1
|
Li S, Gao Z, Li H, Xu C, Chen B, Zha Q, Yang K, Wang W. Hif-1α/Slit2 Mediates Vascular Smooth Muscle Cell Phenotypic Changes in Restenosis of Bypass Grafts. J Cardiovasc Transl Res 2023; 16:1021-1031. [PMID: 37097589 PMCID: PMC10615989 DOI: 10.1007/s12265-023-10384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/24/2023] [Indexed: 04/26/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are involved in restenosis of bypass grafts and cause artery graft occlusion. This study aimed to explore the role of Slit2 in phenotypic switching of VSMCs and its effect on restenosis of vascular conduits. An animal model of vascular graft restenosis (VGR) was produced in SD rats and assessed by echocardiography. The expression of Slit2 and Hif-1α was measured in vivo and in vitro. After Slit2 overexpression, the migration and proliferation of VSMCs were detected in vitro, and the restenosis rates and phenotype of VSMCs were tested in vivo. The arteries of the VGR model presented significant stenosis, and Slit2 was decreased in VSMCs of the VGR model. In vitro, Slit2 overexpression inhibited the migration and proliferation of VSMCs, but Slit2 knockdown promoted migration and proliferation. Hypoxia induced Hif-1α but reduced Slit2, and Hif-1α negatively regulated Slit2 expression. Moreover, Slit2 overexpression weakened the rate of VGR and maintained the patency of artery bypass grafts, which suppressed the phenotypic switching of VSMCs. Slit2 inhibited the synthetic phenotype transformation to inhibit the migration and proliferation of VSMCs and delayed the VGR via Hif-1α.
Collapse
Affiliation(s)
- Sen Li
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhiwei Gao
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Haiqing Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Chang Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Bing Chen
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qing Zha
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Ke Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
2
|
Aggarwal A, Jennings CL, Manning E, Cameron SJ. Platelets at the Vessel Wall in Non-Thrombotic Disease. Circ Res 2023; 132:775-790. [PMID: 36927182 PMCID: PMC10027394 DOI: 10.1161/circresaha.122.321566] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
Platelets are small, anucleate entities that bud from megakaryocytes in the bone marrow. Among circulating cells, platelets are the most abundant cell, traditionally involved in regulating the balance between thrombosis (the terminal event of platelet activation) and hemostasis (a protective response to tissue injury). Although platelets lack the precise cellular control offered by nucleate cells, they are in fact very dynamic cells, enriched in preformed RNA that allows them the capability of de novo protein synthesis which alters the platelet phenotype and responses in physiological and pathological events. Antiplatelet medications have significantly reduced the morbidity and mortality for patients afflicted with thrombotic diseases, including stroke and myocardial infarction. However, it has become apparent in the last few years that platelets play a critical role beyond thrombosis and hemostasis. For example, platelet-derived proteins by constitutive and regulated exocytosis can be found in the plasma and may educate distant tissue including blood vessels. First, platelets are enriched in inflammatory and anti-inflammatory molecules that may regulate vascular remodeling. Second, platelet-derived microparticles released into the circulation can be acquired by vascular endothelial cells through the process of endocytosis. Third, platelets are highly enriched in mitochondria that may contribute to the local reactive oxygen species pool and remodel phospholipids in the plasma membrane of blood vessels. Lastly, platelets are enriched in proteins and phosphoproteins which can be secreted independent of stimulation by surface receptor agonists in conditions of disturbed blood flow. This so-called biomechanical platelet activation occurs in regions of pathologically narrowed (atherosclerotic) or dilated (aneurysmal) vessels. Emerging evidence suggests platelets may regulate the process of angiogenesis and blood flow to tumors as well as education of distant organs for the purposes of allograft health following transplantation. This review will illustrate the potential of platelets to remodel blood vessels in various diseases with a focus on the aforementioned mechanisms.
Collapse
Affiliation(s)
- Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Courtney L. Jennings
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Emily Manning
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Scott J. Cameron
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Hematology, Taussig Cancer Center, Cleveland, Ohio
| |
Collapse
|
3
|
Norda S, Papadantonaki R. Regulation of cells of the arterial wall by hypoxia and its role in the development of atherosclerosis. VASA 2023; 52:6-21. [PMID: 36484144 DOI: 10.1024/0301-1526/a001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell's response to hypoxia depends on stabilization of the hypoxia-inducible factor 1 complex and transactivation of nuclear factor kappa-B (NF-κB). HIF target gene transcription in cells resident to atherosclerotic lesions adjoins a complex interplay of cytokines and mediators of inflammation affecting cholesterol uptake, migration, and inflammation. Maladaptive activation of the HIF-pathway and transactivation of nuclear factor kappa-B causes monocytes to invade early atherosclerotic lesions, maintaining inflammation and aggravating a low-oxygen environment. Meanwhile HIF-dependent upregulation of the ATP-binding cassette transporter ABCA1 causes attenuation of cholesterol efflux and ultimately macrophages becoming foam cells. Hypoxia facilitates neovascularization by upregulation of vascular endothelial growth factor (VEGF) secreted by endothelial cells and vascular smooth muscle cells lining the arterial wall destabilizing the plaque. HIF-knockout animal models and inhibitor studies were able to show beneficial effects on atherogenesis by counteracting the HIF-pathway in the cell wall. In this review the authors elaborate on the up-to-date literature on regulation of cells of the arterial wall through activation of HIF-1α and its effect on atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Stephen Norda
- Department of Cardiovascular Medicine, University Hospital Münster, Germany
| | - Rosa Papadantonaki
- Emergency Department, West Middlesex University Hospital, Chelsea and Westminster NHS Trust, London, United Kingdom
| |
Collapse
|
4
|
Christoph M, Pflücke C, Mensch M, Augstein A, Jellinghaus S, Ende G, Mierke J, Franke K, Wielockx B, Ibrahim K, Poitz DM. Myeloid PHD2 deficiency accelerates neointima formation via Hif-1α. Mol Immunol 2022; 149:48-58. [PMID: 35724581 DOI: 10.1016/j.molimm.2022.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
The key players of the hypoxic response are the hypoxia-inducible factors (Hif), whose α-subunits are tightly regulated by Prolyl-4-hydroxylases (PHD), predominantly by PHD2. Monocytes/Macrophages are involved in atherosclerosis but also restenosis and were found at hypoxic and sites of the lesion. Little is known about the role of the myeloid PHD2 in atherosclerosis and neointima formation. The study aimed to investigate the consequences of a myeloid deficiency of PHD2 in the process of neointima formation using an arterial denudation model. LysM-cre mice were crossed with PHD2fl/fl, PHD2fl/fl/Hif1αfl/fl and PHD2fl/fl/Hif2αfl/fl to get myeloid specific knockout of PHD2 and the Hif-α subunits. Denudation of the femoral artery was performed and animals were fed a western type diet afterwards with analysis of neointima formation 5 and 35 days after denudation. Increased neointima formation in myeloid PHD2 knockouts was observed, which was blunted by double-knockout of PHD2 and Hif1α whereas double knockout of PHD2 and Hif-2α showed comparable lesions to the PHD2 knockouts. Macrophage infiltration was comparable to the neointima formation, suggesting a more inflammatory reaction, and was accompanied by increased intimal VEGF-A expression. Collagen-content inversely correlated to the extent of neointima formation suggesting a destabilization of the plaque. This effect might be triggered by macrophage polarization. Therefore, in vitro results showed a distinct expression pattern in differentially polarized macrophages with high expression of Hif-1α, VEGF and MMP-1 in proinflammatory M1 macrophages. In conclusion, the results show that myeloid Hif-1α is involved in neointima hyperplasia. Our in vivo and in vitro data reveal a central role for this transcription factor in driving plaque-vascularization accompanied by matrix-degradation leading to plaque destabilization.
Collapse
Affiliation(s)
- Marian Christoph
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany; Technische Universität, Dresden Campus, Chemnitz, Germany
| | - Christian Pflücke
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany
| | - Matthias Mensch
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany
| | - Antje Augstein
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany
| | - Stefanie Jellinghaus
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany
| | - Georg Ende
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany
| | - Johannes Mierke
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany
| | - Kristin Franke
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Karim Ibrahim
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany; Technische Universität, Dresden Campus, Chemnitz, Germany
| | - David M Poitz
- Internal Medicine and Cardiology, Heart Center Dresden, University Hospital at the Technische Universität, Dresden, Germany; Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Boric MP, Figueroa XF. Editorial: Cell Communication in Vascular Biology, Volume II. Front Physiol 2022; 13:903056. [PMID: 35694409 PMCID: PMC9175020 DOI: 10.3389/fphys.2022.903056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
|
6
|
Goïta AA, Guenot D. Colorectal Cancer: The Contribution of CXCL12 and Its Receptors CXCR4 and CXCR7. Cancers (Basel) 2022; 14:1810. [PMID: 35406582 PMCID: PMC8997717 DOI: 10.3390/cancers14071810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common cancers, and diagnosis at late metastatic stages is the main cause of death related to this cancer. This progression to metastasis is complex and involves different molecules such as the chemokine CXCL12 and its two receptors CXCR4 and CXCR7. The high expression of receptors in CRC is often associated with a poor prognosis and aggressiveness of the tumor. The interaction of CXCL12 and its receptors activates signaling pathways that induce chemotaxis, proliferation, migration, and cell invasion. To this end, receptor inhibitors were developed, and their use in preclinical and clinical studies is ongoing. This review provides an overview of studies involving CXCR4 and CXCR7 in CRC with an update on their targeting in anti-cancer therapies.
Collapse
Affiliation(s)
| | - Dominique Guenot
- INSERM U1113/Unistra, IRFAC—Interface de Recherche Fondamentale et Appliquée en Cancérologie, 67200 Strasbourg, France;
| |
Collapse
|
7
|
Shen S, Xu Y, Gong Z, Yao T, Qiao D, Huang Y, Zhang Z, Gao J, Ni H, Jin Z, Zhu Y, Wu H, Wang Q, Fang X, Huang K, Ma J. Positive Feedback Regulation of Circular RNA Hsa_circ_0000566 and HIF-1α promotes Osteosarcoma Progression and Glycolysis Metabolism. Aging Dis 2022; 14:529-547. [PMID: 37008055 PMCID: PMC10017158 DOI: 10.14336/ad.2022.0826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Hypoxia is an indispensable factor for cancer progression and is closely associated with the Warburg effect. Circular RNAs (CircRNA) have garnered considerable attention in molecular malignancy therapy as they are potentially important modulators. However, the roles of circRNAs and hypoxia in osteosarcoma (OS) progression have not yet been elucidated. This study reveals the hypoxia-sensitive circRNA, Hsa_circ_0000566, that plays a crucial role in OS progression and energy metabolism under hypoxic stress. Hsa_circ_0000566 is regulated by hypoxia-inducible factor-1α (HIF-1α) and directly binds to it as well as to the Von Hippel-Lindau (VHL) E3 ubiquitin ligase protein. Consequentially, binding between VHL and HIF-1α is impeded. Furthermore, Hsa_circ_0000566 contributes to OS progression by binding to HIF-1α (while competing with VHL) and by confers protection against HIF-1α against VHL-mediated ubiquitin degradation. These findings demonstrate the existence of a positive feedback loop formed by HIF-1α and Hsa_circ_0000566 and the key role they play in OS glycolysis. Taken together, these data indicate the significance of Hsa_circ_0000566 in the Warburg effect and suggest that Hsa_circ_0000566 could be a potential therapeutic target to combat OS progression.
Collapse
Affiliation(s)
- Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Yining Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Di Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Yizhen Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Zhenlei Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Jun Gao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Haonan Ni
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of the Chinese People’s Liberation Army, Kunming, China.
| | - Zhanping Jin
- Department of Orthopedics, Ningbo First Hospital, Ningbo, Zhejiang, China.
| | - Yingchun Zhu
- Department of Orthopedics, Ningbo First Hospital, Ningbo, Zhejiang, China.
| | - Hongfei Wu
- Departments of Orthopedics, Marine Police Hospital, Zhejiang, China.
| | - Qingxin Wang
- Departments of Orthopedics, Marine Police Hospital, Zhejiang, China.
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiangqian Fang, Kangmao Huang, Jianjun Ma, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. (J. Ma); (K. Huang); (X. Fang)
| | - Kangmao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiangqian Fang, Kangmao Huang, Jianjun Ma, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. (J. Ma); (K. Huang); (X. Fang)
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiangqian Fang, Kangmao Huang, Jianjun Ma, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. (J. Ma); (K. Huang); (X. Fang)
| |
Collapse
|
8
|
Pathological Role of Phosphoglycerate Kinase 1 in Balloon Angioplasty-Induced Neointima Formation. Int J Mol Sci 2021; 22:ijms22168822. [PMID: 34445528 PMCID: PMC8396187 DOI: 10.3390/ijms22168822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Restenosis is a common vascular complication after balloon angioplasty. Catheter balloon inflation-induced transient ischemia (hypoxia) of local arterial tissues plays a pathological role in neointima formation. Phosphoglycerate kinase 1 (PGK1), an adenosine triphosphate (ATP)-generating glycolytic enzyme, has been reported to associate with cell survival and can be triggered under hypoxia. The purposes of this study were to investigate the possible role and regulation of PGK1 in vascular smooth muscle cells (VSMCs) and balloon-injured arteries under hypoxia. Neointimal hyperplasia was induced by a rat carotid artery injury model. The cellular functions and regulatory mechanisms of PGK1 in VSMCs were investigated using small interfering RNAs (siRNAs), chemical inhibitors, or anaerobic cultivation. Our data indicated that protein expression of PGK1 can be rapidly induced at a very early stage after balloon angioplasty, and the silencing PGK1-induced low cellular energy circumstance resulted in the suppressions of VSMC proliferation and migration. Moreover, the experimental results demonstrated that blockage of PDGF receptor-β (PDGFRB) or its downstream pathway, the phosphoinositide 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) axis, effectively reduced hypoxia-induced factor-1 (HIF-1α) and PGK1 expressions in VSMCs. In vivo study evidenced that PGK1 knockdown significantly reduced neointima hyperplasia. PGK1 was expressed at the early stage of neointimal formation, and suppressing PGK1 has a potential beneficial effect for preventing restenosis.
Collapse
|
9
|
Kim GD, Ng HP, Chan ER, Mahabeleshwar GH. Macrophage-Hypoxia-Inducible Factor-1α Signaling in Carotid Artery Stenosis. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1118-1134. [PMID: 33753024 PMCID: PMC8176143 DOI: 10.1016/j.ajpath.2021.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022]
Abstract
Macrophages play crucial and diverse roles in the pathogenesis of inflammatory vascular diseases. Macrophages are the principal innate immune cells recruited to arterial walls to govern vascular homeostasis by modulating the proliferation of vascular smooth muscle cells, the reorganization of extracellular matrix components, the elimination of dead cells, and the restoration of normal blood flow. However, chronic sterile inflammation within the arterial walls draws inflammatory macrophages into intimal/neointimal regions that may contribute to disease pathogenesis. In this context, the accumulation and aberrant activation of macrophages in the neointimal regions govern the progression of inflammatory arterial wall diseases. Herein, we report that myeloid-hypoxia-inducible factor-1α (HIF1α) deficiency attenuates vascular smooth muscle cells and macrophage abundance in stenotic arteries and abrogates carotid neointima formation in vivo. The integrated transcriptomics, Gene Set Enrichment Analysis, metabolomics, and target gene evaluation showed that HIF1α represses oxidative phosphorylation, tricarboxylic acid cycle, fatty acid metabolism, and c-MYC signaling pathways while promoting inflammatory, glycolytic, hypoxia response gene expression in stenotic artery macrophages. At the molecular level, proinflammatory agents utilized STAT3 signaling pathways to elevate HIF1α expression in macrophages. Collectively, this study uncovers that macrophage-HIF1α deficiency restrains the pathogenesis of carotid artery stenosis by rewiring inflammatory and metabolic signaling pathways in macrophages.
Collapse
Affiliation(s)
- Gun-Dong Kim
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Hang Pong Ng
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
| | | |
Collapse
|
10
|
Iwakura T, Zhao Z, Marschner JA, Devarapu SK, Yasuda H, Anders HJ. Dipeptidyl peptidase-4 inhibitor teneligliptin accelerates recovery from cisplatin-induced acute kidney injury by attenuating inflammation and promoting tubular regeneration. Nephrol Dial Transplant 2020; 34:1669-1680. [PMID: 30624740 DOI: 10.1093/ndt/gfy397] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cisplatin is an effective chemotherapeutic agent. However, acute kidney injury (AKI) and subsequent kidney function decline limits its use. Dipeptidyl peptidase-4 (DPP-4) inhibitor has been reported to attenuate kidney injury in some in vivo models, but the mechanisms-of-action in tubule recovery upon AKI remain speculative. We hypothesized that DPP-4 inhibitor teneligliptin (TG) can facilitate kidney recovery after cisplatin-induced AKI. METHODS In in vivo experiment, AKI was induced in rats by injecting 5 mg/kg of cisplatin intravenously. Oral administration of 10 mg/kg of TG, once a day, was started just before injecting cisplatin or from Day 5 after cisplatin injection. In an in vitro experiment, proliferation of isolated murine tubular cells was evaluated with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis and cell counting. Cell viability was analysed by MTT assay or lactate dehydrogenase (LDH) assay. RESULTS In in vivo experiments, we found that TG attenuates cisplatin-induced AKI and accelerates kidney recovery after the injury by promoting the proliferation of surviving epithelial cells of the proximal tubule. TG also suppressed intrarenal tumour necrosis factor-α expression, and induced macrophage polarization towards the anti-inflammatory M2 phenotype, both indirectly endorsing tubule recovery upon cisplatin injury. In in vitro experiments, TG directly accelerated the proliferation of primary tubular epithelial cells. Systematic screening of the DPP-4 substrate chemokines in vitro identified CXC chemokine ligand (CXCL)-12 as a promoted mitogenic factor. CXCL12 not only accelerated proliferation but also inhibited cell death of primary tubular epithelial cells after cisplatin exposure. CXC chemokine receptor (CXCR)-4 antagonism abolished the proliferative effect of TG. CONCLUSIONS The DPP-4 inhibitor TG can accelerate tubule regeneration and functional recovery from toxic AKI via an anti-inflammatory effect and probably via inhibition of CXCL12 breakdown. Hence, DPP-4 inhibitors may limit cisplatin-induced nephrotoxicity and improve kidney function in cancer patients.
Collapse
Affiliation(s)
- Takamasa Iwakura
- Department of Medicine IV, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany.,Internal Medicine I, Division of Nephrology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Zhibo Zhao
- Department of Medicine IV, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julian A Marschner
- Department of Medicine IV, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
| | - Satish Kumar Devarapu
- Department of Medicine IV, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hideo Yasuda
- Internal Medicine I, Division of Nephrology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hans Joachim Anders
- Department of Medicine IV, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
Wu TC, Chen JS, Wang CH, Huang PH, Lin FY, Lin LY, Lin SJ, Chen JW. Activation of heme oxygenase-1 by Ginkgo biloba extract differentially modulates endothelial and smooth muscle-like progenitor cells for vascular repair. Sci Rep 2019; 9:17316. [PMID: 31754254 PMCID: PMC6872755 DOI: 10.1038/s41598-019-53818-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/17/2019] [Indexed: 01/09/2023] Open
Abstract
Vascular progenitors such as endothelial progenitor cells (EPCs) and smooth muscle-like progenitor cells (SMPCs) may play different roles in vascular repair. Ginkgo biloba extract (GBE) is an exogenous activator of heme oxygenase (HO)-1, which has been suggested to improve vascular repair; however, the detailed mechanisms have yet to be elucidated. This study aimed to investigate whether GBE can modulate different vascular progenitor cells by activating HO-1 for vascular repair. A bone marrow transplantation mouse model was used to evaluate the in vivo effects of GBE treatment on wire-injury induced neointimal hyperplasia, which is representative of impaired vascular repair. On day 14 of GBE treatment, the mice were subjected to wire injury of the femoral artery to identify vascular reendothelialization. Compared to the mice without treatment, neointimal hyperplasia was reduced in the mice that received GBE treatment for 28 days in a dose-dependent manner. Furthermore, GBE treatment increased bone marrow-derived EPCs, accelerated endothelial recovery, and reduced the number of SMPCs attached to vascular injury sites. The effects of GBE treatment on neointimal hyperplasia could be abolished by co-treatment with zinc protoporphyrin IX, an HO-1 inhibitor, suggesting the in vivo role of HO-1. In this in vitro study, treatment with GBE activated human early and late EPCs and suppressed SMPC migration. These effects were abolished by HO-1 siRNA and an HO-1 inhibitor. Furthermore, GBE induced the expression of HO-1 by activating PI3K/Akt/eNOS signaling in human late EPCs and via p38 pathways in SMPCs, suggesting that GBE can induce HO-1 in vitro through different molecular mechanisms in different vascular progenitor cells. Accordingly, GBE could activate early and late EPCs, suppress the migration of SMPCs, and improve in vivo vascular repair after mechanical injury by activating HO-1, suggesting the potential role of pharmacological HO-1 activators, such as GBE, for vascular protection in atherosclerotic diseases.
Collapse
Affiliation(s)
- Tao-Cheng Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Shiong Chen
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Yu Lin
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Precision Medicine Research Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
12
|
|
13
|
Veres G, Schmidt H, Hegedűs P, Korkmaz-Icöz S, Radovits T, Loganathan S, Brlecic P, Li S, Karck M, Szabó G. Is internal thoracic artery resistant to reperfusion injury? Evaluation of the storage of free internal thoracic artery grafts. J Thorac Cardiovasc Surg 2018; 156:1460-1469. [DOI: 10.1016/j.jtcvs.2018.05.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 10/14/2022]
|
14
|
Heikal L, Ghezzi P, Mengozzi M, Ferns G. Assessment of HIF-1α expression and release following endothelial injury in-vitro and in-vivo. Mol Med 2018; 24:22. [PMID: 30134815 PMCID: PMC6016879 DOI: 10.1186/s10020-018-0026-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Endothelial injury is an early and enduring feature of cardiovascular disease. Inflammation and hypoxia may be responsible for this, and are often associated with the up-regulation of several transcriptional factors that include Hypoxia Inducible Factor-1 (HIF-1). Although it has been reported that HIF-1α is detectable in plasma, it is known to be unstable. Our aim was to optimize an assay for HIF-1α to be applied to in vitro and in vivo applications, and to use this assay to assess the release kinetics of HIF-1α following endothelial injury. Methods An ELISA for the measurement of HIF-1α in cell-culture medium and plasma was optimized, and the assay was used to determine the best conditions for sample collection and storage. The results of the ELISA were validated using Western blotting and immunohistochemistry (IHC). In vitro, a standardized injury was produced in a monolayer of rat aortic endothelial cells (RAECs) and intracellular HIF-1α was measured at intervals over 24 h. In vivo, a rat angioplasty model was used. The right carotid artery was injured using a 2F Fogarty balloon catheter. HIF-1α was measured in the plasma and in the arterial tissue (0, 1, 2, 3 and 5 days post injury). Results The HIF-1α ELISA had a limit of detection of 2.7 pg/mL and was linear up to 1000 pg/ mL. Between and within-assay, the coefficient of variation values were less than 15%. HIF-1α was unstable in cell lysates and plasma, and it was necessary to add a protease inhibitor immediately after collection, and to store samples at -80 °C prior to analysis. The dynamics of HIF-1α release were different for the in vitro and in vivo models. In vitro, HIF-1α reached maximum concentrations approximately 2 h post injury, whereas peak values in plasma and tissues occurred approximately 2 days post injury, in the balloon injury model. Conclusion HIF-1α can be measured in plasma, but this requires careful sample collection and storage. The carotid artery balloon injury model is associated with the transient release of HIF-1α into the circulation that probably reflects the hypoxia induced in the artery wall. Electronic supplementary material The online version of this article (10.1186/s10020-018-0026-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lamia Heikal
- Brighton and Sussex Medical School Department of Clinical and experimental investigation, University of Sussex, Falmer East Sussex, Brighton, BN1 9PS, UK
| | - Pietro Ghezzi
- Brighton and Sussex Medical School Department of Clinical and experimental investigation, University of Sussex, Falmer East Sussex, Brighton, BN1 9PS, UK
| | - Manuela Mengozzi
- Brighton and Sussex Medical School Department of Clinical and experimental investigation, University of Sussex, Falmer East Sussex, Brighton, BN1 9PS, UK
| | - Gordon Ferns
- Brighton and Sussex Medical School Department of Clinical and experimental investigation, University of Sussex, Falmer East Sussex, Brighton, BN1 9PS, UK. .,Brighton and Sussex Medical School Department of Medical Education, Mayfield House, Falmer East Sussex, Brighton, BN1 9PH, UK.
| |
Collapse
|
15
|
Tan Z, Li J, Zhang X, Yang X, Zhang Z, Yin KJ, Huang H. P53 Promotes Retinoid Acid-induced Smooth Muscle Cell Differentiation by Targeting Myocardin. Stem Cells Dev 2018; 27:534-544. [PMID: 29482449 DOI: 10.1089/scd.2017.0244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TP53 is a widely studied tumor suppressor gene that controls various cellular functions, including cell differentiation. However, little is known about its functional roles in smooth muscle cells (SMCs) differentiation from embryonic stem cells (ESCs). SMC differentiation is at the heart of our understanding of vascular development, normal blood pressure homeostasis, and the pathogenesis of vascular diseases such as atherosclerosis, hypertension, restenosis, as well as aneurysm. Using retinoid acid (RA)-induced SMC differentiation models, we observed that p53 expression is increased during in vitro differentiation of mouse ESCs into SMCs. Meanwhile, suppression of p53 by shRNA reduced RA-induced SMC differentiation. Mechanistically, we have identified for the first time that Myocardin, a transcription factor that induces muscle cell differentiation and muscle-specific gene expression, is the direct target of p53 by bioinformatic analysis, luciferase reporter assay, and chromatin immunoprecipitation approaches. Moreover, in vivo SMC-selective p53 transgenic overexpression inhibited injury-induced neointimal formation. Taken together, our data demonstrate that p53 and its target gene, Myocardin, play regulatory roles in SMC differentiation. This study may lead to the identification of novel target molecules that may, in turn, lead to novel drug discoveries for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Zhou Tan
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Jingya Li
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Xuejing Zhang
- 2 Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Xueqin Yang
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Zunyi Zhang
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Ke-Jie Yin
- 2 Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Huarong Huang
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| |
Collapse
|
16
|
Remm F, Kränkel N, Lener D, Drucker DJ, Sopper S, Brenner C. Sitagliptin Accelerates Endothelial Regeneration after Vascular Injury Independent from GLP1 Receptor Signaling. Stem Cells Int 2018; 2018:5284963. [PMID: 29531541 PMCID: PMC5822806 DOI: 10.1155/2018/5284963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/23/2017] [Accepted: 12/02/2017] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION DPP4 inhibitors (gliptins) are commonly used antidiabetic drugs for the treatment of type 2 diabetes. Gliptins also act in a glucose-independent manner and show vasoregenerative effects. We have shown that gliptins can remarkably accelerate vascular healing after vascular injury. However, the underlying mechanisms remain unclear. Here, we examined potential signaling pathways linking gliptins to enhanced endothelial regeneration. METHODS AND RESULTS We used wild-type and GLP1 receptor knockout (Glp1r-/-) mice to investigate the underlying mechanisms of gliptin-induced reendothelialization. The prototype DPP4 inhibitor sitagliptin accelerated endothelial healing in both animal models. Improved endothelial growth was associated with gliptin-mediated progenitor cell recruitment into the diseased vascular wall via the SDF1-CXCR4 axis independent of GLP1R-dependent signaling pathways. Furthermore, SDF1 showed direct proproliferative effects on endothelial cells. Excessive neointimal formation was not observed in gliptin- or placebo-treated Glp1r-/- mice. CONCLUSION We identified the SDF1-CXCR4 axis as a crucial signaling pathway for endothelial regeneration after acute vascular injury. Furthermore, SDF1 can directly increase endothelial cell proliferation. Gliptin-mediated potentiation of endothelial regeneration was preserved in Glp1r-/- animals. Thus, gliptin-mediated endothelial regeneration proceeds through SDF-1/CXCR4 in a GLP1R-independent manner after acute vascular injury.
Collapse
Affiliation(s)
- Friederike Remm
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolle Kränkel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniela Lener
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Sieghart Sopper
- Department of Internal Medicine V, Hematology & Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Brenner
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Cardiology, Reha Zentrum Muenster, Münster, Tirol, Austria
| |
Collapse
|
17
|
Zhao Z, Vajen T, Karshovska E, Dickhout A, Schmitt MM, Megens RTA, von Hundelshausen P, Koeppel TA, Hackeng TM, Weber C, Koenen RR. Deletion of junctional adhesion molecule A from platelets increases early-stage neointima formation after wire injury in hyperlipidemic mice. J Cell Mol Med 2017; 21:1523-1531. [PMID: 28211187 PMCID: PMC5542900 DOI: 10.1111/jcmm.13083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
Platelets play an important role in the pathogenesis of vascular remodelling after injury. Junctional adhesion molecule A (JAM-A) was recently described to regulate platelet activation. Specific deletion of JAM-A from platelets resulted in increased reactivity and in accelerated progression of atherosclerosis. The aim of this study was to investigate the specific contribution of platelet-derived JAM-A to neointima formation after vascular injury. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe-/- ) background underwent wire-induced injury of the common carotid artery. Ex vivo imaging by two-photon microscopy revealed increased platelet coverage at the site of injury in trJAM-A-deficient mice. Cell recruitment assays showed increased adhesion of monocytic cells to activated JAM-A-deficient platelets than to control platelets. Inhibition of αM β2 or GPIbα, but not of CD62P, suppressed those differences. Up to 4 weeks after wire injury, intimal neoplasia and neointimal cellular content were analysed. Neointimal lesion area was increased in trJAM-A-/- apoe-/- mice and the lesions showed an increased macrophage accumulation and proliferating smooth muscle cells compared with trJAM-A+/+ apoe-/- littermates 2 weeks, but not 4 weeks after injury. Re-endothelialization was decreased in trJAM-A-/- apoe-/- mice compared with controls 2 weeks after injury, yet it was complete in both groups after 4 weeks. A platelet gain of function by deletion of JAM-A accelerates neointima formation only during earlier phases after vascular injury, through an increased recruitment of mononuclear cells. Thus, the contribution of platelets might become less important when neointima formation progresses to later stages.
Collapse
Affiliation(s)
- Zhen Zhao
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,Division of Vascular and Endovascular Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tanja Vajen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ela Karshovska
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Annemiek Dickhout
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Martin M Schmitt
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas A Koeppel
- Division of Vascular and Endovascular Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tilman M Hackeng
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Rory R Koenen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
18
|
Abstract
The anoxemia theory proposes that an imbalance between the demand for and supply of oxygen in the arterial wall is a key factor in the development of atherosclerosis. There is now substantial evidence that there are regions within the atherosclerotic plaque in which profound hypoxia exists; this may fundamentally change the function, metabolism, and responses of many of the cell types found within the developing plaque and whether the plaque will evolve into a stable or unstable phenotype. Hypoxia is characterized in molecular terms by the stabilization of hypoxia-inducible factor (HIF) 1α, a subunit of the heterodimeric nuclear transcriptional factor HIF-1 and a master regulator of oxygen homeostasis. The expression of HIF-1 is localized to perivascular tissues, inflammatory macrophages, and smooth muscle cells adjacent to the necrotic core of atherosclerotic lesions and regulates several genes that are important to vascular function including vascular endothelial growth factor, nitric oxide synthase, endothelin-1, and erythropoietin. This review summarizes the effects of hypoxia on the functions of cells involved in atherogenesis and the evidence for its potential importance from experimental models and clinical studies.
Collapse
Affiliation(s)
- Gordon A A Ferns
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| | - Lamia Heikal
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
19
|
Kim BS, Jacobs D, Emontzpohl C, Goetzenich A, Soppert J, Jarchow M, Schindler L, Averdunk L, Kraemer S, Marx G, Bernhagen J, Pallua N, Schlemmer HP, Simons D, Stoppe C. Myocardial Ischemia Induces SDF-1α Release in Cardiac Surgery Patients. J Cardiovasc Transl Res 2016; 9:230-238. [PMID: 27055858 DOI: 10.1007/s12265-016-9689-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/22/2016] [Indexed: 01/07/2023]
Abstract
In the present observational study, we measured serum levels of the chemokine stromal cell-derived factor-1α (SDF-1α) in 100 patients undergoing cardiac surgery with cardiopulmonary bypass at seven distinct time points including preoperative values, myocardial ischemia, reperfusion, and the postoperative course. Myocardial ischemia triggered a marked increase of SDF-1α serum levels whereas cardiac reperfusion had no significant influence. Perioperative SDF-1α serum levels were influenced by patients' characteristics (e.g., age, gender, aspirin intake). In an explorative analysis, we observed an inverse association between SDF-1α serum levels and the incidence of organ dysfunction. In conclusion, time of myocardial ischemia was identified as the key stimulus for a significant upregulation of SDF-1α, indicating its role as a marker of myocardial injury. The inverse association between SDF-1α levels and organ dysfunction association encourages further studies to evaluate its organoprotective properties in cardiac surgery patients.
Collapse
Affiliation(s)
- Bong-Sung Kim
- Department of Plastic Surgery, Hand Surgery, Burn Center, RWTH Aachen University, Aachen, Germany
| | - Denise Jacobs
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Aachen, Germany
| | - Christoph Emontzpohl
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Aachen, Germany
| | - Andreas Goetzenich
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, RWTH Aachen, Aachen, Germany
| | - Josefin Soppert
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Aachen, Germany
| | - Mareike Jarchow
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Aachen, Germany
| | - Lisa Schindler
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, RWTH Aachen, Aachen, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Luisa Averdunk
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Aachen, Germany
| | - Sandra Kraemer
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, RWTH Aachen, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Aachen, Germany
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Norbert Pallua
- Department of Plastic Surgery, Hand Surgery, Burn Center, RWTH Aachen University, Aachen, Germany
| | | | - David Simons
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Christian Stoppe
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Aachen, Germany.
| |
Collapse
|
20
|
Akhtar S, Hartmann P, Karshovska E, Rinderknecht FA, Subramanian P, Gremse F, Grommes J, Jacobs M, Kiessling F, Weber C, Steffens S, Schober A. Endothelial Hypoxia-Inducible Factor-1α Promotes Atherosclerosis and Monocyte Recruitment by Upregulating MicroRNA-19a. Hypertension 2015; 66:1220-6. [PMID: 26483345 DOI: 10.1161/hypertensionaha.115.05886] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022]
Abstract
Chemokines mediate monocyte adhesion to dysfunctional endothelial cells (ECs) and promote arterial inflammation during atherosclerosis. Hypoxia-inducible factor (HIF)-1α is expressed in various cell types of atherosclerotic lesions and is associated with lesional inflammation. However, the impact of endothelial HIF-1α in atherosclerosis is unclear. HIF-1α was detectable in the nucleus of ECs covering murine and human atherosclerotic lesions. To study the role of endothelial HIF-1α in atherosclerosis, deletion of the Hif1a gene was induced in ECs from apolipoprotein E knockout mice (EC-Hif1a(-/-)) by Tamoxifen injection. The formation of atherosclerotic lesions, the lesional macrophage accumulation, and the expression of CXCL1 in ECs were reduced after partial carotid ligation in EC-Hif1a(-/-) compared with control mice. Moreover, the lesion area and the lesional macrophage accumulation were decreased in the aortas of EC-Hif1a(-/-) mice compared with control mice during diet-induced atherosclerosis. In vitro, mildly oxidized low-density lipoprotein or lysophosphatidic acid 20:4 increased endothelial CXCL1 expression and monocyte adhesion by inducing HIF-1α expression. Moreover, endothelial Hif1a deficiency resulted in downregulation of miR-19a in atherosclerotic arteries determined by microRNA profiling. In vitro, HIF-1α-induced miR-19a expression mediated the upregulation of CXCL1 in mildly oxidized low-density lipoprotein-stimulated ECs. These results indicate that hyperlipidemia upregulates HIF-1α expression in ECs by mildly oxidized low-density lipoprotein-derived unsaturated lysophosphatidic acid. Endothelial HIF-1α promoted atherosclerosis by triggering miR-19a-mediated CXCL1 expression and monocyte adhesion, indicating that inhibition of the endothelial HIF-1α/miR-19a pathway may be a therapeutic option against atherosclerosis.
Collapse
Affiliation(s)
- Shamima Akhtar
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (S.A., P.H., E.K., F.-A.R., P.S., C.W., S.S., A.S.); Institute for Molecular Cardiovascular Research (S.A., A.S.), Department of Experimental Molecular Imaging (F.G., F.K.), and European Vascular Center Aachen-Maastricht (J.G., M.J.), RWTH Aachen University, Aachen, Germany; European Vascular Center Aachen-Maastricht, University Maastricht Medical Center, Maastricht, The Netherlands (J.G., M.J.); Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands (C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W., S.S., A.S.)
| | - Petra Hartmann
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (S.A., P.H., E.K., F.-A.R., P.S., C.W., S.S., A.S.); Institute for Molecular Cardiovascular Research (S.A., A.S.), Department of Experimental Molecular Imaging (F.G., F.K.), and European Vascular Center Aachen-Maastricht (J.G., M.J.), RWTH Aachen University, Aachen, Germany; European Vascular Center Aachen-Maastricht, University Maastricht Medical Center, Maastricht, The Netherlands (J.G., M.J.); Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands (C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W., S.S., A.S.)
| | - Ela Karshovska
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (S.A., P.H., E.K., F.-A.R., P.S., C.W., S.S., A.S.); Institute for Molecular Cardiovascular Research (S.A., A.S.), Department of Experimental Molecular Imaging (F.G., F.K.), and European Vascular Center Aachen-Maastricht (J.G., M.J.), RWTH Aachen University, Aachen, Germany; European Vascular Center Aachen-Maastricht, University Maastricht Medical Center, Maastricht, The Netherlands (J.G., M.J.); Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands (C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W., S.S., A.S.)
| | - Fatuma-Ayaan Rinderknecht
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (S.A., P.H., E.K., F.-A.R., P.S., C.W., S.S., A.S.); Institute for Molecular Cardiovascular Research (S.A., A.S.), Department of Experimental Molecular Imaging (F.G., F.K.), and European Vascular Center Aachen-Maastricht (J.G., M.J.), RWTH Aachen University, Aachen, Germany; European Vascular Center Aachen-Maastricht, University Maastricht Medical Center, Maastricht, The Netherlands (J.G., M.J.); Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands (C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W., S.S., A.S.)
| | - Pallavi Subramanian
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (S.A., P.H., E.K., F.-A.R., P.S., C.W., S.S., A.S.); Institute for Molecular Cardiovascular Research (S.A., A.S.), Department of Experimental Molecular Imaging (F.G., F.K.), and European Vascular Center Aachen-Maastricht (J.G., M.J.), RWTH Aachen University, Aachen, Germany; European Vascular Center Aachen-Maastricht, University Maastricht Medical Center, Maastricht, The Netherlands (J.G., M.J.); Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands (C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W., S.S., A.S.)
| | - Felix Gremse
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (S.A., P.H., E.K., F.-A.R., P.S., C.W., S.S., A.S.); Institute for Molecular Cardiovascular Research (S.A., A.S.), Department of Experimental Molecular Imaging (F.G., F.K.), and European Vascular Center Aachen-Maastricht (J.G., M.J.), RWTH Aachen University, Aachen, Germany; European Vascular Center Aachen-Maastricht, University Maastricht Medical Center, Maastricht, The Netherlands (J.G., M.J.); Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands (C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W., S.S., A.S.)
| | - Jochen Grommes
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (S.A., P.H., E.K., F.-A.R., P.S., C.W., S.S., A.S.); Institute for Molecular Cardiovascular Research (S.A., A.S.), Department of Experimental Molecular Imaging (F.G., F.K.), and European Vascular Center Aachen-Maastricht (J.G., M.J.), RWTH Aachen University, Aachen, Germany; European Vascular Center Aachen-Maastricht, University Maastricht Medical Center, Maastricht, The Netherlands (J.G., M.J.); Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands (C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W., S.S., A.S.)
| | - Michael Jacobs
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (S.A., P.H., E.K., F.-A.R., P.S., C.W., S.S., A.S.); Institute for Molecular Cardiovascular Research (S.A., A.S.), Department of Experimental Molecular Imaging (F.G., F.K.), and European Vascular Center Aachen-Maastricht (J.G., M.J.), RWTH Aachen University, Aachen, Germany; European Vascular Center Aachen-Maastricht, University Maastricht Medical Center, Maastricht, The Netherlands (J.G., M.J.); Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands (C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W., S.S., A.S.)
| | - Fabian Kiessling
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (S.A., P.H., E.K., F.-A.R., P.S., C.W., S.S., A.S.); Institute for Molecular Cardiovascular Research (S.A., A.S.), Department of Experimental Molecular Imaging (F.G., F.K.), and European Vascular Center Aachen-Maastricht (J.G., M.J.), RWTH Aachen University, Aachen, Germany; European Vascular Center Aachen-Maastricht, University Maastricht Medical Center, Maastricht, The Netherlands (J.G., M.J.); Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands (C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W., S.S., A.S.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (S.A., P.H., E.K., F.-A.R., P.S., C.W., S.S., A.S.); Institute for Molecular Cardiovascular Research (S.A., A.S.), Department of Experimental Molecular Imaging (F.G., F.K.), and European Vascular Center Aachen-Maastricht (J.G., M.J.), RWTH Aachen University, Aachen, Germany; European Vascular Center Aachen-Maastricht, University Maastricht Medical Center, Maastricht, The Netherlands (J.G., M.J.); Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands (C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W., S.S., A.S.)
| | - Sabine Steffens
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (S.A., P.H., E.K., F.-A.R., P.S., C.W., S.S., A.S.); Institute for Molecular Cardiovascular Research (S.A., A.S.), Department of Experimental Molecular Imaging (F.G., F.K.), and European Vascular Center Aachen-Maastricht (J.G., M.J.), RWTH Aachen University, Aachen, Germany; European Vascular Center Aachen-Maastricht, University Maastricht Medical Center, Maastricht, The Netherlands (J.G., M.J.); Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands (C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W., S.S., A.S.)
| | - Andreas Schober
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (S.A., P.H., E.K., F.-A.R., P.S., C.W., S.S., A.S.); Institute for Molecular Cardiovascular Research (S.A., A.S.), Department of Experimental Molecular Imaging (F.G., F.K.), and European Vascular Center Aachen-Maastricht (J.G., M.J.), RWTH Aachen University, Aachen, Germany; European Vascular Center Aachen-Maastricht, University Maastricht Medical Center, Maastricht, The Netherlands (J.G., M.J.); Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands (C.W.); and DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (C.W., S.S., A.S.).
| |
Collapse
|
21
|
van der Toorn M, Frentzel S, Goedertier D, Peitsch M, Hoeng J, De Leon H. A prototypic modified risk tobacco product exhibits reduced effects on chemotaxis and transendothelial migration of monocytes compared with a reference cigarette. Food Chem Toxicol 2015; 80:277-286. [PMID: 25839901 DOI: 10.1016/j.fct.2015.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
Abstract
Monocyte adhesion and migration to the subendothelial space represent critical steps in atherogenesis. Here, we investigated whether extracts from the aerosol of a prototypic modified risk tobacco product (pMRTP), based on heating rather than combusting tobacco, exhibited differential effects on the migratory behavior of monocytes compared with that from the reference cigarette, 3R4F. THP-1 cells, a monocytic cell line, and human coronary arterial endothelial cells (HCAECs) were used to investigate chemotaxis and transendothelial migration (TEM) of monocytes in conventional and impedance-based systems. THP-1 cells migrated through a monolayer of HCAECs in response to C-X-C motif ligand 12 (CXCL12), a chemokine involved in diverse cellular functions including chemotaxis and survival of stem cells. Treatment of THP-1 cells with extracts from 3R4F or pMRTP induced concentration-dependent increases in cytotoxicity (7-aminoactinomycin D), and inflammation (IL-8 and TNF-α). CXCL12-mediated chemotaxis and TEM were decreased in extract-treated THP-1 cells. Extracts from 3R4F were ~21 times more potent than those from pMRTP in all examined endpoints. Extracts from 3R4F and pMRTP induced concentration-dependent responses in assays of inflammation, cytotoxicity, chemotaxis, and TEM. Furthermore, our findings indicate that extracts from a pMRTP are significantly less cytotoxic and induce less inflammation than those from the reference cigarette, 3R4F.
Collapse
Affiliation(s)
- Marco van der Toorn
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Stefan Frentzel
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Didier Goedertier
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel Peitsch
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Hector De Leon
- Philip Morris Products S.A., Philip Morris International R&D, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
22
|
Jain M, Singh A, Singh V, Barthwal MK. Involvement of interleukin-1 receptor-associated kinase-1 in vascular smooth muscle cell proliferation and neointimal formation after rat carotid injury. Arterioscler Thromb Vasc Biol 2015; 35:1445-55. [PMID: 25908764 DOI: 10.1161/atvbaha.114.305028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/07/2015] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Reduced frequency of atherosclerotic plaques is observed in interleukin-1 receptor-associated kinase-1 (IRAK1)-deficient mice; however, the underlying mechanism is not clear. Therefore, this study investigate the role of IRAK1 in vascular smooth muscle cell proliferation and neointimal hyperplasia. APPROACH AND RESULTS Stimulation of rat primary vascular smooth muscle cells with fetal bovine serum (10%) or platelet-derived growth factor-BB (20 ng/mL) for 15 minutes to 24 hours induced a time-dependent increase in IRAK1 and extracellular signal-regulated kinase (ERK) activation, proliferating cell nuclear antigen upregulation and p27Kip1 downregulation as assessed by Western blotting. Inhibitors of ERK pathway (U0126, 10 μmol/L), IRAK (IRAK1/4, 3 μmol/L), protein kinase C (PKC; Ro-31-8220, 1 μmol/L), siRNA of toll-like receptor-4 (200 nmol/L), and PKC-ε (200 nmol/L) significantly attenuated these changes. Platelet-derived growth factor induced endogenous IRAK-ERK-PKC-ε association in a toll-like receptor-4 and PKC-ε-dependent manner. A time-dependent increase in IRAK1 and ERK activation was observed after 15 minutes, 30 minutes, 1 hour, 6 hours, 12 hours, and 24 hours of carotid balloon injury in rats. Balloon injury induced endogenous IRAK-ERK-PKC-ε interaction. Perivascular application of IRAK1/4 inhibitor (100 μmol/L), U0126 (100 μmol/L), and IRAK1 siRNA (220 and 360 nmol/L) in pluronic gel abrogated balloon injury-induced ERK phosphorylation, activation, and p27Kip1 downregulation. Hematoxylin and eosin staining and immunohistochemistry of proliferating cell nuclear antigen and smooth muscle actin demonstrated that balloon injury-induced intimal thickening and neointimal vascular smooth muscle cell proliferation were significantly abrogated in the presence of IRAK1/4 inhibitor, IRAK1 siRNA, and U0126. CONCLUSIONS IRAK1 mediates vascular smooth muscle cell proliferation and neointimal hyperplasia by regulating PKC-ε-IRAK1-ERK axis.
Collapse
Affiliation(s)
- Manish Jain
- From the Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ankita Singh
- From the Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vishal Singh
- From the Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manoj Kumar Barthwal
- From the Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
23
|
Matsuura Y, Yamashita A, Iwakiri T, Sugita C, Okuyama N, Kitamura K, Asada Y. Vascular wall hypoxia promotes arterial thrombus formation via augmentation of vascular thrombogenicity. Thromb Haemost 2015; 114:158-72. [PMID: 25833755 DOI: 10.1160/th14-09-0794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/30/2015] [Indexed: 12/15/2022]
Abstract
Atherosclerotic lesions represent a hypoxic milieu. However, the significance of this milieu in atherothrombosis has not been established. We aimed to assess the hypothesis that vascular wall hypoxia promotes arterial thrombus formation. We examined the relation between vascular wall hypoxia and arterial thrombus formation using a rabbit model in which arterial thrombosis was induced by 0.5 %-cholesterol diet and repeated balloon injury of femoral arteries. Vascular wall hypoxia was immunohistochemically detected by pimonidazole hydrochloride, a hypoxia marker. Rabbit neointima and THP-1 macrophages were cultured to analyse prothrombotic factor expression under hypoxic conditions (1 % O2). Prothrombotic factor expression and nuclear localisation of hypoxia-inducible factor (HIF)-1α and nuclear factor-kappa B (NF-κB) p65 were immunohistochemically assessed using human coronary atherectomy plaques. Hypoxic areas were localised in the macrophage-rich deep portion of rabbit neointima and positively correlated with the number of nuclei immunopositive for HIF-1α and NF-κB p65, and tissue factor (TF) expression. Immunopositive areas for glycoprotein IIb/IIIa and fibrin in thrombi were significantly correlated with hypoxic areas in arteries. TF and plasminogen activator inhibitor-1 (PAI-1) expression was increased in neointimal tissues and/or macrophages cultured under hypoxia, and both were suppressed by inhibitors of either HIF-1 or NF-κB. In human coronary plaques, the number of HIF-1α-immunopositive nuclei was positively correlated with that of NF-κB-immunopositive nuclei and TF-immunopositive and PAI-1-immunopositive area, and it was significantly higher in thrombotic plaques. Vascular wall hypoxia augments the thrombogenic potential of atherosclerotic plaque and thrombus formation on plaques via prothrombotic factor upregulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yujiro Asada
- Yujiro Asada, MD, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan, Tel.: + 81 985 85 2810, Fax: + 81 985 85 7614, E-mail:
| |
Collapse
|
24
|
Karshovska E, Zhao Z, Blanchet X, Schmitt MMN, Bidzhekov K, Soehnlein O, von Hundelshausen P, Mattheij NJ, Cosemans JMEM, Megens RTA, Koeppel TA, Schober A, Hackeng TM, Weber C, Koenen RR. Hyperreactivity of junctional adhesion molecule A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice. Circ Res 2014; 116:587-99. [PMID: 25472975 DOI: 10.1161/circresaha.116.304035] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE Besides their essential role in hemostasis, platelets also have functions in inflammation. In platelets, junctional adhesion molecule (JAM)-A was previously identified as an inhibitor of integrin αIIbβ3-mediated outside-in signaling and its genetic knockdown resulted in hyperreactivity. OBJECTIVE This gain-of-function was specifically exploited to investigate the role of platelet hyperreactivity in plaque development. METHODS AND RESULTS JAM-A-deficient platelets showed increased aggregation and cellular and sarcoma tyrosine-protein kinase activation. On αIIbβ3 ligation, JAM-A was shown to be dephosphorylated, which could be prevented by protein tyrosine phosphatase nonreceptor type 1 inhibition. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe(-/-)) background were fed a high-fat diet. After ≤12 weeks of diet, trJAM-A(-/-)apoe-/- mice showed increased aortic plaque formation when compared with trJAM-A(+/+) apoe(-/-) controls, and these differences were most evident at early time points. At 2 weeks, the plaques of the trJAM-A(-/-) apoe(-/-) animals revealed increased macrophage, T cell, and smooth muscle cell content. Interestingly, plasma levels of chemokines CC chemokine ligand 5 and CXC-chemokine ligand 4 were increased in the trJAM-A(-/-) apoe(-/-)mice, and JAM-A-deficient platelets showed increased binding to monocytes and neutrophils. Whole-blood perfusion experiments and intravital microscopy revealed increased recruitment of platelets and monocytes to the inflamed endothelium in blood of trJAM-A(-/-) apoe(-/-)mice. Notably, these proinflammatory effects of JAM-A-deficient platelets could be abolished by the inhibition of αIIbβ3 signaling in vitro. CONCLUSIONS Deletion of JAM-A causes a gain-of-function in platelets, with lower activation thresholds and increased inflammatory activities. This leads to an increase of plaque formation, particularly in early stages of the disease.
Collapse
Affiliation(s)
- Ela Karshovska
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Zhen Zhao
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Xavier Blanchet
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Martin M N Schmitt
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Kiril Bidzhekov
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Philipp von Hundelshausen
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Nadine J Mattheij
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Judith M E M Cosemans
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Remco T A Megens
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Thomas A Koeppel
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Andreas Schober
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Tilman M Hackeng
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.)
| | - Rory R Koenen
- From the Institute for Cardiovascular Prevention (IPEK) (E.K., Z.Z., X.B., M.M.N.S., K.B., O.S., P.v.H., R.T.A.M., A.S., C.W., R.R.K.) and Division of Vascular and Endovascular Surgery (Z.Z., T.A.K.), Ludwig-Maximilians-University Munich, Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands (O.S.); German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., P.v.H., A.S., C.W.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (N.J.M., J.M.E.M.C., R.T.A.M., T.M.H., C.W., R.R.K.).
| |
Collapse
|
25
|
Brenner C, Kränkel N, Kühlenthal S, Israel L, Remm F, Fischer C, Herbach N, Speer T, Grabmaier U, Laskowski A, Gross L, Theiss H, Wanke R, Landmesser U, Franz WM. Short-term inhibition of DPP-4 enhances endothelial regeneration after acute arterial injury via enhanced recruitment of circulating progenitor cells. Int J Cardiol 2014; 177:266-75. [PMID: 25499391 DOI: 10.1016/j.ijcard.2014.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/06/2014] [Accepted: 09/15/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Endothelial injuries regularly occur in atherosclerosis and during interventional therapies of the arterial occlusive disease. Disturbances in the endothelial integrity can lead to insufficient blood supply and bear the risk of thrombus formation and acute vascular occlusion. At present, effective therapeutics to restore endothelial integrity are barely available. We analyzed the effect of pharmacological DPP-4-inhibition by Sitagliptin on endogenous progenitor cell-based endothelial regeneration via the SDF-1α/CXCR4-axis after acute endothelial damage in a mouse model of carotid injury. METHODS AND RESULTS Induction of a defined endothelial injury was performed in the carotid artery of C57Bl/6 mice which led to a local upregulation of SDF-1α expression. Animals were treated with placebo, Sitagliptin or Sitagliptin+AMD3100. Using mass spectrometry we could prove that Sitagliptin prevented cleavage of the chemokine SDF-1α. Accordingly, increased SDF-1α concentrations enhanced recruitment of systemically applied and endogenous circulating CXCR4+ progenitor cells to the site of vascular injury followed by a significantly accelerated reendothelialization as compared to placebo-treated animals. Improved endothelial recovery, as well as recruitment of circulating CXCR4+ progenitor cells (CD133+, Flk1+), was reversed by CXCR4-antagonization through AMD3100. In addition, short-term Sitagliptin treatment did not significantly promote neointimal or medial hyperplasia. CONCLUSION Sitagliptin can accelerate endothelial regeneration after acute endothelial injury. DPP-4 inhibitors prevent degradation of the chemokine SDF-1α and thus improve the recruitment of regenerative circulating CXCR4+ progenitor cells which mediate local endothelial cell proliferation without adversely affecting vessel wall architecture.
Collapse
Affiliation(s)
- Christoph Brenner
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany; Institute of Physiology, Cardiovascular Research, University of Zurich, Campus Irchel, Zurich, Switzerland; Department of Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria.
| | - Nicolle Kränkel
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland; Institute of Physiology, Cardiovascular Research, University of Zurich, Campus Irchel, Zurich, Switzerland
| | - Sarah Kühlenthal
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Lars Israel
- Institute of Molecular Biology, Adolf-Butenandt-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Friederike Remm
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Cornelia Fischer
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Nadja Herbach
- Institute of Veterinary Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Timo Speer
- Institute of Physiology, Cardiovascular Research, University of Zurich, Campus Irchel, Zurich, Switzerland; Department of Internal Medicine IV, Saarland University Hospital, Homburg/Saar, Germany
| | - Ulrich Grabmaier
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Alexandra Laskowski
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Lisa Gross
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Hans Theiss
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Ulf Landmesser
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland; Institute of Physiology, Cardiovascular Research, University of Zurich, Campus Irchel, Zurich, Switzerland
| | - Wolfgang-Michael Franz
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany; Department of Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
26
|
Bot I, Daissormont ITMN, Zernecke A, van Puijvelde GHM, Kramp B, de Jager SCA, Sluimer JC, Manca M, Hérias V, Westra MM, Bot M, van Santbrink PJ, van Berkel TJC, Su L, Skjelland M, Gullestad L, Kuiper J, Halvorsen B, Aukrust P, Koenen RR, Weber C, Biessen EAL. CXCR4 blockade induces atherosclerosis by affecting neutrophil function. J Mol Cell Cardiol 2014; 74:44-52. [PMID: 24816217 PMCID: PMC4418455 DOI: 10.1016/j.yjmcc.2014.04.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
AIMS The SDF-1α/CXCR4 dyad was previously shown by us and others to be instrumental in intimal hyperplasia as well as early stage atherosclerosis. We here sought to investigate its impact on clinically relevant stages of atherosclerosis in mouse and man. METHODS AND RESULTS Immunohistochemical analysis of CXCR4 expression in human atherosclerotic lesions revealed a progressive accumulation of CXCR4(+) cells during plaque progression. To address causal involvement of CXCR4 in advanced stages of atherosclerosis we reconstituted LDLr(-/-) mice with autologous bone marrow infected with lentivirus encoding SDF-1α antagonist or CXCR4 degrakine, which effects proteasomal degradation of CXCR4. Functional CXCR4 blockade led to progressive plaque expansion with disease progression, while also promoting intraplaque haemorrhage. Moreover, CXCR4 knockdown was seen to augment endothelial adhesion of neutrophils. Concordant with this finding, inhibition of CXCR4 function increased adhesive capacity and reduced apoptosis of neutrophils and resulted in hyperactivation of circulating neutrophils. Compatible with a role of the neutrophil CXCR4 in end-stage atherosclerosis, CXCR4 expression by circulating neutrophils was lowered in patients with acute cardiovascular syndromes. CONCLUSION In conclusion, CXCR4 contributes to later stages of plaque progression by perturbing neutrophil function.
Collapse
Affiliation(s)
- Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Isabelle T M N Daissormont
- Experimental Vascular Pathology Group, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Alma Zernecke
- Rudolf-Virchow-Center/DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Gijs H M van Puijvelde
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Birgit Kramp
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Saskia C A de Jager
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Judith C Sluimer
- Experimental Vascular Pathology Group, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Marco Manca
- Experimental Vascular Pathology Group, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Veronica Hérias
- Experimental Vascular Pathology Group, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Marijke M Westra
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Martine Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Peter J van Santbrink
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Theo J C van Berkel
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Lishan Su
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology School of Medicine, The University of North Carolina, Chapel Hill, NC 27599-7295
| | - Mona Skjelland
- Department of Neurology, Rikshospitalet University Hospital, University of Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology, Rikshospitalet University Hospital, University of Oslo, Norway
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bente Halvorsen
- Department of Internal Medicine, Rikshospitalet University Hospital, University of Oslo, Norway
| | - Paul Aukrust
- Department of Internal Medicine, Rikshospitalet University Hospital, University of Oslo, Norway
| | - Rory R Koenen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erik A L Biessen
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Experimental Vascular Pathology Group, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
27
|
Döring Y, Pawig L, Weber C, Noels H. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol 2014; 5:212. [PMID: 24966838 PMCID: PMC4052746 DOI: 10.3389/fphys.2014.00212] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/15/2014] [Indexed: 12/18/2022] Open
Abstract
The chemokine receptor CXCR4 and its ligand CXCL12 play an important homeostatic function by mediating the homing of progenitor cells in the bone marrow and regulating their mobilization into peripheral tissues upon injury or stress. Although the CXCL12/CXCR4 interaction has long been regarded as a monogamous relation, the identification of the pro-inflammatory chemokine macrophage migration inhibitory factor (MIF) as an important second ligand for CXCR4, and of CXCR7 as an alternative receptor for CXCL12, has undermined this interpretation and has considerably complicated the understanding of CXCL12/CXCR4 signaling and associated biological functions. This review aims to provide insight into the current concept of the CXCL12/CXCR4 axis in myocardial infarction (MI) and its underlying pathologies such as atherosclerosis and injury-induced vascular restenosis. It will discuss main findings from in vitro studies, animal experiments and large-scale genome-wide association studies. The importance of the CXCL12/CXCR4 axis in progenitor cell homing and mobilization will be addressed, as will be the function of CXCR4 in different cell types involved in atherosclerosis. Finally, a potential translation of current knowledge on CXCR4 into future therapeutical application will be discussed.
Collapse
Affiliation(s)
- Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Germany
| | - Lukas Pawig
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Aachen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Germany ; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance Munich, Germany ; Cardiovascular Research Institute Maastricht, University of Maastricht Maastricht, Netherlands
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Aachen, Germany
| |
Collapse
|
28
|
Cao H, Hu X, Zhang Q, Wang J, Li J, Liu B, Shao Y, Li X, Zhang J, Xin S. Upregulation of let-7a inhibits vascular smooth muscle cell proliferation in vitro and in vein graft intimal hyperplasia in rats. J Surg Res 2014; 192:223-33. [PMID: 24953987 DOI: 10.1016/j.jss.2014.05.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Proliferation of vascular smooth muscle cells (VSMCs) is a crucial event in the pathogenesis of intimal hyperplasia, which is the main cause of restenosis after vascular reconstruction. In this study, we assessed the impact of let-7a microRNA (miRNA) on the proliferation of VSMCs. METHODS Using miRNA microarrays analysis for miRNA expression in the vein graft model. Lentiviral vector-mediated let-7a was transfected into the vein grafts. In situ hybridization was performed to detect let-7a. Cultured rat VSMCs were transfected with let-7a mimics for different periods of time. Cell proliferation, migration and cell cycle activity were monitored following transfection of the let-7a mimics. Immunohistochemical and Western blotting analysis the expression levels of c-myc and K-ras. RESULTS We found that let-7a was the most downregulated miRNA in the vein graft model. In vivo proliferation of VSMCs was assessed in a rat model of venous graft intimal hyperplasia. Let-7a was found to localize mainly to the VSMCs. Let-7a miRNA expression was increased in VSMCs in the neointima of the let-7a treated group. Intimal hyperplasia was suppressed by upregulation of let-7a via lentiviral vector-mediated mimics. In cultured VSMCs, the expression of let-7a increased upon starving, and the upregulation of let-7a miRNA significantly decreased cell proliferation and migration. Immunohistochemical and Western blotting analysis demonstrated that treatment with let-7a mimics resulted in decreased expression levels of c-myc and K-ras. CONCLUSIONS The results indicate that let-7a miRNA is a novel regulator of VSMC proliferation in intimal hyperplasia. These findings suggest that let-7a miRNA is a promising therapeutic target for the prevention of intimal hyperplasia.
Collapse
Affiliation(s)
- Hui Cao
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinhua Hu
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China.
| | - Qiang Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Junpeng Wang
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jun Li
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Bing Liu
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yang Shao
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xi Li
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jian Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
29
|
Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell MA, Edwards RA, Gratton E, Waterman ML. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 2014; 33:1454-73. [PMID: 24825347 DOI: 10.15252/embj.201488598] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Much of the mechanism by which Wnt signaling drives proliferation during oncogenesis is attributed to its regulation of the cell cycle. Here, we show how Wnt/β-catenin signaling directs another hallmark of tumorigenesis, namely Warburg metabolism. Using biochemical assays and fluorescence lifetime imaging microscopy (FLIM) to probe metabolism in vitro and in living tumors, we observe that interference with Wnt signaling in colon cancer cells reduces glycolytic metabolism and results in small, poorly perfused tumors. We identify pyruvate dehydrogenase kinase 1 (PDK1) as an important direct target within a larger gene program for metabolism. PDK1 inhibits pyruvate flux to mitochondrial respiration and a rescue of its expression in Wnt-inhibited cancer cells rescues glycolysis as well as vessel growth in the tumor microenvironment. Thus, we identify an important mechanism by which Wnt-driven Warburg metabolism directs the use of glucose for cancer cell proliferation and links it to vessel delivery of oxygen and nutrients.
Collapse
Affiliation(s)
- Kira T Pate
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Chiara Stringari
- Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Stephanie Sprowl-Tanio
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Kehui Wang
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Tara TeSlaa
- Departments of Pathology, Pediatrics, and Bioengineering, David Geffen School of Medicine University of California, Los Angeles, CA, USA
| | - Nate P Hoverter
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Miriam M McQuade
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Chad Garner
- Department of Epidemiology, University of California, Irvine, CA, USA
| | - Michelle A Digman
- Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Michael A Teitell
- Departments of Pathology, Pediatrics, and Bioengineering, David Geffen School of Medicine University of California, Los Angeles, CA, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| |
Collapse
|
30
|
Christoph M, Ibrahim K, Hesse K, Augstein A, Schmeisser A, Braun-Dullaeus RC, Simonis G, Wunderlich C, Quick S, Strasser RH, Poitz DM. Local inhibition of hypoxia-inducible factor reduces neointima formation after arterial injury in ApoE-/- mice. Atherosclerosis 2014; 233:641-647. [PMID: 24561491 DOI: 10.1016/j.atherosclerosis.2014.01.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hypoxia plays a pivotal role in development and progression of restenosis after vascular injury. Under hypoxic conditions the hypoxia-inducible factors (HIFs) are the most important transcription factors for the adaption to reduced oxygen supply. Therefore the aim of the study was to investigate the effect of a local HIF-inhibition and overexpression on atherosclerotic plaque development in a murine vascular injury model. METHODS AND RESULTS After wire-induced vascular injury in ApoE-/- mice a transient, local inhibition of HIF as well as an overexpression approach of the different HIF-subunits (HIF-1α, HIF-2α) by adenoviral infection was performed. The local inhibition of the HIF-pathway using a dominant-negative mutant dramatically reduced the extent of neointima formation. The diminished plaque size was associated with decreased expression of the well-known HIF-target genes vascular endothelial growth factor-A (VEGF-A) and its receptors Flt-1 and Flk-1. In contrast, the local overexpression of HIF-1α and HIF-2α further increased the plaque size after wire-induced vascular injury. CONCLUSIONS Local HIF-inhibition decreases and HIF-α overexpression increases the injury induced neointima formation. These findings provide new insight into the pathogenesis of atherosclerosis and may lead to new therapeutic options for the treatment of in stent restenosis.
Collapse
MESH Headings
- Adenoviridae
- Animals
- Apolipoproteins E/deficiency
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/biosynthesis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/physiology
- Coronary Restenosis
- Disease Models, Animal
- Endothelium, Vascular/injuries
- Femoral Artery/injuries
- Femoral Artery/pathology
- Genetic Vectors
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/physiology
- Male
- Mice
- Mice, Knockout
- Neointima/prevention & control
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/prevention & control
- Signal Transduction
- Transduction, Genetic
- Up-Regulation
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor Receptor-1/biosynthesis
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-2/biosynthesis
- Vascular Endothelial Growth Factor Receptor-2/genetics
Collapse
Affiliation(s)
- Marian Christoph
- University of Dresden, Heart Center, University Hospital, Germany
| | - Karim Ibrahim
- University of Dresden, Heart Center, University Hospital, Germany
| | - Kathleen Hesse
- University of Dresden, Heart Center, University Hospital, Germany
| | - Antje Augstein
- University of Dresden, Heart Center, University Hospital, Germany
| | | | | | - Gregor Simonis
- University of Dresden, Heart Center, University Hospital, Germany
| | | | - Silvio Quick
- University of Dresden, Heart Center, University Hospital, Germany
| | - Ruth H Strasser
- University of Dresden, Heart Center, University Hospital, Germany
| | - David M Poitz
- University of Dresden, Heart Center, University Hospital, Germany.
| |
Collapse
|
31
|
Inhibition of prolyl hydroxylase domain-containing protein on hypertension/renal injury induced by high salt diet and nitric oxide withdrawal. J Hypertens 2013; 31:2043-9. [DOI: 10.1097/hjh.0b013e32836356a0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Karapetyan AV, Klyachkin YM, Selim S, Sunkara M, Ziada KM, Cohen DA, Zuba-Surma EK, Ratajczak J, Smyth SS, Ratajczak MZ, Morris AJ, Abdel-Latif A. Bioactive lipids and cationic antimicrobial peptides as new potential regulators for trafficking of bone marrow-derived stem cells in patients with acute myocardial infarction. Stem Cells Dev 2013; 22:1645-56. [PMID: 23282236 PMCID: PMC3657281 DOI: 10.1089/scd.2012.0488] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/02/2013] [Indexed: 12/22/2022] Open
Abstract
Acute myocardial infarction (AMI) triggers mobilization of stem cells from bone marrow (BM) into peripheral blood (PB). Based on our observation that the bioactive sphingophospholipids, sphingosine-1 phosphate (S1P), and ceramide-1 phosphate (C1P) regulate trafficking of hematopoietic stem cells (HSCs), we explored whether they also direct trafficking of non-hematopoietic stem cells (non-HSCs). We detected a 3-6-fold increase in circulating CD34+, CD133+, and CXCR4+ lineage-negative (Lin-)/CD45- cells that are enriched in non-HSCs [including endothelial progenitors (EPCs) and very small embryonic-like stem cells (VSELs)] in PB from AMI patients (P<0.05 vs. controls). Concurrently, we measured a ∼3-fold increase in S1P and C1P levels in plasma from AMI patients. At the same time, plasma obtained at hospital admission and 6 h after AMI strongly chemoattracted human BM-derived CD34+/Lin- and CXCR4+/Lin- cells in Transwell chemotaxis assays. This effect of plasma was blunted after depletion of S1P level by charcoal stripping and was further inhibited by the specific S1P1 receptor antagonist such as W146 and VPC23019. We also noted that the expression of S1P receptor 1 (S1P1), which is dominant in naïve BM, is reduced after the exposure to S1P at concentrations similar to the plasma S1P levels in patients with AMI, thus influencing the role of S1P in homing to the injured myocardium. Therefore, we examined mechanisms, other than bioactive lipids, that may contribute to the homing of BM non-HSCs to the infarcted myocardium. Hypoxic cardiac tissue increases the expression of cathelicidin and β-2 defensin, which could explain why PB cells isolated from patients with AMI migrated more efficiently to a low, yet physiological, gradient of stromal-derived factor-1 in Transwell migration assays. Together, these observations suggest that while elevated S1P and C1P levels early in the course of AMI may trigger mobilization of non-HSCs into PB, cathelicidin and β-2 defensin could play an important role in their homing to damaged myocardium.
Collapse
Affiliation(s)
- Anush V. Karapetyan
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Yuri M. Klyachkin
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Samy Selim
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Manjula Sunkara
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Khaled M. Ziada
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Donald A. Cohen
- Department of Immunology, Microbiology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - Ewa K. Zuba-Surma
- Stem Cell Biology Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Janina Ratajczak
- Stem Cell Biology Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Susan S. Smyth
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Mariusz Z. Ratajczak
- Stem Cell Biology Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrew J. Morris
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Ahmed Abdel-Latif
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
- Department of Immunology, Microbiology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
33
|
Hutter R, Speidl WS, Valdiviezo C, Sauter B, Corti R, Fuster V, Badimon JJ. Macrophages transmit potent proangiogenic effects of oxLDL in vitro and in vivo involving HIF-1α activation: a novel aspect of angiogenesis in atherosclerosis. J Cardiovasc Transl Res 2013; 6:558-69. [PMID: 23661177 DOI: 10.1007/s12265-013-9469-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/25/2013] [Indexed: 02/01/2023]
Abstract
Neovascularization has been linked to the progression and vulnerability of atherosclerotic lesions. Angiogenesis is increased in lipid-rich plaque. Hypoxia-inducible factor alpha (HIF-1α) is a key transcriptional regulator responding to hypoxia and activating genes, which promote angiogenesis, among them vascular endothelial growth factor (VEGF). Oxidized low-density lipoprotein (oxLDL) is generated in lipid-rich plaque by oxidative stress. It triggers an inflammatory response and was traditionally thought to inhibit endothelial cells. New data, however, suggest that oxLDL can activate HIF-1α in monocytes in a hypoxia-independent fashion. We hypothesized that HIF-1α activation in monocyte-macrophages could transmit proangiogenic effects of oxLDL linking hyperlipidemia, inflammation, and angiogenesis in atherosclerosis. First, we examined the effect of oxLDL on HIF-1α and VEGF expression in monocyte-macrophages and on their proangiogenic effect on endothelial cells in vitro in a monocyte-macrophage/endothelial co-culture model. OxLDL strongly induced HIF-1α and VEGF in monocyte-macrophages and significantly increased tube formation in co-cultured endothelial cells. HIF-1α inhibition reversed this effect. Second, we demonstrated a direct proangiogenic effect of oxLDL in an in vivo angiogenesis assay. Again, HIF-1α inhibition abrogated the proangiogenic effect of oxLDL. Third, in a rabbit atherosclerosis model, we studied the effect of dietary lipid lowering on arterial HIF-1α and VEGF expression. The administration of low-lipid diet significantly reduced the expression of both HIF-1α and VEGF, resulting in decreased plaque neovascularization. Our data point to oxLDL as a proangiogenic agent linking hyperlipidemia, inflammation, and angiogenesis in atherosclerosis. This effect is dependent on macrophages and, at least in part, on the induction of the HIF-1α pathway.
Collapse
Affiliation(s)
- Randolph Hutter
- The Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Sutendra G, Michelakis ED. Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front Oncol 2013; 3:38. [PMID: 23471124 PMCID: PMC3590642 DOI: 10.3389/fonc.2013.00038] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/11/2013] [Indexed: 11/13/2022] Open
Abstract
Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation (GO) provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK) is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs' cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA) shifts the metabolism of cancer cells from glycolysis to GO and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs' cycle intermediates and mitochondria-derived reactive oxygen species, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T cells and hypoxia-inducible factor 1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic-targeting therapies can be translated directly to patients. More recently, the M2 isoform of pyruvate kinase (PKM2), which is highly expressed in cancer, is associated with suppressed mitochondrial function. Similar to DCA, activation of PKM2 in many cancers results in increased mitochondrial function and decreased tumor growth. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors or PKM2 activators holds promise in the rapidly expanding field of metabolic oncology.
Collapse
|
35
|
Chen G, Zhang W, Li YP, Ren JG, Xu N, Liu H, Wang FQ, Sun ZJ, Jia J, Zhao YF. Hypoxia-induced autophagy in endothelial cells: a double-edged sword in the progression of infantile haemangioma? Cardiovasc Res 2013; 98:437-48. [PMID: 23408345 DOI: 10.1093/cvr/cvt035] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS The aim of this study was to investigate the precise role of hypoxia-induced autophagy in endothelial cells, and whether it contributes to the distinctive progression of infantile haemangioma (IH). METHODS AND RESULTS The endothelial cells (EOMA and HUVECs) were cultured under hypoxic conditions for indicated times (0-72 h). The results showed that short exposure of the endothelial cells to hypoxia resulted in increased cell survival and proliferation, accompanied by occurrence of autophagy. Prolonged hypoxia-induced autophagy, correlating with increased cell death, was also detected afterwards. Correspondingly, autophagy inhibition prevented the enhanced cell survival and proliferation capacity, advanced the occurrence of cell-death in early hypoxic stage, and meanwhile attenuated the ability of prolonged hypoxia in cell-death induction. Moreover, our data demonstrated that the functional transformation of hypoxia-induced autophagy, pro-survival to pro-death, was rigorously regulated by the switch between hypoxia-inducible factor-1α (HIF-1α) and mammalian target of rapamycin (mTOR) pathways. Importantly, we also revealed the activation levels of HIF-1α and mTOR, as well as the autophagy status during the progression of IH. CONCLUSION This study unmasks the functional switch between HIF-1α and mTOR in regulating hypoxia-induced autophagy in endothelial cells and, more importantly, indicates its potential role in the progression of IH.
Collapse
Affiliation(s)
- Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Akhtar S, Gremse F, Kiessling F, Weber C, Schober A. CXCL12 promotes the stabilization of atherosclerotic lesions mediated by smooth muscle progenitor cells in Apoe-deficient mice. Arterioscler Thromb Vasc Biol 2013; 33:679-86. [PMID: 23393393 DOI: 10.1161/atvbaha.112.301162] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Unstable atherosclerotic lesions are prone to rupture, which leads to atherothrombosis. Chemokine (C-X-C motif) ligand 12 (CXCL12) promotes the mobilization and neointimal recruitment of smooth muscle progenitor cells (SPCs), and thereby mediates vascular repair. Moreover, treatment with SPCs stabilizes atherosclerotic lesions in mice. We investigated the role of CXCL12 in the treatment of unstable atherosclerotic lesions. APPROACH AND RESULTS Intravenous injection of CXCL12 selectively increased the level of Sca1(+)Lin platelet derived growth factor receptor-β(+) SPCs in the circulation as determined by flow cytometry. Macrophage-rich lesions were induced by partial ligation of the carotid artery in Apoe(-/-) mice. Repeated injection of CXCL12 reduced the macrophage content, increased the number of smooth muscle cells, increased the fibrous cap thickness, and increased the collagen content in these lesions. However, CXCL12 did not alter the lesion size or the luminal diameter of the carotid artery as determined by planimetry and micro-computed tomography, respectively. Recruitment of bone marrow-derived SPCs to the lesions was increased after treatment with CXCL12 in chimeric mice that expressed SM22-LacZ in bone marrow cells as determined by quantification of the number of lesional β-galactosidase-expressing cells. CXCL12 expression was upregulated in atherosclerotic arteries after CXCL12 treatment. Silencing of arterial CXCL12 expression during atherosclerosis promoted lesion formation and reduced the lesional smooth muscle cell content in CXCL12-treated mice. CONCLUSIONS Systemic treatment with CXCL12 promotes a more stable atherosclerotic lesion phenotype and enhances the accumulation of SPCs in these lesions without promoting atherosclerosis. Thus, CXCL12-induced SPC mobilization appears a promising approach to treat unstable atherosclerosis.
Collapse
Affiliation(s)
- Shamima Akhtar
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr. 9, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
37
|
Lin HH, Chen YH, Chiang MT, Huang PL, Chau LY. Activator protein-2α mediates carbon monoxide-induced stromal cell-derived factor-1α expression and vascularization in ischemic heart. Arterioscler Thromb Vasc Biol 2013; 33:785-94. [PMID: 23393395 DOI: 10.1161/atvbaha.112.301143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Increased cardiac stromal cell-derived factor-1α (SDF-1α) expression promotes neovascularization and myocardial repair after ischemic injury through recruiting stem cells and reducing cardiomyocyte death. Previous studies have shown that heme oxygenase-1 and its reaction byproduct, carbon monoxide (CO), induce SDF-1α expression in ischemic heart. However, the mechanism underlying heme oxygenase-1/CO-induced cardiac SDF-1α expression remains elusive. This study aims to investigate the signaling pathway and the transcriptional factor that mediate CO-induced SDF-1α gene expression and cardioprotection. APPROACH AND RESULTS CO gas and a CO-releasing compound, tricarbonyldichlororuthenium (II) dimer, dose-dependently induced SDF-1α expression in primary neonatal cardiomyocytes and H9C2 cardiomyoblasts. Promoter luciferase-reporter assay, electrophoretic mobility shift assay, and chromatin immunoprecipitation demonstrated that the activator protein 2α (AP-2α) mediated tricarbonyldichlororuthenium (II) dimer-induced SDF-1α gene transcription. Tricarbonyldichlororuthenium (II) dimer induced AP-2α expression via protein kinase B (AKT)-dependent signaling. AKT inhibition or AP-2α knockdown reduced tricarbonyldichlororuthenium (II) dimer-induced SDF-1α expression. Coronary ligation induced transient increases of cardiac AP-2α and SDF-1α expression, which were declined at 1 week postinfarction in mice. Periodic exposure of coronary-ligated mice to CO (250 ppm for 1 hour/day, 6 days) resumed the induction of AP-2α and SDF-1α gene expression in infarcted hearts. Immunohistochemistry and echocardiography performed at 4 weeks after coronary ligation revealed that CO treatment enhanced neovascularization in the myocardium of peri-infarct region and improved cardiac function. CO-mediated SDF-1α expression and cardioprotection was ablated by intramyocardial injection of lentivirus bearing specific short hairpin RNA targeting AP-2α. CONCLUSIONS Our data demonstrate that AKT-dependent upregulation of AP-2α is essential for CO-induced SDF-1α expression and myocardial repair after ischemic injury.
Collapse
Affiliation(s)
- Heng-Huei Lin
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | | | | | | | | |
Collapse
|
38
|
Yan J, Shen Y, Wang Y, Li BB. Increased expression of hypoxia-inducible factor-1α in proliferating neointimal lesions in a rat model of pulmonary arterial hypertension. Am J Med Sci 2013; 345:121-128. [PMID: 22627259 DOI: 10.1097/maj.0b013e31824cf5a2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The role of hypoxia-inducible factor-1α (HIF-1α) in pulmonary vascular remodeling is still undetermined. The objective of this study is to investigate the expression of HIF-1α and its role in proliferating neointimal lesions in a rat model of pulmonary arterial hypertension induced by monocrotaline (MCT) administration after left pneumonectomy. METHODS The rats were subjected to MCT (60 mg/kg, subcutaneously) 7 days after left pneumonectomy or sham surgery; controls with vehicle treatment after left pneumonectomy or sham surgery were also studied. On day 35, hemodynamic parameters of the rats were measured. The right lower lobes of the lungs were fixed for morphometric analysis. The expression of proliferating cell nuclear antigen and survivin was detected with Western blot. The expressions of HIF-1α and hexokinase-2 (HK-2) were detected with Western blot and immunohistochemistry assay. RESULTS The rats treated with MCT after pneumonectomy developed severe pulmonary arterial hypertension and marked medial thickening on day 35. The neointimal lesions in pulmonary arterioles were observed only in MCT-treated pneumonectomized rats. The severely injured pulmonary arterioles (intimal proliferation causing greater than 50% luminal occlusion) accounted for 40% of all the measured arterioles in rats treated by MCT after pneumonectomy. The intriguing finding showed that HIF-1α was predominantly expressed in neointimal lesion areas, paralleled with the increased expression of HK-2 in MCT-treated pneumonectomized rats, which was not observed in rats undergoing MCT treatment alone. CONCLUSIONS The activation of HIF-1α/HK-2 axis is probably the key mediator responsible for the neointimal lesion formation in MCT-treated pneumonectomized rats.
Collapse
Affiliation(s)
- Jie Yan
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | | | | | | |
Collapse
|
39
|
Dallatu MK, Nwokocha E, Agu N, Myung C, Newaz MA, Garcia G, Truong LD, Oyekan AO. The Role of Hypoxia-Inducible Factor/Prolyl Hydroxylation Pathway in Deoxycorticosterone Acetate/Salt Hypertension in the Rat. ACTA ACUST UNITED AC 2013; 3. [PMID: 26185735 DOI: 10.4172/2167-1095.1000184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
KKidney disease could result from hypertension and ischemia/hypoxia. Key mediators of cellular adaptation to hypoxia are oxygen-sensitive hypoxia inducible factor (HIF)s which are regulated by prolyl-4-hydroxylase domain (PHD)-containing dioxygenases. However, HIF activation can be protective as in ischemic death or promote renal fibrosis in chronic conditions. This study tested the hypothesis that increased HIF-1α consequent to reduced PHD expression contributes to the attendant hypertension and target organ damage in deoxycorticosterone acetate (DOCA)/salt hypertension and that PHD inhibition ameliorates this effect. In rats made hypertensive by DOCA/salt treatment (DOCA 50 mg/kg s/c; 1% NaCl orally), PHD inhibition with dimethyl oxallyl glycine (DMOG) markedly attenuated hypertension (P<0.05), proteinuria (P<0.05) and attendant tubular interstitial changes and glomerular damage (P<0.05). Accompanying these changes, DMOG blunted the increased expression of kidney injury molecule (KIM)-1 (P<0.05), a marker of tubular injury and reversed the decreased expression of nephrin (P<0.05), a marker of glomerular injury. DMOG also decreased collagen I staining (P<0.05), increased serum nitrite (P<0.05) and decreased serum 8-isopostane (P<0.05). However, the increased HIF-1α expression (P<0.01) and decreased PHD2 expression (P<0.05) in DOCA/salt hypertensive rats was not affected by DMOG. These data suggest that reduced PHD2 expression with consequent increase in HIF-1α expression probably results from hypoxia induced by DOCA/salt treatment with the continued hypoxia and reduced PHD2 expression evoking hypertensive renal injury and collagen deposition at later stages. Moreover, a PHD inhibitor exerted a protective effect in DOCA/salt hypertension by mechanisms involving increased nitric oxide production and reduced production of reactive oxygen species.
Collapse
Affiliation(s)
| | | | - Ngozi Agu
- Center for Cardiovascular Diseases, Texas Southern University, USA
| | - Choi Myung
- Center for Cardiovascular Diseases, Texas Southern University, USA
| | | | - Gabriela Garcia
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, USA
| | - Luan D Truong
- Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, USA
| | - Adebayo O Oyekan
- Center for Cardiovascular Diseases, Texas Southern University, USA
| |
Collapse
|
40
|
|
41
|
Hematopoietic stem and progenitor cells as effectors in innate immunity. BONE MARROW RESEARCH 2012; 2012:165107. [PMID: 22762001 PMCID: PMC3385697 DOI: 10.1155/2012/165107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/22/2012] [Accepted: 04/28/2012] [Indexed: 12/17/2022]
Abstract
Recent research has shed light on novel functions of hematopoietic stem and progenitor cells (HSPC). While they are critical for maintenance and replenishment of blood cells in the bone marrow, these cells are not limited to the bone marrow compartment and function beyond their role in hematopoiesis. HSPC can leave bone marrow and circulate in peripheral blood and lymph, a process often manipulated therapeutically for the purpose of transplantation. Additionally, these cells preferentially home to extramedullary sites of inflammation where they can differentiate to more mature effector cells. HSPC are susceptible to various pathogens, though they may participate in the innate immune response without being directly infected. They express pattern recognition receptors for detection of endogenous and exogenous danger-associated molecular patterns and respond not only by the formation of daughter cells but can themselves secrete powerful cytokines. This paper summarizes the functional and phenotypic characterization of HSPC, their niche within and outside of the bone marrow, and what is known regarding their role in the innate immune response.
Collapse
|
42
|
El Assar M, Angulo J, Vallejo S, Peiró C, Sánchez-Ferrer CF, Rodríguez-Mañas L. Mechanisms involved in the aging-induced vascular dysfunction. Front Physiol 2012; 3:132. [PMID: 22783194 PMCID: PMC3361078 DOI: 10.3389/fphys.2012.00132] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/20/2012] [Indexed: 12/25/2022] Open
Abstract
Vascular aging is a key process determining health status of aged population. Aging is an independent cardiovascular risk factor associated to an impairment of endothelial function, which is a very early and important event leading to cardiovascular disease. Vascular aging, formerly being considered an immutable and inexorable risk factor, is now viewed as a target process for intervention in order to achieve a healthier old age. A further knowledge of the mechanisms underlying the age-related vascular dysfunction is required to design an adequate therapeutic strategy to prevent or restore this impairment of vascular functionality. Among the proposed mechanisms that contribute to age-dependent endothelial dysfunction, this review is focused on the following aspects occurring into the vascular wall: (1) the reduction of nitric oxide (NO) bioavailability, caused by diminished NO synthesis and/or by augmented NO scavenging due to oxidative stress, leading to peroxynitrite formation (ONOO(-)); (2) the possible sources involved in the enhancement of oxidative stress; (3) the increased activity of vasoconstrictor factors; and (4) the development of a low-grade pro-inflammatory environment. Synergisms and interactions between all these pathways are also analyzed. Finally, a brief summary of some cellular mechanisms related to endothelial cell senescence (including telomere and telomerase, stress-induced senescence, as well as sirtuins) are implemented, as they are likely involved in the age-dependent endothelial dysfunction, as well as in the lower vascular repairing capacity observed in the elderly. Prevention or reversion of those mechanisms leading to endothelial dysfunction through life style modifications or pharmacological interventions could markedly improve cardiovascular health in older people.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe Madrid, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene 2012; 32:1638-50. [PMID: 22614004 DOI: 10.1038/onc.2012.198] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most solid tumors are characterized by a metabolic shift from glucose oxidation to glycolysis, in part due to actively suppressed mitochondrial function, a state that favors resistance to apoptosis. Suppressed mitochondrial function may also contribute to the activation of hypoxia-inducible factor 1α (HIF1α) and angiogenesis. We have previously shown that the inhibitor of pyruvate dehydrogenase kinase (PDK) dichloroacetate (DCA) activates glucose oxidation and induces apoptosis in cancer cells in vitro and in vivo. We hypothesized that DCA will also reverse the 'pseudohypoxic' mitochondrial signals that lead to HIF1α activation in cancer, even in the absence of hypoxia and inhibit cancer angiogenesis. We show that inhibition of PDKII inhibits HIF1α in cancer cells using several techniques, including HIF1α luciferase reporter assays. Using pharmacologic and molecular approaches that suppress the prolyl-hydroxylase (PHD)-mediated inhibition of HIF1α, we show that DCA inhibits HIF1α by both a PHD-dependent mechanism (that involves a DCA-induced increase in the production of mitochondria-derived α-ketoglutarate) and a PHD-independent mechanism, involving activation of p53 via mitochondrial-derived H(2)O(2), as well as activation of GSK3β. Effective inhibition of HIF1α is shown by a decrease in the expression of several HIF1α regulated gene products as well as inhibition of angiogenesis in vitro in matrigel assays. More importantly, in rat xenotransplant models of non-small cell lung cancer and breast cancer, we show effective inhibition of angiogenesis and tumor perfusion in vivo, assessed by contrast-enhanced ultrasonography, nuclear imaging techniques and histology. This work suggests that mitochondria-targeting metabolic modulators that increase pyruvate dehydrogenase activity, in addition to the recently described pro-apoptotic and anti-proliferative effects, suppress angiogenesis as well, normalizing the pseudo-hypoxic signals that lead to normoxic HIF1α activation in solid tumors.
Collapse
|
44
|
Hamesch K, Subramanian P, Li X, Dembowsky K, Chevalier E, Weber C, Schober A. The CXCR4 antagonist POL5551 is equally effective as sirolimus in reducing neointima formation without impairing re-endothelialisation. Thromb Haemost 2012; 107:356-68. [PMID: 22234341 DOI: 10.1160/th11-07-0453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/29/2011] [Indexed: 11/05/2022]
Abstract
Impaired endothelial recovery after the implantation of drug-eluting stents is a major concern because of the increased risk for late stent thrombosis. The disruption of the chemokine axis CXCL12/CXCR4 inhibits neointima formation by blocking the recruitment of smooth muscle progenitor cells. To directly compare a CXCR4-targeting treatment strategy with drugs that are currently used for stent coating, we studied the effects of the CXCR4 antagonist POL5551 and the drug sirolimus on neointima formation. Apolipoprotein E-deficient mice were treated with POL5551 or sirolimus continuously for 28 days after a carotid wire injury. POL5551 inhibited neointima formation by 63% (for a dosage of 2 mg/kg/day) and by 70% (for a dosage of 20 mg/kg/day). In comparison, sirolimus reduced the neointimal area by 69%. In contrast to treatment with POL5551 during the first three days after injury, injection of POL5551 (20 mg/kg) once per day for 28 days diminished neointimal hyperplasia by 53%. An analysis of the cellular composition of the neointima showed a reduction in the relative smooth muscle cell (SMC) and macrophage content in mice that had been treated with a high dose of POL5551. In contrast, the diminished SMC content after sirolimus treatment was associated with a neointimal enrichment of macrophages. Furthermore, endothelial recovery was impaired by sirolimus, but not by POL5551. Therefore, the inhibition of CXCR4 by POL5551 is equally effective in preventing neointima formation as sirolimus, but POL5551 might be more beneficial because treatment with it results in a more stable lesion phenotype and because it does not impair re-endothelialisation.
Collapse
Affiliation(s)
- Karim Hamesch
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Sun J, Zheng J, Ling KH, Zhao K, Xie Z, Li B, Wang T, Zhu Z, Patel AN, Min W, Liu K, Zheng X. Preventing intimal thickening of vein grafts in vein artery bypass using STAT-3 siRNA. J Transl Med 2012; 10:2. [PMID: 22216901 PMCID: PMC3286375 DOI: 10.1186/1479-5876-10-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proliferation and migration of vascular smooth muscle cells (VSMCs) play a key role in neointimal formation which leads to restenosis of vein graft in venous bypass. STAT-3 is a transcription factor associated with cell proliferation. We hypothesized that silencing of STAT-3 by siRNA will inhibit proliferation of VSMCs and attenuate intimal thickening. METHODS Rat VSMCs were isolated and cultured in vitro by applying tissue piece inoculation methods. VSMCs were transfected with STAT 3 siRNA using lipofectamine 2000. In vitro proliferation of VSMC was quantified by the MTT assay, while in vivo assessment was performed in a venous transplantation model. In vivo delivery of STAT-3 siRNA plasmid or scramble plasmid was performed by admixing with liposomes 2000 and transfected into the vein graft by bioprotein gel applied onto the adventitia. Rat jugular vein-carotid artery bypass was performed. On day 3 and7 after grafting, the vein grafts were extracted, and analyzed morphologically by haematoxylin eosin (H&E), and assessed by immunohistochemistry for expression of Ki-67 and proliferating cell nuclear antigen (PCNA). Western-blot and reverse transcriptase polymerase chain reaction (RT-PCR) were used to detect the protein and mRNA expression in vivo and in vitro. Cell apoptosis in vein grafts was detected by TUNEL assay. RESULTS MTT assay shows that the proliferation of VSMCs in the STAT-3 siRNA treated group was inhibited. On day 7 after operation, a reduced number of Ki-67 and PCNA positive cells were observed in the neointima of the vein graft in the STAT-3 siRNA treated group as compared to the scramble control. The PCNA index in the control group (31.3 ± 4.7) was higher than that in the STAT-3 siRNA treated group (23.3 ± 2.8) (P < 0.05) on 7d. The neointima in the experimental group(0.45 ± 0.04 μm) was thinner than that in the control group(0.86 ± 0.05 μm) (P < 0.05).Compared with the control group, the protein and mRNA levels in the experimental group in vivo and in vitro decreased significantly. Down regulation of STAT-3 with siRNA resulted in a reduced expression of Bcl-2 and cyclin D1. However, apoptotic cells were not obviously found in all grafts on day 3 and 7 post surgery. CONCLUSIONS The STAT-3 siRNA can inhibit the proliferation of VSMCs in vivo and in vitro and attenuate neointimal formation.
Collapse
Affiliation(s)
- Jiangbin Sun
- Department of Cardiovascular Surgery, The Second Hospital, Jilin University, Chang Chun, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Salvianolic acid B inhibits SDF-1α-stimulated cell proliferation and migration of vascular smooth muscle cells by suppressing CXCR4 receptor. Vascul Pharmacol 2011; 56:98-105. [PMID: 22166584 DOI: 10.1016/j.vph.2011.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/19/2011] [Accepted: 11/29/2011] [Indexed: 01/07/2023]
Abstract
Salvianolic acid B (Sal B), a bioactive compound from Salvia miltiorrhiza, widely used to treat cardiovascular diseases, and stromal cell-derived factor-1α (SDF-1α)/CXCR4 pathway has been correlated with balloon angioplasty-induced neointimal formation. The purposes of the present study were to investigate whether Sal B can inhibit SDF-1α/CXCR4-mediated effects on the cell proliferation and migration of vascular smooth muscle cells (VSMCs) and to examine its possible molecular mechanisms. Under 0.5% FBS medium, all of the cellular studies were investigated on VSMCs (A10 cells) stimulated with 10 ng/ml SDF-1α alone or co-treated with 0.075 mg/ml Sal B. Our results showed that SDF-1α markedly stimulated the cell growth and migration of A10 cells, whose effects can be significantly reversed by co-incubation of Sal B. Similarly, Sal B also obviously down-regulated the SDF-1α-stimulated up-regulation of CXCR4 (total and cell-surface levels), Raf-1, MEK, ERK1/2, phospho-ERK1/2, FAK and phospho-FAK as well as an increase of the promoter activity of NF-κB. Besides, Sal B also effectively attenuated balloon angioplasty-induced neointimal hyperplasia. In conclusion, suppressing the expression levels of CXCR4 receptor and downstream molecules of SDF-1α/CXCR4 axis could possibly explain one of the pharmacological mechanisms of Sal B on prevention of cell proliferation, migration and subsequently neointimal hyperplasia.
Collapse
|
47
|
Dahal BK, Heuchel R, Pullamsetti SS, Wilhelm J, Ghofrani HA, Weissmann N, Seeger W, Grimminger F, Schermuly RT. Hypoxic pulmonary hypertension in mice with constitutively active platelet-derived growth factor receptor-β. Pulm Circ 2011; 1:259-68. [PMID: 22034611 PMCID: PMC3198653 DOI: 10.4103/2045-8932.83448] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Platelet-derived growth factor (PDGF) has been implicated in the pathobiology of vascular remodeling. The multikinase inhibitor imatinib that targets PDGF receptor (PDGFR), c-kit and Abl kinases, shows therapeutic efficacy against experimental pulmonary hypertension (PH); however, the role of PDGFR-b in experimental PH has not been examined by genetic approach. We investigated the chronic hypoxia-induced PH in mice carrying an activating point mutation of PDGFR-β (D849N) and evaluated the therapeutic efficacy of imatinib. In addition, we studied pulmonary global gene expression and confirmed the expression of identified genes by immunohistochemistry. Chronically hypoxic D849N mice developed PH and strong pulmonary vascular remodeling that was improved by imatinib (100 mg/kg/day) as evident from the significantly reduced right ventricular systolic pressure, right ventricular hypertrophy and muscularization of peripheral pulmonary arteries. Global gene expression analysis revealed that stromal cell derived factor SDF)-1α was significantly upregulated, which was confirmed by immunohistochemistry. Moreover, an enhanced immunoreactivity for SDF-1α, PDGFR-β and CXCR4, the receptor for SDF-1α was localized to the α-smooth muscle cell (SMC) actin positive pulmonary vascular cells in hypoxic mice and patients with idiopathic pulmonary arterial hypertension (IPAH). In conclusion, our findings substantiate the major role of PDGFR activation in pulmonary vascular remodeling by a genetic approach. Immunohistochemistry findings suggest a role for SDF-1α/CXCR4 axis in pulmonary vascular remodeling and point to a potential interaction between the chemokine SDF-1 and the growth factor PDGF signaling. Future studies designed to elucidate an interaction between the chemokine SDF-1 and the PDGF system may uncover novel therapeutic targets.
Collapse
Affiliation(s)
- Bhola K Dahal
- University of Giessen Lung Centre (UGLC), Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lievens D, von Hundelshausen P. Platelets in atherosclerosis. Thromb Haemost 2011; 106:827-38. [PMID: 22012554 DOI: 10.1160/th11-08-0592] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 10/03/2011] [Indexed: 01/04/2023]
Abstract
Beyond obvious functions in haemostasis and thrombosis, platelets are considered to be essential in proinflammatory surroundings such as atherosclerosis, allergy, rheumatoid arthritis and even cancer. In atherosclerosis, platelets facilitate the recruitment of inflammatory cells towards the lesion sites and release a plethora of inflammatory mediators, thereby enriching and boosting the inflammatory milieu. Platelets do so by interacting with endothelial cells, circulating leukocytes (monocytes, neutrophils, dendritic cells, T-cells) and progenitor cells. This cross-talk enforces leukocyte activation, adhesion and transmigration. Furthermore, platelets are known to function in innate host defense through the release of antimicrobial peptides and the expression of pattern recognition receptors. In severe sepsis, platelets are able to trigger the formation of neutrophil extracellular traps (NETs), which bind and clear pathogens. The present antiplatelet therapies that target key pathways of platelet activation and aggregation therefore hold the potential to modulate platelet-derived immune functions by reducing cellular interactions of platelets with other immune components and by reducing the secretion of inflammatory proteins into the milieu. The objective of this review is to update and discuss the current perceptions of the platelet immune constituents and their prospect as therapeutic targets in an atherosclerotic setting.
Collapse
Affiliation(s)
- D Lievens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Munich, Germany.
| | | |
Collapse
|
49
|
Kawabe-Yako R, Masaaki I, Masuo O, Asahara T, Itakura T. Cilostazol activates function of bone marrow-derived endothelial progenitor cell for re-endothelialization in a carotid balloon injury model. PLoS One 2011; 6:e24646. [PMID: 21931795 PMCID: PMC3171459 DOI: 10.1371/journal.pone.0024646] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cilostazol(CLZ) has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM)-derived endothelial progenitor cell (EPC) contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs. METHODOLOGY/PRINCIPAL FINDINGS Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2 weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neointima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury. CONCLUSIONS/SIGNIFICANCE CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neointima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for endothelial regeneration, which is a key event for preventing atherosclerosis or restenosis after vascular intervention.
Collapse
Affiliation(s)
- Rie Kawabe-Yako
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Neurosurgery, Wakayama Medical University, Wakayama, Japan
| | - Ii Masaaki
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, RIKEN Center for Developmental Biology, Kobe, Japan
- Group of Translational Stem Cell Research, Department of Pharmacology, Osaka Medical College, Osaka, Japan
- * E-mail: (TA); (MI)
| | - Osamu Masuo
- Department of Neurosurgery, Wakayama Medical University, Wakayama, Japan
| | - Takayuki Asahara
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Regenerative Medicine Science, Tokai University School of Medicine Kanagawa, Japan
- * E-mail: (TA); (MI)
| | - Toru Itakura
- Department of Neurosurgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
50
|
Takayanagi T, Eguchi S. Inhibition of prolyl hydroxylase domain-containing protein: a novel therapy for cardiovascular diseases? Hypertension 2011; 58:354-5. [PMID: 21825225 DOI: 10.1161/hypertensionaha.111.177949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|