1
|
Kalyanasundaram A, Elefteriades J. The Genetics of Inheritable Aortic Diseases. CURRENT CARDIOVASCULAR RISK REPORTS 2022. [DOI: 10.1007/s12170-022-00687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
3
|
Impact of Phospholipid Transfer Protein in Lipid Metabolism and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:1-13. [PMID: 32705590 DOI: 10.1007/978-981-15-6082-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PLTP plays an important role in lipoprotein metabolism and cardiovascular disease development in humans; however, the mechanisms are still not completely understood. In mouse models, PLTP deficiency reduces cardiovascular disease, while its overexpression induces it. Therefore, we used mouse models to investigate the involved mechanisms. In this chapter, the recent main progresses in the field of PLTP research are summarized, and our focus is on the relationship between PLTP and lipoprotein metabolism, as well as PLTP and cardiovascular diseases.
Collapse
|
4
|
Averill M, Rubinow KB, Cain K, Wimberger J, Babenko I, Becker JO, Foster-Schubert KE, Cummings DE, Hoofnagle AN, Vaisar T. Postprandial remodeling of high-density lipoprotein following high saturated fat and high carbohydrate meals. J Clin Lipidol 2020; 14:66-76.e11. [PMID: 31859127 PMCID: PMC7085425 DOI: 10.1016/j.jacl.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Humans spend most of the time in the postprandial state, yet most knowledge about high-density lipoproteins (HDL) derives from the fasted state. HDL protein and lipid cargo mediate HDL's antiatherogenic effects, but whether these HDL constituents change in the postprandial state and are affected by dietary macronutrients remains unknown. OBJECTIVES This study aimed to assess changes in HDL protein and lipid composition after the consumption of a high-carbohydrate or high saturated fat (HSF) meal. METHODS We isolated HDL from plasma collected during a randomized, cross-over study of metabolically healthy subjects. Subjects consumed isocaloric meals consisting predominantly of either carbohydrate or fat. At baseline and at 3 and 6 hours postprandial, we quantified HDL protein and lipid composition by liquid chromatography-mass spectrometry. RESULTS A total of 15 subjects were included (60% female, aged 34 ± 15 years, body mass index: 24.1 ± 2.7 kg/m2). Consumption of the HSF meal led to HDL enrichment in total lipid (P = .006), triglyceride (P = .02), and phospholipid (P = .008) content and a corresponding depletion in protein content. After the HSF meal, 16 of the 25 measured phosphatidylcholine species significantly increased in abundance (P values range from .027 to <.001), along with several sphingolipids including ceramides (P < .004), lactosylceramide (P = .023), and sphingomyelin-14 (P = .013). Enrichment in apolipoprotein A-I (P = .001) was the only significant change in HDL protein composition after the HSF meal. The high-carbohydrate meal conferred only minimal changes in HDL composition. CONCLUSION Meal macronutrient content acutely affects HDL composition in the postprandial state, with the HSF meal resulting in enrichment of HDL phospholipid content with possible consequences for HDL function.
Collapse
Affiliation(s)
- Michelle Averill
- Nutritional Sciences Department, University of Washington, Seattle, WA, USA
| | - Katya B Rubinow
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Kevin Cain
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jake Wimberger
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Ilona Babenko
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Jessica O Becker
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - David E Cummings
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Abstract
Dissections or ruptures of aortic aneurysms remain a leading cause of death in the developed world, with the majority of deaths being preventable if individuals at risk are identified and properly managed. Genetic variants predispose individuals to these aortic diseases. In the case of thoracic aortic aneurysm and dissections (thoracic aortic disease), genetic data can be used to identify some at-risk individuals and dictate management of the associated vascular disease. For abdominal aortic aneurysms, genetic associations have been identified, which provide insight on the molecular pathogenesis but cannot be used clinically yet to identify individuals at risk for abdominal aortic aneurysms. This compendium will discuss our current understanding of the genetic basis of thoracic aortic disease and abdominal aortic aneurysm disease. Although both diseases share several pathogenic similarities, including proteolytic elastic tissue degeneration and smooth muscle dysfunction, they also have several distinct differences, including population prevalence and modes of inheritance.
Collapse
Affiliation(s)
- Amélie Pinard
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand (G.T.J.)
| | - Dianna M Milewicz
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| |
Collapse
|
6
|
Jiang XC. Phospholipid transfer protein: its impact on lipoprotein homeostasis and atherosclerosis. J Lipid Res 2018; 59:764-771. [PMID: 29438986 DOI: 10.1194/jlr.r082503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is one of the major modulators of lipoprotein metabolism and atherosclerosis development in humans; however, we still do not quite understand the mechanisms. In mouse models, PLTP overexpression induces atherosclerosis, while its deficiency reduces it. Thus, mouse models were used to explore the mechanisms. In this review, I summarize the major progress made in the PLTP research field and emphasize its impact on lipoprotein metabolism and atherosclerosis, as well as its regulation.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, Downstate Medical Center, State University of New York, Brooklyn, NY
| |
Collapse
|
7
|
Lee SD, Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 2015; 242:29-36. [PMID: 26164157 PMCID: PMC4546914 DOI: 10.1016/j.atherosclerosis.2015.06.042] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen D Lee
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Abbasi A, Dallinga-Thie GM, Dullaart RP. Phospholipid transfer protein activity and incident type 2 diabetes mellitus. Clin Chim Acta 2015; 439:38-41. [DOI: 10.1016/j.cca.2014.09.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022]
|
9
|
Ji A, Wroblewski JM, Webb NR, van der Westhuyzen DR. Impact of phospholipid transfer protein on nascent high-density lipoprotein formation and remodeling. Arterioscler Thromb Vasc Biol 2014; 34:1910-6. [PMID: 25060793 DOI: 10.1161/atvbaha.114.303533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Phospholipid transfer protein (PLTP), which binds phospholipids and facilitates their transfer between lipoproteins in plasma, plays a key role in lipoprotein remodeling, but its influence on nascent high-density lipoprotein (HDL) formation is not known. The effect of PLTP overexpression on apolipoprotein A-I (apoA-I) lipidation by primary mouse hepatocytes was investigated. APPROACH AND RESULTS Overexpression of PLTP through an adenoviral vector markedly affected the amount and size of lipidated apoA-I species that were produced in hepatocytes in a dose-dependent manner, ultimately generating particles that were <7.1 nm but larger than lipid-free apoA-I. These <7.1-nm small particles generated in the presence of overexpressed PLTP were incorporated into mature HDL particles more rapidly than apoA-I both in vivo and in vitro and were less rapidly cleared from mouse plasma than lipid-free apoA-I. The <7.1-nm particles promoted both cellular cholesterol and phospholipid efflux in an ATP-binding cassette transporter A1-dependent manner, similar to apoA-I in the presence of PLTP. Lipid-free apoA-I had a greater efflux capacity in the presence of PLTP than in the absence of PLTP, suggesting that PLTP may promote ATP-binding cassette transporter A1-mediated cholesterol and phospholipid efflux. These results indicate that PLTP alters nascent HDL formation by modulating the lipidated species and by promoting the initial process of apoA-I lipidation. CONCLUSIONS Our findings suggest that PLTP exerts significant effects on apoA-I lipidation and nascent HDL biogenesis in hepatocytes by promoting ATP-binding cassette transporter A1-mediated lipid efflux and the remodeling of nascent HDL particles.
Collapse
Affiliation(s)
- Ailing Ji
- From the Department of Internal Medicine (A.J., J.M.W., D.R.v.d.W.), Department of Pharmacology and Nutritional Sciences (A.J., J.M.W., N.R.W., D.R.v.d.W.), Department of Molecular and Cellular Biochemistry (D.R.v.d.W.), and Saha Cardiovascular Research Center (A.J., J.M.W., N.R.W., D.R.v.d.W.), University of Kentucky, Lexington; and Department of Veterans Affairs Medical Center (N.R.W., D.R.v.d.W.), Lexington, KY
| | - Joanne M Wroblewski
- From the Department of Internal Medicine (A.J., J.M.W., D.R.v.d.W.), Department of Pharmacology and Nutritional Sciences (A.J., J.M.W., N.R.W., D.R.v.d.W.), Department of Molecular and Cellular Biochemistry (D.R.v.d.W.), and Saha Cardiovascular Research Center (A.J., J.M.W., N.R.W., D.R.v.d.W.), University of Kentucky, Lexington; and Department of Veterans Affairs Medical Center (N.R.W., D.R.v.d.W.), Lexington, KY
| | - Nancy R Webb
- From the Department of Internal Medicine (A.J., J.M.W., D.R.v.d.W.), Department of Pharmacology and Nutritional Sciences (A.J., J.M.W., N.R.W., D.R.v.d.W.), Department of Molecular and Cellular Biochemistry (D.R.v.d.W.), and Saha Cardiovascular Research Center (A.J., J.M.W., N.R.W., D.R.v.d.W.), University of Kentucky, Lexington; and Department of Veterans Affairs Medical Center (N.R.W., D.R.v.d.W.), Lexington, KY
| | - Deneys R van der Westhuyzen
- From the Department of Internal Medicine (A.J., J.M.W., D.R.v.d.W.), Department of Pharmacology and Nutritional Sciences (A.J., J.M.W., N.R.W., D.R.v.d.W.), Department of Molecular and Cellular Biochemistry (D.R.v.d.W.), and Saha Cardiovascular Research Center (A.J., J.M.W., N.R.W., D.R.v.d.W.), University of Kentucky, Lexington; and Department of Veterans Affairs Medical Center (N.R.W., D.R.v.d.W.), Lexington, KY.
| |
Collapse
|
10
|
Brehm A, Geraghty P, Campos M, Garcia-Arcos I, Dabo AJ, Gaffney A, Eden E, Jiang XC, D'Armiento J, Foronjy R. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J 2014; 28:2318-31. [PMID: 24532668 DOI: 10.1096/fj.13-246843] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phospholipid transfer protein (PLTP) regulates phospholipid transport in the circulation and is highly expressed within the lung epithelium, where it is secreted into the alveolar space. Since PLTP expression is increased in chronic obstructive pulmonary disease (COPD), this study aimed to determine how PLTP affects lung signaling and inflammation. Despite its increased expression, PLTP activity decreased by 80% in COPD bronchoalveolar lavage fluid (BALF) due to serine protease cleavage, primarily by cathepsin G. Likewise, PLTP BALF activity levels decreased by 20 and 40% in smoke-exposed mice and in the media of smoke-treated small airway epithelial (SAE) cells, respectively. To assess how PLTP affected inflammatory responses in a lung injury model, PLTP siRNA or recombinant protein was administered to the lungs of mice prior to LPS challenge. Silencing PLTP at baseline caused a 68% increase in inflammatory cell infiltration, a 120 and 340% increase in ERK and NF-κB activation, and increased MMP-9, IL1β, and IFN-γ levels after LPS treatment by 39, 140, and 190%, respectively. Conversely, PLTP protein administration countered these effects in this model. Thus, these findings establish a novel anti-inflammatory function of PLTP in the lung and suggest that proteolytic cleavage of PLTP by cathepsin G may enhance the injurious inflammatory responses that occur in COPD.
Collapse
Affiliation(s)
- Anthony Brehm
- 2Department of Medicine, St. Luke's Roosevelt, Mt. Sinai Health System, Antenucci Bldg., 432 West 58th St., Rm. 311, New York, NY 10019, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Federico Oldoni
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Richard J. Sinke
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
van Capelleveen JC, Bochem AE, Motazacker MM, Hovingh GK, Kastelein JJP. Genetics of HDL-C: a causal link to atherosclerosis? Curr Atheroscler Rep 2013; 15:326. [PMID: 23591671 DOI: 10.1007/s11883-013-0326-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prospective epidemiological studies have consistently reported an inverse association between HDL cholesterol (HDL-C) levels and the risk of cardiovascular disease (CVD). However, large intervention trials on HDL-C-increasing drugs and recent Mendelian randomization studies have questioned a causal relationship between HDL-C and atherosclerosis. HDL-C levels have been shown to be highly heritable, and the combination of HDL-C-associated SNPs in recent large-scale genome-wide association studies (GWAS) only explains a small proportion of this heritability. As a large part of our current understanding of HDL metabolism comes from genetic studies, further insights in this research field may aid us in elucidating HDL functionality in relation to CVD risk. In this review we focus on the question of whether genetically defined HDL-C levels are associated with risk of atherosclerosis. We also discuss the latest insights for HDL-C-associated genes and recent GWAS data.
Collapse
Affiliation(s)
- Julian C van Capelleveen
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Yazdanyar A, Quan W, Jin W, Jiang XC. Liver-specific phospholipid transfer protein deficiency reduces high-density lipoprotein and non-high-density lipoprotein production in mice. Arterioscler Thromb Vasc Biol 2013; 33:2058-64. [PMID: 23846500 DOI: 10.1161/atvbaha.113.301628] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The liver is one of the critical organs for lipoprotein metabolism and a major source for phospholipid transfer protein (PLTP) expression. The effect of liver-specific PLTP deficiency on plasma lipoprotein production and metabolism in mice was investigated. APPROACH AND RESULTS We created a liver-specific PLTP-deficient mouse model. We measured plasma high-density lipoprotein (HDL) and apolipoprotein B (apoB)-containing lipoprotein (or non-HDL) levels and their production rates. We found that hepatic ablation of PLTP leads to a significant decrease in plasma PLTP activity, HDL lipids, non-HDL lipids, apoAI, and apoB levels. In addition, nuclear magnetic resonance examination of lipoproteins showed that the deficiency decreases HDL and apoB-containing lipoprotein particle numbers, as well as very low-density lipoprotein particle size, which was confirmed by electron microscopy. Moreover, HDL particles from the deficient mice are lipid-poor ones. To unravel the mechanism, we evaluated the apoB and triglyceride production rates. We found that hepatic PLTP deficiency significantly decreases apoB and triglyceride secretion rates. To investigate the role of liver PLTP on HDL production, we set up primary hepatocyte culture studies and found that the PLTP-deficient hepatocytes produce less nascent HDL. Furthermore, we found that exogenous PLTP promotes nascent HDL production through an ATP-binding cassette A 1-mediated pathway. CONCLUSIONS Liver-specific PLTP deficiency significantly reduces plasma HDL and apoB-containing lipoprotein levels. Reduction of production rates of both particles is one of the mechanisms.
Collapse
Affiliation(s)
- Amirfarbod Yazdanyar
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
14
|
Phospholipid transfer protein, an emerging cardiometabolic risk marker: Is it time to intervene? Atherosclerosis 2013; 228:38-41. [DOI: 10.1016/j.atherosclerosis.2013.01.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/13/2022]
|
15
|
Klingenberg R, Gerdes N, Badeau RM, Gisterå A, Strodthoff D, Ketelhuth DFJ, Lundberg AM, Rudling M, Nilsson SK, Olivecrona G, Zoller S, Lohmann C, Lüscher TF, Jauhiainen M, Sparwasser T, Hansson GK. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J Clin Invest 2013; 123:1323-34. [PMID: 23426179 DOI: 10.1172/jci63891] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease promoted by hyperlipidemia. Several studies support FOXP3-positive regulatory T cells (Tregs) as inhibitors of atherosclerosis; however, the mechanism underlying this protection remains elusive. To define the role of FOXP3-expressing Tregs in atherosclerosis, we used the DEREG mouse, which expresses the diphtheria toxin (DT) receptor under control of the Treg-specific Foxp3 promoter, allowing for specific ablation of FOXP3+ Tregs. Lethally irradiated, atherosclerosis-prone, low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice received DEREG bone marrow and were injected with DT to eliminate FOXP3(+) Tregs. Depletion of Tregs caused a 2.1-fold increase in atherosclerosis without a concomitant increase in vascular inflammation. These mice also exhibited a 1.7-fold increase in plasma cholesterol and an atherogenic lipoprotein profile with increased levels of VLDL. Clearance of VLDL and chylomicron remnants was hampered, leading to accumulation of cholesterol-rich particles in the circulation. Functional and protein analyses complemented by gene expression array identified reduced protein expression of sortilin-1 in liver and increased plasma enzyme activity of lipoprotein lipase, hepatic lipase, and phospholipid transfer protein as mediators of the altered lipid phenotype. These results demonstrate that FOXP3(+) Tregs inhibit atherosclerosis by modulating lipoprotein metabolism.
Collapse
Affiliation(s)
- Roland Klingenberg
- Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jiang XC, Jin W, Hussain MM. The impact of phospholipid transfer protein (PLTP) on lipoprotein metabolism. Nutr Metab (Lond) 2012; 9:75. [PMID: 22897926 PMCID: PMC3495888 DOI: 10.1186/1743-7075-9-75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/30/2012] [Indexed: 02/05/2023] Open
Abstract
It has been reported that phospholipid transfer protein (PLTP) is an independent risk factor for human coronary artery disease. In mouse models, it has been demonstrated that PLTP overexpression induces atherosclerosis, while its deficiency reduces it. PLTP is considered a promising target for pharmacological intervention to treat atherosclerosis. However, we must still answer a number of questions before its pharmaceutical potential can be fully explored. In this review, we summarized the recent progresses made in the PLTP research field and focused on its effect on apoB-containing- triglyceride-rich particle and HDL metabolism.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, Downstate Medical Center, State University of New York, 450 Clarkson Ave,, Box 5, Brooklyn, NY, 11203, USA.
| | | | | |
Collapse
|
17
|
Rosenthal EA, Ronald J, Rothstein J, Rajagopalan R, Ranchalis J, Wolfbauer G, Albers JJ, Brunzell JD, Motulsky AG, Rieder MJ, Nickerson DA, Wijsman EM, Jarvik GP. Linkage and association of phospholipid transfer protein activity to LASS4. J Lipid Res 2011; 52:1837-46. [PMID: 21757428 DOI: 10.1194/jlr.p016576] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transfer protein activity (PLTPa) is associated with insulin levels and has been implicated in atherosclerotic disease in both mice and humans. Variation at the PLTP structural locus on chromosome 20 explains some, but not all, heritable variation in PLTPa. In order to detect quantitative trait loci (QTLs) elsewhere in the genome that affect PLTPa, we performed both oligogenic and single QTL linkage analysis on four large families (n = 227 with phenotype, n = 330 with genotype, n = 462 total), ascertained for familial combined hyperlipidemia. We detected evidence of linkage between PLTPa and chromosome 19p (lod = 3.2) for a single family and chromosome 2q (lod = 2.8) for all families. Inclusion of additional marker and exome sequence data in the analysis refined the linkage signal on chromosome 19 and implicated coding variation in LASS4, a gene regulated by leptin that is involved in ceramide synthesis. Association between PLTPa and LASS4 variation was replicated in the other three families (P = 0.02), adjusting for pedigree structure. To our knowledge, this is the first example for which exome data was used in families to identify a complex QTL that is not the structural locus.
Collapse
Affiliation(s)
- Elisabeth A Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:345-57. [PMID: 21736953 DOI: 10.1016/j.bbalip.2011.06.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
The understanding of the physiological and pathophysiological role of PLTP has greatly increased since the discovery of PLTP more than a quarter of century ago. A comprehensive review of PLTP is presented on the following topics: PLTP gene organization and structure; PLTP transfer properties; different forms of PLTP; characteristics of plasma PLTP complexes; relationship of plasma PLTP activity, mass and specific activity with lipoprotein and metabolic factors; role of PLTP in lipoprotein metabolism; PLTP and reverse cholesterol transport; insights from studies of PLTP variants; insights of PLTP from animal studies; PLTP and atherosclerosis; PLTP and signal transduction; PLTP in the brain; and PLTP in human disease. PLTP's central role in lipoprotein metabolism and lipid transport in the vascular compartment has been firmly established. However, more studies are needed to further delineate PLTP's functions in specific tissues, such as the lung, brain and adipose tissue. Furthermore, the specific role that PLTP plays in human diseases, such as atherosclerosis, cancer, or neurodegenerative disease, remains to be clarified. Exciting directions for future research include evaluation of PLTP's physiological relevance in intracellular lipid metabolism and signal transduction, which undoubtedly will advance our knowledge of PLTP functions in health and disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
19
|
Masson D, Deckert V, Gautier T, Klein A, Desrumaux C, Viglietta C, Pais de Barros JP, Le Guern N, Grober J, Labbé J, Ménétrier F, Ripoll PJ, Leroux-Coyau M, Jolivet G, Houdebine LM, Lagrost L. Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein. Arterioscler Thromb Vasc Biol 2011; 31:766-74. [PMID: 21252068 DOI: 10.1161/atvbaha.110.215756] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Plasma phospholipid transfer protein (PLTP) is involved in intravascular lipoprotein metabolism. PLTP is known to act through 2 main mechanisms: by remodeling high-density lipoproteins (HDL) and by increasing apolipoprotein (apo) B-containing lipoproteins. The aim of this study was to generate a new model of human PLTP transgenic (HuPLTPTg) rabbit and to determine whether PLTP expression modulates atherosclerosis in this species that, unlike humans and mice, displays naturally very low PLTP activity. METHODS AND RESULTS In HuPLTPTg rabbits, the human PLTP cDNA was placed under the control of the human eF1-α gene promoter, resulting in a widespread tissue expression pattern and in increased plasma PLTP. The HuPLTPTg rabbits showed a significant increase in the cholesterol content of the plasma apoB-containing lipoprotein fractions, with a more severe trait when animals were fed a cholesterol-rich diet. In contrast, HDL cholesterol level was not modified in HuPLTPTg rabbits. Formation of aortic fatty streaks was increased in hypercholesterolemic HuPLTPTg animals as compared with nontransgenic littermates. CONCLUSIONS Human PLTP expression in HuPLTPTg rabbit worsens atherosclerosis as a result of increased levels of atherogenic apoB-containing lipoproteins but not of alterations in their antioxidative protection or in cholesterol content of plasma HDL.
Collapse
Affiliation(s)
- David Masson
- Institut National de la Santé et de la Recherche Médicale, Université de Bourgogne, UMR866, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu HR, Wu G, Zhou B, Chen BS. Low cholesteryl ester transfer protein and phospholipid transfer protein activities are the factors making tree shrew and beijing duck resistant to atherosclerosis. Lipids Health Dis 2010; 9:114. [PMID: 20937151 PMCID: PMC2964723 DOI: 10.1186/1476-511x-9-114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/12/2010] [Indexed: 11/20/2022] Open
Abstract
Background Tree shrew and beijing duck are regarded as animal models resistant to atherosclerosis (AS). This study was carried out to discover the potential mechanism. Methods Blood samples were collected from healthy men and male animals. Plasma lipid profile and activities of cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) were measured, compared and analyzed in human, tree shrew, and Beijing duck. Results The results showed that there were species differences on plasma lipid profile and activities of CETP and PLTP in the three species. Compared with human, tree shrew and beijing duck had higher high density lipoprotein cholesterol (HDL-C)/total cholesterol (TC) and HDL-C/low density lipoprotein cholesterol (LDL-C) ratios, but lower CETP and PLTP activities. In the three species, CETP and PLTP activities were negatively related with the ratio of HDL-C/LDL-C. Conclusions The present study suggested that low plasma CETP and PLTP activities may lead to a high HDL-C/LDL-C ratio and a high resistance to AS finally in tree shrew and beijing duck. Moreover, low PLTP activity may also make the animals resistant to AS by the relative high vitamin E content of apoB-containing lipoproteins and high anti-inflammatory and antioxidative properties of HDL particles. A detailed study in the future is recommended.
Collapse
Affiliation(s)
- Hui-rong Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | | | | | | |
Collapse
|
21
|
Luo Y, Shelly L, Sand T, Reidich B, Chang G, Macdougall M, Peakman MC, Jiang XC. Pharmacologic inhibition of phospholipid transfer protein activity reduces apolipoprotein-B secretion from hepatocytes. J Pharmacol Exp Ther 2010; 332:1100-6. [PMID: 19933370 PMCID: PMC2835446 DOI: 10.1124/jpet.109.161232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/13/2009] [Indexed: 11/22/2022] Open
Abstract
Phospholipid transfer protein (PLTP) plays an important role in atherogenesis, and its function goes well beyond that of transferring phospholipids between lipoprotein particles. Previous studies showed that genetic deficiency of PLTP in mice causes a substantially impaired hepatic secretion of apolipoprotein-B (apoB), the major protein of atherogenic lipoproteins. To understand whether the impaired apoB secretion is a direct result from lack of PLTP activity, in this study, we further investigated the function of PLTP in apoB secretion by using PLTP inhibitors. We identified a series of compounds containing a 3-benzazepine core structure that inhibit PLTP activity. Compound A, the most potent inhibitor, was characterized further and had little cross-reactivity with microsomal triglyceride transfer protein. Compound A reduced apoB secretion in human hepatoma cell lines and mouse primary hepatocytes. Furthermore, we confirmed that the reduction of apoB secretion mediated by compound A is PLTP-dependent, because the PLTP inhibitor had no effect on apoB secretion from PLTP-deficient hepatocytes. These studies provided evidence that PLTP activity regulates apoB secretion and pharmacologic inhibition of PLTP may be a new therapy for dyslipidemia by reducing apoB secretion.
Collapse
Affiliation(s)
- Yi Luo
- Department of Cardiovascular and Metabolic Diseases, Pfizer Global Research Division, Pfizer Inc., Groton, CT 06340, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Jarvik GP, Rajagopalan R, Rosenthal EA, Wolfbauer G, McKinstry L, Vaze A, Brunzell J, Motulsky AG, Nickerson DA, Heagerty PJ, Wijsman EM, Albers JJ. Genetic and nongenetic sources of variation in phospholipid transfer protein activity. J Lipid Res 2009; 51:983-90. [PMID: 19965587 DOI: 10.1194/jlr.m000125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transfer protein (PLTP) belongs to the lipid transfer/lipopolysaccharide-binding protein gene family. Expression of PLTP has been implicated in the development of atherosclerosis. We evaluated the effects of PLTP region tagging single nucleotide polymorphisms (SNPs) on the prediction of both carotid artery disease (CAAD) and PLTP activity. CAAD effects were evaluated in 442 Caucasian male subjects with severe CAAD and 497 vascular disease-free controls. SNP prediction of PLTP transfer activity was evaluated in both a subsample of 87 subjects enriched for an allele of interest and in a confirmation sample of 210 Caucasian males and females. Hemoglobin A1c or insulin level predicted 11-14% of age- and sex-adjusted PLTP activity. PLTP SNPs that predicted approximately 11-30% of adjusted PLTP activity variance were identified in the two cohorts. For rs6065904, the allele that was associated with CAAD was also associated with elevated PLTP activity in both cohorts. SNPs associated with PLTP activity also predicted variation in LDL-cholesterol and LDL-B level only in the replication cohort. These results demonstrate that PLTP activity is strongly influenced by PLTP region polymorphisms and metabolic factors.
Collapse
Affiliation(s)
- Gail P Jarvik
- Department of Medicine (Division of Medical Genetics), University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Quintão ECR, Cazita PM. Lipid transfer proteins: past, present and perspectives. Atherosclerosis 2009; 209:1-9. [PMID: 19733354 DOI: 10.1016/j.atherosclerosis.2009.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/02/2009] [Accepted: 08/03/2009] [Indexed: 11/15/2022]
Abstract
Lipid transfer proteins (PLTP and CETP) play roles in atherogenesis by modifying the arterial intima cholesterol content via altering the concentration and function of plasma lipoproteins and influencing inflammation. In this regard, endotoxins impair the reverse cholesterol transport (RCT) system in an endotoxemic rodent model, supporting a pro-inflammatory role of HDL reported in chronic diseases where atherosclerosis is premature. High PLTP activity related to atherosclerosis in some clinical studies, but the mechanisms involved could not be ascertained. In experimental animals the relation of elevated plasma PLTP concentration with atherosclerosis was confounded by HDL-C lowering and by unfavorable effects on several inflammatory markers. Coincidently, PLTP also increases in human experimental endotoxemia and in clinical sepsis. Human population investigations seem to favor low CETP as atheroprotective; this is supported by animal models where overexpression of huCETP is atherogenic, most likely due to increased concentration of apoB-lipoprotein-cholesterol. Thus, in spite of CETP facilitating the HDL-C-mediated RCT, the reduction of apoB-LP-cholesterol concentration is the probable antiatherogenic mechanism of CETP inhibition. On the other hand, experimental huCETP expression protects mice from the harmful effects of a bacterial polysaccharide infusion and the mortality rate of severely ill patients correlates with reduction of the plasma CETP concentration. Thus, the roles played by PLTP and CETP on atherosclerosis and acute inflammation seem contradictory. Therefore, the biological roles of PLTP and CETP must be carefully monitored when investigating drugs that inhibit their activity in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Eder C R Quintão
- Lipids Lab, LIM 10, Faculty of Medical Sciences, University of São Paulo, SP, Brazil.
| | | |
Collapse
|
24
|
Henderson RJ, Wasan KM, Leon CG. Haptoglobin inhibits phospholipid transfer protein activity in hyperlipidemic human plasma. Lipids Health Dis 2009; 8:27. [PMID: 19627602 PMCID: PMC2729738 DOI: 10.1186/1476-511x-8-27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 07/23/2009] [Indexed: 12/16/2022] Open
Abstract
Background Haptoglobin is a plasma protein that scavenges haemoglobin during haemolysis. Phospholipid Transfer Protein (PLTP) transfers lipids from Low Density Lipoproteins (LDL) to High Density Lipoproteins (HDL). PLTP is involved in the pathogenesis of atherosclerosis which causes coronary artery disease, the leading cause of death in North America. It has been shown that Apolipoprotein-A1 (Apo-A1) binds and regulates PLTP activity. Haptoglobin can also bind to Apo-A1, affecting the ability of Apo-A1 to induce enzymatic activities. Thus we hypothesize that haptoglobin inhibits PLTP activity. This work tested the effect of Haptoglobin and Apo-A1 addition on PLTP activity in human plasma samples. The results will contribute to our understanding of the role of haptoglobin on modulating reverse cholesterol transport. Results We analyzed the PLTP activity and Apo-A1 and Haptoglobin content in six hyperlipidemic and six normolipidemic plasmas. We found that Apo-A1 levels are proportional to PLTP activity in hyperlipidemic (R2 = 0.66, p < 0.05) but not in normolipidemic human plasma. Haptoglobin levels and PLTP activity are inversely proportional in hyperlipidemic plasmas (R2 = 0.57, p > 0.05). When the PLTP activity was graphed versus the Hp/Apo-A1 ratio in hyperlipidemic plasma there was a significant correlation (R2 = 0.69, p < 0.05) suggesting that PLTP activity is affected by the combined effect of Apo-A1 and haptoglobin. When haptoglobin was added to individual hyperlipidemic plasma samples there was a dose dependent decrease in PLTP activity. In these samples we also found a negative correlation (-0.59, p < 0.05) between PLTP activity and Hp/Apo-A1. When we added an amount of haptoglobin equivalent to 100% of the basal levels, we found a 64 ± 23% decrease (p < 0.05) in PLTP activity compared to basal PLTP activity. We tested the hypothesis that additional Apo-A1 would induce PLTP activity. Interestingly we found a dose dependent decrease in PLTP activity upon Apo-A1 addition. When both Apo-A1 and Hpt were added to the plasma samples there was no further reduction in PLTP activity suggesting that they act through a common pathway. Conclusion These findings suggest an inhibitory effect of Haptoglobin over PLTP activity in hyperlipidemic plasma that may contribute to the regulation of reverse cholesterol transport.
Collapse
Affiliation(s)
- Ryan J Henderson
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada.
| | | | | |
Collapse
|
25
|
Reverse modulation of the HDL Anionic Peptide Factor and phospholipid transfer protein activity in coronary artery disease and type 2 diabetes mellitus. Clin Biochem 2009; 42:845-51. [DOI: 10.1016/j.clinbiochem.2008.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 11/22/2022]
|
26
|
van Wijk DF, Stroes ESG, Monajemi H. Changing paradigm in HDL metabolism and cellular effects. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/17584299.4.1.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Abstract
PURPOSE OF REVIEW To review studies on hereditary disorders of high-density lipoprotein (HDL) metabolism and studies on HDL genetics in mice, which have both provided valuable insight into the pathways of this intriguing lipoprotein and moreover revealed targets to raise HDLc to reduce atherosclerosis. RECENT FINDINGS To date, as many as 11 genes are considered key players in the synthesis, maturation, conversion and/or catabolism of HDL. Five of these genes have been identified in humans, APOA1, LCAT, ABCA1, LIPC, and CETP, whereas the other six genes have been identified in mice, SCARB1, ABCG1, ATPB5, PLTP, LIPG and APOM. Genetic association studies are as yet the best line of evidence of the roles of the 'murine genes' in human HDL pathways. In addition to recent genetic association studies, a third section describes exciting news on six newly proposed HDL genes VNN1, GALNT2, MMAB/MVK, CTalpha, BMP-1 and SIRT1. SUMMARY This review provides a summary of the current literature on the genetics of HDL. New information from this research area may assist us in obtaining a better understanding of HDL biology and identifying novel pharmacological targets.
Collapse
Affiliation(s)
- Adriaan G Holleboom
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|