1
|
Ohashi K, Kunitomi A, Chiba S, Mizuno K. Roles of the Dbl family of RhoGEFs in mechanotransduction - a review. Front Cell Dev Biol 2024; 12:1485725. [PMID: 39479515 PMCID: PMC11521908 DOI: 10.3389/fcell.2024.1485725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Rho guanine nucleotide exchange factors (RhoGEFs) comprise a wide range of proteins with a common domain responsible for the activation of the Rho family of small GTPases and various domains in other regions. The evolutionary divergence of RhoGEFs enables actin cytoskeletal reorganization, leading to complex cellular responses in higher organisms. In this review, we address the involvement of RhoGEFs in the mechanical stress response of mammalian cells. The cellular mechanical stress response is essential for the proper and orderly regulation of cell populations, including the maintenance of homeostasis, tissue morphogenesis, and adaptation to the mechanical environment. In particular, this review focuses on the recent findings regarding the Dbl family of RhoGEFs involved in mechanical stress responses at the cell-cell and cell-substrate adhesion sites, and their molecular mechanisms underlying actin cytoskeleton remodeling and signal transduction.
Collapse
Affiliation(s)
- Kazumasa Ohashi
- Department of Molecular and Chemical Life Sciences, Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | |
Collapse
|
2
|
McDuffie EL, Panettieri RA, Scott CP. G 12/13 signaling in asthma. Respir Res 2024; 25:295. [PMID: 39095798 PMCID: PMC11297630 DOI: 10.1186/s12931-024-02920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Shortening of airway smooth muscle and bronchoconstriction are pathognomonic for asthma. Airway shortening occurs through calcium-dependent activation of myosin light chain kinase, and RhoA-dependent calcium sensitization, which inhibits myosin light chain phosphatase. The mechanism through which pro-contractile stimuli activate calcium sensitization is poorly understood. Our review of the literature suggests that pro-contractile G protein coupled receptors likely signal through G12/13 to activate RhoA and mediate calcium sensitization. This hypothesis is consistent with the effects of pro-contractile agonists on RhoA and Rho kinase activation, actin polymerization and myosin light chain phosphorylation. Recognizing the likely role of G12/13 signaling in the pathophysiology of asthma rationalizes the effects of pro-contractile stimuli on airway hyperresponsiveness, immune activation and airway remodeling, and suggests new approaches for asthma treatment.
Collapse
Affiliation(s)
- Elizabeth L McDuffie
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Charles P Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Mangum KD, Li Q, Bauer TM, Wolf SJ, Shadiow J, Moon JY, Barrett EC, Joshi AD, Ahmed Z, Wasikowski R, Boyer K, Obi AT, Davis FM, Chang L, Tsoi LC, Gudjonsson J, Gallagher KA. Epigenetic Alteration of Smooth Muscle Cells Regulates Endothelin-Dependent Blood Pressure and Hypertensive Arterial Remodeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310178. [PMID: 39040193 PMCID: PMC11261912 DOI: 10.1101/2024.07.09.24310178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Long-standing hypertension (HTN) affects multiple organ systems and leads to pathologic arterial remodeling, which is driven largely by smooth muscle cell (SMC) plasticity. Although genome wide association studies (GWAS) have identified numerous variants associated with changes in blood pressure in humans, only a small percentage of these variants actually cause HTN. In order to identify relevant genes important in SMC function in HTN, we screened three separate human GWAS and Mendelian randomization studies to identify SNPs located within non-coding gene regions, focusing on genes encoding epigenetic enzymes, as these have been recently identified to control SMC fate in cardiovascular disease. We identified SNPs rs62059712 and rs74480102 in the promoter of the human JMJD3 gene and show that the minor C allele increases JMJD3 transcription in SMCs via increased SP1 binding to the JMJD3 promoter. Using our novel SMC-specific Jmjd3-deficient murine model ( Jmjd3 flox/flox Myh11 CreERT ), we show that loss of Jmjd3 in SMCs results in HTN, mechanistically, due to decreased EDNRB expression and a compensatory increase in EDNRA expression. As a translational corollary, through single cell RNA-sequencing (scRNA-seq) of human arteries, we found strong correlation between JMJD3 and EDNRB expression in SMCs. Further, we identified that JMJD3 is required for SMC-specific gene expression, and loss of JMJD3 in SMCs in the setting of HTN results in increased arterial remodeling by promoting the SMC synthetic phenotype. Our findings link a HTN-associated human DNA variant with regulation of SMC plasticity, revealing therapeutic targets that may be used in the screening and/or personalized treatment of HTN.
Collapse
|
4
|
Wang Z, Yi SY, Zhang YY, Wang YD, Chen HL, Guo YJ, Wei XM, Yang DX. The role of vitamin D through SphK1/S1P in the regulation of MS progression. J Steroid Biochem Mol Biol 2024; 236:106425. [PMID: 37984747 DOI: 10.1016/j.jsbmb.2023.106425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Sphingosine-1-phosphate (S1P) is biologically active lipid, leading to neuroinflammation and macrophage invasion in central nervous system, plays an important role in the development of multiple sclerosis (MS) model in experimental allergic encephalomyelitis (EAE) rats. Vitamin D is observed to be a key factor in regulating cell S1P levels. We detected vitamin D can alleviate the symptoms of EAE rats, but the exact mechanism is unclear. In PC12 cells, vitamin D can reverse S1P-induced cell death, but the signaling pathway unclear. This study was aimed to investigate S1P regulation mechanism or signaling pathway mediated by vitamin D in EAE and PC12 model. In our experiments, S1P and Sphingosine kinase type 1 (SphK1) mRNA and protein expression in EAE rats group, control group, vitamin D feeding group were detected by HPLC, ELISA, RT-PCR and western blot. PC12 cell death was detected by Propidium (PI) staining. VDR plasmid overexpression and RNA interference, immunofluorescence, real-time cell analysis, protein immunoblotting was used to detect SphK1 transcriptional regulation, cell-substrate attachment quality, the signaling pathway of cell apoptosis and inflammation related gene expression (Bax/Bcl-2, Casepase-3, Il-6, TGF-β, TNF-α). Our study showed vitamin D can reverse the elevation of S1P level in EAE rats, reduce the severity and shorten the course of EAE. 1,25-(OH) 2D3 coupled with vitamin D receptor (VDR) inhibited SphK1 transcription. 1,25-(OH)2D3 significantly reduced PC12 cell death rate induced by S1P, in addition improved the cell substrate attachment quality. 1,25-(OH) 2D3 can block S1P-induced p-ERK activation and PI3K /Akt signaling pathway reduced Il-6, TGF-β, TNF-α cytokine release and Bax/Bcl-2, Casepase-3 apoptosis protein expression. On the other hand, immunofluorescence staining showed 1,25-(OH) 2D3 can increase the expression of neuronal perinuclear protein MAP2 in PC12 cells probably protect nerve cells further. In summary, the ameliorative effect of vitamin D was derived from its ability to reduce S1P levels, provides an idea for vitamin D as a combination therapy for disease.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Human Anatomy, Shandong University School of Medicine, Jinan 250012, China
| | - Shu-Ying Yi
- School of Clinical and Basic Medicine, Shandong First Medical University, Jinan 250014, China
| | - Yuan-Ying Zhang
- School of Clinical and Basic Medicine, Shandong First Medical University, Jinan 250014, China
| | - Yu-di Wang
- School of Clinical and Basic Medicine, Shandong First Medical University, Jinan 250014, China
| | - Han-Lin Chen
- School of Clinical and Basic Medicine, Shandong First Medical University, Jinan 250014, China
| | - Yi-Jie Guo
- School of Clinical and Basic Medicine, Shandong First Medical University, Jinan 250014, China
| | - Xin-Ming Wei
- School of Clinical and Basic Medicine, Shandong First Medical University, Jinan 250014, China
| | - Du-Xiao Yang
- School of Clinical and Basic Medicine, Shandong First Medical University, Jinan 250014, China; Science and Technology Innovation Center, Shandong First Medical University, Jinan 250014, China.
| |
Collapse
|
5
|
Yang S, Li HW, Tian JY, Wang ZK, Chen Y, Zhan TT, Ma CY, Feng M, Cao SF, Zhao Y, Li X, Ren J, Liu Q, Jin LY, Wang ZQ, Jiang WY, Zhao YX, Zhang Y, Liu X. Myeloid-derived growth factor suppresses VSMC dedifferentiation and attenuates postinjury neointimal formation in rats by activating S1PR2 and its downstream signaling. Acta Pharmacol Sin 2024; 45:98-111. [PMID: 37726422 PMCID: PMC10770085 DOI: 10.1038/s41401-023-01155-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/13/2023] [Indexed: 09/21/2023]
Abstract
Restenosis after angioplasty is caused usually by neointima formation characterized by aberrant vascular smooth muscle cell (VSMC) dedifferentiation. Myeloid-derived growth factor (MYDGF), secreted from bone marrow-derived monocytes and macrophages, has been found to have cardioprotective effects. In this study we investigated the effect of MYDGF to postinjury neointimal formation and the underlying mechanisms. Rat carotid arteries balloon-injured model was established. We found that plasma MYDGF content and the level of MYDGF in injured arteries were significantly decreased after balloon injury. Local application of exogenous MYDGF (50 μg/mL) around the injured vessel during balloon injury markedly ameliorated the development of neointimal formation evidenced by relieving the narrow endovascular diameter, improving hemodynamics, and reducing collagen deposition. In addition, local application of MYDGF inhibited VSMC dedifferentiation, which was proved by reversing the elevated levels of osteopontin (OPN) protein and decreased levels of α-smooth muscle actin (α-SMA) in the left carotid arteries. We showed that PDGF-BB (30 ng/mL) stimulated VSMC proliferation, migration and dedifferentiation in vitro; pretreatment with MYDGF (50-200 ng/mL) concentration-dependently eliminated PDGF-BB-induced cell proliferation, migration and dedifferentiation. Molecular docking revealed that MYDGF had the potential to bind with sphingosine-1-phosphate receptor 2 (S1PR2), which was confirmed by SPR assay and Co-IP analysis. Pretreatment with CCG-1423 (Rho signaling inhibitor), JTE-013 (S1PR2 antagonist) or Ripasudil (ROCK inhibitor) circumvented the inhibitory effects of MYDGF on VSMC phenotypic switching through inhibiting S1PR2 or its downstream RhoA-actin monomers (G-actin) /actin filaments (F-actin)-MRTF-A signaling. In summary, this study proves that MYDGF relieves neointimal formation of carotid arteries in response to balloon injury in rats, and suppresses VSMC dedifferentiation induced by PDGF-BB via S1PR2-RhoA-G/F-actin-MRTF-A signaling pathway. In addition, our results provide evidence for cross talk between bone marrow and vasculature.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Hou-Wei Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jia-Ying Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Zheng-Kai Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Yi Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Ting-Ting Zhan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Chun-Yue Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Min Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Shi-Feng Cao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Yu Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Xue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Jing Ren
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Qian Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Lu-Ying Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Zhi-Qi Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Wen-Yu Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Yi-Xiu Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China.
| | - Xue Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, National-Local Joint Engineering Laboratory for Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, the National Development and Reform Commission, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, 150086, China.
| |
Collapse
|
6
|
Schielke J, Ittermann T, Groß S, Moritz E, Nauck M, Friedrich N, Schwedhelm E, Rauch BH, Völzke H, Bülow R, Chamling B, Felix SB, Bahls M, Dörr M, Markus MRP. Sphingosine-1-phosphate levels are inversely associated with left ventricular and atrial chamber volume and cardiac mass in men : The Study of Health in Pomerania (SHIP). Clin Res Cardiol 2023; 112:1587-1599. [PMID: 37097463 PMCID: PMC10584720 DOI: 10.1007/s00392-023-02200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
AIMS Sphingosine-1-phosphate (S1P) is a signaling lipid, which is involved in several cellular processes including cell growth, proliferation, migration and apoptosis. The associations of serum S1P levels with cardiac geometry and function are still not clear. We investigated the associations of S1P with cardiac structure and systolic function in a population-based sample. METHODS AND RESULTS We performed cross-sectional analyses of 858 subjects (467 men; 54.4%), aged 22 to 81 years, from a sub-sample of the population-based Study of Health in Pomerania (SHIP-TREND-0). We analyzed the associations of serum S1P with structural and systolic function left ventricular (LV) and left atrial (LA) parameters as determined by magnetic resonance imaging (MRI) using sex-stratified multivariable-adjusted linear regression models. In men, MRI data showed that a 1 µmol/L lower S1P concentration was associated with an 18.1 mL (95% confidence interval [CI] 3.66-32.6; p = 0.014) larger LV end-diastolic volume (LVEDV), a 0.46 mm (95% CI 0.04-0.89; p = 0.034) greater LV wall thickness (LVWT) and a 16.3 g (95% CI 6.55-26.1; p = 0.001) higher LV mass (LVM). S1P was also associated with a 13.3 mL/beat (95% CI 4.49-22.1; p = 0.003) greater LV stroke volume (LVSV), an 18.7 cJ (95% CI 6.43-30.9; p = 0.003) greater LV stroke work (LVSW) and a 12.6 mL (95% CI 1.03-24.3; p = 0.033) larger LA end-diastolic volume (LAEDV). We did not find any significant associations in women. CONCLUSIONS In this population-based sample, lower levels of S1P were associated with higher LV wall thickness and mass, larger LV and LA chamber sizes and greater stroke volume and work of the LV in men, but not in women. Our results indicate that lower levels of S1P were associated with parameters related with cardiac geometry and systolic function in men, but not in women.
Collapse
Affiliation(s)
- Jan Schielke
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Till Ittermann
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Groß
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Eileen Moritz
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partnerartner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Bernhard H Rauch
- Department of Human Medicine, Section of Pharmacology and Toxicology, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Robin Bülow
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Bishwas Chamling
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- Division of Cardiovascular Imaging, Department of Cardiology I, University Hospital Münster, Münster, Germany
| | - Stephan Burkhard Felix
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Martin Bahls
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Marcello Ricardo Paulista Markus
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany.
- German Center for Diabetes Research (DZD) Partner Site Greifswald, Greifswald, Germany.
| |
Collapse
|
7
|
Kleinjan ML, Mao DY, Naiche LA, Joshi JC, Gupta A, Jesse JJ, Shaye DD, Mehta D, Kitajewski J. CLIC4 Regulates Endothelial Barrier Control by Mediating PAR1 Signaling via RhoA. Arterioscler Thromb Vasc Biol 2023; 43:1441-1454. [PMID: 37317855 PMCID: PMC10527476 DOI: 10.1161/atvbaha.123.319206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Endothelial CLICs (chloride intracellular channel proteins) CLIC1 and CLIC4 are required for the GPCRs (G-protein-coupled receptors) S1PR1 (sphingosine-1-phosphate receptor 1) and S1PR3 to activate the small GTPases Rac1 (Ras-related C3 botulinum toxin substrate 1) and RhoA (Ras homolog family member A). To determine whether CLIC1 and CLIC4 function in additional endothelial GPCR pathways, we evaluated CLIC function in thrombin signaling via the thrombin-regulated PAR1 (protease-activated receptor 1) and downstream effector RhoA. METHODS We assessed the ability of CLIC1 and CLIC4 to relocalize to cell membranes in response to thrombin in human umbilical vein endothelial cells (HUVEC). We examined CLIC1 and CLIC4 function in HUVEC by knocking down expression of each CLIC protein and compared thrombin-mediated RhoA or Rac1 activation, ERM (ezrin/radixin/moesin) phosphorylation, and endothelial barrier modulation in control and CLIC knockdown HUVEC. We generated a conditional murine allele of Clic4 and examined PAR1-mediated lung microvascular permeability and retinal angiogenesis in mice with endothelial-specific loss of Clic4. RESULTS Thrombin promoted relocalization of CLIC4, but not CLIC1, to HUVEC membranes. Knockdown of CLIC4 in HUVEC reduced thrombin-mediated RhoA activation, ERM phosphorylation, and endothelial barrier disruption. Knockdown of CLIC1 did not reduce thrombin-mediated RhoA activity but prolonged the RhoA and endothelial barrier response to thrombin. Endothelial-specific deletion of Clic4 in mice reduced lung edema and microvascular permeability induced by PAR1 activating peptide. CONCLUSIONS CLIC4 is a critical effector of endothelial PAR1 signaling and is required to regulate RhoA-mediated endothelial barrier disruption in cultured endothelial cells and murine lung endothelium. CLIC1 was not critical for thrombin-mediated barrier disruption but contributed to the barrier recovery phase after thrombin treatment.
Collapse
Affiliation(s)
- Matthew L. Kleinjan
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - De Yu Mao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - L. A. Naiche
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jagdish C. Joshi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ahana Gupta
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jordan J. Jesse
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel D. Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Dolly Mehta
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|
8
|
Zhang J, Chen S, Xiang H, Xiao J, Zhao S, Shu Z, Chai Y, Ouyang J, Liu H, Wang X, Quan Q, Fan J, Gao P, Chen AF, Lu H. S1PR2/Wnt3a/RhoA/ROCK1/β-catenin signaling pathway promotes diabetic nephropathy by inducting endothelial mesenchymal transition and impairing endothelial barrier function. Life Sci 2023:121853. [PMID: 37307963 DOI: 10.1016/j.lfs.2023.121853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
AIMS Hyperglycemia and hyperlipidemia are key factors in the pathogenesis of diabetic nephropathy (DN), and renal fibrosis is the most common pathway leading to the disease. Endothelial mesenchymal transition (EndMT) is a crucial mechanism for the production of myofibroblasts, and impaired endothelial barrier function is one of the mechanisms for the generation of microalbuminuria in DN. However, the specific mechanisms behind these are not yet clear. MAIN METHODS Protein expression was detected by immunofluorescence, immunohistochemistry and Western blot. Knocking down or pharmacological inhibition of S1PR2 were used to inhibit Wnt3a, RhoA, ROCK1, β-catenin, and Snail signaling. Changes in cell function were analyzed by CCK-8 method, cell scratching assay, FITC-dextran permeability assay, and Evans blue staining. KEY FINDINGS Consistent with increased gene expression of S1PR2 in DN patients and mice with kidney fibrosis disease, S1PR2 expression was significantly increased in glomerular endothelial cells of DN mice and HUVEC cells treated with glucolipids. Knocking down or pharmacological inhibition of S1PR2 significantly decreased the expression of Wnt3a, RhoA, ROCK1, and β-catenin in endothelial cells. Furthermore, inhibition of S1PR2 in vivo reversed EndMT and endothelial barrier dysfunction in glomerular endothelial cells. Inhibition of S1PR2 and ROCK1 in vitro also reversed EndMT and endothelial barrier dysfunction in endothelial cells. SIGNIFICANCE Our results suggest that the S1PR2/Wnt3a/RhoA/ROCK1/β-catenin signaling pathway is involved in the pathogenesis of DN by inducing EndMT and endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Jing Zhang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xiao
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shaoli Zhao
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhihao Shu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yanfei Chai
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Ouyang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huiqin Liu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xueweng Wang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qisheng Quan
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianing Fan
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Peng Gao
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Alex F Chen
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongwei Lu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China; Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
9
|
Zou M, Mangum KD, Magin JC, Cao HH, Yarboro MT, Shelton EL, Taylor JM, Reese J, Furey TS, Mack CP. Prdm6 drives ductus arteriosus closure by promoting ductus arteriosus smooth muscle cell identity and contractility. JCI Insight 2023; 8:e163454. [PMID: 36749647 PMCID: PMC10077476 DOI: 10.1172/jci.insight.163454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Based upon our demonstration that the smooth muscle cell-selective (SMC-selective) putative methyltransferase, Prdm6, interacts with myocardin-related transcription factor-A, we examined Prdm6's role in SMCs in vivo using cell type-specific knockout mouse models. Although SMC-specific depletion of Prdm6 in adult mice was well tolerated, Prdm6 depletion in Wnt1-expressing cells during development resulted in perinatal lethality and a completely penetrant patent ductus arteriosus (DA) phenotype. Lineage tracing experiments in Wnt1Cre2 Prdm6fl/fl ROSA26LacZ mice revealed normal neural crest-derived SMC investment of the outflow tract. In contrast, myography measurements on DA segments isolated from E18.5 embryos indicated that Prdm6 depletion significantly reduced DA tone and contractility. RNA-Seq analyses on DA and ascending aorta samples at E18.5 identified a DA-enriched gene program that included many SMC-selective contractile associated proteins that was downregulated by Prdm6 depletion. Chromatin immunoprecipitation-sequencing experiments in outflow tract SMCs demonstrated that 50% of the genes Prdm6 depletion altered contained Prdm6 binding sites. Finally, using several genome-wide data sets, we identified an SMC-selective enhancer within the Prdm6 third intron that exhibited allele-specific activity, providing evidence that rs17149944 may be the causal SNP for a cardiovascular disease GWAS locus identified within the human PRDM6 gene.
Collapse
Affiliation(s)
- Meng Zou
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin D. Mangum
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin C. Magin
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heidi H. Cao
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael T. Yarboro
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elaine L. Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joan M. Taylor
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeff Reese
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Terrence S. Furey
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher P. Mack
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Yang Y, Wang S, Cai J, Liang J, Zhang Y, Xie Y, Luo F, Tang J, Gao Y, Shen S, Feng H, Li Y. Targeting ARHGEF12 promotes neuroblastoma differentiation, MYCN degradation, and reduces tumorigenicity. Cell Oncol (Dordr) 2023; 46:133-143. [PMID: 36520365 DOI: 10.1007/s13402-022-00739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Neuroblastoma arises from developmental block of embryonic neural crest cells and is one of the most common and deadly pediatric tumors. However, the mechanism underlying this block is still unclear. Here, we show that targeting Rho guanine nucleotide exchange factor 12 (ARHGEF12, also named LARG) promotes MYCN degradation and neuroblastoma differentiation, leading to reduced neuroblastoma malignancy. METHODS The neuroblastoma TARGET dataset was downloaded to assess ARHGEF12 expression. Cell differentiation, proliferation, colony formation and cell migration analyses were performed to investigate the effects of ARHGEF12 knockdown on neuroblastoma cells. Western blotting and immunohistochemistry were employed to determine protein expression. Animal xenograft models were used to investigate antitumor effects after ARHGEF12 knockdown or treatment with the ARHGEF12 inhibitor Y16 in vivo. RESULTS We found that the expression level of ARHGEF12 was higher in neuroblastoma than in better-differentiated ganglioneuroblastoma. Knockdown of ARHGEF12 promoted neuroblastoma differentiation, decreased stemness-related gene expression, and increased differentiation-related gene expression. ARHGEF12 knockdown reduced tumor growth, and the resulting tumors showed bigger tumor cells compared to those in control neuroblastoma xenografts. In addition, it was found that ARHGEF12 knockdown promoted MYCN ubiquitination and degradation in MYCN-amplified tumors through RhoA/ROCK/GSK3β signaling. Targeting ARHGEF12 with the small molecular inhibitor Y16 induced cell differentiation and attenuated neuroblastoma tumorigenicity. CONCLUSION Our findings provide new insight into the mechanism by which ARHGEF12 regulates neuroblastoma tumorigenicity and suggest a translatable therapeutic approach by targeting ARHGEF12 with a small molecular inhibitor.
Collapse
Affiliation(s)
- Yi Yang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Siqi Wang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Jiaoyang Cai
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Jianwei Liang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Yingwen Zhang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Yangyang Xie
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Fei Luo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jingyan Tang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Yijin Gao
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China.
| | - Shuhong Shen
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China.
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China.
| |
Collapse
|
11
|
Wang X, Chen S, Xiang H, Wang X, Xiao J, Zhao S, Shu Z, Ouyang J, Liang Z, Deng M, Chen X, Zhang J, Liu H, Quan Q, Gao P, Fan J, Chen AF, Lu H. S1PR2/RhoA/ROCK1 pathway promotes inflammatory bowel disease by inducing intestinal vascular endothelial barrier damage and M1 macrophage polarization. Biochem Pharmacol 2022; 201:115077. [PMID: 35537530 DOI: 10.1016/j.bcp.2022.115077] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022]
Abstract
Vascular and immune dysfunctions are thought to be related to the pathogenesis of inflammatory bowel disease (IBD), but behind this, the exact mechanism of mucosal vascular endothelial barrier dysfunction and macrophage phenotypic transition is not fully understood. Here, we explored the mechanistic role of sphingosine 1-phosphate receptor 2 (S1PR2) and its downstream G protein RhoA/Rho kinase 1 (ROCK1) signaling pathway in the intestinal endothelial barrier damage and M1 macrophage polarization in IBD. We found that the expression of S1PR2 in intestinal mucosal vascular endothelial cells and macrophages of IBD patients and DSS-induced colitis mice as well as vascular endothelial cells and macrophages treated with LPS in vitro was significantly increased. Knocking down or pharmacologically inhibiting S1PR2 significantly downregulated the expression of RhoA and ROCK1 in vascular endothelial cells and macrophages. Furthermore, inhibition of S1PR2 and ROCK1 reversed the impaired vascular barrier function and M1 macrophage polarization in vivo and in vitro, while reducing ER stress in vascular endothelial cells and glycolysis in macrophages. In addition, inhibition of ER stress or glycolysis reversed LPS-induced impairment of vascular endothelial cell barrier function and M1 macrophage polarization. Collectively, our results indicate that the S1PR2/RhoA/ROCK1 signaling pathway may participate in the pathogenesis of IBD by regulating vascular endothelial barrier function and M1 macrophage polarization.
Collapse
Affiliation(s)
- Xuewen Wang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xiao
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shaoli Zhao
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhihao Shu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Ouyang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Liang
- Department of Clinical laboratory, Yueyang People's Hospital, Yueyang, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Zhang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huiqin Liu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qisheng Quan
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Peng Gao
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianing Fan
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Alex F Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hongwei Lu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China; Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
12
|
Abstract
Cell migration, a crucial step in numerous biological processes, is tightly regulated in space and time. Cells employ Rho GTPases, primarily Rho, Rac, and Cdc42, to regulate their motility. Like other small G proteins, Rho GTPases function as biomolecular switches in regulating cell migration by operating between GDP bound 'OFF' and GTP bound 'ON' states. Guanine nucleotide exchange factors (GEFs) catalyse the shuttling of GTPases from OFF to ON state. G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors that are involved in many signalling phenomena including cell survival and cell migration events. In this review, we summarize signalling mechanisms, involving GPCRs, leading to the activation of RhoGEFs. GPCRs exhibit diverse GEF activation modes that include the interaction of heterotrimeric G protein subunits with different domains of GEFs, phosphorylation, protein-protein interaction, protein-lipid interaction, and/or a combination of these processes.
Collapse
Affiliation(s)
- Aishwarya Omble
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kiran Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,CONTACT Kiran Kulkarni Academy of Scientific and Innovative Research (Acsir), Ghaziabad 201002, India
| |
Collapse
|
13
|
Lone W, Bouska A, Sharma S, Amador C, Saumyaranjan M, Herek TA, Heavican TB, Yu J, Lim ST, Ong CK, Slack GW, Savage KJ, Rosenwald A, Ott G, Cook JR, Feldman AL, Rimsza LM, McKeithan TW, Greiner TC, Weisenburger DD, Melle F, Motta G, Pileri S, Vose JM, Chan WC, Iqbal J. Genome-Wide miRNA Expression Profiling of Molecular Subgroups of Peripheral T-cell Lymphoma. Clin Cancer Res 2021; 27:6039-6053. [PMID: 34426436 DOI: 10.1158/1078-0432.ccr-21-0573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/15/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas with aggressive clinical behavior. We performed comprehensive miRNA profiling in PTCLs and corresponding normal CD4+ Th1/2 and TFH-like polarized subsets to elucidate the role of miRNAs in T-cell lymphomagenesis. EXPERIMENTAL DESIGN We used nCounter (NanoString Inc) for miRNA profiling and validated using Taqman qRT-PCR (Applied Biosystems, Inc). Normal CD4+ T cells were polarized into effector Th subsets using signature cytokines, and miRNA significance was revealed using functional experiments. RESULTS Effector Th subsets showed distinct miRNA expression with corresponding transcription factor expression (e.g., BCL6/miR-19b, -106, -30d, -26b, in IL21-polarized; GATA3/miR-155, miR-337 in Th2-polarized; and TBX21/miR-181a, -331-3p in Th1-polarized cells). Integration of miRNA signatures suggested activation of TCR and PI3K signaling in IL21-polarized cells, ERK signaling in Th1-polarized cells, and AKT-mTOR signaling in Th2-polarized cells, validated at protein level. In neoplastic counterparts, distinctive miRNAs were identified and confirmed in an independent cohort. Integrative miRNA-mRNA analysis identified a decrease in target transcript abundance leading to deregulation of sphingolipid and Wnt signaling and epigenetic dysregulation in angioimmunoblastic T-cell lymphoma (AITL), while ERK, MAPK, and cell cycle were identified in PTCL subsets, and decreased target transcript abundance was validated in an independent cohort. Elevated expression of miRNAs (miR-126-3p, miR-145-5p) in AITL was associated with poor clinical outcome. In silico and experimental validation suggest two targets (miR-126→ SIPR2 and miR-145 → ROCK1) resulting in reduced RhoA-GTPase activity and T-B-cell interaction. CONCLUSIONS Unique miRNAs and deregulated oncogenic pathways are associated with PTCL subtypes. Upregulated miRNA-126-3p and miR-145-5p expression regulate RhoA-GTPase and inhibit T-cell migration, crucial for AITL pathobiology.
Collapse
Affiliation(s)
- Waseem Lone
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Catalina Amador
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mallick Saumyaranjan
- Institute of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Tyler A Herek
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tayla B Heavican
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jiayu Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Choon Kiat Ong
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Graham W Slack
- Center for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Kerry J Savage
- Center for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - James R Cook
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | - Julie M Vose
- Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
14
|
Stecky RC, Quick CR, Fleming TL, Mull ML, Vinson VK, Whitley MS, Dover EN, Meigs TE. Divergent C-terminal motifs in Gα12 and Gα13 provide distinct mechanisms of effector binding and SRF activation. Cell Signal 2020; 72:109653. [PMID: 32330601 DOI: 10.1016/j.cellsig.2020.109653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/18/2022]
Abstract
The G12/13 subfamily of heterotrimeric guanine nucleotide binding proteins comprises the α subunits Gα12 and Gα13, which transduce signals for cell growth, cytoskeletal rearrangements, and oncogenic transformation. In an increasing range of cancers, overexpressed Gα12 or Gα13 are implicated in aberrant cell proliferation and/or metastatic invasion. Although Gα12 and Gα13 bind non-redundant sets of effector proteins and participate in unique signalling pathways, the structural features responsible for functional differences between these α subunits are largely unknown. Invertebrates encode a single G12/13 homolog that participates in cytoskeletal changes yet appears to lack signalling to SRF (serum response factor), a transcriptional activator stimulated by mammalian Gα12 and Gα13 to promote growth and tumorigenesis. Our previous studies identified an evolutionarily divergent region in Gα12 for which replacement by homologous sequence from Drosophila melanogaster abolished SRF signalling, whereas the same invertebrate substitution was fully tolerated in Gα13 [Montgomery et al. (2014) Mol. Pharmacol. 85: 586]. These findings prompted our current approach of evolution-guided mutagenesis to identify fine structural features of Gα12 and Gα13 that underlie their respective SRF activation mechanisms. Our results identified two motifs flanking the α4 helix that play a key role in Gα12 signalling to SRF. We found the region encompassing these motifs to provide an interacting surface for multiple Gα12-specific target proteins that fail to bind Gα13. Adjacent to this divergent region, a highly-conserved domain was vital for SRF activation by both Gα12 and Gα13. However, dissection of this domain using invertebrate substitutions revealed different signalling mechanisms in these α subunits and identified Gα13-specific determinants of binding Rho-specific guanine nucleotide exchange factors. Furthermore, invertebrate substitutions in the C-terminal, α5 helical region were selectively disruptive to Gα12 signalling. Taken together, our results identify key structural features near the C-terminus that evolved after the divergence of Gα12 and Gα13, and should aid the development of agents to selectively manipulate signalling by individual α subunits of the G12/13 subfamily.
Collapse
Affiliation(s)
- Rebecca C Stecky
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Courtney R Quick
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Todd L Fleming
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Makenzy L Mull
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Vanessa K Vinson
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Megan S Whitley
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - E Nicole Dover
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Thomas E Meigs
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America.
| |
Collapse
|
15
|
Isozaki Y, Sakai K, Kohiro K, Kagoshima K, Iwamura Y, Sato H, Rindner D, Fujiwara S, Yamashita K, Mizuno K, Ohashi K. The Rho-guanine nucleotide exchange factor Solo decelerates collective cell migration by modulating the Rho-ROCK pathway and keratin networks. Mol Biol Cell 2020; 31:741-752. [PMID: 32049581 PMCID: PMC7185966 DOI: 10.1091/mbc.e19-07-0357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Collective cell migration plays crucial roles in tissue remodeling, wound healing, and cancer cell invasion. However, its underlying mechanism remains unknown. Previously, we showed that the RhoA-targeting guanine nucleotide exchange factor Solo (ARHGEF40) is required for tensile force–induced RhoA activation and proper organization of keratin-8/keratin-18 (K8/K18) networks. Here, we demonstrate that Solo knockdown significantly increases the rate at which Madin-Darby canine kidney cells collectively migrate on collagen gels. However, it has no apparent effect on the migratory speed of solitary cultured cells. Therefore, Solo decelerates collective cell migration. Moreover, Solo localized to the anteroposterior regions of cell–cell contact sites in collectively migrating cells and was required for the local accumulation of K8/K18 filaments in the forward areas of the cells. Partial Rho-associated protein kinase (ROCK) inhibition or K18 or plakoglobin knockdown also increased collective cell migration velocity. These results suggest that Solo acts as a brake for collective cell migration by generating pullback force at cell–cell contact sites via the RhoA-ROCK pathway. It may also promote the formation of desmosomal cell–cell junctions related to K8/K18 filaments and plakoglobin.
Collapse
Affiliation(s)
- Yusuke Isozaki
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kouki Sakai
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kenta Kohiro
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Katsuhiko Kagoshima
- Department of Chemistry, Faculty of Science and Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuma Iwamura
- Department of Chemistry, Faculty of Science and Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hironori Sato
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Daniel Rindner
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Sachiko Fujiwara
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kazunari Yamashita
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Department of Chemistry, Faculty of Science and Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kensaku Mizuno
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kazumasa Ohashi
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Department of Chemistry, Faculty of Science and Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
16
|
Zou S, Teixeira AM, Yin M, Xiang Y, Xavier-Ferrucio J, Zhang PX, Hwa J, Min W, Krause DS. Leukaemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation. Thromb Haemost 2016; 116:506-16. [PMID: 27345948 DOI: 10.1160/th15-11-0848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/14/2016] [Indexed: 11/05/2022]
Abstract
Leukemia-Associated RhoGEF (LARG) is highly expressed in platelets, which are essential for maintaining normal haemostasis. We studied the function of LARG in murine and human megakaryocytes and platelets with Larg knockout (KO), shRNA-mediated knockdown and small molecule-mediated inhibition. We found that LARG is important for human, but not murine, megakaryocyte maturation. Larg KO mice exhibit macrothrombocytopenia, internal bleeding in the ovaries and prolonged bleeding times. KO platelets have impaired aggregation, α-granule release and integrin α2bβ3 activation in response to thrombin and thromboxane, but not to ADP. The same agonist-specific reductions in platelet aggregation occur in human platelets treated with a LARG inhibitor. Larg KO platelets have reduced RhoA activation and myosin light chain phosphorylation, suggesting that Larg plays an agonist-specific role in platelet signal transduction. Using two different in vivo assays, Larg KO mice are protected from in vivo thrombus formation. Together, these results establish that LARG regulates human megakaryocyte maturation, and is critical for platelet function in both humans and mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Diane S Krause
- Diane S. Krause, Yale Stem Cell Center, 10 Amistad Street, Room 214I, New Haven, CT 06509, USA, Tel.: +1 203 785 7089, Fax: +1 203 785 4305, E-mail:
| |
Collapse
|
17
|
Jiang L, Wang Y, Pan F, Zhao X, Zhang H, Lei M, Liu T, Lu JR. Synergistic effect of bioactive lipid and condition medium on cardiac differentiation of human mesenchymal stem cells from different tissues. Cell Biochem Funct 2016; 34:163-72. [PMID: 26990081 PMCID: PMC5031220 DOI: 10.1002/cbf.3175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/22/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) and human adipose tissue mesenchymal stem cells (hATMSCs) have the potential to differentiate into cardiomyocytes, making them promising therapeutic candidates for treating damaged cardiac tissues. Currently, however, the differentiated cells induced from hUCMSCs or hATMSCs can hardly display functional characteristics similar to cardiomyocytes. In this study, we have investigated the effects of bioactive lipid sphingosine-1-phosphate (S1P) on cardiac differentiations of hUCMSCs and hATMSCs in condition medium composed of cardiac myocytes culture medium or 5-azacytidine. Cardiac differentiations were identified through immunofluorescence staining, and the results were observed with fluorescence microscopy and confocal microscopy. Synergistic effects of S1P and condition medium on cell viability were evaluated by MTT assays. Functional characteristics similar to cardiomyocytes were evaluated through detecting calcium transient. The differentiated hUCMSCs or hATMSCs in each group into cardiomyocytes showed positive expressions of cardiac specific proteins, including α-actin, connexin-43 and myosin heavy chain-6 (MYH-6). MTT assays showed that suitable differentiation time was 14 days and that the optimal concentration of S1P was 0.5 μM. Moreover, incorporation of S1P and cardiac myocytes culture medium gave rise to calcium transients, an important marker for displaying in vivo electrophysiological properties. This feature was not observed in the S1P-5-azacytidine group, indicating the possible lack of cellular stimuli such as transforming growth factor-beta, TGF-β.
Collapse
Affiliation(s)
- Lili Jiang
- Dalian R&D Center for Stem Cell and Tissue Engineering, Faculty of Chemical Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
| | - Yanwen Wang
- Cardiovascular and Genetic Medicine Research Groups, School of BiomedicineUniversity of ManchesterManchesterUK
| | - Fang Pan
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| | - Xiubo Zhao
- Department of Chemical & Biological EngineeringUniversity of SheffieldMappin Street, Sheffield, S1 3JDUK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| | - Ming Lei
- Cardiovascular and Genetic Medicine Research Groups, School of BiomedicineUniversity of ManchesterManchesterUK
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Faculty of Chemical Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
| | - Jian R. Lu
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| |
Collapse
|
18
|
Bai X, Dee R, Mangum KD, Mack CP, Taylor JM. RhoA signaling and blood pressure: The consequence of failing to “Tone it Down”. World J Hypertens 2016; 6:18-35. [DOI: 10.5494/wjh.v6.i1.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled high blood pressure is a major risk factor for heart attack, stroke, and kidney failure and contributes to an estimated 25% of deaths worldwide. Despite numerous treatment options, estimates project that reasonable blood pressure (BP) control is achieved in only about half of hypertensive patients. Improvements in the detection and management of hypertension will undoubtedly be accomplished through a better understanding of the complex etiology of this disease and a more comprehensive inventory of the genes and genetic variants that influence BP regulation. Recent studies (primarily in pre-clinical models) indicate that the small GTPase RhoA and its downstream target, Rho kinase, play an important role in regulating BP homeostasis. Herein, we summarize the underlying mechanisms and highlight signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations. Finally, we summarize the current (albeit limited) clinical data on the efficacy of targeting the RhoA pathway in hypertensive patients.
Collapse
|
19
|
Tirupula KC, Zhang D, Osbourne A, Chatterjee A, Desnoyer R, Willard B, Karnik SS. MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach. PLoS One 2015; 10:e0140872. [PMID: 26484771 PMCID: PMC4618059 DOI: 10.1371/journal.pone.0140872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A ‘cardiac-specific finger print’ of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a ‘MAS-signalosome’ model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of ‘signalosome’ components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor.
Collapse
Affiliation(s)
- Kalyan C. Tirupula
- Department of Molecular Cardiology, Cleveland Clinic, Ohio, United States of America
| | - Dongmei Zhang
- Proteomics Laboratory, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Appledene Osbourne
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, Ohio, United States of America
| | - Arunachal Chatterjee
- Department of Molecular Cardiology, Cleveland Clinic, Ohio, United States of America
| | - Russ Desnoyer
- Department of Molecular Cardiology, Cleveland Clinic, Ohio, United States of America
| | - Belinda Willard
- Proteomics Laboratory, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Sadashiva S. Karnik
- Department of Molecular Cardiology, Cleveland Clinic, Ohio, United States of America
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Dunn HA, Ferguson SSG. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways. Mol Pharmacol 2015; 88:624-39. [PMID: 25808930 DOI: 10.1124/mol.115.098509] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/25/2015] [Indexed: 02/14/2025] Open
Abstract
G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and leukemia-associated RhoGEF), RGS3 and RGS12, spinophilin and neurabin-1, SRC homology 3 domain and multiple ankyrin repeat domain (Shank) proteins (Shank1, Shank2, and Shank3), partitioning defective proteins 3 and 6, multiple PDZ protein 1, Tamalin, neuronal nitric oxide synthase, syntrophins, protein interacting with protein kinase C α 1, syntenin-1, and sorting nexin 27.
Collapse
Affiliation(s)
- Henry A Dunn
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
Weise-Cross L, Taylor JM, Mack CP. Inhibition of Diaphanous Formin Signaling In Vivo Impairs Cardiovascular Development and Alters Smooth Muscle Cell Phenotype. Arterioscler Thromb Vasc Biol 2015; 35:2374-83. [PMID: 26381868 DOI: 10.1161/atvbaha.115.305879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We and others have previously shown that RhoA-dependent stimulation of myocardin-related transcription factor nuclear localization promotes smooth muscle cell (SMC) marker gene expression. The goal of this study was to provide direct in vivo evidence that actin polymerization by the diaphanous-related formins contributes to the regulation of SMC differentiation and phenotype. APPROACH AND RESULTS Conditional Cre-based genetic approaches were used to overexpress a well-characterized dominant-negative variant of mDia1 (DNmDia) in SMC. DNmDia expression in SM22-expressing cells resulted in embryonic and perinatal lethality in ≈20% of mice because of defects in myocardial development and SMC investment of peripheral vessels. Although most DNmDia(+)/SM22Cre(+) mice exhibited no overt phenotype, the re-expression of SMC differentiation marker gene expression that occurs after carotid artery ligation was delayed, and this effect was accompanied by a significant decrease in myocardin-related transcription factor-A nuclear localization. Interestingly, neointima growth was inhibited by expression of DNmDia in SMC and this was likely because of a defect in directional SMC migration and not to defects in SMC proliferation or survival. Finally, by using the tamoxifen-inducible SM MHC-CreER(T2) line, we showed that SMC-specific induction of DNmDia in adult mice decreased SMC marker gene expression. CONCLUSIONS Our demonstration that diaphanous-related formin signaling plays a role in heart and vascular development and the maintenance of SMC phenotype provides important new evidence that Rho/actin/myocardin-related transcription factor signaling plays a critical role in cardiovascular function.
Collapse
Affiliation(s)
- Laura Weise-Cross
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Joan M Taylor
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Christopher P Mack
- From the Department of Pathology, University of North Carolina, Chapel Hill.
| |
Collapse
|
22
|
Althoff TF, Offermanns S. G-protein-mediated signaling in vascular smooth muscle cells — implications for vascular disease. J Mol Med (Berl) 2015; 93:973-81. [DOI: 10.1007/s00109-015-1305-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Accepted: 06/02/2015] [Indexed: 10/24/2022]
|
23
|
Loirand G, Pacaud P. Involvement of Rho GTPases and their regulators in the pathogenesis of hypertension. Small GTPases 2014; 5:1-10. [PMID: 25496262 DOI: 10.4161/sgtp.28846] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proper regulation of arterial blood pressure is essential to allow permanent adjustment of nutrient and oxygen supply to organs and tissues according to their need. This is achieved through highly coordinated regulation processes controlling vascular resistance through modulation of arterial smooth muscle contraction, cardiac output, and kidney function. Members of the Rho family of small GTPases, in particular RhoA and Rac1, have been identified as key signaling molecules playing important roles in several different steps of these regulatory processes. Here, we review the current state of knowledge regarding the involvement of Rho GTPase signaling in the control of blood pressure and the pathogenesis of hypertension. We describe how knockout models in mouse, genetic, and pharmacological studies in human have been useful to address this question.
Collapse
Key Words
- AT1 receptor, type 1 Ang II receptor
- Ang II, angiotensine II
- ENaCs, epithelial Na+ channels
- Et-1, endothelin-1
- GAPs, GTPase-activating proteins
- GEFs, exchange factors
- GTPase activating proteins
- GTPases
- MLC, 20 kDa-myosin light chain
- MLCK, MLC kinase
- MLCP, MLC phosphatase
- NA, noradrenaline
- NHE3, sodium-hydrogen exchanger isoform 3.
- NO, nitric oxide
- NTS, nucleus tractus solitaries
- PDE5, type 5 phosphodiesterase
- PKG, cGMP-dependent protein kinase
- Rock, Rho-kinase
- SHR, spontaneously hypertensive rats
- SHRSP, stroke-prone SHR
- TxA2, thromboxane A2
- artery
- blood pressure
- cardiovascular
- eNOS, endothelial NO synthase
- exchange factors
- signal transduction
- small G proteins
- smooth muscle
- vasoconstriction
Collapse
|
24
|
Chang N, Xiu L, Li L. Sphingosine 1-phosphate receptors negatively regulate collagen type I/III expression in human bone marrow-derived mesenchymal stem cell. J Cell Biochem 2014; 115:359-67. [PMID: 24038457 DOI: 10.1002/jcb.24670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/06/2013] [Indexed: 12/15/2022]
Abstract
Collagen is the most abundant structural protein in mammals and is expressed in various tissues. In recent years, sphingosine 1-phosphate receptors (S1PRs) have been proven to play an important role in the regulation of collagen expression. Our previous studies reported that S1PRs are involved in TGF-β1-induced collagen expression via up-regulating S1PR1/3 in mouse bone marrow-derived mesenchymal stem cells (BMSCs), and result in experimental mouse liver fibrogenesis. But it remains unclear whether this process happens in human bone marrow-derived mesenchymal stem cells (hMSCs). In this study, we provide evidences that S1PR1/3, but not S1PR2, negatively regulate the expression of collagen in hMSCs using cellular and molecular approaches in vitro. We find that treatment of hMSCs with TGF-β1 up-regulated collagen expression in a dose- and time-dependent manner. Meanwhile, TGF-β1 inhibited the expression of S1PR1/3, but not S1PR2, in hMSCs in a time-dependent manner. Furthermore, either selective knock-down of S1PR1 or silencing S1PR3 induced collagen α1(I) and collagen α1(III) expression in hMSCs. In contrast, inhibition of S1PR2 by siRNA had no effects on the expression of collagen. Altogether, all these findings demonstrated that collagen expression was negatively regulated by S1PR1 and S1PR3 in hMSCs. This study highlights the differences between hMSCs and mouse BMSCs, provides a new regulation mechanism for collagen expression, and points out the risk of utilizing hMSCs in clinical applications.
Collapse
Affiliation(s)
- Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | | | | |
Collapse
|
25
|
Montgomery ER, Temple BRS, Peters KA, Tolbert CE, Booker BK, Martin JW, Hamilton TP, Tagliatela AC, Smolski WC, Rogers SL, Jones AM, Meigs TE. Gα12 structural determinants of Hsp90 interaction are necessary for serum response element-mediated transcriptional activation. Mol Pharmacol 2014; 85:586-97. [PMID: 24435554 PMCID: PMC3965892 DOI: 10.1124/mol.113.088443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/16/2014] [Indexed: 12/31/2022] Open
Abstract
The G12/13 class of heterotrimeric G proteins, comprising the α-subunits Gα12 and Gα13, regulates multiple aspects of cellular behavior, including proliferation and cytoskeletal rearrangements. Although guanine nucleotide exchange factors for the monomeric G protein Rho (RhoGEFs) are well characterized as effectors of this G protein class, a variety of other downstream targets has been reported. To identify Gα12 determinants that mediate specific protein interactions, we used a structural and evolutionary comparison between the G12/13, Gs, Gi, and Gq classes to identify "class-distinctive" residues in Gα12 and Gα13. Mutation of these residues in Gα12 to their deduced ancestral forms revealed a subset necessary for activation of serum response element (SRE)-mediated transcription, a G12/13-stimulated pathway implicated in cell proliferative signaling. Unexpectedly, this subset of Gα12 mutants showed impaired binding to heat-shock protein 90 (Hsp90) while retaining binding to RhoGEFs. Corresponding mutants of Gα13 exhibited robust SRE activation, suggesting a Gα12-specific mechanism, and inhibition of Hsp90 by geldanamycin or small interfering RNA-mediated lowering of Hsp90 levels resulted in greater downregulation of Gα12 than Gα13 signaling in SRE activation experiments. Furthermore, the Drosophila G12/13 homolog Concertina was unable to signal to SRE in mammalian cells, and Gα12:Concertina chimeras revealed Gα12-specific determinants of SRE activation within the switch regions and a C-terminal region. These findings identify Gα12 determinants of SRE activation, implicate Gα12:Hsp90 interaction in this signaling mechanism, and illuminate structural features that arose during evolution of Gα12 and Gα13 to allow bifurcated mechanisms of signaling to a common cell proliferative pathway.
Collapse
Affiliation(s)
- Ellyn R Montgomery
- Department of Biology, University of North Carolina at Asheville, Asheville, North Carolina (E.R.M., B.K.B., J.W.M., T.P.H., A.C.T., W.C.S., T.E.M.); Departments of Biology (K.A.P., S.L.R., A.M.J.), Biochemistry and Biophysics (B.R.S.T.), Cell Biology and Physiology (C.E.T.), and Pharmacology (A.M.J.), R. L. Juliano Structural Bioinformatics Core Facility (B.R.S.T.), and Carolina Center for Genome Sciences (S.L.R.), University of North Carolina, and the Lineberger Comprehensive Cancer Center, (S.L.R., T.E.M.), Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang XQ, Mao LJ, Fang QH, Kobayashi T, Kim HJ, Sugiura H, Kawasaki S, Togo S, Kamio K, Liu X, Rennard SI. Sphingosylphosphorylcholine induces α-smooth muscle actin expression in human lung fibroblasts and fibroblast-mediated gel contraction via S1P2 receptor and Rho/Rho-kinase pathway. Prostaglandins Other Lipid Mediat 2014; 108:23-30. [PMID: 24614064 DOI: 10.1016/j.prostaglandins.2014.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 11/17/2022]
Abstract
Chronic airway diseases like COPD and asthma are usually accompanied with airway fibrosis. Myofibroblasts, which are characterized by expression of smooth muscle actin (α-SMA), play an important role in a variety of developmental and pathological processes, including fibrosis and wound healing. Sphingosylphosphorylcholine (SPC), a sphingolipid metabolite, has been implicated in many physiological and pathological conditions. The current study tested the hypothesis that SPC may modulate tissue remodeling by affecting the expression of α-SMA in human fetal lung fibroblast (HFL-1) and fibroblast mediated gel contraction. The results show that SPC stimulates α-SMA expression in HFL-1 and augments HFL-1 mediated collagen gel contraction in a time- and concentration-dependent manner. The α-SMA protein expression and fibroblast gel contraction induced by SPC was not blocked by TGF-β1 neutralizing antibody. However, it was significantly blocked by S1P2 receptor antagonist JTE-013, the Rho-specific inhibitor C3 exoenzyme, and a Rho-kinase inhibitor Y-27632. These findings suggest that SPC stimulates α-SMA protein expression and HFL-1 mediated collagen gel contraction via S1P2 receptor and Rho/Rho kinase pathway, and by which mechanism, SPC may be involved in lung tissue remodeling.
Collapse
Affiliation(s)
- X Q Wang
- Pulmonary, Critical Care, Sleep and Allergy, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States; Department of Respiratory Disease, Affiliated Hospital of Hebei United University, Hebei Province, China
| | - L J Mao
- Research Center of Occupational Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Q H Fang
- Department of Pulmonary and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - T Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University School of Medicine, Tsu, Japan
| | - H J Kim
- Department of Internal Medicine, SanBon Hospital, WonKuang University School of Medicine, Seoul, South Korea
| | - H Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - S Kawasaki
- Department of Respiratory Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - S Togo
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - K Kamio
- Department of Pulmonary Medicine/Infection and Oncology, Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - X Liu
- Pulmonary, Critical Care, Sleep and Allergy, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - S I Rennard
- Pulmonary, Critical Care, Sleep and Allergy, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
27
|
Kempf A, Tews B, Arzt ME, Weinmann O, Obermair FJ, Pernet V, Zagrebelsky M, Delekate A, Iobbi C, Zemmar A, Ristic Z, Gullo M, Spies P, Dodd D, Gygax D, Korte M, Schwab ME. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. PLoS Biol 2014; 12:e1001763. [PMID: 24453941 PMCID: PMC3891622 DOI: 10.1371/journal.pbio.1001763] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/02/2013] [Indexed: 01/11/2023] Open
Abstract
This study identifies a GPCR, S1PR2, as a receptor for the Nogo-A-Δ20 domain of the membrane protein Nogo-A, which inhibits neuronal growth and synaptic plasticity. Nogo-A is a membrane protein of the central nervous system (CNS) restricting neurite growth and synaptic plasticity via two extracellular domains: Nogo-66 and Nogo-A-Δ20. Receptors transducing Nogo-A-Δ20 signaling remained elusive so far. Here we identify the G protein-coupled receptor (GPCR) sphingosine 1-phosphate receptor 2 (S1PR2) as a Nogo-A-Δ20-specific receptor. Nogo-A-Δ20 binds S1PR2 on sites distinct from the pocket of the sphingolipid sphingosine 1-phosphate (S1P) and signals via the G protein G13, the Rho GEF LARG, and RhoA. Deleting or blocking S1PR2 counteracts Nogo-A-Δ20- and myelin-mediated inhibition of neurite outgrowth and cell spreading. Blockade of S1PR2 strongly enhances long-term potentiation (LTP) in the hippocampus of wild-type but not Nogo-A−/− mice, indicating a repressor function of the Nogo-A/S1PR2 axis in synaptic plasticity. A similar increase in LTP was also observed in the motor cortex after S1PR2 blockade. We propose a novel signaling model in which a GPCR functions as a receptor for two structurally unrelated ligands, a membrane protein and a sphingolipid. Elucidating Nogo-A/S1PR2 signaling platforms will provide new insights into regulation of synaptic plasticity. Recent studies have demonstrated an important role of Nogo-A signaling in the repression of structural and synaptic plasticity in mature neuronal networks of the central nervous system. These insights extended our understanding of Nogo-A's inhibitory function far beyond its well-studied role as axonal-growth inhibitor. Repression is mediated via two different Nogo-A extracellular domains: Nogo-66 and Nogo-A-Δ20. Here, we identify the G-protein coupled receptor S1PR2 as a high-affinity receptor for Nogo-A-Δ20 and demonstrate that S1PR2 binds this domain with sites different from the recently proposed S1P binding pocket. Interfering with S1PR2 activity, either pharmacologically or genetically, prevented Nogo-A-Δ20-mediated inhibitory effects. Similar results were obtained when we blocked G13, LARG, and RhoA, components of the downstream signaling pathway. These findings revealed a strong increase in hippocampal and cortical synaptic plasticity when acutely interfering with Nogo-A/S1PR2 signaling, similar to previous results obtained by blocking Nogo-A. We thus provide a novel biological concept of multi-ligand GPCR signaling in which this sphingolipid-activated GPCR is also bound and activated by the high molecular weight membrane protein Nogo-A.
Collapse
Affiliation(s)
- Anissa Kempf
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Bjoern Tews
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Michael E. Arzt
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Oliver Weinmann
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Franz J. Obermair
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Vincent Pernet
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Marta Zagrebelsky
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Andrea Delekate
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Cristina Iobbi
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Ajmal Zemmar
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Zorica Ristic
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Miriam Gullo
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Peter Spies
- School of Life Sciences, University of Applied Life Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Dana Dodd
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Daniel Gygax
- School of Life Sciences, University of Applied Life Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
29
|
Del Galdo S, Vettel C, Heringdorf DMZ, Wieland T. The activation of RhoC in vascular endothelial cells is required for the S1P receptor type 2-induced inhibition of angiogenesis. Cell Signal 2013; 25:2478-84. [PMID: 23993968 DOI: 10.1016/j.cellsig.2013.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/24/2013] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a multifunctional phospholipid inducing a variety of cellular responses in endothelial cells (EC). S1P responses are mediated by five G protein coupled receptors of which three types (S1P1R-S1P3R) have been described to be of importance in vascular endothelial cells (EC). Whereas the S1P1R regulates endothelial barrier function by coupling to Gαi and the monomeric GTPase Rac1, the signaling pathways involved in the S1P-induced regulation of angiogenesis are ill defined. We therefore studied the sprouting of human umbilical vein EC (HUVEC) in vitro and analyzed the activation of the RhoGTPases RhoA and RhoC. Physiological relevant concentrations of S1P (100-300nM) induce a moderate activation of RhoA and RhoC. Inhibition or siRNA-mediated depletion of the S1P2R preferentially decreased the activation of RhoC. Both manipulations caused an increase of sprouting in a spheroid based in vitro sprouting assay. Interestingly, a similar increase in sprouting was detected after effective siRNA-mediated knockdown of RhoC. In contrast, the depletion of RhoA had no influence on sprouting. Furthermore, suppression of the activity of G proteins of the Gα12/13 subfamily by adenoviral overexpression of the regulator of G protein signaling domain of LSC as well as siRNA-mediated knockdown of the Rho specific guanine nucleotide exchange factor leukemia associated RhoGEF (LARG) inhibited the S1P-induced activation of RhoC and concomitantly increased sprouting of HUVEC with similar efficacy. We conclude that the angiogenic sprouting of EC is suppressed via the S1P2R subtype. Thus, the increase in basal sprouting can be attributed to blocking of the inhibitory action of autocrine S1P stimulating the S1P2R. This inhibitory pathway involves the activation of RhoC via Gα12/13 and LARG, while the simultaneously occurring activation of RhoA is apparently dispensable here.
Collapse
Affiliation(s)
- Sabrina Del Galdo
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Maybachstrasse 14, 68169 Mannheim, Germany
| | | | | | | |
Collapse
|
30
|
Adada M, Canals D, Hannun YA, Obeid LM. Sphingosine-1-phosphate receptor 2. FEBS J 2013; 280:6354-66. [PMID: 23879641 DOI: 10.1111/febs.12446] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/15/2013] [Accepted: 07/22/2013] [Indexed: 12/15/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a potent bioactive sphingolipid involved in cell proliferation, angiogenesis, inflammation and malignant transformation among other functions. S1P acts either directly on intracellular targets or activates G protein-coupled receptors, specifically five S1P receptors (S1PRs). The identified S1PRs differ in cellular and tissue distribution, and each is coupled to specific G proteins, which mediate unique functions. Here, we describe functional characteristics of all five receptors, emphasizing S1PR2, which is critical in the immune, nervous, metabolic, cardiovascular, musculoskeletal, and renal systems. This review also describes the role of this receptor in tumor growth and metastasis and suggests potential therapeutic avenues that exploit S1PR2.
Collapse
Affiliation(s)
- Mohamad Adada
- Department of Medicine, Stony Brook University, NY, USA
| | | | | | | |
Collapse
|
31
|
Martz MK, Grabocka E, Beeharry N, Yen TJ, Wedegaertner PB. Leukemia-associated RhoGEF (LARG) is a novel RhoGEF in cytokinesis and required for the proper completion of abscission. Mol Biol Cell 2013; 24:2785-94. [PMID: 23885121 PMCID: PMC3771942 DOI: 10.1091/mbc.e12-07-0533] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study demonstrates a novel and unexpected role in cytokinesis for leukemia-associated RhoGEF (LARG). Depletion of LARG results in delayed abscission, and thus LARG is the first RhoGEF to be implicated in late cytokinesis. Proper completion of mitosis requires the concerted effort of multiple RhoGEFs. Here we show that leukemia-associated RhoGEF (LARG), a RhoA-specific RGS-RhoGEF, is required for abscission, the final stage of cytokinesis, in which the intercellular membrane is cleaved between daughter cells. LARG colocalizes with α-tubulin at the spindle poles before localizing to the central spindle. During cytokinesis, LARG is condensed in the midbody, where it colocalizes with RhoA. HeLa cells depleted of LARG display apoptosis during cytokinesis with unresolved intercellular bridges, and rescue experiments show that expression of small interfering RNA–resistant LARG prevents this apoptosis. Moreover, live cell imaging of LARG-depleted cells reveals greatly delayed fission kinetics in abscission in which a population of cells with persistent bridges undergoes apoptosis; however, the delayed fission kinetics is rescued by Aurora-B inhibition. The formation of a Flemming body and thinning of microtubules in the intercellular bridge of cells depleted of LARG is consistent with a defect in late cytokinesis, just before the abscission event. In contrast to studies of other RhoGEFs, particularly Ect2 and GEF-H1, LARG depletion does not result in cytokinetic furrow regression nor does it affect internal mitotic timing. These results show that LARG is a novel and temporally distinct RhoGEF required for completion of abscission.
Collapse
Affiliation(s)
- Matthew K Martz
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 Fox Chase Cancer Center, Philadelphia, PA 19111
| | | | | | | | | |
Collapse
|
32
|
Orr Gandy KA, Adada M, Canals D, Carroll B, Roddy P, Hannun YA, Obeid LM. Epidermal growth factor-induced cellular invasion requires sphingosine-1-phosphate/sphingosine-1-phosphate 2 receptor-mediated ezrin activation. FASEB J 2013; 27:3155-66. [PMID: 23629860 DOI: 10.1096/fj.13-228460] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ezrin, radixin, and moesin (ERM) proteins link cortical actin to the plasma membrane and coordinate cellular events that require cytoskeletal rearrangement, including cell division, migration, and invasion. While ERM proteins are involved in many important cellular events, the mechanisms regulating their function are not completely understood. Our laboratory previously identified reciprocal roles for the sphingolipids ceramide and sphingosine-1-phosphate (S1P) in the regulation of ERM proteins. We recently showed that ceramide-induced activation of PP1α leads to dephosphorylation and inactivation of ERM proteins, while S1P results in phosphorylation and activation of ERM proteins. Following these findings, we aimed to examine known inducers of the SK/S1P pathway and evaluate their ability to regulate ERM proteins. We examined EGF, a known inducer of the SK/S1P pathway, for its ability to regulate the ERM family of proteins. We found that EGF induces ERM c-terminal threonine phosphorylation via activation of the SK/S1P pathway, as this was prevented by siRNA knockdown or pharmacological inhibition of SK. Using pharmacological, as well as genetic, knockdown approaches, we determined that EGF induces ERM phosphorylation via activation of S1PR2. In addition, EGF led to cell polarization in the form of lamellipodia, and this occurred through a mechanism involving S1PR2-mediated phosphorylation of ezrin T567. EGF-induced cellular invasion was also found to be dependent on S1PR2-induced T567 ezrin phosphorylation, such that S1PR2 antagonist, JTE-013, and expression of a dominant-negative ezrin mutant prevented cellular invasion toward EGF. In this work, a novel mechanism of EGF-stimulated invasion is unveiled, whereby S1P-mediated activation of S1PR2 and phosphorylation of ezrin T567 is required.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- Department of Molecular and Cellular Biology and Pathobiology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Kather JN, Kroll J. Rho guanine exchange factors in blood vessels: fine-tuners of angiogenesis and vascular function. Exp Cell Res 2012; 319:1289-97. [PMID: 23261542 DOI: 10.1016/j.yexcr.2012.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 01/08/2023]
Abstract
The angiogenic cascade is a multi-step process essential for embryogenesis and other physiological and pathological processes. Rho family GTPases are binary molecular switches and serve as master regulators of various basic cellular processes. Rho GTPases are known to exert important functions in angiogenesis and vascular physiology. These functions demand a tight and context-specific control of cellular processes requiring superordinate control by a multitude of guanine nucleotide exchange factors (GEFs). GEFs display various features enabling them to fine-tune the actions of Rho GTPases in the vasculature: (1) GEFs regulate specific steps of the angiogenic cascade; (2) GEFs show a spatio-temporally specific expression pattern; (3) GEFs differentially regulate endothelial function depending on their subcellular location; (4) GEFs mediate crosstalk between complex signaling cascades and (5) GEFs themselves are regulated by another layer of interacting proteins. The aim of this review is to provide an overview about the role of GEFs in regulating angiogenesis and vascular function and to point out current limitations as well as clinical perspectives.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | |
Collapse
|
34
|
Althoff TF, Albarrán Juárez J, Troidl K, Tang C, Wang S, Wirth A, Takefuji M, Wettschureck N, Offermanns S. Procontractile G protein-mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling. ACTA ACUST UNITED AC 2012; 209:2277-90. [PMID: 23129751 PMCID: PMC3501360 DOI: 10.1084/jem.20120350] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular smooth muscle (Sm) cells (VSMCs) are highly plastic. Their differentiation state can be regulated by serum response factor (SRF), which activates genes involved in Sm differentiation and proliferation by recruiting cofactors, such as members of the myocardin family and ternary complex factors (TCFs), respectively. However, the extracellular cues and upstream signaling mechanisms regulating SRF-dependent VSMC differentiation under in vivo conditions are poorly understood. In this study, we show that the procontractile signaling pathways mediated by the G proteins G(12)/G(13) and G(q)/G(11) antagonistically regulate VSMC plasticity in different models of vascular remodeling. In mice lacking Gα(12)/Gα(13) or their effector, the RhoGEF protein LARG, RhoA-dependent SRF-regulation was blocked and down-regulation of VSMC differentiation marker genes was enhanced. This was accompanied by an excessive vascular remodeling and exacerbation of atherosclerosis. In contrast, Sm-specific Gα(q)/Gα(11) deficiency blocked activation of extracellular signal-regulated kinase 1/2 and the TCF Elk-1, resulting in a reduced VSMC dedifferentiation in response to flow cessation or vascular injury. These data show that the balanced activity of both G protein-mediated pathways in VSMCs is required for an appropriate vessel remodeling response in vascular diseases and suggest new approaches to modulate Sm differentiation in vascular pathologies.
Collapse
Affiliation(s)
- Till F Althoff
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Integrating the puzzle pieces: the current atomistic picture of phospholipid-G protein coupled receptor interactions. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:2-12. [PMID: 22982815 DOI: 10.1016/j.bbalip.2012.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 01/09/2023]
Abstract
A compelling question of how phospholipids interact with their target receptors has been of interest since the first receptor-mediated effects were reported. The recent report of a crystal structure for the S1P(1) receptor in complex with an antagonist phospholipid provides interesting perspective on the insights that had previously been gained through structure-activity studies of the phospholipids, as well as modeling and mutagenesis studies of the receptors. This review integrates these varied lines of investigation in the context of their various contributions to our current understanding of phospholipid-receptor interactions. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
36
|
Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. PLoS One 2012; 7:e37218. [PMID: 22606352 PMCID: PMC3351440 DOI: 10.1371/journal.pone.0037218] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/15/2012] [Indexed: 02/02/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs) through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL) 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD), were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2)-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3), a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD.
Collapse
|
37
|
Cario-Toumaniantz C, Ferland-McCollough D, Chadeuf G, Toumaniantz G, Rodriguez M, Galizzi JP, Lockhart B, Bril A, Scalbert E, Loirand G, Pacaud P. RhoA guanine exchange factor expression profile in arteries: evidence for a Rho kinase-dependent negative feedback in angiotensin II-dependent hypertension. Am J Physiol Cell Physiol 2012; 302:C1394-404. [PMID: 22322975 DOI: 10.1152/ajpcell.00423.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sustained overactivation of RhoA is a common component for the pathogenesis of several cardiovascular disorders, including hypertension. Although activity of Rho proteins depends on Rho exchange factors (Rho-GEFs), the identity of Rho-GEFs expressed in vascular smooth muscle cells (VSMC) and participating in the control of Rho protein activity and Rho-dependent functions remains unknown. To address this question, we analyzed by quantitative RT-PCR the expression profile of 28 RhoA-GEFs in arteries of normotensive (saline-treated) and hypertensive (ANG II-treated) rats. Sixteen RhoA-GEFs were downregulated in mesenteric arteries of hypertensive rats, among which nine are also downregulated in cultured VSMC stimulated by ANG II (100 nM, 48 h), suggesting a direct effect of ANG II. Inhibition of type 1 ANG II receptors (losartan, 1 μM) or Rho kinase (fasudil, 10 μM) prevented ANG II-induced RhoA-GEF downregulation. Functionally, ANG II-induced downregulation of RhoA-GEFs is associated with decreased Rho kinase activation in response to endothelin-1, norepinephrine, and U-46619. This work thus identifies a group of RhoA-GEFs that controls RhoA and RhoA-dependent functions in VSMC, and a negative feedback of RhoA/Rho kinase activity on the expression of these RhoA-GEFs that may play an adaptative role to limit RhoA/Rho kinase activation.
Collapse
|
38
|
Sandbo N, Dulin N. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 2011; 158:181-96. [PMID: 21925115 PMCID: PMC3324184 DOI: 10.1016/j.trsl.2011.05.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 05/04/2011] [Accepted: 05/24/2011] [Indexed: 01/14/2023]
Abstract
Myofibroblasts are modified fibroblasts characterized by the presence of a well-developed contractile apparatus and the formation of robust actin stress fibers. These mechanically active cells are thought to orchestrate extracellular matrix remodeling during normal wound healing in response to tissue injury; these cells are found also in aberrant tissue remodeling in fibrosing disorders. This review surveys the understanding of the role of actin stress fibers in myofibroblast biology. Actin stress fibers are discussed as a defining ultrastructural and morphologic feature and well-accepted observations demonstrating its participation in contraction, focal adhesion maturation, and extracellular matrix reorganization are presented. Finally, more recent observations are reviewed, demonstrating its role in transducing mechanical force into biochemical signals, transcriptional control of genes involved in locomotion, contraction, and matrix reorganization, as well as the localized regulation of messenger RNA (mRNA) translation. This breadth of functionality of the actin stress fiber serves to reinforce and amplify its mechanical function, via induced expression of proteins that themselves augment contraction, focal adhesion formation, and matrix remodeling. In composite, the functions of the actin cytoskeleton are most often aligned, allowing for the integration and amplification of signals promoting both myofibroblast differentiation and matrix remodeling during fibrogenesis.
Collapse
|
39
|
Kozasa T, Hajicek N, Chow CR, Suzuki N. Signalling mechanisms of RhoGTPase regulation by the heterotrimeric G proteins G12 and G13. J Biochem 2011; 150:357-69. [PMID: 21873336 DOI: 10.1093/jb/mvr105] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
G protein-mediated signal transduction can transduce signals from a large variety of extracellular stimuli into cells and is the most widely used mechanism for cell communication at the membrane. The RhoGTPase family has been well established as key regulators of cell growth, differentiation and cell shape changes. Among G protein-mediated signal transduction, G12/13-mediated signalling is one mechanism to regulate RhoGTPase activity in response to extracellular stimuli. The alpha subunits of G12 or G13 have been shown to interact with members of the RH domain containing guanine nucleotide exchange factors for Rho (RH-RhoGEF) family of proteins to directly connect G protein-mediated signalling and RhoGTPase signalling. The G12/13-RH-RhoGEF signalling mechanism is well conserved over species and is involved in critical steps for cell physiology and disease conditions, including embryonic development, oncogenesis and cancer metastasis. In this review, we will summarize current progress on this important signalling mechanism.
Collapse
Affiliation(s)
- Tohru Kozasa
- Laboratory of Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan.
| | | | | | | |
Collapse
|
40
|
Sandbo N, Lau A, Kach J, Ngam C, Yau D, Dulin NO. Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-β. Am J Physiol Lung Cell Mol Physiol 2011; 301:L656-66. [PMID: 21856814 DOI: 10.1152/ajplung.00166.2011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Myofibroblast differentiation induced by transforming growth factor-β (TGF-β) and characterized by de novo expression of smooth muscle (SM)-specific proteins is a key process in wound healing and in the pathogenesis of fibrosis. We have previously shown that TGF-β-induced expression and activation of serum response factor (SRF) is required for this process. In this study, we examined the signaling mechanism for SRF activation by TGF-β as it relates to pulmonary myofibroblast differentiation. TGF-β stimulated a profound, but delayed (18-24 h), activation of Rho kinase and formation of actin stress fibers, which paralleled SM α-actin expression. The translational inhibitor cycloheximide blocked these processes without affecting Smad-dependent gene transcription. Inhibition of Rho kinase by Y-27632 or depolymerization of actin by latrunculin B resulted in inhibition TGF-β-induced SRF activation and SM α-actin expression, having no effect on Smad signaling. Conversely, stabilization of actin stress fibers by jasplakinolide was sufficient to drive these processes in the absence of TGF-β. TGF-β promoted a delayed nuclear accumulation of the SRF coactivator megakaryoblastic leukemia-1 (MKL1)/myocardin-related transcription factor-A, which was inhibited by latrunculin B. Furthermore, TGF-β also induced MKL1 expression, which was inhibited by latrunculin B, by SRF inhibitor CCG-1423, or by SRF knockdown. Together, these data suggest a triphasic model for myofibroblast differentiation in response to TGF-β that involves 1) initial Smad-dependent expression of intermediate signaling molecules driving Rho activation and stress fiber formation, 2) nuclear accumulation of MKL1 and activation of SRF as a result of actin polymerization, and 3) SRF-dependent expression of MKL1, driving further myofibroblast differentiation.
Collapse
Affiliation(s)
- Nathan Sandbo
- Univ. of Wisconsin School of Medicine and Public Health, 5229 MFCB 1685 Highland Ave, Madison, WI 53705, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Mack CP. Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 2011; 31:1495-505. [PMID: 21677292 DOI: 10.1161/atvbaha.110.221135] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Extensive studies over the last 30 years have demonstrated that vascular smooth muscle cell (SMC) differentiation and phenotypic modulation is controlled by a dynamic array of environmental cues. The identification of the signaling mechanisms by which these environmental cues regulate SMC phenotype has been more difficult because of our incomplete knowledge of the transcription mechanisms that regulate SMC-specific gene expression. However, recent advances in this area have provided significant insight, and the goal of this review is to summarize the signaling mechanisms by which extrinsic cues control SMC differentiation.
Collapse
Affiliation(s)
- Christopher P Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
42
|
Holbrook JD, Parker JS, Gallagher KT, Halsey WS, Hughes AM, Weigman VJ, Lebowitz PF, Kumar R. Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine. J Transl Med 2011; 9:119. [PMID: 21781349 PMCID: PMC3152520 DOI: 10.1186/1479-5876-9-119] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 07/25/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Globally, gastric cancer is the second most common cause of cancer-related death, with the majority of the health burden borne by economically less-developed countries. METHODS Here, we report a genetic characterization of 50 gastric adenocarcinoma samples, using affymetrix SNP arrays and Illumina mRNA expression arrays as well as Illumina sequencing of the coding regions of 384 genes belonging to various pathways known to be altered in other cancers. RESULTS Genetic alterations were observed in the WNT, Hedgehog, cell cycle, DNA damage and epithelial-to-mesenchymal-transition pathways. CONCLUSIONS The data suggests targeted therapies approved or in clinical development for gastric carcinoma would be of benefit to ~22% of the patients studied. In addition, the novel mutations detected here, are likely to influence clinical response and suggest new targets for drug discovery.
Collapse
Affiliation(s)
- Joanna D Holbrook
- Cancer Research, Oncology R&D, Glaxosmithkline R&D, Collegeville, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Donati C, Marseglia G, Magi A, Serratì S, Cencetti F, Bernacchioni C, Nannetti G, Benelli M, Brunelli S, Torricelli F, Cossu G, Bruni P. Sphingosine 1-phosphate induces differentiation of mesoangioblasts towards smooth muscle. A role for GATA6. PLoS One 2011; 6:e20389. [PMID: 21629665 PMCID: PMC3101247 DOI: 10.1371/journal.pone.0020389] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/02/2011] [Indexed: 11/18/2022] Open
Abstract
Different cells can contribute to repair following vascular injury by differentiating into smooth muscle (SM) cells; however the extracellular signals involved are presently poorly characterized. Mesoangioblasts are progenitor cells capable of differentiating into various mesoderm cell types including SM cells. In this study the biological action exerted by the pleiotropic sphingolipid sphingosine 1-phosphate (S1P) in human mesoangioblasts has been initially investigated by cDNA microarray analysis. Obtained data confirmed the anti-apoptotic action of this sphingolipid and identified for the first time a strong differentiating action toward SM cells. Quantitative mRNA and protein analysis corroborated the microarray results demonstrating enhanced expression of myogenic marker proteins and regulation of the expression of transcription factor GATA6 and its co-regulator, LMCD1. Importantly, GATA6 up-regulation induced by S1P was responsible for the enhanced expression of SM-specific contractile proteins. Moreover, by specific gene silencing experiments GATA6 was critical in the pro-differentiating activity of the cytokine TGFβ. Finally, the pharmacological inhibition of endogenous S1P formation in response to TGFβ abrogated GATA6 up-regulation, supporting the view that the S1P pathway plays a physiological role in mediating the pro-myogenic effect of TGFβ. This study individuates GATA6 as novel player in the complex transcriptional regulation of mesoangioblast differentiation into SM cells and highlights a role for S1P to favour vascular regeneration.
Collapse
Affiliation(s)
- Chiara Donati
- Dipartimento di Scienze Biochimiche, Università di Firenze, Firenze, Italia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee JH, Jang S, Jeong HS, Park JS. Effects of sphingosine-1-phosphate on neural differentiation and neurite outgrowth in neuroblastoma cells. Chonnam Med J 2011; 47:27-30. [PMID: 22111053 PMCID: PMC3214862 DOI: 10.4068/cmj.2011.47.1.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/16/2011] [Indexed: 11/29/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is emerging as a new class of second messenger involved in cellular proliferation, differentiation, and apoptosis and is implicated in diverse physiological functions. Despite many studies on the biological functions of S1P, however, little is known about its role in neuronal differentiation. By use of reverse transcription-polymerase chain reaction and immunostaining, this study aimed to explore whether S1P can differentiate neuroblastoma cells into neural cells. After incubation with 1 uM or 10 uM S1P, the number of neurite-bearing cells increased. Furthermore, the neuroblastoma cells revealed immunoreactivity for neural-specific markers such as GAP43, NFH, and SYP by immunostaining. The expression of NFH, MAP2, SYP, NeuroD1, and SYT mRNA, which is specific for neurons, was increased as shown by RT-PCR studies. The results of this study suggest that that S1P can induce neuronal differentiation and may be a good candidate for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jae-Hyuk Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | | | | | | |
Collapse
|
45
|
Sphingosine-1-Phosphate-Specific G Protein-Coupled Receptors as Novel Therapeutic Targets for Atherosclerosis. Pharmaceuticals (Basel) 2011. [PMCID: PMC4052545 DOI: 10.3390/ph4010117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process involving complex interactions of modified lipoproteins, monocyte-derived macrophages or foam cells, lymphocytes, endothelial cells (ECs), and vascular smooth muscle cells. Sphingosine-1-phosphate (S1P), a biologically active blood-borne lipid mediator, exerts pleiotropic effects such as cell proliferation, migration and cell-cell adhesion in a variety of cell types via five members of S1P-specific high-affinity G protein-coupled receptors (S1P1-S1P5). Among them, S1P1, S1P2 and S1P3 are major receptor subtypes which are widely expressed in various tissues. Available evidence suggest that S1P and HDL-bound S1P exert atheroprotective effects including inhibition of leukocyte adhesion and stimulation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) through the activation of Gi signaling pathway via S1P3 and probably S1P1, although there is still controversy. FTY720, the phosphorylation product of which is a high-affinity agonist for all S1P receptors except S1P2 and act as an immunosuppressant by downregulating S1P1 on lymphocytes, inhibits atherosclerosis in LDL receptor-null mice and apoE-null mice through the inhibition of lymphocyte and macrophage functions and probably stimulation of EC functions, without influencing plasma lipid concentrations. In contrast to S1P1 and S1P3, S1P2 facilitates atherosclerosis by activating G12/13-Rho-Rho kinase (ROCK) in apoE-null mice. S1P2 mediates transmigration of monocytes into the arterial intima, oxidized LDL accumulation and cytokine secretion in monocyte-derived macrophages, and eNOS inhibition and cytokine secretion in ECs through Rac inhibition, NF-κB activation and 3′-specific phosphoinositide phosphatase (PTEN) stimulation downstream of G12/13-Rho-ROCK. Systemic long-term administration of a selective S1P2-blocker remarkably inhibits atherosclerosis without overt toxicity. Thus, multiple S1P receptors positively and negatively regulate atherosclerosis through multitudes of mechanisms. Considering the essential and multi-faceted role of S1P2 in atherogenesis and the impact of S1P2 inactivation on atherosclerosis, S1P2 is a particularly promising therapeutic target for atherosclerosis.
Collapse
|
46
|
Papadimitriou E, Kardassis D, Moustakas A, Stournaras C. TGFβ-induced Early Activation of the Small GTPase RhoA is Smad2/3-independent and Involves Src and the Guanine Nucleotide Exchange Factor Vav2. Cell Physiol Biochem 2011; 28:229-38. [DOI: 10.1159/000331734] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2011] [Indexed: 12/12/2022] Open
|
47
|
Argraves KM, Wilkerson BA, Argraves WS. Sphingosine-1-phosphate signaling in vasculogenesis and angiogenesis. World J Biol Chem 2010; 1:291-7. [PMID: 21537462 PMCID: PMC3083932 DOI: 10.4331/wjbc.v1.i10.291] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/29/2010] [Accepted: 09/05/2010] [Indexed: 02/05/2023] Open
Abstract
Blood vessels either form de novo through the process of vasculogenesis or through angiogenesis that involves the sprouting and proliferation of endothelial cells in pre-existing blood vessels. A complex interactive network of signaling cascades downstream from at least three of the nine known G-protein-coupled sphingosine-1-phosphate (S1P) receptors act as a prime effector of neovascularization that occurs in embryonic development and in association with various pathologies. This review focuses on the current knowledge of the roles of S1P signaling in vasculogenesis and angiogenesis, with particular emphasis on vascular cell adhesion and motility responses.
Collapse
Affiliation(s)
- Kelley M Argraves
- Kelley M Argraves, Brent A Wilkerson, W Scott Argraves, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | | | | |
Collapse
|