12 (fibroblast growth factor 12) as a novel regulator of the BMP-induced phenotype change in PASMCs and elucidated its role in pulmonary vascular remodeling during PAH development. Using murine models of PAH and lung specimens of patients with PAH, we observed that FGF12 expression was significantly reduced in PASMCs. In human PASMCs, FGF12 expression was increased by canonical BMP signaling. FGF12 knockdown blocked the antiproliferative and prodifferentiation effect of BMP on human PASMCs, suggesting that FGF12 is required for the BMP-mediated acquisition of the quiescent and differentiated PASMC phenotype. Mechanistically, FGF12 regulated the BMP-induced phenotype change by inducing MEF2a (myocyte enhancer factor 2a) phosphorylation via p38MAPK signaling, thereby modulating the expression of MEF2a target genes involved in cell proliferation and differentiation. Furthermore, we observed that TG (transgenic) mice with smooth muscle cell-specific FGF12 overexpression were protected from chronic hypoxia-induced PAH development, pulmonary vascular remodeling, and right ventricular hypertrophy. Consistent with the in vitro data using human PASMCs, FGF12 TG mice showed increased MEF2a phosphorylation and a substantial change in MEF2a target gene expression, compared with the WT (wild type) controls. Overall, our findings demonstrate a novel BMP/FGF12/MEF2a pathway regulating the PASMC phenotype switch and suggest FGF12 as a potential target for the development of therapeutics for ameliorating pulmonary vascular remodeling in PAH.
Collapse
Affiliation(s)
- Yeongju Yeo
- From the Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul, Korea (Y.Y., J.-M.K., E.-K.J., S.S., R.-I.K., K.L.K., W.S.)
| | - Eunhee S Yi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN (E.S.Y.)
| | - Jeong-Min Kim
- From the Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul, Korea (Y.Y., J.-M.K., E.-K.J., S.S., R.-I.K., K.L.K., W.S.)
| | - Eun-Kyung Jo
- From the Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul, Korea (Y.Y., J.-M.K., E.-K.J., S.S., R.-I.K., K.L.K., W.S.)
| | - Songyi Seo
- From the Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul, Korea (Y.Y., J.-M.K., E.-K.J., S.S., R.-I.K., K.L.K., W.S.)
| | - Ryul-I Kim
- From the Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul, Korea (Y.Y., J.-M.K., E.-K.J., S.S., R.-I.K., K.L.K., W.S.)
| | - Koung Li Kim
- From the Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul, Korea (Y.Y., J.-M.K., E.-K.J., S.S., R.-I.K., K.L.K., W.S.)
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei University, Incheon, Korea (J.-H.S.)
| | - Sang Gyu Park
- College of Pharmacy, Ajou University, Suwon, Korea (S.G.P.)
| | - Wonhee Suh
- From the Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul, Korea (Y.Y., J.-M.K., E.-K.J., S.S., R.-I.K., K.L.K., W.S.)
| |
Collapse
|
20
|
Batah SS, Alda MA, Rodrigues Lopes Roslindo Figueira R, Cruvinel HR, Perdoná Rodrigues da Silva L, Machado-Rugolo J, Velosa AP, Teodoro WR, Balancin M, Silva PL, Capelozzi VL, Fabro AT. In situ Evidence of Collagen V and Interleukin-6/Interleukin-17 Activation in Vascular Remodeling of Experimental Pulmonary Hypertension. Pathobiology 2020; 87:356-366. [PMID: 33099553 DOI: 10.1159/000510048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/09/2020] [Indexed: 11/19/2022] Open
Abstract
Several studies have reported the pathophysiologic and molecular mechanisms responsible for pulmonary arterial hypertension (PAH). However, the in situ evidence of collagen V (Col V) and interleukin-17 (IL-17)/interleukin-6 (IL-6) activation in PAH has not been fully elucidated. We analyzed the effects of collagen I (Col I), Col V, IL-6, and IL-17 on vascular remodeling and hemodynamics and its possible mechanisms of action in monocrotaline (MCT)-induced PAH. Twenty male Wistar rats were randomly divided into two groups. In the PAH group, animals received MCT 60 mg/kg intraperitoneally, whereas the control group (CTRL) received saline. On day 21, the pulmonary blood pressure (PAP) and right ventricular systolic pressure (RVSP) were determined. Lung histology (smooth muscle cell proliferation [α-smooth muscle actin; α-SMA] and periadventitial fibrosis), immunofluorescence (Col I, Col V, and α-SMA), immunohistochemistry (IL-6, IL-17, and transforming growth factor-beta [TGF-β]), and transmission electron microscopy to detect fibronexus were evaluated. The RVSP (40 ± 2 vs. 24 ± 1 mm Hg, respectively; p < 0.0001), right ventricle hypertrophy index (65 ± 9 and 25 ± 5%, respectively; p < 0.0001), vascular periadventitial Col I and Col V, smooth muscle cell α-SMA+, fibronexus, IL-6, IL-17, and TGF-β were higher in the MCT group than in the CTRL group. In conclusion, our findings indicate in situ evidence of Col V and IL-6/IL-17 activation in vascular remodeling and suggest that increase of Col V may yield potential therapeutic targets for treating patients with PAH.
Collapse
Affiliation(s)
- Sabrina Setembre Batah
- Department of Pathology and Legal Medicine, Riberão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maiara Almeida Alda
- Department of Pathology and Legal Medicine, Riberão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Ana Paula Velosa
- Rheumatology Division of the Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Balancin
- Laboratory of Histomorphometry and Lung Genomics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Laboratory of Histomorphometry and Lung Genomics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,
| | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, Riberão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Edgar JA, Molyneux RJ, Colegate SM. Linking Dietary Exposure to 1,2-Dehydropyrrolizidine Alkaloids with Cancers and Chemotherapy-Induced Pulmonary and Hepatic Veno-Occlusive Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5995-5997. [PMID: 32432873 DOI: 10.1021/acs.jafc.0c02582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- John A Edgar
- CSIRO Agriculture and Food, 11 Julius Avenue, North Ryde, New South Wales 2113, Australia
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720-4091, United States
| | - Steven M Colegate
- Poisonous Plant Research Laboratory, United States Department of Agriculture (USDA), 1150 East 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
22
|
Arwood MJ, Vahabi N, Lteif C, Sharma RK, Machado RF, Duarte JD. Transcriptome-wide analysis associates ID2 expression with combined pre- and post-capillary pulmonary hypertension. Sci Rep 2019; 9:19572. [PMID: 31862991 PMCID: PMC6925238 DOI: 10.1038/s41598-019-55700-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/25/2019] [Indexed: 01/11/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) patients who develop pulmonary hypertension (PH) have an increased risk of death, with combined pre- and post-capillary PH (CpcPH) having the highest risk. However, the mechanism behind PH development in HFpEF is poorly understood. We aimed to identify transcriptomic associations with PH development in HFpEF. Blood was collected from 30 HFpEF patients: 10 without PH, 10 with isolated post-capillary PH, and 10 with CpcPH. Gene expression measurements were completed using transcriptome-wide RNA sequencing. Gene expression differences were compared using a quasi-likelihood method adjusting for age, sex, race, and smoking-status. Biological pathways were compared using global gene expression differences. A replication in 34 additional heart failure patients and a validation in lung tissue from a representative mouse model were completed using quantitative PCR. Six differentially expressed genes were identified when comparing transcriptomics between subjects with CpcPH and those without PH. When tested in additional subjects, only the association with ID2 replicated. Consistent with clinical findings, Id2 expression was also upregulated in mice with HFpEF and PH. Pathway analysis identified proliferative and mitochondrial pathways associated with CpcPH. Thus, these patients may possess systemic pathophysiological differences similar to those observed in pulmonary arterial hypertension patients.
Collapse
Affiliation(s)
- Meghan J Arwood
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Nasim Vahabi
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christelle Lteif
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ravindra K Sharma
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roberto F Machado
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University, Indianapolis, IN, USA
| | - Julio D Duarte
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Avecilla V. Effect of Transcriptional Regulator ID3 on Pulmonary Arterial Hypertension and Hereditary Hemorrhagic Telangiectasia. Int J Vasc Med 2019; 2019:2123906. [PMID: 31380118 PMCID: PMC6657613 DOI: 10.1155/2019/2123906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/26/2019] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) can be discovered in patients who have a loss of function mutation of activin A receptor-like type 1 (ACVRL1) gene, a bone morphogenetic protein (BMP) type 1 receptor. Additionally, ACVRL1 mutations can lead to hereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber disease, an autosomal dominant inherited disease that results in mucocutaneous telangiectasia and arteriovenous malformations (AVMs). Transcriptional regulator Inhibitor of DNA-Binding/Differentiation-3 (ID3) has been demonstrated to be involved in both PAH and HTT; however, the role of its overlapping molecular mechanistic effects has yet to be seen. This review will focus on the existing understanding of how ID3 may contribute to molecular involvement and perturbations thus altering both PAH and HHT outcomes. Improved understanding of how ID3 mediates these pathways will likely provide knowledge in the inhibition and regulation of these diseases through targeted therapies.
Collapse
Affiliation(s)
- Vincent Avecilla
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA
- Celgene Corporation, Summit, NJ 07901, USA
| |
Collapse
|
24
|
Liu T, Zou XZ, Huang N, Ge XY, Yao MZ, Liu H, Zhang Z, Hu CP. miR-27a promotes endothelial-mesenchymal transition in hypoxia-induced pulmonary arterial hypertension by suppressing BMP signaling. Life Sci 2019; 227:64-73. [PMID: 31004656 DOI: 10.1016/j.lfs.2019.04.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
Abstract
AIM Growing evidence suggests that endothelial-mesenchymal transition (EndMT) play key roles in pulmonary arterial remodeling during pulmonary arterial hypertension (PAH), but the underlying mechanisms have yet to be fully understood. miR-27a has been shown to promote proliferation of pulmonary arterial cells during PAH, but its role in EndMT remains unexplored. This study was designed to investigate the role and underlying mechanism of miR-27a in EndMT during PAH. MAIN METHODS Rats were exposed in hypoxia (10% O2) for 3 weeks to induce PAH, and human pulmonary artery endothelial cells (HPAECs) were exposed in hypoxia (1% O2) for 48 h to induce EndMT. Immunohistochemistry, in situ hybridization, immunofluorescence, real-time PCR and Western blot were conducted to detect the expressions of RNAs and proteins, and luciferase assay was used to verify the putative binding site of miR-27a. KEY FINDINGS We found that hypoxia up-regulated miR-27a in the tunica intima of rat pulmonary arteries and HPAECs, and that inhibition of miR-27a suppressed hypoxia-induced EndMT. Furthermore, elevated expression of miR-27a suppressed bone morphogenetic protein (BMP) signaling by targeting Smad5, thereby lessening Id2-mediated repression of the 2 critical mediators of EndMT (Snail and Twist). SIGNIFICANCE Our data unveiled a novel role of miR-27a in EndMT during hypoxia-induced PAH. Thus, targeting of miR-27a-related pathway may be therapeutically harnessed to treat PAH.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Zhou Zou
- Department of Pharmacy, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - Ning Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Yue Ge
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Mao-Zhong Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Hong Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
25
|
Revhaug C, Zasada M, Rognlien AGW, Günther CC, Grabowska A, Książek T, Madetko-Talowska A, Szewczyk K, Bik-Multanowski M, Kwinta P, Pietrzyk JJ, Baumbusch LO, Saugstad OD. Pulmonary vascular disease is evident in gene regulation of experimental bronchopulmonary dysplasia. J Matern Fetal Neonatal Med 2019; 33:2122-2130. [PMID: 30428746 DOI: 10.1080/14767058.2018.1541081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: To examine the gene expression regarding pulmonary vascular disease in experimental bronchopulmonary dysplasia in young mice. Premature delivery puts babies at risk of severe complications. Bronchopulmonary dysplasia (BPD) is a common complication of premature birth leading to lifelong affection of pulmonary function. BPD is recognized as a disease of arrested alveolar development. The disease process is not fully described and no complete cure or prevention is known. The focus of interest in the search for treatment and prevention of BPD has traditionally been at airspace level; however, the pulmonary vasculature is increasingly acknowledged in the pathology of BPD. The aim of the investigation was to study the gene expression in lungs with BPD with regards to pulmonary vascular disease (PVD).Methods: We employed a murine model of hyperoxia-induced BPD and gene expression microarray technique to determine the mRNA expression in lung tissue from young mice. We combined gene expression pathway analysis and analyzed the biological function of multiple single gene transcripts from lung homogenate to study the PVD relevant gene expression.Results: There were n = 117 significantly differentially regulated genes related to PVD through down-regulation of contractile elements, up- and down-regulation of factors involved in vascular tone and tissue-specific genes. Several genes also allowed for pinpointing gene expression differences to the pulmonary vasculature. The gene Nppa coding for a natriuretic peptide, a potent vasodilator, was significantly down-regulated and there was a significant up-regulation of Pde1a (phosphodiesterase 1A), Ptger3 (prostaglandin e receptor 3), and Ptgs1 (prostaglandin-endoperoxide synthase one).Conclusion: The pulmonary vasculature is affected by the arrest of secondary alveolarization as seen by differentially regulated genes involved in vascular tone and pulmonary vasculature suggesting BPD is not purely an airspace disease. Clues to prevention and treatment may lie in the pulmonary vascular system.
Collapse
Affiliation(s)
- Cecilie Revhaug
- Department of Pediatric Research, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Magdalena Zasada
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anne Gro W Rognlien
- Department of Pediatric Research, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Agnieszka Grabowska
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Teofila Książek
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Szewczyk
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Mirolaw Bik-Multanowski
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Jacek J Pietrzyk
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.,Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Lars O Baumbusch
- Department of Pediatric Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ola D Saugstad
- Department of Pediatric Research, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
26
|
Gomez-Puerto MC, Iyengar PV, García de Vinuesa A, Ten Dijke P, Sanchez-Duffhues G. Bone morphogenetic protein receptor signal transduction in human disease. J Pathol 2018; 247:9-20. [PMID: 30246251 PMCID: PMC6587955 DOI: 10.1002/path.5170] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted cytokines that were initially discovered on the basis of their ability to induce bone. Several decades of research have now established that these proteins function in a large variety of physiopathological processes. There are about 15 BMP family members, which signal via three transmembrane type II receptors and four transmembrane type I receptors. Mechanistically, BMP binding leads to phosphorylation of the type I receptor by the type II receptor. This activated heteromeric complex triggers intracellular signaling that is initiated by phosphorylation of receptor‐regulated SMAD1, 5, and 8 (also termed R‐SMADs). Activated R‐SMADs form heteromeric complexes with SMAD4, which engage in specific transcriptional responses. There is convergence along the signaling pathway and, besides the canonical SMAD pathway, BMP‐receptor activation can also induce non‐SMAD signaling. Each step in the pathway is fine‐tuned by positive and negative regulation and crosstalk with other signaling pathways. For example, ligand bioavailability for the receptor can be regulated by ligand‐binding proteins that sequester the ligand from interacting with receptors. Accessory co‐receptors, also known as BMP type III receptors, lack intrinsic enzymatic activity but enhance BMP signaling by presenting ligands to receptors. In this review, we discuss the role of BMP receptor signaling and how corruption of this pathway contributes to cardiovascular and musculoskeletal diseases and cancer. We describe pharmacological tools to interrogate the function of BMP receptor signaling in specific biological processes and focus on how these agents can be used as drugs to inhibit or activate the function of the receptor, thereby normalizing dysregulated BMP signaling. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Maria Catalina Gomez-Puerto
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Prasanna Vasudevan Iyengar
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Amaya García de Vinuesa
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Crosby A, Toshner MR, Southwood MR, Soon E, Dunmore BJ, Groves E, Moore S, Wright P, Ottersbach K, Bennett C, Guerrero J, Ghevaert C, Morrell NW. Hematopoietic stem cell transplantation alters susceptibility to pulmonary hypertension in Bmpr2-deficient mice. Pulm Circ 2018; 8:2045894018801642. [PMID: 30160594 PMCID: PMC6144516 DOI: 10.1177/2045894018801642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/27/2018] [Indexed: 02/02/2023] Open
Abstract
Increasing evidence suggests that patients with pulmonary arterial hypertension (PAH) demonstrate abnormalities in the bone marrow (BM) and hematopoietic progenitor cells. In addition, PAH is associated with myeloproliferative diseases. We have previously demonstrated that low-dose lipopolysaccharide (LPS) is a potent stimulus for the development of PAH in the context of a genetic PAH mouse model of BMPR2 dysfunction. We hypothesized that the hematopoietic progenitor cells might be driving disease in this model. To test this hypothesis, we performed adoptive transfer of BM between wild-type (Ctrl) and heterozygous Bmpr2 null (Mut) mice. Sixteen weeks after BM reconstitution, mice were exposed to low-dose chronic LPS (0.5 mg/kg three times a week for six weeks). Mice underwent right heart catheterization and tissues were removed for histology. After chronic LPS dosing, Ctrl mice in receipt of Mut BM developed PAH, whereas Mut mice receiving Ctrl BM were protected from PAH. BM histology demonstrated an increase in megakaryocytes and there was an increase in circulating platelets in Ctrl mice receiving Mut BM. These findings demonstrate that the hematopoietic stem cell compartment is involved in the susceptibility to PAH in the Mut mouse. The results raise the possibility that hematopoietic stem cell transplantation might be a potential treatment strategy in genetic forms of PAH.
Collapse
Affiliation(s)
- Alexi Crosby
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Mark R. Toshner
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | | - Elaine Soon
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Benjamin J. Dunmore
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Emily Groves
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Stephen Moore
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | | - Katrin Ottersbach
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Cavan Bennett
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Jose Guerrero
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Cedric Ghevaert
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
28
|
Rol N, Kurakula KB, Happé C, Bogaard HJ, Goumans MJ. TGF-β and BMPR2 Signaling in PAH: Two Black Sheep in One Family. Int J Mol Sci 2018; 19:ijms19092585. [PMID: 30200294 PMCID: PMC6164161 DOI: 10.3390/ijms19092585] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
Knowledge pertaining to the involvement of transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling in pulmonary arterial hypertension (PAH) is continuously increasing. There is a growing understanding of the function of individual components involved in the pathway, but a clear synthesis of how these interact in PAH is currently lacking. Most of the focus has been on signaling downstream of BMPR2, but it is imperative to include the role of TGF-β signaling in PAH. This review gives a state of the art overview of disturbed signaling through the receptors of the TGF-β family with respect to vascular remodeling and cardiac effects as observed in PAH. Recent (pre)-clinical studies in which these two pathways were targeted will be discussed with an extended view on cardiovascular research fields outside of PAH, indicating novel future perspectives.
Collapse
Affiliation(s)
- Nina Rol
- Department of Pulmonology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
| | - Konda Babu Kurakula
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands.
| | - Chris Happé
- Department of Pulmonology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
| | - Harm Jan Bogaard
- Department of Pulmonology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands.
| |
Collapse
|
29
|
MiR-23a regulates the proliferation and migration of human pulmonary artery smooth muscle cells (HPASMCs) through targeting BMPR2/Smad1 signaling. Biomed Pharmacother 2018; 103:1279-1286. [DOI: 10.1016/j.biopha.2018.04.172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
|
30
|
Frump A, Prewitt A, de Caestecker MP. BMPR2 mutations and endothelial dysfunction in pulmonary arterial hypertension (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018765840. [PMID: 29521190 PMCID: PMC5912278 DOI: 10.1177/2045894018765840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Despite the discovery more than 15 years ago that patients with hereditary pulmonary arterial hypertension (HPAH) inherit BMP type 2 receptor ( BMPR2) mutations, it is still unclear how these mutations cause disease. In part, this is attributable to the rarity of HPAH and difficulty obtaining tissue samples from patients with early disease. However, in addition, limitations to the approaches used to study the effects of BMPR2 mutations on the pulmonary vasculature have restricted our ability to determine how individual mutations give rise to progressive pulmonary vascular pathology in HPAH. The importance of understanding the mechanisms by which BMPR2 mutations cause disease in patients with HPAH is underscored by evidence that there is reduced BMPR2 expression in patients with other, more common, non-hereditary form of PAH, and that restoration of BMPR2 expression reverses established disease in experimental models of pulmonary hypertension. In this paper, we focus on the effects on endothelial function. We discuss some of the controversies and challenges that have faced investigators exploring the role of BMPR2 mutations in HPAH, focusing specifically on the effects different BMPR2 mutation have on endothelial function, and whether there are qualitative differences between different BMPR2 mutations. We discuss evidence that BMPR2 signaling regulates a number of responses that may account for endothelial abnormalities in HPAH and summarize limitations of the models that are used to study these effects. Finally, we discuss evidence that BMPR2-dependent effects on endothelial metabolism provides a unifying explanation for the many of the BMPR2 mutation-dependent effects that have been described in patients with HPAH.
Collapse
Affiliation(s)
- Andrea Frump
- Division
of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University
School of Medicine, Indianapolis, IN,
USA
| | | | - Mark P. de Caestecker
- Division
of Nephrology and Hypertension, Department of Medicine, Vanderbilt University
Medical center, Nashville, TN, USA
| |
Collapse
|
31
|
Wang Y, Yan L, Zhang Z, Prado E, Fu L, Xu X, Du L. Epigenetic Regulation and Its Therapeutic Potential in Pulmonary Hypertension. Front Pharmacol 2018; 9:241. [PMID: 29615911 PMCID: PMC5870037 DOI: 10.3389/fphar.2018.00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
Recent advances in epigenetics have made a tremendous impact on our knowledge of biological phenomena and the environmental stressors on complex diseases. Understanding the mechanism of epigenetic reprogramming during the occurrence of pulmonary hypertension (PH) is important for advanced studies and clinical therapy. In this article, we review the discovery of novel epigenetic mechanisms associated with PH including DNA methylation, histone modification, and noncoding RNA interference. In addition, we highlight the role of epigenetic mechanisms in adult PAH resulting from undesirable perinatal environments-Extrauterine growth restriction (EUGR) and Intrauterine growth retardation (IUGR). Lastly, we give a comprehensive summary for the remaining challenges and discuss future methods of epigenetic targeted therapy for pulmonary hypertension.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pediatrics, Children's Hospital of Zhejiang University, Hangzhou, China
| | - Lingling Yan
- Department of Pediatrics, Children's Hospital of Zhejiang University, Hangzhou, China
| | - Ziming Zhang
- Department of Pediatrics, Children's Hospital of Zhejiang University, Hangzhou, China
| | - Eric Prado
- Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Linchen Fu
- Department of Pediatrics, Children's Hospital of Zhejiang University, Hangzhou, China
| | - Xuefeng Xu
- Department of Pediatrics, Children's Hospital of Zhejiang University, Hangzhou, China
| | - Lizhong Du
- Department of Pediatrics, Children's Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Luo L, Zheng W, Lian G, Chen H, Li L, Xu C, Xie L. Combination treatment of adipose-derived stem cells and adiponectin attenuates pulmonary arterial hypertension in rats by inhibiting pulmonary arterial smooth muscle cell proliferation and regulating the AMPK/BMP/Smad pathway. Int J Mol Med 2017; 41:51-60. [PMID: 29115380 PMCID: PMC5746303 DOI: 10.3892/ijmm.2017.3226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to assess the effects of therapy with adiponectin (APN) gene-modified adipose-derived stem cells (ADSCs) on pulmonary arterial hypertension (PAH) in rats and the underlying cellular and molecular mechanisms. ADSCs were successfully isolated from the rats and characterized. ADSCs were effectively infected with the green fluorescent protein (GFP)-empty (ADSCs-V) or the APN-GFP (ADSCs-APN) lentivirus and the APN expression was evaluated by ELISA. Sprague-Dawley rats were administered monocrotaline (MCT) to develop PAH. The rats were treated with MCT, ADSCs, ADSCs-V and ADSCs-APN. Then ADSCs-APN in the lung were investigated by confocal laser scanning microscopy and western blot analysis. Engrafted ADSCs in the lung were located around the vessels. Mean pulmonary arterial pressure (mPAP) and the right ventricular hypertrophy index (RVHI) in the ADSCs-APN-treated mice were significantly decreased as compared with the ADSCs and ADSCs-V treatments. Pulmonary vascular remodeling was assessed. Right ventricular (RV) function was evaluated by echocardiography. We found that pulmonary vascular remodeling and the parameters of RV function were extensively improved after ADSCs-APN treatment when compared with ADSCs and ADSCs-V treatment. Pulmonary artery smooth muscle cells (PASMCs) were isolated from the PAH rats. The antiproliferative effect of APN on PASMCs was assayed by Cell Counting Kit-8. The influence of APN and specific inhibitors on the levels of bone morphogenetic protein (BMP), adenosine monophosphate activated protein kinase (AMPK), and small mothers against decapentaplegia (Smad) pathways was detected by western blot analysis. We found that APN suppressed the proliferation of PASMCs isolated from the PAH rats by regulating the AMPK/BMP/Smad pathway. This effect was weakened by addition of the AMPK inhibitor (compound C) and BMP2 inhibitor (noggin). Therefore, combination treatment with ADSCs and APN effectively attenuated PAH in rats by inhibiting PASMC proliferation and regulating the AMPK/BMP/Smad pathway.
Collapse
Affiliation(s)
- Li Luo
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Wuhong Zheng
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huaning Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ling Li
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Changsheng Xu
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Liangdi Xie
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
33
|
Ribeiro EL, Fragoso IT, Gomes FODS, Oliveira AC, Silva AKSE, Silva PME, Ciambarella BT, Ramos IPR, Peixoto CA. Diethylcarbamazine: A potential treatment drug for pulmonary hypertension? Toxicol Appl Pharmacol 2017; 333:92-99. [PMID: 28851623 DOI: 10.1016/j.taap.2017.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 01/16/2023]
Abstract
The present study demonstrated the potential effects of diethylcarbamazine (DEC) on monocrotaline (MCT)-induced pulmonary hypertension. MCT solution (600mg/kg) was administered once per week, and 50mg/kg body weight of DEC for 28days. Three C57Bl/6 male mice groups (n=10) were studied: Control; MCT28, and MCT28/DEC. Echocardiography analysis was performed and lung tissues were collected for light microscopy (hematoxylin-eosin and Masson's trichrome staining), immunohistochemistry (αSMA, FADD, caspase 8, caspase 3, BAX, BCL2, cytochrome C and caspase 9) western blot (FADD, caspase 8, caspase 3, BAX, BCL2, cytochrome C and caspase 9) and qRt-PCR (COL-1α and αSMA). Echocardiography analysis demonstrated an increase in the pulmonary arterial blood flow gradient and velocity in the systole and RV area in the MCT28 group, while treatment with DEC resulted in a significant reduction in these parameters. Deposition of collagen fibers and αSMA staining around the pulmonary arteries was evident in the MCT28 group, while treatment with DEC reduced both. Western blot analysis revealed a decrease in BMPR2 in the MCT28 group, in contrast DEC treatment resulted in a significant increase in the level of BMPR2. DEC also significantly reduced the level of VEGF compared to the MCT28 group. Apoptosis extrinsic and intrinsic pathway markers were reduced in the MCT28 group. After treatment with DEC these levels returned to baseline. The results of this study indicate that DEC attenuates PH in an experimental monocrotaline-induced model by inhibiting a series of markers involved in cell proliferation/death.
Collapse
Affiliation(s)
- Edlene Lima Ribeiro
- Laboratory of Ultrastructure, Aggeu Magalhães Research Center - CPqAM, Pernambuco, Brazil; Federal University of Pernambuco, Brazil
| | - Ingrid Tavares Fragoso
- Laboratory of Ultrastructure, Aggeu Magalhães Research Center - CPqAM, Pernambuco, Brazil; Federal University of Pernambuco, Brazil
| | | | - Amanda Costa Oliveira
- Laboratory of Ultrastructure, Aggeu Magalhães Research Center - CPqAM, Pernambuco, Brazil; Federal University of Pernambuco, Brazil
| | - Amanda Karoline Soares E Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Research Center - CPqAM, Pernambuco, Brazil; Federal University of Pernambuco, Brazil
| | | | | | - Isalira Peroba Rezende Ramos
- National Center Structural Biology and Bio-imaging, Carlos Chagas Filho Biophysics Institute, Department of Radiology, University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
34
|
de Mendonça L, Felix NS, Blanco NG, Da Silva JS, Ferreira TP, Abreu SC, Cruz FF, Rocha N, Silva PM, Martins V, Capelozzi VL, Zapata-Sudo G, Rocco PRM, Silva PL. Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Res Ther 2017; 8:220. [PMID: 28974252 PMCID: PMC5627397 DOI: 10.1186/s13287-017-0669-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
Background Experimental research has reported beneficial effects of mesenchymal stromal cell (MSC) therapy in pulmonary arterial hypertension (PAH). However, these studies either were based on prophylactic protocols or assessed basic remodeling features without evaluating possible mechanisms. We analyzed the effects of MSC therapy on lung vascular remodeling and hemodynamics and its possible mechanisms of action in monocrotaline (MCT)-induced PAH. Methods Twenty-eight Wistar rats were randomly divided into two groups. In the PAH group, animals received MCT 60 mg/kg intraperitoneally, while a control group received saline (SAL) instead. On day 14, both groups were further randomized to receive 105 adipose-derived MSCs or SAL intravenously (n = 7/group). On day 28, right ventricular systolic pressure (RVSP) and the gene expression of mediators associated with apoptosis, inflammation, fibrosis, Smad-1 levels, cell proliferation, and endothelial–mesenchymal transition were determined. In addition, lung histology (smooth muscle cell proliferation and plexiform-like injuries), CD68+ and CD163+ macrophages, and plasma levels of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) were evaluated. Results In the PAH group, adipose-derived MSCs, compared to SAL, reduced mean RVSP (29 ± 1 vs 39 ± 2 mmHg, p < 0.001), lung tissue collagen fiber content, smooth muscle cell proliferation, CD68+ macrophages, interleukin-6 expression, and the antiapoptotic mediators Bcl-2 and survivin. Conversely, expression of the proapoptotic mediator procaspase-3 and plasma VEGF increased, with no changes in PDGF. In the pulmonary artery, MSCs dampened the endothelial–mesenchymal transition. Conclusion In MCT-induced PAH, MSC therapy reduced lung vascular remodeling, thus improving hemodynamics. These beneficial effects were associated with increased levels of proapoptotic markers, mesenchymal-to-endothelial transition, reduced cell proliferation markers, and inflammation due to a shift away from the M1 phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0669-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucas de Mendonça
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Nathane S Felix
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Natália G Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Jaqueline S Da Silva
- Laboratory of Cardiovascular Pharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tatiana P Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute-Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Soraia C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Nazareth Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Department of Physiology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Patrícia M Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute-Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Vanessa Martins
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Histomorphometry and Lung Genomics, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Vera L Capelozzi
- Laboratory of Histomorphometry and Lung Genomics, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Gizele Zapata-Sudo
- Laboratory of Cardiovascular Pharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
35
|
Li L, Kim IK, Chiasson V, Chatterjee P, Gupta S. NF-κB mediated miR-130a modulation in lung microvascular cell remodeling: Implication in pulmonary hypertension. Exp Cell Res 2017; 359:235-242. [DOI: 10.1016/j.yexcr.2017.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/03/2017] [Accepted: 07/19/2017] [Indexed: 12/15/2022]
|
36
|
Cai P, Kovacs L, Dong S, Wu G, Su Y. BMP4 inhibits PDGF-induced proliferation and collagen synthesis via PKA-mediated inhibition of calpain-2 in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L638-L648. [PMID: 28235949 PMCID: PMC5451598 DOI: 10.1152/ajplung.00260.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 02/09/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
In the present study, we investigated the effect of bone morphogenetic protein 4 (BMP4) on PDGF-induced cell proliferation and collagen synthesis in pulmonary artery smooth muscle cells (PASMCs). Normal human PASMCs were incubated with and without PDGF-BB in the absence and presence of BMP4 for 0.5 to 24 h. The protein levels of collagen-I, p-Smad2/3, p-Smad1/5, and intracellular active TGF-β1, calpain activity, and cell proliferation were then measured. The results showed that BMP4 induced an increase in p-Smad1/5 but had no effect on the protein levels of collagen-I, p-Smad2/3, and intracellular active TGF-β1 and calpain activity in control PASMCs. Nevertheless, BMP4 attenuated increases in cell proliferation and protein levels of collagen-I, p-Smad2/3, and intracellular active TGF-β1 and calpain activity in PASMCs exposed to PDGF-BB. Moreover, BMP4 increased PKA activity and inhibition of PKA prevented the inhibitory effects of BMP4 on PDGF-BB-induced calpain activation in normal PASMCs. The PKA activator forskolin recapitulated the suppressive effect of BMP4 on PDGF-induced calpain activation. Furthermore, BMP4 prevented a PDGF-induced decrease in calpain-2 phosphorylation at serine-369 in normal PASMCs. Finally, BMP4 did not attenuate PDGF-induced increases in cell proliferation, collagen-I protein levels, and calpain activation and did not induce PKA activation and did not prevent a PDGF-induced decrease in calpain-2 phosphorylation at serine-369 in PASMCs from idiopathic pulmonary arterial hypertension (PAH) patients. These data demonstrate that BMP4 inhibits PDGF-induced cell proliferation and collagen synthesis via PKA-mediated inhibition of calpain-2 in normal PASMCs. The inhibitory effects of BMP4 on PDGF-induced cell proliferation, collagen synthesis, and calpain-2 activation are impaired in PASMCs from PAH patients, which may contribute to pulmonary vascular remodeling in PAH.
Collapse
Affiliation(s)
- Pengcheng Cai
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Laszlo Kovacs
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Sam Dong
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia; .,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia.,Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia; and
| |
Collapse
|
37
|
TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling. Nat Commun 2017; 8:14079. [PMID: 28084316 PMCID: PMC5241886 DOI: 10.1038/ncomms14079] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Heterozygous germ-line mutations in the bone morphogenetic protein type-II receptor (BMPR-II) gene underlie heritable pulmonary arterial hypertension (HPAH). Although inflammation promotes PAH, the mechanisms by which inflammation and BMPR-II dysfunction conspire to cause disease remain unknown. Here we identify that tumour necrosis factor-α (TNFα) selectively reduces BMPR-II transcription and mediates post-translational BMPR-II cleavage via the sheddases, ADAM10 and ADAM17 in pulmonary artery smooth muscle cells (PASMCs). TNFα-mediated suppression of BMPR-II subverts BMP signalling, leading to BMP6-mediated PASMC proliferation via preferential activation of an ALK2/ACTR-IIA signalling axis. Furthermore, TNFα, via SRC family kinases, increases pro-proliferative NOTCH2 signalling in HPAH PASMCs with reduced BMPR-II expression. We confirm this signalling switch in rodent models of PAH and demonstrate that anti-TNFα immunotherapy reverses disease progression, restoring normal BMP/NOTCH signalling. Collectively, these findings identify mechanisms by which BMP and TNFα signalling contribute to disease, and suggest a tractable approach for therapeutic intervention in PAH. Reduced BMP receptor II signalling underlies pulmonary arterial hypertension (PAH). Here, Hurst et al. show that TNFα subverts BMP signalling by increasing BMP6 expression and signalling via an alternative BMP receptor, ALK2, in pulmonary artery smooth muscle cells to drive abnormal proliferation and PAH.
Collapse
|
38
|
Barnes JW, Kucera ET, Tian L, Mellor NE, Dvorina N, Baldwin WW, Aldred MA, Farver CF, Comhair SAA, Aytekin M, Dweik RA. Bone Morphogenic Protein Type 2 Receptor Mutation-Independent Mechanisms of Disrupted Bone Morphogenetic Protein Signaling in Idiopathic Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2016; 55:564-575. [PMID: 27187737 DOI: 10.1165/rcmb.2015-0402oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Altered bone morphogenic protein (BMP) signaling, independent of BMPR2 mutations, can result in idiopathic pulmonary arterial hypertension (IPAH). Glucose dysregulation can regulate multiple processes in IPAH. However, the role of glucose in BMP antagonist expression in IPAH has not been characterized. We hypothesized that glucose uptake regulates BMP signaling through stimulation of BMP antagonist expression in IPAH. Using human plasma, lung tissue, and primary pulmonary arterial smooth muscle cells (PASMCs), we examined the protein expression of BMP2, BMP-regulated Smads, and Smurf-1 in patients with IPAH and control subjects. Gremlin-1 levels were elevated in patients with IPAH compared with control subjects, whereas expression of BMP2 was not different. We demonstrate increased Smad polyubiquitination in IPAH lung tissue and PASMCs that was further enhanced with proteasomal inhibition. Examination of the Smad ubiquitin-ligase, Smurf-1, showed increased protein expression in IPAH lung tissue and localization in the smooth muscle of the pulmonary artery. Glucose dose dependently increased Smurf-1 protein expression in control PASMCs, whereas Smurf-1 in IPAH PASMCs was increased and sustained. Conversely, phospho-Smad1/5/8 levels were reduced in IPAH compared with control PASMCs at physiological glucose concentrations. Interestingly, high glucose concentrations decreased phosphorylation of Smad1/5/8 in control PASMCs. Blocking glucose uptake had opposing effects in IPAH PASMCs, and inhibition of Smurf-1 activity resulted in partial rescue of Smad1/5/8 activation and cell migration rates. Collectively, these data suggest that BMP signaling can be regulated through BMPR2 mutation-independent mechanisms. Gremlin-1 (synonym: induced-in-high-glucose-2 protein) and Smurf-1 may function to inhibit BMP signaling as a consequence of the glucose dysregulation described in IPAH.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Micheala A Aldred
- 3 Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; and
| | | | | | - Metin Aytekin
- Departments of 1 Pathobiology and.,5 Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Raed A Dweik
- Departments of 1 Pathobiology and.,6 Pulmonary and Critical Care Medicine, Respiratory Institute
| |
Collapse
|
39
|
Rothman AMK, Arnold ND, Pickworth JA, Iremonger J, Ciuclan L, Allen RMH, Guth-Gundel S, Southwood M, Morrell NW, Thomas M, Francis SE, Rowlands DJ, Lawrie A. MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension. J Clin Invest 2016; 126:2495-508. [PMID: 27214554 DOI: 10.1172/jci83361] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Loss of the growth-suppressive effects of bone morphogenetic protein (BMP) signaling has been demonstrated to promote pulmonary arterial endothelial cell dysfunction and induce pulmonary arterial smooth muscle cell (PASMC) proliferation, leading to the development of pulmonary arterial hypertension (PAH). MicroRNAs (miRs) mediate higher order regulation of cellular function through coordinated modulation of mRNA targets; however, miR expression is altered by disease development and drug therapy. Here, we examined treatment-naive patients and experimental models of PAH and identified a reduction in the levels of miR-140-5p. Inhibition of miR-140-5p promoted PASMC proliferation and migration in vitro. In rat models of PAH, nebulized delivery of miR-140-5p mimic prevented the development of PAH and attenuated the progression of established PAH. Network and pathway analysis identified SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1) as a key miR-140-5p target and regulator of BMP signaling. Evaluation of human tissue revealed that SMURF1 is increased in patients with PAH. miR-140-5p mimic or SMURF1 knockdown in PASMCs altered BMP signaling, further supporting these factors as regulators of BMP signaling. Finally, Smurf1 deletion protected mice from PAH, demonstrating a critical role in disease development. Together, these studies identify both miR-140-5p and SMURF1 as key regulators of disease pathology and as potential therapeutic targets for the treatment of PAH.
Collapse
|
40
|
Liu D, Wu BX, Sun N, Yan Y, Yuan P, Qu JM, Jing ZC. Elevated Levels of Circulating Bone Morphogenetic Protein 7 Predict Mortality in Pulmonary Arterial Hypertension. Chest 2016; 150:367-73. [PMID: 27001265 DOI: 10.1016/j.chest.2016.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/18/2016] [Accepted: 03/02/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study aimed to show whether circulating bone morphogenetic proteins (BMPs) levels are associated with increased risk of mortality in patients with pulmonary arterial hypertension (PAH). METHODS A total of 156 patients with PAH including 43 with heritable PAH (HPAH) and 113 with idiopathic PAH (IPAH) diagnosed by gene screening were enrolled in the study. Circulating BMPs were measured by ELISA in plasma samples from patients with HPAH (n = 43) and IPAH (n = 113) and from control subjects (n = 51). Clinical characteristics at baseline and long-term survival were compared according to the different BMP levels. RESULTS Patients with HPAH had significantly higher BMP7 concentrations than patients with IPAH and control subjects (20.1 [interquartile range (IQR), 9.4, 55.2] vs 6.5 [IQR, 3.5, 11.7] and 2.5 [IQR, 0.9, 6.6] pg/mL, respectively; P < .001). Elevated plasma BMP7 were associated with a higher risk of mortality after adjustment for sex, 6-minute walk distance, mean right atrial pressure, mean pulmonary arterial pressure, pulmonary vascular resistance, and cardiac output (HR, 1.904; 95% CI, 1.021-3.551; P = .043). Patients with IPAH with a BMP7 level > 7.85 pg/mL had a higher risk of mortality than those with a low BMP7 concentration (P = .042, log-rank test). CONCLUSIONS Levels of circulating BMP7 correlate with mortality in PAH, and may be a predictor of disease in patients with HPAH and IPAH.
Collapse
Affiliation(s)
- Dong Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China; Department of Pulmonary Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bing-Xiang Wu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Na Sun
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Yan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jie-Ming Qu
- Department of Pulmonary Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Zhi-Cheng Jing
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China; State Key Laboratory of Cardiovascular Disease, FuWai Hospital, Peking Union Medical College and Chinese Academy Medical Science, Beijing, China.
| |
Collapse
|
41
|
Soon E, Crosby A, Southwood M, Yang P, Tajsic T, Toshner M, Appleby S, Shanahan CM, Bloch KD, Pepke-Zaba J, Upton P, Morrell NW. Bone morphogenetic protein receptor type II deficiency and increased inflammatory cytokine production. A gateway to pulmonary arterial hypertension. Am J Respir Crit Care Med 2016; 192:859-72. [PMID: 26073741 DOI: 10.1164/rccm.201408-1509oc] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Mutations in bone morphogenetic protein receptor type II (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (PAH). However, disease penetrance is only 20-30%, suggesting a requirement for additional triggers. Inflammation is emerging as a key disease-related factor in PAH, but to date there is no clear mechanism linking BMPR-II deficiency and inflammation. OBJECTIVES To establish a direct link between BMPR-II deficiency, a consequentially heightened inflammatory response, and development of PAH. METHODS We used pulmonary artery smooth muscle cells from Bmpr2(+/-) mice and patients with BMPR2 mutations and compared them with wild-type controls. For the in vivo model, we used mice heterozygous for a null allele in Bmpr2 (Bmpr2(+/-)) and wild-type littermates. MEASUREMENTS AND MAIN RESULTS Acute exposure to LPS increased lung and circulating IL-6 and KC (IL-8 analog) levels in Bmpr2(+/-) mice to a greater extent than in wild-type controls. Similarly, pulmonary artery smooth muscle cells from Bmpr2(+/-) mice and patients with BMPR2 mutations produced higher levels of IL-6 and KC/IL-8 after lipopolysaccharide stimulation compared with controls. BMPR-II deficiency in mouse and human pulmonary artery smooth muscle cells was associated with increased phospho-STAT3 and loss of extracellular superoxide dismutase. Chronic lipopolysaccharide administration caused pulmonary hypertension in Bmpr2(+/-) mice but not in wild-type littermates. Coadministration of tempol, a superoxide dismutase mimetic, ameliorated the exaggerated inflammatory response and prevented development of PAH. CONCLUSIONS This study demonstrates that BMPR-II deficiency promotes an exaggerated inflammatory response in vitro and in vivo, which can instigate development of pulmonary hypertension.
Collapse
Affiliation(s)
- Elaine Soon
- 1 Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom.,2 Pulmonary Vascular Diseases Unit, Papworth Hospital, Cambridge, United Kingdom
| | - Alexi Crosby
- 1 Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mark Southwood
- 2 Pulmonary Vascular Diseases Unit, Papworth Hospital, Cambridge, United Kingdom
| | - Peiran Yang
- 1 Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Tamara Tajsic
- 1 Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom.,3 James Black Centre, Cardiovascular Division, King's College London, London, United Kingdom; and
| | - Mark Toshner
- 1 Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sarah Appleby
- 1 Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Catherine M Shanahan
- 3 James Black Centre, Cardiovascular Division, King's College London, London, United Kingdom; and
| | - Kenneth D Bloch
- 4 Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Joanna Pepke-Zaba
- 2 Pulmonary Vascular Diseases Unit, Papworth Hospital, Cambridge, United Kingdom
| | - Paul Upton
- 1 Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nicholas W Morrell
- 1 Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
42
|
Crosby A, Soon E, Jones FM, Southwood MR, Haghighat L, Toshner MR, Raine T, Horan I, Yang P, Moore S, Ferrer E, Wright P, Ormiston ML, White RJ, Haight DA, Dunne DW, Morrell NW. Hepatic Shunting of Eggs and Pulmonary Vascular Remodeling in Bmpr2(+/-) Mice with Schistosomiasis. Am J Respir Crit Care Med 2015; 192:1355-65. [PMID: 26308618 PMCID: PMC4731697 DOI: 10.1164/rccm.201412-2262oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 08/09/2015] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Schistosomiasis is a major cause of pulmonary arterial hypertension (PAH). Mutations in the bone morphogenetic protein type-II receptor (BMPR-II) are the commonest genetic cause of PAH. OBJECTIVES To determine whether Bmpr2(+/-) mice are more susceptible to schistosomiasis-induced pulmonary vascular remodeling. METHODS Wild-type (WT) and Bmpr2(+/-) mice were infected percutaneously with Schistosoma mansoni. At 17 weeks postinfection, right ventricular systolic pressure and liver and lung egg counts were measured. Serum, lung and liver cytokine, pulmonary vascular remodeling, and liver histology were assessed. MEASUREMENTS AND MAIN RESULTS By 17 weeks postinfection, there was a significant increase in pulmonary vascular remodeling in infected mice. This was greater in Bmpr2(+/-) mice and was associated with an increase in egg deposition and cytokine expression, which induced pulmonary arterial smooth muscle cell proliferation, in the lungs of these mice. Interestingly, Bmpr2(+/-) mice demonstrated dilatation of the hepatic central vein at baseline and postinfection, compared with WT. Bmpr2(+/-) mice also showed significant dilatation of the liver sinusoids and an increase in inflammatory cells surrounding the central hepatic vein, compared with WT. This is consistent with an increase in the transhepatic passage of eggs. CONCLUSIONS This study has shown that levels of BMPR-II expression modify the pulmonary vascular response to chronic schistosomiasis. The likely mechanism involves the increased passage of eggs to the lungs, caused by altered diameter of the hepatic veins and sinusoids in Bmpr2(+/-) mice. Genetically determined differences in the remodeling of hepatic vessels may represent a new risk factor for PAH associated with schistosomiasis.
Collapse
Affiliation(s)
- Alexi Crosby
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Elaine Soon
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Frances M. Jones
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Southwood
- Department of Pathology, Papworth Hospital, Cambridge, United Kingdom
| | - Leila Haghighat
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Mark R. Toshner
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Tim Raine
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Ian Horan
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Peiran Yang
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Stephen Moore
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Elisabet Ferrer
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Penny Wright
- Addenbrooke’s Hospital, Cambridge, United Kingdom; and
| | - Mark L. Ormiston
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | | | - David W. Dunne
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
43
|
Non-suppressive regulatory T cell subset expansion in pulmonary arterial hypertension. Heart Vessels 2015; 31:1319-26. [PMID: 26319442 DOI: 10.1007/s00380-015-0727-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
Regulatory T cells (Tregs) have been reported to play a pivotal role in the vascular remodeling of pulmonary arterial hypertension (PAH). Recent studies have revealed that Tregs are heterogeneous and can be characterized by three phenotypically and functionally different subsets. In this study, we investigated the roles of Treg subsets in the pathogenesis of PAH in eight patients with PAH and 14 healthy controls. Tregs and their subsets in peripheral blood samples were analyzed by flow cytometry. Treg subsets were defined as CD4(+)CD45RA(+)FoxP3(low) resting Tregs (rTregs), CD4(+)CD45RA(-)FoxP3(high) activated Tregs (aTregs), and CD4(+)CD45RA(-)FoxP3(low) non-suppressive Tregs (non-Tregs). The proportion of Tregs among CD4(+) T cells was significantly higher in PAH patients than in controls (6.54 ± 1.10 vs. 3.81 ± 0.28 %, p < 0.05). Of the three subsets, the proportion of non-Tregs was significantly elevated in PAH patients compared with controls (4.06 ± 0.40 vs. 2.79 ± 0.14 %, p < 0.01), whereas those of rTregs and aTregs were not different between the two groups. Moreover, the expression levels of cytotoxic T lymphocyte antigen 4, a functional cell surface molecule, in aTregs (p < 0.05) and non-Tregs (p < 0.05) were significantly higher in PAH patients compared with controls. These results suggested the non-Treg subset was expanded and functionally activated in peripheral lymphocytes obtained from IPAH patients. We hypothesize that immunoreactions involving the specific activation of the non-Treg subset might play a role in the vascular remodeling of PAH.
Collapse
|
44
|
Verhamme FM, Bracke KR, Joos GF, Brusselle GG. Transforming growth factor-β superfamily in obstructive lung diseases. more suspects than TGF-β alone. Am J Respir Cell Mol Biol 2015; 52:653-62. [PMID: 25396302 DOI: 10.1165/rcmb.2014-0282rt] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Asthma and chronic obstructive pulmonary disease are respiratory disorders and a major global health problem with increasing incidence and severity. Genes originally associated with lung development could be relevant in the pathogenesis of chronic obstructive pulmonary disease/asthma, owing to either an early-life origin of adult complex diseases or their dysregulation in adulthood upon exposure to environmental stressors (e.g., smoking). The transforming growth factor (TGF)-β superfamily is conserved through evolution and is involved in a range of biological processes, both during development and in adult tissue homeostasis. TGF-β1 has emerged as an important regulator of lung and immune system development. However, considerable evidence has been presented for a role of many of the other ligands of the TGF-β superfamily in lung pathology, including activins, bone morphogenetic proteins, and growth differentiation factors. In this review, we summarize the current knowledge on the mechanisms by which activin, bone morphogenetic protein, and growth differentiation factor signaling contribute to the pathogenesis of obstructive airway diseases.
Collapse
Affiliation(s)
- Fien M Verhamme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | | |
Collapse
|
45
|
Mižíková I, Ruiz-Camp J, Steenbock H, Madurga A, Vadász I, Herold S, Mayer K, Seeger W, Brinckmann J, Morty RE. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1145-58. [DOI: 10.1152/ajplung.00039.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022] Open
Abstract
Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jordi Ruiz-Camp
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany; and
| | - Alicia Madurga
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany; and
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
46
|
Yu X, Wei L, Lu P, Shen T, Liu X, Li T, Zhang B, Yu H, Zhu D. 15-Lipoxygenase Promotes Chronic Hypoxia-Induced Phenotype Changes of PASMCs Via Positive Feedback-Loop of BMP4. J Cell Physiol 2015; 230:1489-502. [DOI: 10.1002/jcp.24893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 12/09/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Xiufeng Yu
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Liuping Wei
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Ping Lu
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Tingting Shen
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Xia Liu
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Tingting Li
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Bo Zhang
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Hao Yu
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| | - Daling Zhu
- Department of Biopharmaceutical Sciences; College of Pharmacy; Harbin Medical University (Daqing); Daqing China
- Biopharmaceutical Key Laboratory of Heilongjiang Province; Harbin China
| |
Collapse
|
47
|
Dutzmann J, Daniel JM, Bauersachs J, Hilfiker-Kleiner D, Sedding DG. Emerging translational approaches to target STAT3 signalling and its impact on vascular disease. Cardiovasc Res 2015; 106:365-74. [PMID: 25784694 PMCID: PMC4431663 DOI: 10.1093/cvr/cvv103] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/05/2015] [Indexed: 12/30/2022] Open
Abstract
Acute and chronic inflammation responses characterize the vascular remodelling processes in atherosclerosis, restenosis, pulmonary arterial hypertension, and angiogenesis. The functional and phenotypic changes in diverse vascular cell types are mediated by complex signalling cascades that initiate and control genetic reprogramming. The signalling molecule's signal transducer and activator of transcription 3 (STAT3) plays a key role in the initiation and continuation of these pathophysiological changes. This review highlights the pivotal involvement of STAT3 in pathological vascular remodelling processes and discusses potential translational therapies, which target STAT3 signalling, to prevent and treat cardiovascular diseases. Moreover, current clinical trials using highly effective and selective inhibitors of STAT3 signalling for distinct diseases, such as myelofibrosis and rheumatoid arthritis, are discussed with regard to their vascular (side-) effects and their potential to pave the way for a direct use of these molecules for the prevention or treatment of vascular diseases.
Collapse
Affiliation(s)
- Jochen Dutzmann
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Jan-Marcus Daniel
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Johann Bauersachs
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Denise Hilfiker-Kleiner
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Daniel G Sedding
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| |
Collapse
|
48
|
Park SH, Chen WC, Esmaeil N, Lucas B, Marsh LM, Reibman J, Grunig G. Interleukin 13- and interleukin 17A-induced pulmonary hypertension phenotype due to inhalation of antigen and fine particles from air pollution. Pulm Circ 2015; 4:654-68. [PMID: 25610601 DOI: 10.1086/678511] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/10/2014] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension has a marked detrimental effect on quality of life and life expectancy. In a mouse model of antigen-induced pulmonary arterial remodeling, we have recently shown that coexposure to urban ambient particulate matter (PM) significantly increased the thickening of the pulmonary arteries and also resulted in significantly increased right ventricular systolic pressures. Here we interrogate the mechanism and show that combined neutralization of interleukin 13 (IL-13) and IL-17A significantly ameliorated the increase in right ventricular systolic pressure, the circumferential muscularization of pulmonary arteries, and the molecular change in the right ventricle. Surprisingly, our data revealed a protective role of IL-17A for the antigen- and PM-induced severe thickening of pulmonary arteries. This protection was due to the inhibition of the effects of IL-13, which drove this response, and the expression of metalloelastase and resistin-like molecule α. However, the latter was redundant for the arterial thickening response. Anti-IL-13 exacerbated airway neutrophilia, which was due to a resulting excess effect of IL-17A, confirming concurrent cross inhibition of IL-13- and IL-17A-dependent responses in the lungs of animals exposed to antigen and PM. Our experiments also identified IL-13/IL-17A-independent molecular reprogramming in the lungs induced by exposure to antigen and PM, which indicates a risk for arterial remodeling and protection from arterial constriction. Our study points to IL-13- and IL-17A-coinduced inflammation as a new template for biomarkers and therapeutic targeting for the management of immune response-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Wen-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Nafiseh Esmaeil
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA ; Current affiliation: Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Benjamin Lucas
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Joan Reibman
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA ; Pulmonary Medicine, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Gabriele Grunig
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA ; Pulmonary Medicine, Department of Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
49
|
Edgar JA, Molyneux RJ, Colegate SM. Pyrrolizidine Alkaloids: Potential Role in the Etiology of Cancers, Pulmonary Hypertension, Congenital Anomalies, and Liver Disease. Chem Res Toxicol 2014; 28:4-20. [PMID: 25483859 DOI: 10.1021/tx500403t] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Large outbreaks of acute food-related poisoning, characterized by hepatic sinusoidal obstruction syndrome, hemorrhagic necrosis, and rapid liver failure, occur on a regular basis in some countries. They are caused by 1,2-dehydropyrrolizidine alkaloids contaminating locally grown grain. Similar acute poisoning can also result from deliberate or accidental consumption of 1,2-dehydropyrrolizidine alkaloid-containing herbal medicines, teas, and spices. In recent years, it has been confirmed that there is also significant, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids in many countries due to consumption of common foods such as honey, milk, eggs, salads, and meat. The level of 1,2-dehydropyrrolizidine alkaloids in these foods is generally too low and too intermittent to cause acute toxicity. However, these alkaloids are genotoxic and can cause slowly developing chronic diseases such as pulmonary arterial hypertension, cancers, cirrhosis, and congenital anomalies, conditions unlikely to be easily linked with dietary exposure to 1,2-dehydropyrrolizidine alkaloids, especially if clinicians are unaware that such dietary exposure is occurring. This Perspective provides a comprehensive review of the acute and chronic toxicity of 1,2-dehydropyrrolizidine alkaloids and their potential to initiate certain chronic diseases, and suggests some associative considerations or indicators to assist in recognizing specific cases of diseases that may have resulted from dietary exposure to these hazardous natural substances. If it can be established that low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids is a significant cause of some of these costly and debilitating diseases, then this should lead to initiatives to reduce the level of these alkaloids in the food chain.
Collapse
Affiliation(s)
- John A Edgar
- CSIRO Food and Nutrition , 11 Julius Avenue, North Ryde, NSW 2113, Australia
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo , 34 Rainbow Drive, Hilo, Hawaii 96720, United States
| | - Steven M Colegate
- Poisonous Plant Research Laboratory, ARS/USDA , 1150 East 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
50
|
Zhang Y, Wang Y, Yang K, Tian L, Fu X, Wang Y, Sun Y, Jiang Q, Lu W, Wang J. BMP4 increases the expression of TRPC and basal [Ca2+]i via the p38MAPK and ERK1/2 pathways independent of BMPRII in PASMCs. PLoS One 2014; 9:e112695. [PMID: 25461595 PMCID: PMC4251900 DOI: 10.1371/journal.pone.0112695] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/10/2014] [Indexed: 12/20/2022] Open
Abstract
Multiple abnormalities of bone morphogenetic protein (BMPs) signaling are implicated in the process of pulmonary arterial hypertension (PAH). BMP4 plays an important role during the process of pulmonary arterial remodeling and mutant of the principle BMP4 receptor, BMP receptors II (BMPRII), is found to associate with the development of PAH. However, the likely mechanism defining the contribution of BMPRII to BMP4 mediated signaling in pulmonary arterial smooth muscle cells (PASMCs) remains comprehensively unclear. We previously found that enhanced store operated calcium entry (SOCE) and basal intracellular calcium concentration [Ca2+]i were induced by BMP4 via upregulation of TRPC1, 4 and 6 expression in PASMCs, and that BMP4 modulated TRPC channel expression through activating p38MAPK and ERK1/2 signaling pathways. In this study, BMPRII siRNA was used to knockdown BMPRII expression to investigate whether BMP4 upregulates the expression of TRPC and activating Smad1/5/8, ERK1/2 and p38MAPK pathway via BMPRII in distal PASMCs. Our results showed that knockdown of BMPRII: 1) attenuated BMP4 induced activation of P-Smad1/5/8, without altering BMP4 induced P-p38MAPK and P-ERK1/2 activation in PASMCs; 2) did not attenuate the BMP4-induced TRPC1, 4 and 6 expression; 3) did not affect BMP4-enhanced SOCE and basal [Ca2+]i. Thus, we concluded that BMP4 activated Smad1/5/8 pathway is BMPRII-dependent, while the BMP4 - ERK/p-P38 - TRPC - SOCE signaling axis are likely mediated through other receptor rather than BMPRII.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
- The 2nd Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Pulmonary & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yingfeng Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Pulmonary & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lichun Tian
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Fu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yueqian Sun
- Department of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Qian Jiang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, The 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Pulmonary & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pulmonary, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|