1
|
Gautier T, Deckert V, Nguyen M, Desrumaux C, Masson D, Lagrost L. New therapeutic horizons for plasma phospholipid transfer protein (PLTP): Targeting endotoxemia, infection and sepsis. Pharmacol Ther 2021; 236:108105. [PMID: 34974028 DOI: 10.1016/j.pharmthera.2021.108105] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Phospholipid Transfer Protein (PLTP) transfers amphiphilic lipids between circulating lipoproteins and between lipoproteins, cells and tissues. Indeed, PLTP is a major determinant of the plasma levels, turnover and functionality of the main lipoprotein classes: very low-density lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). To date, most attention has been focused on the role of PLTP in the context of cardiometabolic diseases, with additional insights in neurodegenerative diseases and immunity. Importantly, beyond its influence on plasma triglyceride and cholesterol transport, PLTP plays a key role in the modulation of the immune response, with immediate relevance to a wide range of inflammatory diseases including bacterial infection and sepsis. Indeed, emerging evidence supports the role of PLTP, in the context of its association with lipoproteins, in the neutralization and clearance of bacterial lipopolysaccharides (LPS) or endotoxins. LPS are amphipathic molecules originating from Gram-negative bacteria which harbor major pathogen-associated patterns, triggering an innate immune response in the host. Although the early inflammatory reaction constitutes a key step in the anti-microbial defense of the organism, it can lead to a dysregulated inflammatory response and to hemodynamic disorders, organ failure and eventually death. Moreover, and in addition to endotoxemia and acute inflammation, small amounts of LPS in the circulation can induce chronic, low-grade inflammation with long-term consequences in several metabolic disorders such as atherosclerosis, obesity and diabetes. After an updated overview of the role of PLTP in lipid transfer, lipoprotein metabolism and related diseases, current knowledge of its impact on inflammation, infection and sepsis is critically appraised. Finally, the relevance of PLTP as a new player and novel therapeutic target in the fight against inflammatory diseases is considered.
Collapse
Affiliation(s)
- Thomas Gautier
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.
| | - Valérie Deckert
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Maxime Nguyen
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service Anesthésie-Réanimation Chirurgicale, Dijon University Hospital, Dijon, France
| | - Catherine Desrumaux
- INSERM, U1198, Montpellier, France; Faculty of Sciences, Université Montpellier, Montpellier, France
| | - David Masson
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Plateau Automatisé de Biochimie, Dijon University Hospital, Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service de la Recherche, Dijon University Hospital, Dijon, France.
| |
Collapse
|
2
|
Impact of Phospholipid Transfer Protein in Lipid Metabolism and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:1-13. [PMID: 32705590 DOI: 10.1007/978-981-15-6082-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PLTP plays an important role in lipoprotein metabolism and cardiovascular disease development in humans; however, the mechanisms are still not completely understood. In mouse models, PLTP deficiency reduces cardiovascular disease, while its overexpression induces it. Therefore, we used mouse models to investigate the involved mechanisms. In this chapter, the recent main progresses in the field of PLTP research are summarized, and our focus is on the relationship between PLTP and lipoprotein metabolism, as well as PLTP and cardiovascular diseases.
Collapse
|
3
|
Plasma phospholipid transfer protein (PLTP) as an emerging determinant of the adaptive immune response. Cell Mol Immunol 2018; 15:1077-1079. [PMID: 29735978 DOI: 10.1038/s41423-018-0036-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 11/08/2022] Open
|
4
|
Deletion of plasma Phospholipid Transfer Protein (PLTP) increases microglial phagocytosis and reduces cerebral amyloid-β deposition in the J20 mouse model of Alzheimer's disease. Oncotarget 2018; 9:19688-19703. [PMID: 29731975 PMCID: PMC5929418 DOI: 10.18632/oncotarget.24802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/27/2018] [Indexed: 01/22/2023] Open
Abstract
Plasma phospholipid transfer protein (PLTP) binds and transfers a number of amphipathic compounds, including phospholipids, cholesterol, diacylglycerides, tocopherols and lipopolysaccharides. PLTP functions are relevant for many pathophysiological alterations involved in neurodegenerative disorders (especially lipid metabolism, redox status, and immune reactions), and a significant increase in brain PLTP levels was observed in patients with Alzheimer's disease (AD) compared to controls. To date, it has not been reported whether PLTP can modulate the formation of amyloid plaques, i.e. one of the major histopathological hallmarks of AD. We thus assessed the role of PLTP in the AD context by breeding PLTP-deficient mice with an established model of AD, the J20 mice. A phenotypic characterization of the amyloid pathology was conducted in J20 mice expressing or not PLTP. We showed that PLTP deletion is associated with a significant reduction of cerebral Aβ deposits and astrogliosis, which can be explained at least in part by a rise of Aβ clearance through an increase in the microglial phagocytic activity and the expression of the Aβ-degrading enzyme neprilysin. PLTP arises as a negative determinant of plaque clearance and over the lifespan, elevated PLTP activity could lead to a higher Aβ load in the brain.
Collapse
|
5
|
Jiang XC. Phospholipid transfer protein: its impact on lipoprotein homeostasis and atherosclerosis. J Lipid Res 2018; 59:764-771. [PMID: 29438986 DOI: 10.1194/jlr.r082503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is one of the major modulators of lipoprotein metabolism and atherosclerosis development in humans; however, we still do not quite understand the mechanisms. In mouse models, PLTP overexpression induces atherosclerosis, while its deficiency reduces it. Thus, mouse models were used to explore the mechanisms. In this review, I summarize the major progress made in the PLTP research field and emphasize its impact on lipoprotein metabolism and atherosclerosis, as well as its regulation.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, Downstate Medical Center, State University of New York, Brooklyn, NY
| |
Collapse
|
6
|
Lee SD, Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 2015; 242:29-36. [PMID: 26164157 PMCID: PMC4546914 DOI: 10.1016/j.atherosclerosis.2015.06.042] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen D Lee
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization. Cell Mol Immunol 2015; 13:795-804. [PMID: 26320740 DOI: 10.1038/cmi.2015.75] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a profound effect on CD4+ Th0 cell polarization, with a shift towards the anti-inflammatory Th2 phenotype under both normal and pathological conditions. In a model of contact hypersensitivity, a significantly impaired response to skin sensitization with the hapten-2,4-dinitrofluorobenzene (DNFB) was observed in PLTP-deficient mice compared to wild-type (WT) mice. Interestingly, PLTP deficiency in mice exerted no effect on the counts of total white blood cells, lymphocytes, granulocytes, or monocytes in the peripheral blood. Moreover, PLTP deficiency did not modify the amounts of CD4+ and CD8+ T lymphocyte subsets. However, PLTP-deficiency, associated with upregulation of the Th2 phenotype, was accompanied by a significant decrease in the production of the pro-Th1 cytokine interleukin 18 by accessory cells. CONCLUSIONS For the first time, this work reports a physiological role for PLTP in the polarization of CD4+ T cells toward the pro-inflammatory Th1 phenotype.
Collapse
|
8
|
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida 33136-6129;
| |
Collapse
|
9
|
Abstract
High-density lipoprotein (HDL) is considered to be an anti-atherogenic lipoprotein moiety. Generation of genetically modified (total body and tissue-specific knockout) mouse models has significantly contributed to our understanding of HDL function. Here we will review data from knockout mouse studies on the importance of HDL's major alipoprotein apoA-I, the ABC transporters A1 and G1, lecithin:cholesterol acyltransferase, phospholipid transfer protein, and scavenger receptor BI for HDL's metabolism and its protection against atherosclerosis in mice. The initial generation and maturation of HDL particles as well as the selective delivery of its cholesterol to the liver are essential parameters in the life cycle of HDL. Detrimental atherosclerosis effects observed in response to HDL deficiency in mice cannot be solely attributed to the low HDL levels per se, as the low HDL levels are in most models paralleled by changes in non-HDL-cholesterol levels. However, the cholesterol efflux function of HDL is of critical importance to overcome foam cell formation and the development of atherosclerotic lesions in mice. Although HDL is predominantly studied for its atheroprotective action, the mouse data also suggest an essential role for HDL as cholesterol donor for steroidogenic tissues, including the adrenals and ovaries. Furthermore, it appears that a relevant interaction exists between HDL-mediated cellular cholesterol efflux and the susceptibility to inflammation, which (1) provides strong support for the novel concept that inflammation and metabolism are intertwining biological processes and (2) identifies the efflux function of HDL as putative therapeutic target also in other inflammatory diseases than atherosclerosis.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands,
| | | |
Collapse
|
10
|
Phospholipid transfer protein (PLTP) deficiency impaired blood–brain barrier integrity by increasing cerebrovascular oxidative stress. Biochem Biophys Res Commun 2014; 445:352-6. [DOI: 10.1016/j.bbrc.2014.01.194] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 11/23/2022]
|
11
|
Phospholipid transfer protein, an emerging cardiometabolic risk marker: Is it time to intervene? Atherosclerosis 2013; 228:38-41. [DOI: 10.1016/j.atherosclerosis.2013.01.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/13/2022]
|
12
|
Desrumaux C, Pisoni A, Meunier J, Deckert V, Athias A, Perrier V, Villard V, Lagrost L, Verdier JM, Maurice T. Increased amyloid-β peptide-induced memory deficits in phospholipid transfer protein (PLTP) gene knockout mice. Neuropsychopharmacology 2013; 38:817-25. [PMID: 23303044 PMCID: PMC3671992 DOI: 10.1038/npp.2012.247] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxidative stress is recognized as one of the earliest and most intense pathological processes in Alzheimer's disease (AD), and the antioxidant vitamin E has been shown to efficiently prevent amyloid plaque formation and neurodegeneration. Plasma phospholipid transfer protein (PLTP) has a major role in vitamin E transfers in vivo, and PLTP deficiency in mice is associated with reduced brain vitamin E levels. To determine the impact of PLTP on amyloid pathology in vivo, we analyzed the vulnerability of PLTP-deficient (PLTP-KO) mice to the toxic effects induced by intracerebroventricular injection of oligomeric amyloid-β 25-35 (Aβ 25-35) peptide, a non-transgenic model of AD. Under basal conditions, PLTP-KO mice showed increased cerebral oxidative stress, increased brain Aβ 1-42 levels, and a lower expression of the synaptic function marker synaptophysin, as compared with wild-type mice. This PLTP-KO phenotype was associated with increased memory impairment 1 week after Aβ25-35 peptide injection. Restoration of brain vitamin E levels in PLTP-KO mice through a chronic dietary supplementation prevented Aβ 25-35-induced memory deficits and reduced cerebral oxidative stress and toxicity. We conclude that PLTP, through its ability to deliver vitamin E to the brain, constitutes an endogenous neuroprotective agent. Increasing PLTP activity may offer a new way to develop neuroprotective therapies.
Collapse
Affiliation(s)
- Catherine Desrumaux
- INSERM U710, Université Montpellier 2, CC105, Place Eugène Bataillon, 34095 Montpellier, Cedex 05, France.
| | - Amandine Pisoni
- INSERM U710, Montpellier, France,Université Montpellier 2, Montpellier, France,EPHE, Paris, France
| | | | | | - Anne Athias
- Lipidomics analytical platform, SFR 100, Dijon, France
| | - Véronique Perrier
- INSERM U710, Montpellier, France,Université Montpellier 2, Montpellier, France,EPHE, Paris, France
| | | | | | - Jean-Michel Verdier
- INSERM U710, Montpellier, France,Université Montpellier 2, Montpellier, France,EPHE, Paris, France
| | - Tangui Maurice
- INSERM U710, Montpellier, France,Université Montpellier 2, Montpellier, France,EPHE, Paris, France,INSERM U710, Université Montpellier 2, CC105, Place Eugène Bataillon, 34095 Montpellier, Cedex 05, France. Tel: (+33/0) 4 67 14 36 23, Fax: (+33/0) 4 67 14 92 95, E-mail: or E-mail:
| |
Collapse
|
13
|
Jiang XC, Jin W, Hussain MM. The impact of phospholipid transfer protein (PLTP) on lipoprotein metabolism. Nutr Metab (Lond) 2012; 9:75. [PMID: 22897926 PMCID: PMC3495888 DOI: 10.1186/1743-7075-9-75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/30/2012] [Indexed: 02/05/2023] Open
Abstract
It has been reported that phospholipid transfer protein (PLTP) is an independent risk factor for human coronary artery disease. In mouse models, it has been demonstrated that PLTP overexpression induces atherosclerosis, while its deficiency reduces it. PLTP is considered a promising target for pharmacological intervention to treat atherosclerosis. However, we must still answer a number of questions before its pharmaceutical potential can be fully explored. In this review, we summarized the recent progresses made in the PLTP research field and focused on its effect on apoB-containing- triglyceride-rich particle and HDL metabolism.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, Downstate Medical Center, State University of New York, 450 Clarkson Ave,, Box 5, Brooklyn, NY, 11203, USA.
| | | | | |
Collapse
|
14
|
Fang CS, Wang YC, Zhang TH, Wu J, Wang W, Wang C, Zhang MY. Clinical significance of serum lipids in idiopathic pulmonary alveolar proteinosis. Lipids Health Dis 2012; 11:12. [PMID: 22252101 PMCID: PMC3271981 DOI: 10.1186/1476-511x-11-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 01/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is well known that pulmonary alveolar proteinosis(PAP) is characterised by accumulation of surfactant lipids and proteins within airspaces. However, few previous data describe the serum lipid levels associated with PAP. MATERIALS AND METHODS We retrospectively reviewed 25 patients with idiopathic PAP(iPAP). The serum lipid levels of patients with idiopathic PAP were compared with those of the healthy volunteers. In patients and healthy subjects, the LDL-C/HDL-C ratios were 2.94 ± 1.21 and 1.60 ± 0.70, respectively (p < 0.001), HDL-C were 1.11 ± 0.27 and 1.71 ± 0.71 respectively (p < 0.001). The values of LDL-C correlated significantly with those of PaO2 and PA-aO2 (r = -0.685, p = 0.003, and r = 0.688, p = 0.003, respectively). The values of LDL-C/HDL-C ratios also correlated with PaO2 levels and PA-aO2 levels (r = -0.698, p = 0.003, and r = 0.653, p = 0.006, respectively). 11 and 13 patients experienced respectively a decline in TC and LDL-C levels following whole lung lavage(WLL), the median decline was 0.71 mmol/L(p < 0.009) and 0.47 mmol/L(p < 0.003), respectively. CONCLUSIONS the serum lipid levels, especially the levels of LDL-C and LDL-C/HDL-C, may reflect the severity of the disease in PAP patients, and predict the therapeutic effect of WLL.
Collapse
Affiliation(s)
- Cun S Fang
- Nine department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, P.R. China
| | | | | | | | | | | | | |
Collapse
|
15
|
Plasma PLTP (phospholipid-transfer protein): an emerging role in 'reverse lipopolysaccharide transport' and innate immunity. Biochem Soc Trans 2011; 39:984-8. [PMID: 21787334 DOI: 10.1042/bst0390984] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasma PLTP (phospholipid-transfer protein) is a member of the lipid transfer/LBP [LPS (lipopolysaccharide)-binding protein] family, which constitutes a superfamily of genes together with the short and long PLUNC (palate, lung and nasal epithelium clone) proteins. Although PLTP was studied initially for its involvement in the metabolism of HDL (high-density lipoproteins) and reverse cholesterol transport (i.e. the metabolic pathway through which cholesterol excess can be transported from peripheral tissues back to the liver for excretion in the bile), it displays a number of additional biological properties. In particular, PLTP can modulate the lipoprotein association and metabolism of LPS that are major components of Gram-negative bacteria. The delayed association of LPS with lipoproteins in PLTP-deficient mice results in a prolonged residence time, in a higher toxicity of LPS aggregates and in a significant increase in LPS-induced mortality as compared with wild-type mice. It suggests that PLTP may play a pivotal role in inflammation and innate immunity through its ability to accelerate the 'reverse LPS transport' pathway.
Collapse
|
16
|
Yazdanyar A, Yeang C, Jiang XC. Role of phospholipid transfer protein in high-density lipoprotein- mediated reverse cholesterol transport. Curr Atheroscler Rep 2011; 13:242-8. [PMID: 21365262 PMCID: PMC3085729 DOI: 10.1007/s11883-011-0172-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reverse cholesterol transport (RCT) describes the process whereby cholesterol in peripheral tissues is transported to the liver where it is ultimately excreted in the form of bile. Given the atherogenic role of cholesterol accumulation within the vessel intima, removal of cholesterol through RCT is considered an anti-atherogenic process. The major constituents of RCT include cell membrane– bound lipid transporters, plasma lipid acceptors, plasma proteins and enzymes, and lipid receptors of liver cell membrane. One major cholesterol acceptor in RCT is high-density lipoprotein (HDL). Both the characteristics and level of HDL are critical determinants for RCT. It is known that phospholipid transfer protein (PLTP) impacts both HDL cholesterol level and biological quality of the HDL molecule. Recent data suggest that PLTP has a site-specific variation in its function. Moreover, the RCT pathway also has multiple steps both in the peripheral tissues and circulation. Therefore, PLTP may influence the RCT pathway at multiple levels. In this review, we focus on the potential role of PLTP in RCT through its impact on HDL homeostasis. The relationship between PLTP and RCT is expected to be an important area in finding novel therapies for atherosclerosis.
Collapse
Affiliation(s)
- Amirfarbod Yazdanyar
- Department of cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave. Box 5, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
17
|
Masson D, Deckert V, Gautier T, Klein A, Desrumaux C, Viglietta C, Pais de Barros JP, Le Guern N, Grober J, Labbé J, Ménétrier F, Ripoll PJ, Leroux-Coyau M, Jolivet G, Houdebine LM, Lagrost L. Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein. Arterioscler Thromb Vasc Biol 2011; 31:766-74. [PMID: 21252068 DOI: 10.1161/atvbaha.110.215756] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Plasma phospholipid transfer protein (PLTP) is involved in intravascular lipoprotein metabolism. PLTP is known to act through 2 main mechanisms: by remodeling high-density lipoproteins (HDL) and by increasing apolipoprotein (apo) B-containing lipoproteins. The aim of this study was to generate a new model of human PLTP transgenic (HuPLTPTg) rabbit and to determine whether PLTP expression modulates atherosclerosis in this species that, unlike humans and mice, displays naturally very low PLTP activity. METHODS AND RESULTS In HuPLTPTg rabbits, the human PLTP cDNA was placed under the control of the human eF1-α gene promoter, resulting in a widespread tissue expression pattern and in increased plasma PLTP. The HuPLTPTg rabbits showed a significant increase in the cholesterol content of the plasma apoB-containing lipoprotein fractions, with a more severe trait when animals were fed a cholesterol-rich diet. In contrast, HDL cholesterol level was not modified in HuPLTPTg rabbits. Formation of aortic fatty streaks was increased in hypercholesterolemic HuPLTPTg animals as compared with nontransgenic littermates. CONCLUSIONS Human PLTP expression in HuPLTPTg rabbit worsens atherosclerosis as a result of increased levels of atherogenic apoB-containing lipoproteins but not of alterations in their antioxidative protection or in cholesterol content of plasma HDL.
Collapse
Affiliation(s)
- David Masson
- Institut National de la Santé et de la Recherche Médicale, Université de Bourgogne, UMR866, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lemaire-Ewing S, Desrumaux C, Néel D, Lagrost L. Vitamin E transport, membrane incorporation and cell metabolism: Is alpha-tocopherol in lipid rafts an oar in the lifeboat? Mol Nutr Food Res 2010; 54:631-40. [PMID: 20166147 DOI: 10.1002/mnfr.200900445] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vitamin E is composed of closely related compounds, including tocopherols and tocotrienols. Studies of the last decade provide strong support for a specific role of alpha-tocopherol in cell signalling and the regulation of gene expression. It produces significant effects on inflammation, cell proliferation and apoptosis that are not shared by other vitamin E isomers with similar antioxidant properties. The different behaviours of vitamin E isomers might relate, at least in part, to the specific effects they exert at the plasma membrane. alpha-Tocopherol is not randomly distributed throughout the phospholipid bilayer of biological membranes, and as compared with other isomers, it shows a propensity to associate with lipid rafts. Distinct aspects of vitamin E transport and metabolism is discussed with emphasis on the interaction between alpha-tocopherol and lipid rafts and the consequences of these interactions on cell metabolism.
Collapse
|
19
|
Tzotzas T, Desrumaux C, Lagrost L. Plasma phospholipid transfer protein (PLTP): review of an emerging cardiometabolic risk factor. Obes Rev 2009; 10:403-11. [PMID: 19413703 DOI: 10.1111/j.1467-789x.2009.00586.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma phospholipid transfer protein (PLTP) is a lipid transfer glycoprotein that binds to and transfers a number of amphipathic compounds. In earlier studies, the attention of the scientific community focused on the positive role of PLTP in high-density lipoprotein (HDL) metabolism. However, this potentially anti-atherogenic role of PLTP has been challenged recently by another picture: PLTP arose as a pro-atherogenic factor through its ability to increase the production of apolipoprotein B-containing lipoproteins, to decrease their antioxidative protection and to trigger inflammation. In humans, PLTP has mostly been studied in patients with cardiometabolic disorders. Both PLTP and related cholesteryl ester transfer protein (CETP) are secreted proteins, and adipose tissue is an important contributor to the systemic pools of these two proteins. Coincidently, high levels of PLTP and CETP have been found in the plasma of obese patients. PLTP activity and mass have been reported to be abnormally elevated in type 2 diabetes mellitus (T2DM) and insulin-resistant states, and this elevation is frequently associated with hypertriglyceridemia and obesity. This review article presents the state of knowledge on the implication of PLTP in lipoprotein metabolism, on its atherogenic potential, and the complexity of its implication in obesity, insulin resistance and T2DM.
Collapse
Affiliation(s)
- T Tzotzas
- Department of Nutrition and Dietetics, Technological Educational Institution, Thessaloniki, Greece.
| | | | | |
Collapse
|
20
|
Elevation of systemic PLTP, but not macrophage-PLTP, impairs macrophage reverse cholesterol transport in transgenic mice. Atherosclerosis 2008; 204:429-34. [PMID: 19100548 DOI: 10.1016/j.atherosclerosis.2008.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 10/02/2008] [Accepted: 10/08/2008] [Indexed: 11/21/2022]
Abstract
Phospholipid transfer protein (PLTP) is a multifunctional protein synthesized by various cell types and secreted into the plasma. Plasma PLTP is able to transfer phospholipids between lipoproteins and modulate HDL particles. Mice with overexpression of human PLTP have an increased ability to generate pre beta-HDL, reduced total HDL levels and an increased susceptibility to atherosclerosis. As the macrophage is a key component of the atherosclerotic lesion and an important site of PLTP expression, we investigated the role of systemic and peripheral PLTP in macrophage cholesterol efflux and reverse cholesterol transport (RCT) in vivo. We used an assay in which (3)H-labelled cholesterol-loaded macrophages were injected intraperitoneally into recipient mice, and radioactivity was quantified in plasma, liver and faeces. Firstly, wild type macrophages were injected into wild type, PLTP transgenic (PLTPtg) and apoAI transgenic (apoAItg) mice. While plasma (3)H-tracer levels in apoAItg mice were increased compared with wild type mice, they were reduced in PLTPtg mice. Moreover, overexpression of PLTP significantly decreased faecal (3)H-tracer levels compared with wild type and apoAItg mice. Secondly, wild type mice were injected with peritoneal macrophages derived from PLTPtg or wild type mice. No significant difference in the amount of (3)H-tracer in plasma, liver or faeces was found between the two groups of mice. Our findings demonstrate that macrophage cholesterol efflux and RCT to faeces is impaired in PLTP transgenic mice, and that elevation of macrophage-PLTP does not affect RCT, indicating that higher systemic PLTP levels may promote atherosclerosis development by decreasing the rate of macrophage RCT.
Collapse
|
21
|
Vergeer M, Dallinga-Thie GM, Dullaart RPF, van Tol A. Evaluation of phospholipid transfer protein as a therapeutic target. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.3.327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Oram JF, Wolfbauer G, Tang C, Davidson WS, Albers JJ. An amphipathic helical region of the N-terminal barrel of phospholipid transfer protein is critical for ABCA1-dependent cholesterol efflux. J Biol Chem 2008; 283:11541-9. [PMID: 18287097 DOI: 10.1074/jbc.m800117200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipid lipid transfer protein (PLTP) mimics high-density lipoprotein apolipoproteins in removing cholesterol and phospholipids from cells through the ATP-binding cassette transporter A1 (ABCA1). Because amphipathic alpha-helices are the structural determinants for ABCA1 interactions, we examined the ability of synthetic peptides corresponding to helices in PLTP to remove cellular cholesterol by the ABCA1 pathway. Of the seven helices tested, only one containing PLTP residues 144-163 (p144), located at the tip of the N-terminal barrel, promoted ABCA1-dependent cholesterol efflux and stabilized ABCA1 protein. Mutating methionine 159 (Met-159) in this helix in PLTP to aspartate (M159D) or glutamate (M159E) nearly abolished the ability of PLTP to remove cellular cholesterol and dramatically reduced PLTP binding to phospholipid vesicles and its phospholipid transfer activity. These mutations impaired PLTP binding to ABCA1-generated lipid domains and PLTP-mediated stabilization of ABCA1 but increased PLTP binding to ABCA1. PLTP interactions with ABCA1 also mimicked apolipoproteins in activating Janus kinase 2; however, the M159D/E mutants were also able to activate this kinase. Structural analyses showed that the M159D/E mutations had only minor effects on PLTP conformation. These findings indicate that PLTP helix 144-163 is critical for removing lipid domains formed by ABCA1, stabilizing ABCA1 protein, interacting with phospholipids, and promoting phospholipid transfer. Direct interactions with ABCA1 and activation of signaling pathways likely involve other structural determinants of PLTP.
Collapse
Affiliation(s)
- John F Oram
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, Box 356426, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|