1
|
Xiong Y, Wang Y, Yang T, Luo Y, Xu S, Li L. Receptor Tyrosine Kinase: Still an Interesting Target to Inhibit the Proliferation of Vascular Smooth Muscle Cells. Am J Cardiovasc Drugs 2023; 23:497-518. [PMID: 37524956 DOI: 10.1007/s40256-023-00596-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Vascular smooth muscle cells (VSMCs) proliferation is a critical event that contributes to the pathogenesis of vascular remodeling such as hypertension, restenosis, and pulmonary hypertension. Increasing evidences have revealed that VSMCs proliferation is associated with the activation of receptor tyrosine kinases (RTKs) by their ligands, including the insulin-like growth factor receptor (IGFR), fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). Moreover, some receptor tyrosinase inhibitors (TKIs) have been found and can prevent VSMCs proliferation to attenuate vascular remodeling. Therefore, this review will describe recent research progress on the role of RTKs and their inhibitors in controlling VSMCs proliferation, which helps to better understand the function of VSMCs proliferation in cardiovascular events and is beneficial for the prevention and treatment of vascular disease.
Collapse
Affiliation(s)
- Yilin Xiong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Tao Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yunmei Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
2
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
3
|
The Functional Interaction of EGFR with AT1R or TP in Primary Vascular Smooth Muscle Cells Triggers a Synergistic Regulation of Gene Expression. Cells 2022; 11:cells11121936. [PMID: 35741065 PMCID: PMC9222111 DOI: 10.3390/cells11121936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
In vivo, cells are simultaneously exposed to multiple stimuli whose effects are difficult to distinguish. Therefore, they are often investigated in experimental cell culture conditions where stimuli are applied separately. However, it cannot be presumed that their individual effects simply add up. As a proof-of-principle to address the relevance of transcriptional signaling synergy, we investigated the interplay of the Epidermal Growth Factor Receptor (EGFR) with the Angiotensin-II (AT1R) or the Thromboxane-A2 (TP) receptors in murine primary aortic vascular smooth muscle cells. Transcriptome analysis revealed that EGFR-AT1R or EGFR-TP simultaneous activations led to different patterns of regulated genes compared to individual receptor activations (qualitative synergy). Combined EGFR-TP activation also caused a variation of amplitude regulation for a defined set of genes (quantitative synergy), including vascular injury-relevant ones (Klf15 and Spp1). Moreover, Gene Ontology enrichment suggested that EGFR and TP-induced gene expression changes altered processes critical for vascular integrity, such as cell cycle and senescence. These bioinformatics predictions regarding the functional relevance of signaling synergy were experimentally confirmed. Therefore, by showing that the activation of more than one receptor can trigger a synergistic regulation of gene expression, our results epitomize the necessity to perform comprehensive network investigations, as the study of individual receptors may not be sufficient to understand their physiological or pathological impact.
Collapse
|
4
|
Palanisamy S, Xue C, Ishiyama S, Naga Prasad SV, Gabrielson K. GPCR-ErbB transactivation pathways and clinical implications. Cell Signal 2021; 86:110092. [PMID: 34303814 DOI: 10.1016/j.cellsig.2021.110092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
Cell surface receptors including the epidermal growth factor receptor (EGFR) family and G-protein coupled receptors (GPCRs) play quintessential roles in physiology, and in diseases, including cardiovascular diseases. While downstream signaling from these individual receptor families has been well studied, the cross-talk between EGF and GPCR receptor families is still incompletely understood. Including members of both receptor families, the number of receptor and ligand combinations for unique interactions is vast, offering a frontier of pharmacologic targets to explore for preventing and treating disease. This molecular cross-talk, called receptor transactivation, is reviewed here with a focus on the cardiovascular system featuring the well-studied GPCR receptors, but also discussing less-studied receptors from both families for a broad understanding of context of expansile interactions, repertoire of cellular signaling, and disease consequences. Attention is given to cell type, level of chronicity, and disease context given that transactivation and comorbidities, including diabetes, hypertension, coronavirus infection, impact cardiovascular disease and health outcomes.
Collapse
Affiliation(s)
| | - Carolyn Xue
- University of California, Los Angeles, 101 Hershey Hall, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | - Shun Ishiyama
- Sidney Kimmel Cancer Center, Department of Surgery, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Coloproctological Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | - Sathyamangla Venkata Naga Prasad
- NB50, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, 1, Cleveland, OH 44195, USA.
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, 733 North Broadway, Miller Research Building, Room 807, Baltimore, MD 21205-2196, USA.
| |
Collapse
|
5
|
Qian LL, Ji JJ, Guo JQ, Wu YP, Ma GS, Yao YY. Protective role of serpina3c as a novel thrombin inhibitor against atherosclerosis in mice. Clin Sci (Lond) 2021; 135:447-463. [PMID: 33458764 DOI: 10.1042/cs20201235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022]
Abstract
Abnormal vascular smooth muscle cell (VSMC) proliferation is a critical step in the development of atherosclerosis. Serpina3c is a serine protease inhibitor (serpin) that plays a key role in metabolic diseases. The present study aimed to investigate the role of serpina3c in atherosclerosis and regulation of VSMC proliferation and possible mechanisms. Serpina3c is down-regulated during high-fat diet (HFD)-induced atherosclerosis. An Apoe-/-/serpina3c-/--double-knockout mouse model was used to determine the role of serpina3c in atherosclerosis after HFD for 12 weeks. Compared with Apoe-/- mice, the Apoe-/-/serpina3c-/- mice developed more severe atherosclerosis, and the number of VSMCs and macrophages in aortic plaques was significantly increased. The present study revealed serpina3c as a novel thrombin inhibitor that suppressed thrombin activity. In circulating plasma, thrombin activity was high in the Apoe-/-/serpina3c-/- mice, compared with Apoe-/- mice. Immunofluorescence staining showed thrombin and serpina3c colocalization in the liver and aortic cusp. In addition, inhibition of thrombin by dabigatran in serpina3c-/- mice reduced neointima lesion formation due to partial carotid artery ligation. Moreover, an in vitro study confirmed that thrombin activity was also decreased by serpina3c protein, supernatant and cell lysate that overexpressed serpina3c. The results of experiments showed that serpina3c negatively regulated VSMC proliferation in culture. The possible mechanism may involve serpina3c inhibition of ERK1/2 and JNK signaling in thrombin/PAR-1 system-mediated VSMC proliferation. Our results highlight a protective role for serpina3c as a novel thrombin inhibitor in the development of atherosclerosis, with serpina3c conferring protection through the thrombin/PAR-1 system to negatively regulate VSMC proliferation through ERK1/2 and JNK signaling.
Collapse
Affiliation(s)
- Ling-Lin Qian
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Jing-Jing Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Jia-Qi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yan-Ping Wu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| |
Collapse
|
6
|
Teixeira C, Fernandes CM, Leiguez E, Chudzinski-Tavassi AM. Inflammation Induced by Platelet-Activating Viperid Snake Venoms: Perspectives on Thromboinflammation. Front Immunol 2019; 10:2082. [PMID: 31572356 PMCID: PMC6737392 DOI: 10.3389/fimmu.2019.02082] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023] Open
Abstract
Envenomation by viperid snakes is characterized by systemic thrombotic syndrome and prominent local inflammation. To date, the mechanisms underlying inflammation and blood coagulation induced by Viperidae venoms have been viewed as distinct processes. However, studies on the mechanisms involved in these processes have revealed several factors and signaling molecules that simultaneously act in both the innate immune and hemostatic systems, suggesting an overlap between both systems during viper envenomation. Moreover, distinct classes of venom toxins involved in these effects have also been identified. However, the interplay between inflammation and hemostatic alterations, referred as to thromboinflammation, has never been addressed in the investigation of viper envenomation. Considering that platelets are important targets of viper snake venoms and are critical for the process of thromboinflammation, in this review, we summarize the inflammatory effects and mechanisms induced by viper snake venoms, particularly from the Bothrops genus, which strongly activate platelet functions and highlight selected venom components (metalloproteases and C-type lectins) that both stimulate platelet functions and exhibit pro-inflammatory activities, thus providing insights into the possible role(s) of thromboinflammation in viper envenomation.
Collapse
Affiliation(s)
- Catarina Teixeira
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Cristina Maria Fernandes
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Elbio Leiguez
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil.,Laboratory of Molecular Biology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
7
|
Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019; 133:906-918. [PMID: 30642917 DOI: 10.1182/blood-2018-11-882993] [Citation(s) in RCA: 447] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Thrombosis with associated inflammation (thromboinflammation) occurs commonly in a broad range of human disorders. It is well recognized clinically in the context of superficial thrombophlebitis (thrombosis and inflammation of superficial veins); however, it is more dangerous when it develops in the microvasculature of injured tissues and organs. Microvascular thrombosis with associated inflammation is well recognized in the context of sepsis and ischemia-reperfusion injury; however, it also occurs in organ transplant rejection, major trauma, severe burns, the antiphospholipid syndrome, preeclampsia, sickle cell disease, and biomaterial-induced thromboinflammation. Central to thromboinflammation is the loss of the normal antithrombotic and anti-inflammatory functions of endothelial cells, leading to dysregulation of coagulation, complement, platelet activation, and leukocyte recruitment in the microvasculature. α-Thrombin plays a critical role in coordinating thrombotic and inflammatory responses and has long been considered an attractive therapeutic target to reduce thromboinflammatory complications. This review focuses on the role of basic aspects of coagulation and α-thrombin in promoting thromboinflammatory responses and discusses insights gained from clinical trials on the effects of various inhibitors of coagulation on thromboinflammatory disorders. Studies in sepsis patients have been particularly informative because, despite using anticoagulant approaches with different pharmacological profiles, which act at distinct points in the coagulation cascade, bleeding complications continue to undermine clinical benefit. Future advances may require the development of therapeutics with primary anti-inflammatory and cytoprotective properties, which have less impact on hemostasis. This may be possible with the growing recognition that components of blood coagulation and platelets have prothrombotic and proinflammatory functions independent of their hemostatic effects.
Collapse
|
8
|
Wang D, Uhrin P, Mocan A, Waltenberger B, Breuss JM, Tewari D, Mihaly-Bison J, Huminiecki Ł, Starzyński RR, Tzvetkov NT, Horbańczuk J, Atanasov AG. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv 2018; 36:1586-1607. [PMID: 29684502 DOI: 10.1016/j.biotechadv.2018.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Strada Gheorghe Marinescu 23, 400337 Cluj-Napoca, Romania; Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Johannes M Breuss
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal, 263136 Nainital, Uttarakhand, India
| | - Judit Mihaly-Bison
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Łukasz Huminiecki
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Rafał R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, 1618 Sofia, Bulgaria
| | - Jarosław Horbańczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
9
|
Hsu TI, Wang YC, Hung CY, Yu CH, Su WC, Chang WC, Hung JJ. Positive feedback regulation between IL10 and EGFR promotes lung cancer formation. Oncotarget 2018; 7:20840-54. [PMID: 26956044 PMCID: PMC4991496 DOI: 10.18632/oncotarget.7894] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/29/2016] [Indexed: 01/20/2023] Open
Abstract
The role of IL10 in the tumorigenesis of various cancer types is still controversial. Here, we found that increased IL10 levels are correlated with a poor prognosis in lung cancer patients. Moreover, IL10 levels were significantly increased in the lungs and serum of EGFRL858R- and Kras4bG12D-induced lung cancer mice, indicating that IL10 might facilitate lung cancer tumorigenesis. IL10 knockout in EGFRL858R and Kras4bG12D mice inhibited the development of lung tumors and decreased the levels of infiltrating M2 macrophages and tumor-promoting Treg lymphocytes. We also showed that EGF increases IL10 expression by enhancing IL10 mRNA stability, and IL10 subsequently activates JAK1/STAT3, Src, PI3K/Akt, and Erk signaling pathways. Interestingly, the IL10-induced recruitment of phosphorylated Src was critical for inducing EGFR through the activation of the JAK1/STAT3 pathway, suggesting that Src and JAK1 positively regulate each other to enhance STAT3 activity. Doxycycline-induced EGFRL858R mice treated with gefitinib and anti-IL10 antibodies exhibited poor tumor formation. In conclusion, IL10 and EGFR regulate each other through positive feedback, which leads to lung cancer formation.
Collapse
Affiliation(s)
- Tsung-I Hsu
- Center for Infection Disease and Signal Research, College of Medicine, Tainan, Taiwan.,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Yi-Chang Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yang Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hui Yu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chang Chang
- Center for Infection Disease and Signal Research, College of Medicine, Tainan, Taiwan.,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Center for Infection Disease and Signal Research, College of Medicine, Tainan, Taiwan.,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Blood-based omic profiling supports female susceptibility to tobacco smoke-induced cardiovascular diseases. Sci Rep 2017; 7:42870. [PMID: 28225026 PMCID: PMC5320491 DOI: 10.1038/srep42870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
We recently reported that differential gene expression and DNA methylation profiles in blood leukocytes of apparently healthy smokers predicts with remarkable efficiency diseases and conditions known to be causally associated with smoking, suggesting that blood-based omic profiling of human populations may be useful for linking environmental exposures to potential health effects. Here we report on the sex-specific effects of tobacco smoking on transcriptomic and epigenetic features derived from genome-wide profiling in white blood cells, identifying 26 expression probes and 92 CpG sites, almost all of which are affected only in female smokers. Strikingly, these features relate to numerous genes with a key role in the pathogenesis of cardiovascular disease, especially thrombin signaling, including the thrombin receptors on platelets F2R (coagulation factor II (thrombin) receptor; PAR1) and GP5 (glycoprotein 5), as well as HMOX1 (haem oxygenase 1) and BCL2L1 (BCL2-like 1) which are involved in protection against oxidative stress and apoptosis, respectively. These results are in concordance with epidemiological evidence of higher female susceptibility to tobacco-induced cardiovascular disease and underline the potential of blood-based omic profiling in hazard and risk assessment.
Collapse
|
11
|
White HA, Jin Y, Chicoine LG, Chen B, Liu Y, Nelin LD. Hypoxic proliferation requires EGFR-mediated ERK activation in human pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L649-L656. [PMID: 28188223 DOI: 10.1152/ajplung.00267.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that hypoxic proliferation of human pulmonary microvascular endothelial cells (hPMVECs) depends on epidermal growth factor receptor (EGFR) activation. To determine downstream signaling leading to proliferation, we tested the hypothesis that hypoxia-induced proliferation in hPMVECs would require EGFR-mediated activation of extracellular signal-regulated kinase (ERK) leading to arginase II induction. To test this hypothesis, hPMVECs were incubated in either normoxia (21% O2, 5% CO2) or hypoxia (1% O2, 5% CO2) and Western blotting was performed for EGFR, arginase II, phosphorylated-ERK (pERK), and total ERK (ERK). Hypoxia led to greater EGFR, pERK, and arginase II protein levels than did normoxia in hPMVECs. To examine the role of EGFR in these hypoxia-induced changes, hPMVECs were transfected with siRNA against EGFR or a scrambled siRNA and placed in hypoxia. Inhibition of EGFR using siRNA attenuated hypoxia-induced pERK and arginase II expression as well as the hypoxia-induced increase in viable cell numbers. hPMVECs were then treated with vehicle, an EGFR inhibitor (AG1478), or an ERK pathway inhibitor (U0126) and placed in hypoxia. Pharmacologic inhibition of EGFR significantly attenuated the hypoxia-induced increase in pERK level. Both AG1478 and U0126 also significantly attenuated the hypoxia-induced increase in viable hPMVECs numbers. hPMVECs were transfected with an adenoviral vector containing arginase II (AdArg2) and overexpression of arginase II rescued the U0126-mediated decrease in viable cell numbers in hypoxic hPMVECs. Our findings suggest that hypoxic activation of EGFR results in phosphorylation of ERK, which is required for hypoxic induction of arginase II and cellular proliferation.
Collapse
Affiliation(s)
- Hilary A White
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Louis G Chicoine
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and .,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
12
|
Wang Y, Gratzke C, Tamalunas A, Rutz B, Ciotkowska A, Strittmatter F, Herlemann A, Janich S, Waidelich R, Liu C, Stief CG, Hennenberg M. Smooth muscle contraction and growth of stromal cells in the human prostate are both inhibited by the Src family kinase inhibitors, AZM475271 and PP2. Br J Pharmacol 2016; 173:3342-3358. [PMID: 27638545 DOI: 10.1111/bph.13623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE In benign prostatic hyperplasia, increased prostate smooth muscle tone and prostate volume may contribute alone or together to urethral obstruction and voiding symptoms. Consequently, it is assumed there is a connection between smooth muscle tone and growth in the prostate, but any molecular basis for this is poorly understood. Here, we examined effects of Src family kinase (SFK) inhibitors on prostate contraction and growth of stromal cells. EXPERIMENTAL APPROACH SFK inhibitors, AZM475271 and PP2, were applied to human prostate tissues to assess effects on smooth muscle contraction, and to cultured stromal (WPMY-1) and c-Src-deficient cells to examine effects on proliferation, actin organization and viability. KEY RESULTS SFKs were detected by real time PCR, western blot and immunofluorescence in human prostate tissues, some being located to smooth muscle cells. AZM475271 (10 μM) and PP2 (10 μM) inhibited SFK in prostate tissues and WPMY-1 cells. Both inhibitors reduced α1 -adrenoceptor-mediated and neurogenic contraction of prostate strips. This may result from cytoskeletal deorganization, which was observed in response to AZM475271 and PP2 in WPMY-1 cells by staining of actin filaments with phalloidin. This was paralleled by reduced proliferation of wildtype but not of c-Src-deficient cells; cytotoxicity was mainly observed at higher concentrations (>50 μM). CONCLUSIONS AND IMPLICATIONS In human prostate, smooth muscle tone and growth are both controlled by an SFK-dependent process, which may explain their common role in bladder outlet obstruction. Targeting prostate smooth muscle tone and prostate growth simultaneously by a single compound may, in principal, be possible.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Urology, Ludwig-Maximilians University, Munich, Germany.,Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Christian Gratzke
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | | | - Beata Rutz
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | | | - Annika Herlemann
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Sophie Janich
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | | | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Christian G Stief
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
13
|
Zhang G, Scarborough H, Kim J, Rozhok AI, Chen YA, Zhang X, Song L, Bai Y, Fang B, Liu RZ, Koomen J, Tan AC, Degregori J, Haura EB. Coupling an EML4-ALK-centric interactome with RNA interference identifies sensitizers to ALK inhibitors. Sci Signal 2016; 9:rs12. [PMID: 27811184 DOI: 10.1126/scisignal.aaf5011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients with lung cancers harboring anaplastic lymphoma kinase (ALK) gene fusions benefit from treatment with ALK inhibitors, but acquired resistance inevitably arises. A better understanding of proximal ALK signaling mechanisms may identify sensitizers to ALK inhibitors that disrupt the balance between prosurvival and proapoptotic effector signals. Using affinity purification coupled with mass spectrometry in an ALK fusion lung cancer cell line (H3122), we generated an ALK signaling network and investigated signaling activity using tyrosine phosphoproteomics. We identified a network of 464 proteins composed of subnetworks with differential response to ALK inhibitors. A small hairpin RNA screen targeting 407 proteins in this network revealed 64 and 9 proteins that when knocked down sensitized cells to crizotinib and alectinib, respectively. Among these, knocking down fibroblast growth factor receptor substrate 2 (FRS2) or coiled-coil and C2 domain-containing protein 1A (CC2D1A), both scaffolding proteins, sensitized multiple ALK fusion cell lines to the ALK inhibitors crizotinib and alectinib. Collectively, our data set provides a resource that enhances our understanding of signaling and drug resistance networks consequent to ALK fusions and identifies potential targets to improve the efficacy of ALK inhibitors in patients.
Collapse
Affiliation(s)
- Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Hannah Scarborough
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jihye Kim
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrii I Rozhok
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yian Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Xiaohui Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Lanxi Song
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics Core Facility, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Richard Z Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John Koomen
- Department of Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Aik Choon Tan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James Degregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
14
|
Atef ME, Anand-Srivastava MB. Role of PKCδ in Enhanced Expression of Gqα/PLCβ1 Proteins and VSMC Hypertrophy in Spontaneously Hypertensive Rats. PLoS One 2016; 11:e0157955. [PMID: 27379421 PMCID: PMC4933357 DOI: 10.1371/journal.pone.0157955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/06/2016] [Indexed: 02/07/2023] Open
Abstract
Gqα signaling has been implicated in cardiac hypertrophy. In addition, angiotensin II (Ang II) was also shown to induce its hypertrophic effect through Gqα and PKCδ activation. We recently showed the role of enhanced expression of Gqα/PLCβ1 proteins in vascular smooth muscle cell (VSMC) hypertrophy, however, the role of PKCδ in VSMC hypertrophy in animal model is still lacking. The present study was therefore undertaken to examine the role of PKCδ and the associated signaling mechanisms in VSMC hypertrophy using 16-week-old spontaneously hypertensive rats (SHR). VSMC from 16-week-old SHR exhibited enhanced phosphorylation of PKCδ-Tyr311 and increased protein synthesis, marker of hypertrophy, as compared to WKY rats which was attenuated by rottlerin, an inhibitor of PKCδ. In addition, knocking down of PKCδ by PKCδ-siRNA also attenuated enhanced protein synthesis in VSMC from SHR. Furthermore, rottlerin attenuated the increased production of superoxide anion, NAD(P)H oxidase activity, increased expression of Gqα, phospholipase C (PLC)β1, insulin like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) proteins in VSMC from SHR. In addition, the enhanced phosphorylation of c-Src, PKCδ-Tyr311, IGF-1R, EGFR and ERK1/2 exhibited by VSMC from SHR was also attenuated by rottlerin. These results suggest that VSMC from SHR exhibit enhanced activity of PKCδ and that PKCδ is the upstream molecule of reactive oxygen species (ROS) and contributes to the enhanced expression of Gqα and PLCβ1 proteins and resultant VSMC hypertrophy involving c-Src, growth factor receptor transactivation and MAP kinase signaling.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Animals
- Benzopyrans/pharmacology
- Blotting, Western
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Hypertrophy
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NADPH Oxidases/metabolism
- Phospholipase C beta/metabolism
- Phosphorylation/drug effects
- Protein Kinase C-delta/genetics
- Protein Kinase C-delta/metabolism
- Proto-Oncogene Proteins pp60(c-src)/metabolism
- RNA Interference
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Growth Factor/metabolism
- Species Specificity
- Superoxides/metabolism
- Tyrosine/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Mohammed Emehdi Atef
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Madhu B. Anand-Srivastava
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
15
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Schreier B, Schwerdt G, Heise C, Bethmann D, Rabe S, Mildenberger S, Gekle M. Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1519-33. [PMID: 27012600 DOI: 10.1016/j.bbamcr.2016.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 11/26/2022]
Abstract
Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany.
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Christian Heise
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Daniel Bethmann
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Sindy Rabe
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| |
Collapse
|
17
|
Consequences of postnatal vascular smooth muscle EGFR deletion on acute angiotensin II action. Clin Sci (Lond) 2015; 130:19-33. [DOI: 10.1042/cs20150503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/05/2015] [Indexed: 01/20/2023]
Abstract
In the present study we demonstrate that the epidermal growth factor (EGF) receptor (EGFR) in vascular smooth muscle cells (VSMC) is involved in basal blood pressure homoeostasis, acute pressure response to angiotensin II (Ang II) but not endothelin-1 and contributes to maturation-related remodelling.
Collapse
|
18
|
Chien PTY, Lin CC, Hsiao LD, Yang CM. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol 2015; 409:59-72. [PMID: 25869400 DOI: 10.1016/j.mce.2015.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 12/27/2022]
Abstract
Thrombin and COX-2 regulating cardiac hypertrophy are via various signaling cascades. Several transcriptional factors including CREB involve in COX-2 expression. However, the interplay among thrombin, CREB, and COX-2 in primary human neonatal ventricular cardiomyocytes remains unclear. In this study, thrombin-induced COX-2 promoter activity, mRNA and protein expression, and PGE2 synthesis were attenuated by pretreatment with the inhibitors of c-Src (PP1), Pyk2 (PF431396), EGFR (AG1478), PI3K/Akt (LY294002/SH-5), and p300 (GR343), or transfection with siRNAs of c-Src, Pyk2, EGFR, p110, Akt, CREB, and p300. Moreover, thrombin-stimulated phosphorylation of c-Src, Pyk2, EGFR, Akt, CREB and p300 was attenuated by their respective inhibitors. These results indicate that thrombin-induced COX-2 expression is mediated through PAR-1/c-Src/Pyk2/EGFR/PI3K/Akt linking to CREB and p300 cascades. Functionally, thrombin-induced hypertrophy and ANF/BNP release were, at least in part, mediated through a PAR-1/COX-2-dependent pathway. We uncover the importance of COX-2 regarding human cardiomyocyte hypertrophy that will provide a therapeutic intervention in cardiovascular diseases.
Collapse
Affiliation(s)
- Peter Tzu-Yu Chien
- Graduate Institute of Biomedical Sciences, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Sciences, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
| |
Collapse
|
19
|
Althoff TF, Offermanns S. G-protein-mediated signaling in vascular smooth muscle cells — implications for vascular disease. J Mol Med (Berl) 2015; 93:973-81. [DOI: 10.1007/s00109-015-1305-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Accepted: 06/02/2015] [Indexed: 10/24/2022]
|
20
|
Giri S, Jennings LK. The Spectrum of Thrombin in Acute Coronary Syndromes. Thromb Res 2015; 135:782-7. [DOI: 10.1016/j.thromres.2015.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 12/25/2022]
|
21
|
Smiljanic K, Obradovic M, Jovanovic A, Djordjevic J, Dobutovic B, Jevremovic D, Marche P, Isenovic ER. Thrombin stimulates VSMC proliferation through an EGFR-dependent pathway: involvement of MMP-2. Mol Cell Biochem 2014; 396:147-60. [PMID: 25047892 DOI: 10.1007/s11010-014-2151-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/11/2014] [Indexed: 01/23/2023]
Abstract
In this study, the role of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK1/2), heparin-binding EGF-like growth factor (HB-EGF), general metalloproteinases, matrix metalloproteinases-2 (MMP-2) in mediating the mitogenic action of thrombin in rat vascular smooth muscle cells (VSMC) was investigated. The incubation of rat VSMC with thrombin (1 U/ml) for 5 min resulted in significant (p < 0.001) increase of ERK1/2 phosphorylation by 8.7 ± 0.9-fold, EGFR phosphorylation by 8.5 ± 1.3-fold (p < 0.001) and DNA synthesis by 3.6 ± 0.4-fold (p < 0.001). Separate 30-min pretreatments with EGFR tyrosine kinase irreversible inhibitor, 10 µM PD169540 (PD), and 20 µM anti-HB-EGF antibody significantly reduced thrombin-stimulated EGFR and ERK1/2 phosphorylation by 81, 72 % and by 48 and 61 %, respectively. Furthermore, the same pretreatments with PD or anti-HB-EGF antibody reduced thrombin-induced VSMC proliferation by 44 and 45 %, respectively. In addition, 30-min pretreatments with 10 µM specific MMP-2 inhibitor significantly reduced thrombin-stimulated phosphorylation of both EGFR and ERK1/2 by 25 %. Moreover, the same pretreatment with MMP-2 inhibitor reduced thrombin-induced VSMC proliferation by 45 %. These results show that the thrombin-induced DNA synthesis correlates with the level of ERK1/2 activation rather than EGFR activation. These results further suggest that thrombin acts through EGFR and ERK 1/2 signaling pathways involving MMP-2 to upregulate proliferation of VSMC.
Collapse
Affiliation(s)
- Katarina Smiljanic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF THE REVIEW The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase with a wide implication in tumor biology, wound healing and development. Besides acting as a growth factor receptor activated by ligands such as EGF, the EGFR can also be transactivated and thereby mediate cross-talk with different signaling pathways. The aim of this review is to illustrate the Janus-faced function of the EGFR in the vasculature with its relevance for vascular biology and disease. RECENT FINDINGS Over recent years, the number of identified signaling partners of the EGFR has steadily increased, as have the biological processes in which the EGFR is thought to be involved. Recently, new models have allowed investigation of EGFR effects in vivo, shedding some light on the overall function of the EGFR in the vasculature. At the same time, EGFR inhibitors and antibodies have become increasingly established in cancer therapy, providing potential therapeutic tools for decreasing EGFR signaling. SUMMARY The EGFR is a versatile signaling pathway integrator associated with vascular homeostasis and disease. In addition to modulating basal vascular tone and tissue homeostasis, the EGFR also seems to be involved in proinflammatory, proliferative, migratory and remodeling processes, with enhanced deposition of extracellular matrix components, thereby promoting vascular diseases such as hypertension or atherosclerosis.
Collapse
|
23
|
Thrombin induces ICAM-1 expression in human lung epithelial cells via c-Src/PDGFR/PI3K/Akt-dependent NF-κB/p300 activation. Clin Sci (Lond) 2014; 127:171-83. [PMID: 24506791 DOI: 10.1042/cs20130676] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Up-regulation of ICAM-1 (intercellular adhesion molecule-1) is frequently implicated in lung inflammation and lung diseases, such as IPF (idiopathic pulmonary fibrosis). Thrombin has been shown to play a key role in inflammation via the induction of adhesion molecules, which then causes lung injury. However, the mechanisms underlying thrombin-induced ICAM-1 expression in HPAEpiCs (human pulmonary alveolar epithelial cells) remain unclear. In the present study, we have shown that thrombin induced ICAM-1 expression in HPAEpiCs. Pre-treatment with the inhibitor of thrombin [PPACK (D-Phe-Pro-Arg-chloromethyl ketone)], c-Src (PP1), PDGFR (platelet-derived growth factor receptor) (AG1296), PI3K (phosohinositide 3-kinase) (LY294002), NF-κB (nuclear factor κB) (Bay11-7082) or p300 (GR343) and transfection with siRNAs of c-Src, PDGFR, Akt, p65 and p300 markedly reduced thrombin-induced ICAM-1 expression and monocyte adherence to HPAEpiCs challenged with thrombin. In addition, we established that thrombin stimulated the phosphorylation of c-Src, PDGFR, Akt and p65, which were inhibited by pre-treatment with their respective inhibitors PP1, AG1296, LY294002 or Bay11-7082. In addition, thrombin also enhanced Akt and NF-κB translocation from the cytosol to the nucleus, which was reduced by PP1, AG1296 or LY294002. Thrombin induced NF-κB promoter activity and the formation of the p65-Akt-p300 complex, which were inhibited by AG1296, LY294002 or PP1. Finally, we have shown that thrombin stimulated in vivo binding of p300, Akt and p65 to the ICAM-1 promoter, which was reduced by AG1296, LY294002, SH-5 or PP1. These results show that thrombin induced ICAM-1 expression and monocyte adherence via a c-Src/PDGFR/PI3K/Akt/NF-κB-dependent pathway in HPAEpiCs. Increased understanding of the signalling mechanisms underlying ICAM-1 gene regulation will create opportunities for the development of anti-inflammatory therapeutic strategies.
Collapse
|
24
|
Yayama K, Sasahara T, Ohba H, Funasaka A, Okamoto H. Orthovanadate-induced vasocontraction is mediated by the activation of Rho-kinase through Src-dependent transactivation of epidermal growth factor receptor. Pharmacol Res Perspect 2014; 2:e00039. [PMID: 25505586 PMCID: PMC4184709 DOI: 10.1002/prp2.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 01/26/2023] Open
Abstract
Orthovanadate (OVA), a protein tyrosine phosphatase (PTPase) inhibitor, exerts contractile effects on smooth muscle in a Rho-kinase-dependent manner, but the precise mechanisms are not elucidated. The aim of this study was to determine the potential roles of Src and epidermal growth factor receptor (EGFR) in the OVA-induced contraction of rat aortas and the phosphorylation of myosin phosphatase target subunit 1 (MYPT1; an index of Rho-kinase activity) in vascular smooth muscle cells (VSMCs). Aortic contraction by OVA was significantly blocked not only by Rho kinase inhibitors Y-27632 [R-[+]-trans-N-[4-pyridyl]-4-[1-aminoethyl]-cyclohexanecarboxamide] and hydroxyfasudil [1-(1-hydroxy-5-isoquinolinesulfonyl)homopiperazine] but also by Src inhibitors PP2 [4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine] and Src inhibitor No. 5 [4-(3′-methoxy-6′-chloro-anilino)-6-methoxy-7(morpholino-3-propoxy)-quinazoline], and the EGFR inhibitors AG1478 [4-(3-chloroanilino)-6,7-dimethoxyquinazoline] and EGFR inhibitor 1 [cyclopropanecarboxylic acid-(3-(6-(3-trifluoromethyl-phenylamino)-pyrimidin-4-ylamino)-phenyl)-amide]. OVA induced rapid increases in the phosphorylation of MYPT1 (Thr-853), Src (Tyr-416), and EGFR (Tyr-1173) in VSMCs, and Src inhibitors abolished these effects. OVA-induced Src phosphorylation was abrogated by Src inhibitors, but not affected by inhibitors of EGFR and Rho-kinase. Inhibitors of Src and EGFR, but not Rho-kinase, also blocked OVA-induced EGFR phosphorylation. Furthermore, a metalloproteinase inhibitor TAPI-0 [N-(R)-[2-(hydroxyaminocarbonyl) methyl]-4-methylpentanoyl-l-naphthylalanyl-l-alanine amide] and an inhibitor of heparin-binding EGF (CRM 197) not only abrogated the OVA-induced aortic contraction, but also OVA-induced EGFR and MYPT1 phosphorylation, suggesting the involvement of EGFR transactivation. OVA also induced EGFR phosphorylation at Tyr-845, one of residues phosphorylated by Src. These results suggest that OVA-induced vasocontraction is mediated by the Rho-kinase-dependent inactivation of myosin light-chain phosphatase via signaling downstream of Src-induced transactivation of EGFR.
Collapse
Affiliation(s)
- Katsutoshi Yayama
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Tomoya Sasahara
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Hisaaki Ohba
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Ayaka Funasaka
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Hiroshi Okamoto
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| |
Collapse
|
25
|
Zhou S, Xiao W, Pan X, Zhu M, Yang Z, Zhang F, Zheng C. Thrombin promotes proliferation of human lung fibroblasts via protease activated receptor-1-dependent and NF-κB-independent pathways. Cell Biol Int 2014; 38:747-56. [PMID: 24523227 DOI: 10.1002/cbin.10264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/20/2014] [Indexed: 01/17/2023]
Abstract
Acute and chronic respiratory diseases are associated with abnormal coagulation regulation and fibrolysis. However, the detailed mechanism by which coagulation regulation and fibrolysis affect the occurrence and development of lung diseases remain to be elucidated. Protease activated receptor-1 (PAR-1), a major high-affinity thrombin receptor, and nuclear factor kappa B (NF-κB), a transcription factor, are involved in cell survival, differentiation, and proliferation. We have investigated the potential mechanism of thrombin-induced fibroblast proliferation and roles of PAR-1 and NF-κB signalling in this process. The effect of thrombin on proliferation of human pulmonary fibroblasts (HPF) was assessed by 5-bromo-2-deoxyuridine (BrdU) incorporation assay. The expression of PAR1 and NF-κB subunit p65 protein was detected by Western blot. Nuclear translocation of p65 was examined by laser scanning confocal microscopy. We show that thrombin significantly increased proliferation of HPF as determined by induction of BrdU-positive incorporation ratio. Induced PAR1 protein expression was also seen in HPF cells treated with thrombin. However, thrombin had no significant effect on expression and translocation of NF-κB p65 in HPF cells. The results indicate that, by increasing protein expression and interacting with PAR1, thrombin promotes HPF proliferation. NF-κB signalling appears to play no role in this process.
Collapse
Affiliation(s)
- Shengyu Zhou
- Department of Clinical Teaching and Research, School of Nursing, Shandong University, Shandong, Jinan, 250012, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Thrombin promotes matrix metalloproteinase-13 expression through the PKCδ c-Src/EGFR/PI3K/Akt/AP-1 signaling pathway in human chondrocytes. Mediators Inflamm 2013; 2013:326041. [PMID: 24385683 PMCID: PMC3872103 DOI: 10.1155/2013/326041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/04/2013] [Indexed: 12/12/2022] Open
Abstract
Thrombin is a key mediator of fibrin deposition, angiogenesis, and proinflammatory processes. Abnormalities in these processes are primary features of rheumatoid arthritis and osteoarthritis. Matrix metalloproteinase-13 (MMP-13) may contribute to the breakdown of articular cartilage during arthritis. However, the role of thrombin in MMP-13 production in chondrocytes is unknown. In this study, we investigated the intracellular signaling pathways involved in thrombin-induced MMP-13 expression in human chondrocytes. We found that stimulation with thrombin led to increased secretion of MMP-13 in cultured human chondrocytes. Further, this thrombin-induced MMP-13 production was reduced after transfection with siRNAs against protease activated receptors 1 and 3 (PAR1 and PAR3), but not with PAR4 siRNA. Treatment with specific inhibitors for PKCδ, c-Src, EGFR, PI3K, Akt, or AP-1 or with the corresponding siRNAs against these signaling proteins also abolished the thrombin-mediated increase in MMP-13 production in chondrocytes. Our results provide evidence that thrombin acts through the PAR1/PAR3 receptors and activates PKCδ and c-Src, resulting in EGFR transactivation and activation of PI3K, Akt, and finally AP-1 on the MMP-13 promoter, thereby contributing to cartilage destruction during arthritis.
Collapse
|
27
|
Son JE, Hwang MK, Lee E, Seo SG, Kim JE, Jung SK, Kim JR, Ahn GH, Lee KW, Lee HJ. Persimmon peel extract attenuates PDGF-BB-induced human aortic smooth muscle cell migration and invasion through inhibition of c-Src activity. Food Chem 2013; 141:3309-16. [DOI: 10.1016/j.foodchem.2013.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/01/2013] [Accepted: 06/11/2013] [Indexed: 01/14/2023]
|
28
|
Yu HS, Lin TH, Tang CH. Involvement of intercellular adhesion molecule-1 up-regulation in bradykinin promotes cell motility in human prostate cancers. Int J Mol Sci 2013; 14:13329-45. [PMID: 23803661 PMCID: PMC3742189 DOI: 10.3390/ijms140713329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and shows a predilection for metastasis to distant organs. Bradykinin (BK) is an inflammatory mediator and has recently been shown to mediate tumor growth and metastasis. The adhesion molecule intercellular adhesion molecule-1 (ICAM-1) plays a critical role during tumor metastasis. The aim of this study was to examine whether BK promotes prostate cancer cell migration via ICAM-1 expression. The motility of cancer cells was increased following BK treatment. Stimulation of prostate cancer cells with BK induced mRNA and protein expression of ICAM-1. Transfection of cells with ICAM-1 small interfering RNA reduced BK-increased cell migration. Pretreatment of prostate cancer cells with B2 receptor, phosphatidylinositol 3-kinase (PI3K), Akt, and activator protein 1 (AP-1) inhibitors or mutants abolished BK-promoted migration and ICAM-1 expression. In addition, treatment with a B2 receptor, PI3K, or Akt inhibitor also reduced BK-mediated AP-1 activation. Our results indicate that BK enhances the migration of prostate cancer cells by increasing ICAM-1 expression through a signal transduction pathway that involves the B2 receptor, PI3K, Akt, and AP-1. Thus, BK represents a promising new target for treating prostate cancer metastasis.
Collapse
Affiliation(s)
- Hsin-Shan Yu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan; E-Mail:
| | - Tien-Huang Lin
- Department of Urology, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung 42743, Taiwan; E-Mail:
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan; E-Mail:
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-2205-2121 (ext. 7726); Fax: +886-4-2233-3641
| |
Collapse
|
29
|
Noubouossie DCF, Lê PQ, Rozen L, Ziereisen F, Willems D, Demulder A, Ferster A. Thrombin generation in children with sickle cell disease: relationship with age, hemolysis, transcranial doppler velocity, and hydroxyurea treatment. Eur J Haematol 2013; 91:46-54. [DOI: 10.1111/ejh.12113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Denis C. F. Noubouossie
- Laboratory of Hematology and Haemostasis; Centre Hospitalier Universitaire Brugmann; Brussels; Belgium
| | - Phu Q. Lê
- Hematology and Oncology Unit; Hôpital Universitaire Des Enfants Reine Fabiola; Brussels; Belgium
| | - Laurence Rozen
- Laboratory of Hematology and Haemostasis; Centre Hospitalier Universitaire Brugmann; Brussels; Belgium
| | - France Ziereisen
- Radiology Department; Hôpital Universitaire Des Enfants Reine Fabiola; Brussels; Belgium
| | - Dominique Willems
- Laboratory of Clinical Chemistry; Centre Hospitalier Universitaire Brugmann; Brussels; Belgium
| | - Anne Demulder
- Laboratory of Hematology and Haemostasis; Centre Hospitalier Universitaire Brugmann; Brussels; Belgium
| | - Alina Ferster
- Hematology and Oncology Unit; Hôpital Universitaire Des Enfants Reine Fabiola; Brussels; Belgium
| |
Collapse
|
30
|
Mazor R, Alsaigh T, Shaked H, Altshuler AE, Pocock ES, Kistler EB, Karin M, Schmid-Schönbein GW. Matrix metalloproteinase-1-mediated up-regulation of vascular endothelial growth factor-2 in endothelial cells. J Biol Chem 2012; 288:598-607. [PMID: 23155052 DOI: 10.1074/jbc.m112.417451] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Matrix metalloproteinase-1 (MMP-1) is a collagenase that is highly active in extracellular matrix and vascular remodeling, angiogenesis, and tumor progression. Vascular endothelial growth factor receptor-2 (VEGFR2), the main receptor for VEGF-A, is expressed on endothelial cells and promotes cell survival, proliferation, and other functions. Although MMP-1 and VEGFR2 co-exist in many normal and pathophysiological conditions, the effect of MMP-1 on cellular VEGFR2 that can promote the above processes is unknown. In this study we test the hypothesis that stimulation of endothelial cells with MMP-1 increases their levels of VEGFR2. The increased VEGFR2 is then available to bind VEGF-A, resulting in increased response. Indeed we found that endothelial cells incubated with active MMP-1 had higher mRNA and protein levels of VEGFR2. Furthermore, VEGF-A-dependent phosphorylation of intracellular signaling molecules and endothelial proliferation were elevated after MMP-1 treatment. MMP-1 caused activation of the nuclear factor-κB (NF-κB) pathway (p65/RelA) in endothelial cells, and this response was dependent upon activation of protease activated receptor-1 (PAR-1). Chromatin immunoprecipitation was used to confirm NF-κB-mediated active transcription of the VEGFR2 (KDR) gene. Elevation in VEGFR2 after MMP-1 stimulation was inhibited by PAR-1 knockdown and NF-κB specific inhibition. We conclude that MMP-1 promotes VEGFR2 expression and proliferation of endothelial cells through stimulation of PAR-1 and activation of NF-κB. These results suggest a mechanism by which MMP-1 may prime or sensitize endothelial cell functions.
Collapse
Affiliation(s)
- Rafi Mazor
- Department of Bioengineering, The Institute of Engineering in Medicine, Veterans Affairs Medical Center, San Diego, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Althoff TF, Albarrán Juárez J, Troidl K, Tang C, Wang S, Wirth A, Takefuji M, Wettschureck N, Offermanns S. Procontractile G protein-mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling. ACTA ACUST UNITED AC 2012; 209:2277-90. [PMID: 23129751 PMCID: PMC3501360 DOI: 10.1084/jem.20120350] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular smooth muscle (Sm) cells (VSMCs) are highly plastic. Their differentiation state can be regulated by serum response factor (SRF), which activates genes involved in Sm differentiation and proliferation by recruiting cofactors, such as members of the myocardin family and ternary complex factors (TCFs), respectively. However, the extracellular cues and upstream signaling mechanisms regulating SRF-dependent VSMC differentiation under in vivo conditions are poorly understood. In this study, we show that the procontractile signaling pathways mediated by the G proteins G(12)/G(13) and G(q)/G(11) antagonistically regulate VSMC plasticity in different models of vascular remodeling. In mice lacking Gα(12)/Gα(13) or their effector, the RhoGEF protein LARG, RhoA-dependent SRF-regulation was blocked and down-regulation of VSMC differentiation marker genes was enhanced. This was accompanied by an excessive vascular remodeling and exacerbation of atherosclerosis. In contrast, Sm-specific Gα(q)/Gα(11) deficiency blocked activation of extracellular signal-regulated kinase 1/2 and the TCF Elk-1, resulting in a reduced VSMC dedifferentiation in response to flow cessation or vascular injury. These data show that the balanced activity of both G protein-mediated pathways in VSMCs is required for an appropriate vessel remodeling response in vascular diseases and suggest new approaches to modulate Sm differentiation in vascular pathologies.
Collapse
Affiliation(s)
- Till F Althoff
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fougerat A, Smirnova NF, Gayral S, Malet N, Hirsch E, Wymann MP, Perret B, Martinez LO, Douillon M, Laffargue M. Key role of PI3Kγ in monocyte chemotactic protein-1-mediated amplification of PDGF-induced aortic smooth muscle cell migration. Br J Pharmacol 2012; 166:1643-53. [PMID: 22251152 DOI: 10.1111/j.1476-5381.2012.01866.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Vascular smooth muscle cell (SMC) migration within the arterial wall is a crucial event in atherogenesis and restenosis. Monocyte chemotactic protein-1/CC-chemokine receptor 2 (MCP-1/CCR2) signalling is involved in SMC migration processes but the molecular mechanisms have not been well characterized. We investigated the role of PI3Kγ in SMC migration induced by MCP-1. EXPERIMENTAL APPROACHES A pharmacological PI3Kγ inhibitor, adenovirus encoding inactive forms of PI3Kγ and genetic deletion of PI3Kγ were used to investigate PI3Kγ functions in the MCP-1 and platelet-derived growth factor (PDGF) signalling pathway and migration process in primary aortic SMC. KEY RESULTS The γ isoform of PI3K was shown to be the major signalling molecule mediating PKB phosphorylation in MCP-1-stimulated SMC. Using a PI3Kγ inhibitor and an adenovirus encoding a dominant negative form of PI3Kγ, we demonstrated that PI3Kγ is essential for SMC migration triggered by MCP-1. PDGF receptor stimulation induced MCP-1 mRNA and protein accumulation in SMCs. Blockade of the MCP-1/CCR2 pathway or pharmacological inhibition of PI3Kγ reduced PDGF-stimulated aortic SMC migration by 50%. Thus PDGF promotes an autocrine loop involving MCP-1/CCR2 signalling which is required for PDGF-mediated SMC migration. Furthermore, SMCs isolated from PI3Kγ-deficient mice (PI3Kγ(-/-)), or mice expressing an inactive PI3Kγ (PI3Kγ(KD/KD)), migrated less than control cells in response to MCP-1 and PDGF. CONCLUSIONS AND IMPLICATIONS PI3Kγ is essential for MCP-1-stimulated aortic SMC migration and amplifies cell migration induced by PDGF by an autocrine/paracrine loop involving MCP-1 secretion and CCR2 activation. PI3Kγ is a promising target for the treatment of aortic fibroproliferative pathologies.
Collapse
|
33
|
Huang CY, Chen SY, Tsai HC, Hsu HC, Tang CH. Thrombin induces epidermal growth factor receptor transactivation and CCL2 expression in human osteoblasts. ACTA ACUST UNITED AC 2012; 64:3344-54. [DOI: 10.1002/art.34557] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Cheng CY, Tseng HC, Yang CM. Bradykinin-mediated cell proliferation depends on transactivation of EGF receptor in corneal fibroblasts. J Cell Physiol 2012; 227:1367-81. [PMID: 21604274 DOI: 10.1002/jcp.22849] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In previous studies, bradykinin (BK) has been shown to induce cell proliferation through BK B2 receptor (B2R) via p42/p44 MAPK in Statens Seruminstitut Rabbit Corneal Cells (SIRCs). In addition to this pathway, EGFR transactivation pathway has been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we further investigate whether these transactivation mechanisms participating in BK-induced cell proliferation in SIRCs. Using an immunofluorescence staining and RT-PCR, we initially characterize that SIRCs were corneal fibroblasts and predominantly expressed B2R by BK. Inhibition of p42/p44 MAPK by the inhibitors of Src, EGFR, and Akt or transfection with respective siRNAs prevents BK-induced DNA synthesis in SIRCs. The mechanisms underlying these responses were mediated through phosphorylation of Src and EGFR via the formation of Src/EGFR complex which was attenuated by PP1 and AG1478. Moreover, BK-induced p42/p44 MAPK and Akt activation was mediated through EGFR transactivation, which was diminished by the inhibitors of MMP-2/9 and heparin-binding EGF-like factor (HB-EGF). Finally, increased nuclear translocation of Akt and p42/p44 MAPK turns on early gene expression leading to cell proliferation. These results suggest that BK-induced cell proliferation is mediated through c-Src-dependent transactivation of EGFR via MMP2/9-dependent pro-HB-EGF shedding linking to activation of Akt and p42/p44 MAPK in corneal fibroblasts.
Collapse
Affiliation(s)
- Ching-Yi Cheng
- Department of Biomedical Engineering, Chung Yuan Christian University, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
35
|
Ruiz-Loredo AY, López E, López-Colomé AM. Thrombin stimulates stress fiber assembly in RPE cells by PKC/CPI-17-mediated MLCP inactivation. Exp Eye Res 2012; 96:13-23. [DOI: 10.1016/j.exer.2012.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 12/29/2022]
|
36
|
Thrombin induced connective tissue growth factor expression in rat vascular smooth muscle cells via the PAR-1/JNK/AP-1 pathway. Acta Pharmacol Sin 2012; 33:49-56. [PMID: 22212430 DOI: 10.1038/aps.2011.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIM To investigate the signaling pathways involved in thrombin-induced connective tissue growth factor (CTGF) expression in rat vascular smooth muscle cells (VSMCs). METHODS Experiments were preformed on primary rat aortic smooth muscle cells (RASMCs) and a rat VSMC line (A10). CTGF protein levels were measured using Western blotting. Luciferase reporter genes and dominant negative mutants (DNs) were used to investigate the signaling pathways mediating the induction of CTGF expression by thrombin. RESULTS Thrombin (0.3-3.0 U/mL) caused a concentration- and time-dependent increase in CTGF expression in both RASMCs and A10 cells. Pretreating A10 cells with the protease-activated receptor 1 (PAR-1) antagonist SCH79797 (0.1 μmol/L) significantly blocked thrombin-induced CTGF expression, while the PAR-4 antagonist tcY-NH(2) (30 μmol/L) had no effect. The PAR-1 agonist SFLLRN-NH(2) (300 μmol/L) induced CTGF expression, while the PAR-4 agonist GYPGQV-NH(2) (300 μmol/L) had no effect. Thrombin (1 U/mL) caused time-dependent phosphorylation of c-Jun N-terminal kinase (JNK). Pretreating with the JNK inhibitor SP600125 (3-30 μmol/L) or transfection with DNs of JNK1/2 significantly attenuated thrombin-induced CTGF expression. Thrombin (0.3-3.0 U/mL) increased activator protein-1 (AP-1)-luciferase activity, which was inhibited by the JNK inhibitor SP600125. The AP-1 inhibitor curcumin (1-10 μmol/L) concentration-dependently attenuated thrombin-induced CTGF expression. CONCLUSION Thrombin acts on PAR-1 to activate the JNK signaling pathway, which in turn initiates AP-1 activation and ultimately induces CTGF expression in VSMCs.
Collapse
|
37
|
Abstract
Vascular endothelium is a key regulator of homeostasis. In physiological conditions it mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. However, endothelial dysfunction caused by physical injury of the vascular wall, for example during balloon angioplasty, acute or chronic inflammation, such as in atherothrombosis, creates a proinflammatory environment which supports leukocyte transmigration toward inflammatory sites. At the same time, the dysfunction promotes thrombin generation, fibrin deposition, and coagulation. The serine protease thrombin plays a pivotal role in the coagulation cascade. However, thrombin is not only the key effector of coagulation cascade; it also plays a significant role in inflammatory diseases. It shows an array of effects on endothelial cells, vascular smooth muscle cells, monocytes, and platelets, all of which participate in the vascular pathophysiology such as atherothrombosis. Therefore, thrombin can be considered as an important modulatory molecule of vascular homeostasis. This review summarizes the existing evidence on the role of thrombin in vascular inflammation.
Collapse
|
38
|
Chen JX, Xu LL, Wang XC, Qin HY, Wang JL. Involvement of c-Src/STAT3 signal in EGF-induced proliferation of rat spermatogonial stem cells. Mol Cell Biochem 2011; 358:67-73. [DOI: 10.1007/s11010-011-0922-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 06/07/2011] [Indexed: 01/05/2023]
|
39
|
Seo JH, Seo JY, Chung HY, Kim H. Effect of pertussis toxin and herbimycin A on proteinase-activated receptor 2-mediated cyclooxygenase 2 expression in Helicobacter pylori-infected gastric epithelial AGS cells. Yonsei Med J 2011; 52:522-6. [PMID: 21488197 PMCID: PMC3101059 DOI: 10.3349/ymj.2011.52.3.522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) is an important risk factor for chronic gastritis, peptic ulcer, and gastric cancer. Proteinase-activated receptor 2 (PAR2), subgroup of G-protein coupled receptor family, is highly expressed in gastric cancer, and chronic expression of cyclooxygenase-2 (COX-2) plays an important role in H. pylori-associated gastric carcinogenesis and inflammation. We previously demonstrated that H. pylori induced the expression of PAR2 and COX-2 in gastric epithelial cells. Present study aims to investigate whether COX-2 expression induced by H. pylori in Korean isolates is mediated by PAR2 via activation of G(i) protein and Src kinase in gastric epithelial AGS cells. Results showed that H. pylori-induced COX-2 expression was inhibited in the cells transfected with antisense oligonucleotide for PAR2 or treated with Gi protein blocker pertussis toxin, Src kinase inhibitor herbimycin A and soybean trypsin inbitor, indicating that COX-2 expression is mediated by PAR2 through activation of Gi protein and Src kinase in gastric epithelial cells infected with H. pylori in Korean isolates. Thus, targeting the activation of PAR2 may be beneficial for prevention or treatment of gastric inflammation and carcinogenesis associated with H. pylori infection.
Collapse
Affiliation(s)
- Ji Hye Seo
- Department Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| | | | | | | |
Collapse
|
40
|
Thuringer D, Hammann A, Benikhlef N, Fourmaux E, Bouchot A, Wettstein G, Solary E, Garrido C. Transactivation of the epidermal growth factor receptor by heat shock protein 90 via Toll-like receptor 4 contributes to the migration of glioblastoma cells. J Biol Chem 2010; 286:3418-28. [PMID: 21127066 DOI: 10.1074/jbc.m110.154823] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular heat shock protein HSP90α was reported to participate in tumor cell growth, invasion, and metastasis formation through poorly understood signaling pathways. Herein, we show that extracellular HSP90α favors cell migration of glioblastoma U87 cells. More specifically, externally applied HSP90α rapidly induced endocytosis of EGFR. This response was accompanied by a transient increase in cytosolic Ca(2+) appearing after 1-3 min of treatment. In the presence of EGF, U87 cells showed HSP90α-induced Ca(2+) oscillations, which were reduced by the ATP/ADPase, apyrase, and inhibited by the purinergic P(2) inhibitor, suramin, suggesting that ATP release is requested. Disruption of lipid rafts with methyl β-cyclodextrin impaired the Ca(2+) rise induced by extracellular HSP90α combined with EGF. Specific inhibition of TLR4 expression by blocking antibodies suppressed extracellular HSP90α-induced Ca(2+) signaling and the associated cell migration. HSPs are known to bind lipopolysaccharides (LPSs). Preincubating cells with Polymyxin B, a potent LPS inhibitor, partially abrogated the effects of HSP90α without affecting Ca(2+) oscillations observed with EGF. Extracellular HSP90α induced EGFR phosphorylation at Tyr-1068, and this event was prevented by both the protein kinase Cδ inhibitor, rottlerin, and the c-Src inhibitor, PP2. Altogether, our results suggest that extracellular HSP90α transactivates EGFR/ErbB1 through TLR4 and a PKCδ/c-Src pathway, which induces ATP release and cytosolic Ca(2+) increase and finally favors cell migration. This mechanism could account for the deleterious effects of HSPs on high grade glioma when released into the tumor cell microenvironment.
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM U866, Faculty of Medicine, 7 Boulevard Jeanne d'Arc, 21000 Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang HH, Hsieh HL, Yang CM. Calmodulin kinase II-dependent transactivation of PDGF receptors mediates astrocytic MMP-9 expression and cell motility induced by lipoteichoic acid. J Neuroinflammation 2010; 7:84. [PMID: 21092323 PMCID: PMC2997088 DOI: 10.1186/1742-2094-7-84] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/24/2010] [Indexed: 12/20/2022] Open
Abstract
Background Lipoteichoic acid (LTA) is a component of Gram-positive bacterial cell walls, which has been found to be elevated in cerebrospinal fluid of patients suffering from meningitis. Moreover, matrix metalloproteinases (MMPs), MMP-9 especially, have been observed in patients with brain inflammatory diseases and may contribute to brain disease pathology. However, the molecular mechanisms underlying LTA-induced MMP-9 expression in brain astrocytes remain unclear. Objective The goal of this study was to examine whether LTA-induced cell migration is mediated by calcium/calmodulin (CaM)/CaM kinase II (CaMKII)-dependent transactivation of the PDGFR pathway in rat brain astrocytes (RBA-1 cells). Methods Expression and activity of MMP-9 induced by LTA was evaluated by zymographic, western blotting, and RT-PCR analyses. MMP-9 regulatory signaling pathways were investigated by treatment with pharmacological inhibitors or using dominant negative mutants or short hairpin RNA (shRNA) transfection, and chromatin immunoprecipitation (ChIP)-PCR and promoter activity reporter assays. Finally, we determined the cell functional changes by cell migration assay. Results The data show that c-Jun/AP-1 mediates LTA-induced MMP-9 expression in RBA-1 cells. Next, we demonstrated that LTA induces MMP-9 expression via a calcium/CaM/CaMKII-dependent transactivation of PDGFR pathway. Transactivation of PDGFR led to activation of PI3K/Akt and JNK1/2 and then activated c-Jun/AP-1 signaling. Activated-c-Jun bound to the AP-1-binding site of the MMP-9 promoter, and thereby turned on transcription of MMP-9. Eventually, up-regulation of MMP-9 by LTA enhanced cell migration of astrocytes. Conclusions These results demonstrate that in RBA-1 cells, activation of c-Jun/AP-1 by a CaMKII-dependent PI3K/Akt-JNK activation mediated through transactivation of PDGFR is essential for up-regulation of MMP-9 and cell migration induced by LTA. Understanding the regulatory mechanisms underlying LTA-induced MMP-9 expression and functional changes in astrocytes may provide a new therapeutic strategy for Gram-positive bacterial infections in brain disorders.
Collapse
Affiliation(s)
- Hui-Hsin Wang
- Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
42
|
Chang WC, Chang CC, Wang YS, Wang YS, Weng WT, Yoshioka T, Juo SHH. Involvement of the epidermal growth factor receptor in Pb²+-induced activation of cPLA₂/COX-2 genes and PGE₂ production in vascular smooth muscle cells. Toxicology 2010; 279:45-53. [PMID: 20850495 DOI: 10.1016/j.tox.2010.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 01/18/2023]
Abstract
Lead (Pb²+) is one of the most common heavy metal pollutants, which can cause chronic cardiovascular diseases. To clarify the mechanism by which Pb²+ induces inflammatory reactions, we examined the expression of inflammatory genes including encoding cyclooxygenase-2 (COX-2), cytosolic phospholipase A₂ (cPLA₂), and their down stream product prostaglandin E₂ (PGE₂) in CRL1999 cells that is a vascular smooth muscle cell line from human aorta. The expression of COX-2/cPLA₂ genes and PGE₂ secretion was increased markedly after cells were exposed to 1 μM Pb²+. PD098059, a MEK inhibitor, suppressed Pb²+-mediated inflammatory reactions; this indicates the involvement of the phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). Furthermore, Pb²+-induced activation of the COX-2/cPLA₂ genes was inhibited by both epidermal growth factor receptor (EGFR) inhibitors (AG1478 and PD153035) and EGFR siRNA. Short-term stimulation with Pb²+ induced EGFR phosphorylation at the Tyr residue (position, 1173). Importantly, overexpression of EGFR resulted in a significant potentiation effect on Pb²+-induced gene expression. Taken together, our results indicate that 1 μM Pb²+ can induce PGE₂ secretion by upregulating the transcription of COX-2/cPLA₂ genes. EGFR is the key target in the plasma membrane responsible for transmitting Pb²+ signals in order to trigger downstream inflammatory cascades.
Collapse
Affiliation(s)
- Wei-Chiao Chang
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Sancho P, Fabregat I. NADPH oxidase NOX1 controls autocrine growth of liver tumor cells through up-regulation of the epidermal growth factor receptor pathway. J Biol Chem 2010; 285:24815-24. [PMID: 20525691 DOI: 10.1074/jbc.m110.114280] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
FaO rat hepatoma cells proliferate in the absence of serum through a mechanism that requires activation of the epidermal growth factor receptor (EGFR) pathway. The aim of this work was to analyze the molecular mechanisms that control EGFR activation in these and other liver tumor cells. Reactive oxygen species production is observed a short time after serum withdrawal in FaO cells, coincident with up-regulation of the NADPH oxidase NOX1. NOX1-targeted knockdown, the use of antioxidants, or pharmacological inhibition of NADPH oxidase attenuates autocrine growth, coincident with lower mRNA levels of EGFR and its ligand transforming growth factor-alpha (TGF-alpha) and a decrease in phosphorylation of EGFR. EGFR-targeted knockdown induces similar effects on cell growth and downstream signals to those observed in NOX1-depleted cells. Early NOX1 activation induces both a feedback-positive loop via an Src-ERK pathway that up-regulates its own levels, and a parallel signaling pathway through p38 MAPK and AKT resulting in EGFR and TGF-alpha up-regulation. Human hepatocellular carcinoma cell lines, but not non-tumoral hepatocytes, show autocrine growth upon serum withdrawal, which is also coincident with NOX1 up-regulation that mediates EGFR and TGF-alpha expression. The use of antioxidants, or pharmacological inhibition of NADPH oxidase, effectively attenuates autocrine growth in hepatocellular carcinoma cell lines. In summary, results presented in this study indicate that NOX1 might control autocrine cell growth of liver tumor cells through regulation of the EGFR pathway.
Collapse
Affiliation(s)
- Patricia Sancho
- Laboratori d'Oncologia Molecular, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | | |
Collapse
|
44
|
Isenovic ER, Kedees MH, Haidara MA, Trpkovic A, Mikhailidis DP, Marche P. Involvement of ERK1/2 kinase in insulin-and thrombin-stimulated vascular smooth muscle cell proliferation. Angiology 2010; 61:357-364. [PMID: 20304866 DOI: 10.1177/0003319709358693] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well recognized that the proliferation of vascular smooth muscle cells (VSMCs) is a key event in the pathogenesis of various vascular diseases, including atherosclerosis and hypertension. We have previously shown that among extracellular signal-regulated protein kinases (ERKs), the 42- and 44-kDa isoforms (ERK1/2) participate in the cellular mitogenic machinery triggered by several VSMCs activators, including insulin (INS) and thrombin (Thr). However, understanding of the intracellular signal transduction pathways involved is incomplete. This review considers the recent findings in INS and Thr signaling mechanisms that modulate the proliferation of VSMCs with particular emphasis on the ERK1/2 signaling pathway, an important mediator of VSMCs hypertrophy and vascular disease. Moreover, because the ERK1/2 pathway have been acknowledged as an important mediator of VSMCs hypertrophy, ERK1/2 is identified as a key target for novel therapeutic interventions to minimize irreversible tissue damage associated with hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Esma R Isenovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory for Molecular Genetics and Radiobiology, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|