1
|
Qiu J, Ma Z, Hong Z, Yin X, Chen Y, Ahmed HQ, Zan L, Li A. Comparative analysis of the whole transcriptome landscapes of muscle and adipose tissue in Qinchuan beef cattle. BMC Genomics 2025; 26:32. [PMID: 39810084 PMCID: PMC11731550 DOI: 10.1186/s12864-025-11223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Muscle and adipose tissue are the most critical indicators of beef quality, and their development and function are regulated by noncoding RNAs (ncRNAs). However, the differential regulatory mechanisms of ncRNAs in muscle and adipose tissue remain unclear. RESULTS In this study, 2,343 differentially expressed mRNAs (DEMs), 235 differentially expressed lncRNAs (DELs), 95 differentially expressed circRNAs (DECs) and 54 differentially expressed miRNAs (DEmiRs) were identified in longissimus dorsi muscle (LD), subcutaneous fat (SF) and perirenal fat (VF) in Qinchuan beef cattle. The results of functional enrichment analysis showed that DEMs, DELs, DECs and DEmiRs were enriched in biological processes related to development and function of muscle and fat deposition, including skeletal muscle contraction, muscle organ development, PPAR signaling pathway, fatty acid metabolism and MAPK signaling pathway. Based on the competing endogenous RNA (ceRNA) regulatory mechanism, we constructed a lncRNA/circRNA-miRNA-mRNA network consisting of 6 circRNAs, 5 lncRNAs, 6 miRNAs and 27 mRNAs. Among them, 55 ceRNA axes were involved, including circRNA12990 - bta-miR-133a_L-1R + 1 - MYO6/ZEB2, circRNA2893/MSTRG.28538.1/MSTRG.11613.4 - pma-miR-145-5p_R + 2 - EYA4 and MSTRG.26982.1 - bta-let-7e_R + 1 - RBM40. CONCLUSIONS This study identified a group of differentially expressed mRNAs, lncRNAs, circRNAs and miRNAs between muscle and adipose tissue and constructed a potential ceRNA regulatory network, which may serve as a foundation for studying the differential regulatory roles of ncRNAs in the development and function of muscle and adipose tissue.
Collapse
Affiliation(s)
- Ju Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Zheng Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Zhipeng Hong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xu Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yun Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Hafiz Qadeer Ahmed
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
- Shaanxi Modern Cattle Industry Engineering Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| |
Collapse
|
2
|
López de Las Hazas MDC, Tomé-Carneiro J, Balaguer L, de la Peña G, Chapado LA, Alonso-Bernáldez M, Del Saz-Lara A, Gil-Zamorano J, Burgos-Ramos E, Rodríguez-Pérez M, Gómez-Coronado D, Dávalos A. Dietary plant microRNAs as potential regulators of cellular cholesterol efflux. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:315-324. [PMID: 38584064 DOI: 10.1016/j.arteri.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
AIM Epidemiological evidence suggests adherence to vegetable-rich diets is associated to atheroprotective effects and bioactive components are most likely to play a relevant role. The notion of inter-kingdom regulation has opened a new research paradigm and perhaps microRNAs (miRNAs) from edible vegetables could influence consumer gene expression and lead to biological effects. We aimed to investigate the potential impact of broccoli-derived miRNAs on cellular cholesterol efflux in vitro. METHODS Four miRNAs (miR159a, miR159b, miR166a and miR403) from Brassica oleracea var. italica (broccoli), a widely consumed cruciferous vegetable, were selected for further investigation, based on their high abundancy in this vegetable and their presence in other plants. Selected miRNAs were synthesized with a 3'-terminal 2'-O-methylation and their cellular toxicity, in vitro gastrointestinal resistance and cellular uptake were evaluated. Potential target genes within the mammalian transcriptome were assessed in silico following pathway analysis. In vitro cholesterol efflux was assessed in human THP-1-derived macrophages. RESULTS miRNAs survival to in vitro GI digestion was around 1%, although some variation was seen between the four candidates. Cellular uptake by mammalian cells was confirmed, and an increase in cholesterol efflux was observed. Pathway analysis suggested these miRNAs are involved in biological processes related to phosphorylation, phosphatidylinositol and Wnt signaling, and to the insulin/IGF pathway. CONCLUSIONS Health-promoting properties attributed to cruciferous vegetables, might be mediated (at least in part) through miRNA-related mechanisms.
Collapse
Affiliation(s)
| | - Joao Tomé-Carneiro
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Livia Balaguer
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Gema de la Peña
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Luis A Chapado
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Marta Alonso-Bernáldez
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Andrea Del Saz-Lara
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Judit Gil-Zamorano
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Emma Burgos-Ramos
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, Universidad Castilla-La Mancha, Toledo, Spain
| | - María Rodríguez-Pérez
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, Universidad Castilla-La Mancha, Toledo, Spain
| | - Diego Gómez-Coronado
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain; Consorcio CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
3
|
Salluzzo M, Vianello C, Flotta F, Rimondini R, Carboni L. MicroRNAs Associated with IgLON Cell Adhesion Molecule Expression. Curr Issues Mol Biol 2024; 46:7702-7718. [PMID: 39057097 PMCID: PMC11276434 DOI: 10.3390/cimb46070456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The IgLON family of cell adhesion molecules consists of five members (LSAMP, OPCML, neurotrimin, NEGR1, and IgLON5) discovered as supporters of neuronal development, axon growth and guidance, and synapse formation and maintenance. Tumour suppression properties have recently been emerging based on antiproliferative effects through the modulation of oncogenic pathways. Available evidence endorses a role for non-coding RNAs or microRNAs as relevant controllers of IgLON molecule expression that can impact their critical physiological and pathological roles. Current findings support a function for long non-coding RNAs and microRNAs in the modulation of LSAMP expression in cell senescence, cancer biogenesis, addiction, and pulmonary hypertension. For OPCML, data point to a role for several microRNAs in the control of tumorigenesis. MicroRNAs were detected in neurotrimin-mediated functions in cancer biogenesis and in Schwann cell responses to peripheral nerve injury. For NEGR1, studies have mainly investigated microRNA involvement in neuronal responses to ischaemic injury, although data also exist about tumorigenesis and endothelial cell dysfunction. For IgLON5, information is only available about microRNA involved in myocardial infarction. In conclusion, despite much information being still missing and further research needed, the emerging picture favours a model in which non-coding RNAs exert a crucial role in modulating IgLON expression, ultimately affecting their important physiological functions.
Collapse
Affiliation(s)
- Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Clara Vianello
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, 47921 Rimini, Italy;
| | - Francesca Flotta
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (F.F.); (R.R.)
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (F.F.); (R.R.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
4
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
5
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
6
|
Liu C, Liu X, Li H, Kang Z. Advances in the regulation of adipogenesis and lipid metabolism by exosomal ncRNAs and their role in related metabolic diseases. Front Cell Dev Biol 2023; 11:1173904. [PMID: 37791070 PMCID: PMC10543472 DOI: 10.3389/fcell.2023.1173904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Exosomes are membrane-bound extracellular vesicles released following the fusion of multivesicular bodies (MVBs) with the cell membrane. Exosomes transport diverse molecules, including proteins, lipids, DNA and RNA, and regulate distant intercellular communication. Noncoding RNA (ncRNAs) carried by exosomes regulate cell-cell communication in tissues, including adipose tissue. This review summarizes the action mechanisms of ncRNAs carried by exosomes on adipocyte differentiation and modulation of adipogenesis by exosomal ncRNAs. This study aims to provide valuable insights for developing novel therapeutics.
Collapse
Affiliation(s)
- Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xilin Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Li
- Department of Nursing, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhichen Kang
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Xiao M, Xu J, Wang W, Zhang B, Liu J, Li J, Xu H, Zhao Y, Yu X, Shi S. Functional significance of cholesterol metabolism in cancer: from threat to treatment. Exp Mol Med 2023; 55:1982-1995. [PMID: 37653037 PMCID: PMC10545798 DOI: 10.1038/s12276-023-01079-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 09/02/2023] Open
Abstract
Cholesterol is an essential structural component of membranes that contributes to membrane integrity and fluidity. Cholesterol homeostasis plays a critical role in the maintenance of cellular activities. Recently, increasing evidence has indicated that cholesterol is a major determinant by modulating cell signaling events governing the hallmarks of cancer. Numerous studies have shown the functional significance of cholesterol metabolism in tumorigenesis, cancer progression and metastasis through its regulatory effects on the immune response, ferroptosis, autophagy, cell stemness, and the DNA damage response. Here, we summarize recent literature describing cholesterol metabolism in cancer cells, including the cholesterol metabolism pathways and the mutual regulatory mechanisms involved in cancer progression and cholesterol metabolism. We also discuss various drugs targeting cholesterol metabolism to suggest new strategies for cancer treatment.
Collapse
Affiliation(s)
- Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jialin Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Hang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Yingjun Zhao
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Chen W, Liu Y, Li L, Liang B, Wang S, Xu X, Xing D, Wu X. The potential role and mechanism of circRNAs in foam cell formation. Noncoding RNA Res 2023; 8:315-325. [PMID: 37032721 PMCID: PMC10074414 DOI: 10.1016/j.ncrna.2023.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
Atherosclerosis is a significant risk factor for coronary heart disease (CHD) and myocardial infarction (MI). Atherosclerosis develops during foam cell generation, which is caused by an imbalance in cholesterol uptake, esterification, and efflux. LOX-1, SR-A1, and CD36 all increased cholesterol uptake. ACAT1 and ACAT2 promote free cholesterol (FC) esterification to cholesteryl esters (CE). The hydrolysis of CE to FC was aided by nCEH. FC efflux was promoted by ABCA1, ABCG1, ADAM10, and apoA-I. SR-BI promotes not only cholesterol uptake but also FC efflux. Circular RNAs (circRNAs), which are single-stranded RNAs with a closed covalent circular structure, have emerged as promising biomarkers and therapeutic targets for atherosclerosis due to their highly tissue, cell, and disease state-specific expression profiles. Numerous studies have shown that circRNAs regulate foam cell formation, acting as miRNA sponges to influence atherosclerosis development by regulating the expression of SR-A1, CD36, ACAT2, ABCA1, ABCG1, ADAM10, apoA-I, SR-B1. Several circRNAs, including circ-Wdr91, circ 0004104, circRNA0044073, circRNA_0001805, circDENND1B, circRSF1, circ 0001445, and circRNA 102682, are potential biomarkers for atherosclerosis to better evaluate cardiovascular risk. It is difficult to deliver synthetic therapeutic circRNAs to the desired target tissues. Nanotechnology, such as GA-RM/GZ/PL, may be an important solution to this problem. In this review, we focus on the potential role and mechanism of circRNA/miRNA axis in foam cell formation in the hopes of discovering new targets for the diagnosis, prevention, and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
| | - Yihui Liu
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261031, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Bing Liang
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
| | - Shuai Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261031, China
| | - Xiaodan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Corresponding author.
| | - Dongming Xing
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Corresponding author. Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China.
| | - Xiaolin Wu
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
- Corresponding author. Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China.
| |
Collapse
|
9
|
Dlouha D, Blaha M, Huckova P, Lanska V, Hubacek JA, Blaha V. Long-Term LDL-Apheresis Treatment and Dynamics of Circulating miRNAs in Patients with Severe Familial Hypercholesterolemia. Genes (Basel) 2023; 14:1571. [PMID: 37628623 PMCID: PMC10454435 DOI: 10.3390/genes14081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Lipoprotein apheresis (LA) is a therapeutic option for patients with severe hypercholesterolemia who have persistently elevated LDL-C levels despite attempts at drug therapy. MicroRNAs (miRNAs), important posttranscriptional gene regulators, are involved in the pathogenesis of atherosclerosis. Our study aimed to monitor the dynamics of twenty preselected circulating miRNAs in patients under long-term apheresis treatment. Plasma samples from 12 FH patients (men = 50%, age = 55.3 ± 12.2 years; mean LA overall treatment time = 13.1 ± 7.8 years) were collected before each apheresis therapy every sixth month over the course of four years of treatment. Eight complete follow-up (FU) samples were measured in each patient. Dynamic changes in the relative quantity of 6 miRNAs (miR-92a, miR-21, miR-126, miR-122, miR-26a, and miR-185; all p < 0.04) during FU were identified. Overall apheresis treatment time influenced circulating miR-146a levels (p < 0.04). In LDLR mutation homozygotes (N = 5), compared to heterozygotes (N = 7), we found higher plasma levels of miR-181, miR-126, miR-155, and miR-92a (all p < 0.03). Treatment with PCSK9 inhibitors (N = 6) affected the plasma levels of 7 miRNAs (miR-126, miR-122, miR-26a, miR-155, miR-125a, miR-92a, and miR-27a; all p < 0.04). Long-term monitoring has shown that LA in patients with severe familial hypercholesterolemia influences plasma circulating miRNAs involved in endothelial dysfunction, cholesterol homeostasis, inflammation, and plaque development. The longer the treatment using LA, the better the miRNA milieu depicting the potential cardiovascular risk.
Collapse
Affiliation(s)
- Dana Dlouha
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (P.H.); (J.A.H.)
| | - Milan Blaha
- 4th Department of Internal Medicine—Hematology, University Hospital Hradec Králové, 50005 Hradec Králové, Czech Republic;
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic;
| | - Pavlina Huckova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (P.H.); (J.A.H.)
| | - Vera Lanska
- Statistical Unit, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
| | - Jaroslav Alois Hubacek
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (P.H.); (J.A.H.)
- 1st Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| | - Vladimir Blaha
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic;
- 3rd Department of Internal Medicine—Metabolism and Gerontology, University Hospital Hradec Králové, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
10
|
Chen W, Xu J, Wu Y, Liang B, Yan M, Sun C, Wang D, Hu X, Liu L, Hu W, Shao Y, Xing D. The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis. Int J Biol Sci 2023; 19:2879-2896. [PMID: 37324939 PMCID: PMC10266072 DOI: 10.7150/ijbs.84994] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Cholesterol levels are an initiating risk factor for atherosclerosis. Many genes play a central role in cholesterol synthesis, including HMGCR, SQLE, HMGCS1, FDFT1, LSS, MVK, PMK, MVD, FDPS, CYP51, TM7SF2, LBR, MSMO1, NSDHL, HSD17B7, DHCR24, EBP, SC5D, DHCR7, IDI1/2. Especially, HMGCR, SQLE, FDFT1, LSS, FDPS, CYP51, and EBP are promising therapeutic targets for drug development due to many drugs have been approved and entered into clinical research by targeting these genes. However, new targets and drugs still need to be discovered. Interestingly, many small nucleic acid drugs and vaccines were approved for the market, including Inclisiran, Patisiran, Inotersen, Givosiran, Lumasiran, Nusinersen, Volanesorsen, Eteplirsen, Golodirsen, Viltolarsen, Casimersen, Elasomeran, Tozinameran. However, these agents are all linear RNA agents. Circular RNAs (circRNAs) may have longer half-lives, higher stability, lower immunogenicity, lower production costs, and higher delivery efficiency than these agents due to their covalently closed structures. CircRNA agents are developed by several companies, including Orna Therapeutics, Laronde, and CirCode, Therorna. Many studies have shown that circRNAs regulate cholesterol synthesis by regulating HMGCR, SQLE, HMGCS1, ACS, YWHAG, PTEN, DHCR24, SREBP-2, and PMK expression. MiRNAs are essential for circRNA-mediated cholesterol biosynthesis. Notable, the phase II trial for inhibiting miR-122 with nucleic acid drugs has been completed. Suppressing HMGCR, SQLE, and miR-122 with circRNA_ABCA1, circ-PRKCH, circEZH2, circRNA-SCAP, and circFOXO3 are the promising therapeutic target for drug development, specifically the circFOXO3. This review focuses on the role and mechanism of the circRNA/miRNA axis in cholesterol synthesis in the hope of providing knowledge to identify new targets.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Mingzhe Yan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Chuandong Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Dong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiaokun Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Interventional Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Li Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Community Health Promotion, Qingdao Municipal Center for Disease Control & Prevention, Qingdao Institute of Preventive Medicine, Qingdao, Shandong, 266033, China
| | - Wenchao Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266000, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Frutos MFD, Pardo-Marqués V, Torrecilla-Parra M, Rada P, Pérez-García A, Martín-Martín Y, de la Peña G, Gómez A, Toledano-Zaragoza A, Gómez-Coronado D, Casarejos MJ, Solís JM, Rotllán N, Pastor Ó, Ledesma MD, Valverde ÁM, Busto R, Ramírez CM. "MiR-7 controls cholesterol biosynthesis through posttranscriptional regulation of DHCR24 expression". BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194938. [PMID: 37086967 DOI: 10.1016/j.bbagrm.2023.194938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Dysregulation of cholesterol homeostasis is associated with several pathologies including cardiovascular diseases and neurological disorders such as Alzheimer's disease (AD). MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of cholesterol metabolism. We previously established the role of miR-7 in regulating insulin resistance and amyloidosis, which represents a common pathological feature between type 2 diabetes and AD. We show here an additional metabolic function of miR-7 in cholesterol biosynthesis. We found that miR-7 blocks the last steps of the cholesterol biosynthetic pathway in vitro by targeting relevant genes including DHCR24 and SC5D posttranscriptionally. Intracranial infusion of miR-7 on an adeno-associated viral vector reduced the expression of DHCR24 in the brain of wild-type mice, supporting in vivo miR-7 targeting. We also found that cholesterol regulates endogenous levels of miR-7 in vitro, correlating with transcriptional regulation through SREBP2 binding to its promoter region. In parallel to SREBP2 inhibition, the levels of miR-7 and hnRNPK (the host gene of miR-7) were concomitantly reduced in brain in a mouse model of Niemann Pick type C1 disease and in murine fatty liver, which are both characterized by intracellular cholesterol accumulation. Taken together, the results establish a novel regulatory feedback loop by which miR-7 modulates cholesterol homeostasis at the posttranscriptional level, an effect that could be exploited for therapeutic interventions against prevalent human diseases.
Collapse
Affiliation(s)
| | | | | | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Pérez-García
- IMDEA Research Institute of Food & Health Sciences, Madrid, Spain
| | | | - Gema de la Peña
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Ana Gómez
- Department of Neurobiology-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Ana Toledano-Zaragoza
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Diego Gómez-Coronado
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - María José Casarejos
- Department of Neurobiology-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - José M Solís
- Department of Neurobiology-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Noemí Rotllán
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Óscar Pastor
- Department of Clinical Biochemistry, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - María Dolores Ledesma
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Rebeca Busto
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain.
| | | |
Collapse
|
12
|
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11:1147434. [PMID: 36994095 PMCID: PMC10041730 DOI: 10.3389/fcell.2023.1147434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.
Collapse
Affiliation(s)
| | | | | | - Ada Weinstock
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Sprenkle NT, Serezani CH, Pua HH. MicroRNAs in Macrophages: Regulators of Activation and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:359-368. [PMID: 36724439 PMCID: PMC10316964 DOI: 10.4049/jimmunol.2200467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
Macrophages are sentinels of the innate immune system that maintain tissue homeostasis and contribute to inflammatory responses. Their broad scope of action depends on both functional heterogeneity and plasticity. Small noncoding RNAs called microRNAs (miRNAs) contribute to macrophage function as post-transcriptional inhibitors of target gene networks. Genetic and pharmacologic studies have uncovered genes regulated by miRNAs that control macrophage cellular programming and macrophage-driven pathology. miRNAs control proinflammatory M1-like activation, immunoregulatory M2-like macrophage activation, and emerging macrophage functions in metabolic disease and innate immune memory. Understanding the gene networks regulated by individual miRNAs enhances our understanding of the spectrum of macrophage function at steady state and during responses to injury or pathogen invasion, with the potential to develop miRNA-based therapies. This review aims to consolidate past and current studies investigating the complexity of the miRNA interactome to provide the reader with a mechanistic view of how miRNAs shape macrophage behavior.
Collapse
Affiliation(s)
| | - C Henrique Serezani
- Department of Pathology, Microbiology, and Immunology
- Department of Medicine, Division of Infectious Diseases
- Vanderbilt Center for Immunobiology, Nashville, Tennessee 37232, USA
- Vandebilt Institute of Infection, Immunology and Inflammation; Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Heather H Pua
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, Nashville, Tennessee 37232, USA
- Vandebilt Institute of Infection, Immunology and Inflammation; Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
14
|
Sumaiya K, Ponnusamy T, Natarajaseenivasan K, Shanmughapriya S. Cardiac Metabolism and MiRNA Interference. Int J Mol Sci 2022; 24:50. [PMID: 36613495 PMCID: PMC9820363 DOI: 10.3390/ijms24010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The aberrant increase in cardio-metabolic diseases over the past couple of decades has drawn researchers' attention to explore and unveil the novel mechanisms implicated in cardiometabolic diseases. Recent evidence disclosed that the derangement of cardiac energy substrate metabolism plays a predominant role in the development and progression of chronic cardiometabolic diseases. Hence, in-depth comprehension of the novel molecular mechanisms behind impaired cardiac metabolism-mediated diseases is crucial to expand treatment strategies. The complex and dynamic pathways of cardiac metabolism are systematically controlled by the novel executor, microRNAs (miRNAs). miRNAs regulate target gene expression by either mRNA degradation or translational repression through base pairing between miRNA and the target transcript, precisely at the 3' seed sequence and conserved heptametrical sequence in the 5' end, respectively. Multiple miRNAs are involved throughout every cardiac energy substrate metabolism and play a differential role based on the variety of target transcripts. Novel theoretical strategies have even entered the clinical phase for treating cardiometabolic diseases, but experimental evidence remains inadequate. In this review, we identify the potent miRNAs, their direct target transcripts, and discuss the remodeling of cardiac metabolism to cast light on further clinical studies and further the expansion of novel therapeutic strategies. This review is categorized into four sections which encompass (i) a review of the fundamental mechanism of cardiac metabolism, (ii) a divulgence of the regulatory role of specific miRNAs on cardiac metabolic pathways, (iii) an understanding of the association between miRNA and impaired cardiac metabolism, and (iv) summary of available miRNA targeting therapeutic approaches.
Collapse
Affiliation(s)
- Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Thiruvelselvan Ponnusamy
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
15
|
Aranda JF, Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Mateos-Gómez PA, Pardo-Marqués V, Busto R, Ramírez CM. Role of miR-199a-5p in the post-transcriptional regulation of ABCA1 in response to hypoxia in peritoneal macrophages. Front Cardiovasc Med 2022; 9:994080. [PMID: 36407436 PMCID: PMC9669644 DOI: 10.3389/fcvm.2022.994080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 01/03/2025] Open
Abstract
Hypoxia is a crucial factor contributing to maintenance of atherosclerotic lesions. The ability of ABCA1 to stimulate the efflux of cholesterol from cells in the periphery, particularly foam cells in atherosclerotic plaques, is an important anti-atherosclerotic mechanism. The posttranscriptional regulation by miRNAs represents a key regulatory mechanism of a number of signaling pathways involved in atherosclerosis. Previously, miR-199a-5p has been shown to be implicated in the endocytic and retrograde intracellular transport. Although the regulation of miR-199a-5p and ABCA1 by hypoxia has been already reported independently, the role of miR-199a-5p in macrophages and its possible role in atherogenic processes such us regulation of lipid homeostasis through ABCA1 has not been yet investigated. Here, we demonstrate that both ABCA1 and miR-199a-5p show an inverse regulation by hypoxia and Ac-LDL in primary macrophages. Moreover, we demonstrated that miR-199a-5p regulates ABCA1 mRNA and protein levels by directly binding to its 3'UTR. As a result, manipulation of cellular miR-199a-5p levels alters ABCA1 expression and cholesterol efflux in primary mouse macrophages. Taken together, these results indicate that the correlation between ABCA1-miR-199a-5p could be exploited to control macrophage cholesterol efflux during the onset of atherosclerosis, where cholesterol alterations and hypoxia play a pathogenic role.
Collapse
Affiliation(s)
- Juan Francisco Aranda
- Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Ana Pérez-García
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | | | | | | | - Pedro A. Mateos-Gómez
- Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | | | - Rebeca Busto
- Department of Clinical Biochemistry, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | | |
Collapse
|
16
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
17
|
Rotllan N, Zhang X, Canfrán-Duque A, Goedeke L, Griñán R, Ramírez CM, Suárez Y, Fernández-Hernando C. Antagonism of miR-148a attenuates atherosclerosis progression in APOB TGApobec -/-Ldlr +/- mice: A brief report. Biomed Pharmacother 2022; 153:113419. [PMID: 36076541 PMCID: PMC11140622 DOI: 10.1016/j.biopha.2022.113419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE miR-148a-3p (miR-148a) is a hepatic and immune-enriched microRNA (miRNA) that regulates macrophage-related lipoprotein metabolism, cholesterol homeostasis, and inflammation. The contribution of miR-148a-3p to the progression of atherosclerosis is unknown. In this study, we determined whether miR-148a silencing mitigated atherogenesis in APOBTGApobec-/-Ldlr+/- mice. METHODS APOBTGApobec-/-Ldlr+/- mice were fed a typical Western-style diet for 22 weeks and injected with a nontargeting locked nucleic acid (LNA; LNA control) or miR-148a LNA (LNA 148a) for the last 10 weeks. At the end of the treatment, the mice were sacrificed, and circulating lipids, hepatic gene expression, and atherosclerotic lesions were analyzed. RESULTS Examination of atherosclerotic lesions revealed a significant reduction in plaque size, with marked remodeling of the lesions toward a more stable phenotype. Mechanistically, miR-148a levels influenced macrophage cholesterol efflux and the inflammatory response. Suppression of miR-148a in murine primary macrophages decreased mRNA levels of proinflammatory M1-like markers (Nos2, Il6, Cox2, and Tnf) and increased the expression of anti-inflammatory genes (Arg1, Retlna, and Mrc1). CONCLUSIONS Therapeutic silencing of miR148a mitigated the progression of atherosclerosis and promoted plaque stability. The antiatherogenic effect of miR-148a antisense therapy is likely mediated by the anti-inflammatory effects observed in macrophages treated with miR-148 LNA and independent of significant changes in circulating low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C).
Collapse
Affiliation(s)
- Noemi Rotllan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Raquel Griñán
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Cristina M Ramírez
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
New Insights on the Regulation of the Insulin-Degrading Enzyme: Role of microRNAs and RBPs. Cells 2022; 11:cells11162538. [PMID: 36010613 PMCID: PMC9406717 DOI: 10.3390/cells11162538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The evident implication of the insulin-degrading enzyme (IDE) in Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM), among its capacity to degrade insulin and amyloid-β peptide (Aβ), suggests that IDE could be an essential link in the relation between hyperinsulinemia, insulin resistance and AD. However, little is known about the cellular and molecular regulation of IDE expression, and even less has been explored regarding the post-transcriptional regulation of IDE, although it represents a great molecular target of interest for therapeutic treatments. We recently described that miR-7, a novel candidate for linking AD and T2DM at the molecular level, regulates IDE and other key genes in both pathologies, including some key genes involved in the insulin signaling pathway. Here, we explored whether other miRNAs as well as other post-transcriptional regulators, such as RNA binding proteins (RBP), could potentially participate in the regulation of IDE expression in vitro. Our data showed that in addition to miR-7, miR-125, miR-490 and miR-199 regulate IDE expression at the post-transcriptional level. Moreover, we also found that IDE contains multiple potential binding sites for several RBPs, and a narrow-down prediction analysis led us to speculate on a novel regulation of IDE by RALY and HuD. Taken together, these results demonstrate the novel players controlling IDE expression that could represent potential therapeutical targets to treat several metabolic diseases with a high impact on human health, including AD and T2DM.
Collapse
|
19
|
Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacol Ther 2022; 236:108215. [DOI: 10.1016/j.pharmthera.2022.108215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
20
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
21
|
HDL and microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:153-161. [DOI: 10.1007/978-981-19-1592-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
23
|
Kardassis D, Thymiakou E, Chroni A. Genetics and regulation of HDL metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159060. [PMID: 34624513 DOI: 10.1016/j.bbalip.2021.159060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The inverse association between plasma HDL cholesterol (HDL-C) levels and risk for cardiovascular disease (CVD) has been demonstrated by numerous epidemiological studies. However, efforts to reduce CVD risk by pharmaceutically manipulating HDL-C levels failed and refused the HDL hypothesis. HDL-C levels in the general population are highly heterogeneous and are determined by a combination of genetic and environmental factors. Insights into the causes of HDL-C heterogeneity came from the study of monogenic HDL deficiency syndromes but also from genome wide association and Μendelian randomization studies which revealed the contribution of a large number of loci to low or high HDL-C cases in the general or in restricted ethnic populations. Furthermore, HDL-C levels in the plasma are under the control of transcription factor families acting primarily in the liver including members of the hormone nuclear receptors (PPARs, LXRs, HNF-4) and forkhead box proteins (FOXO1-4) and activating transcription factors (ATFs). The effects of certain lipid lowering drugs used today are based on the modulation of the activity of specific members of these transcription factors. During the past decade, the roles of small or long non-coding RNAs acting post-transcriptionally on the expression of HDL genes have emerged and provided novel insights into HDL regulation and new opportunities for therapeutic interventions. In the present review we summarize recent progress made in the genetics and the regulation (transcriptional and post-transcriptional) of HDL metabolism.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
24
|
Bhattarai A, Likos EM, Weyman CM, Shukla GC. Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective. Steroids 2021; 173:108878. [PMID: 34174291 DOI: 10.1016/j.steroids.2021.108878] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Cellular disruption of lipid and cholesterol metabolism results in pathological processes linked to metabolic and cardiovascular diseases. Classically, at the transcription stages, the Cholesterol levels are controlled by two cellular pathways. First, the SREBP transcription factor family controls Cholesterol biosynthesis via transcriptional regulation of critical rate-limiting cholesterogenic and lipogenic proteins. Secondly, The LXR/RXR transcription factor family controls cholesterol shuttling via transcriptional regulation of cholesterol transport proteins. In addition, the posttranscriptional control of gene expression of various enzymes and proteins of cholesterol biosynthesis pathways is mediated by small non-coding microRNAs. Regulatory noncoding miRNAs are critical regulators of biological processes, including developmental and metabolic functions. miRNAs function to fine-tune lipid and cholesterol metabolism pathways by controlling the mRNA levels and translation of critical molecules in each pathway. This review discusses the regulatory roles of miRNAs in cholesterol and lipid metabolism via direct and indirect effects on their target genes, including SREBP, LXR, HDL, LDL, and ABCA transporters. We also discuss the therapeutic implications of miRNA functions and their purported role in the potentiation of small molecule therapies.
Collapse
Affiliation(s)
- Asmita Bhattarai
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Eviania M Likos
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Crystal M Weyman
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Girish C Shukla
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| |
Collapse
|
25
|
MicroRNA-758 Regulates Oral Squamous Cell Carcinoma via COX-2. Indian J Surg 2021. [DOI: 10.1007/s12262-020-02543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
26
|
HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development. Cancers (Basel) 2021; 13:cancers13102485. [PMID: 34069740 PMCID: PMC8161081 DOI: 10.3390/cancers13102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary According to the last estimate by the World Health Organization (WHO), more than 71 million individuals have chronic hepatitis C worldwide. The persistence of HCV infection leads to chronic hepatitis, which can evolve into liver cirrhosis and ultimately into hepatocellular carcinoma (HCC). Although the pathogenic mechanisms are not fully understood, it is well established that an interplay between host cell factors, including microRNAs (miRNA), and viral components exist in all the phases of the viral infection and replication. Those interactions establish a complex equilibrium between host cells and HCV and participate in multiple mechanisms characterizing hepatitis C pathogenesis. The present review aims to describe the role of HCV structural and non-structural proteins in the modulation of cellular miRNA during HCV infection and pathogenesis. Abstract Hepatitis C virus (HCV) genome encodes for one long polyprotein that is processed by cellular and viral proteases to generate 10 polypeptides. The viral structural proteins include the core protein, and the envelope glycoproteins E1 and E2, present at the surface of HCV particles. Non-structural (NS) proteins consist of NS1, NS2, NS3, NS4A, NS4B, NS5a, and NS5b and have a variable function in HCV RNA replication and particle assembly. Recent findings evidenced the capacity of HCV virus to modulate host cell factors to create a favorable environment for replication. Indeed, increasing evidence has indicated that the presence of HCV is significantly associated with aberrant miRNA expression in host cells, and HCV structural and non-structural proteins may be responsible for these alterations. In this review, we summarize the recent findings on the role of HCV structural and non-structural proteins in the modulation of host cell miRNAs, with a focus on the molecular mechanisms responsible for the cell re-programming involved in viral replication, immune system escape, as well as the oncogenic process. In this regard, structural and non-structural proteins have been shown to modulate the expression of several onco-miRNAs or tumor suppressor miRNAs.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and circular RNAs (circRNAs) are pivotal regulators of mRNA and protein expression that critically contribute to cardiovascular pathophysiology. Although little is known about the origin and function of such ncRNAs, they have been suggested as promising biomarkers with powerful therapeutic value in cardiovascular disease (CVD). In this review, we summarize the most recent findings on ncRNAs biology and their implication on cholesterol homeostasis and lipoprotein metabolism that highlight novel therapeutic avenues for treating dyslipidemia and atherosclerosis. RECENT FINDINGS Clinical and experimental studies have elucidated the underlying effects that specific miRNAs impose both directly and indirectly regulating circulating high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) metabolism and cardiovascular risk. Some of these relevant miRNAs include miR-148a, miR-128-1, miR-483, miR-520d, miR-224, miR-30c, miR-122, miR-33, miR-144, and miR-34. circRNAs are known to participate in a variety of physiological and pathological processes due to their abundance in tissues and their stage-specific expression activation. Recent studies have proven that circRNAs may be considered targets of CVD as well. Some of these cirRNAs are circ-0092317, circ_0003546, circ_0028198, and cirFASN that have been suggested to be strongly involved in lipoprotein metabolism; however, their relevance in CVD is still unknown. MicroRNA and cirRNAs have been proposed as powerful therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field of lipid and lipoprotein metabolism underscoring the novel mechanisms by which some of these ncRNAs influence lipoprotein metabolism and CVD.
Collapse
|
28
|
Tsui PF, Chern CY, Lien CF, Lin FY, Tsai CS, Tsai MC, Lin CS. An octimibate derivative, Oxa17, enhances cholesterol efflux and exerts anti-inflammatory and atheroprotective effects in experimental atherosclerosis. Biochem Pharmacol 2021; 188:114581. [PMID: 33895158 DOI: 10.1016/j.bcp.2021.114581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Atherosclerotic cardiovascular diseases (ASCVDs), associated with vascular inflammation and lipid dysregulation, are responsible for high morbidity and mortality rates globally. For ASCVD treatment, cholesterol efflux plays an atheroprotective role in ameliorating inflammation and lipid dysregulation. To develop a multidisciplinary agent for promoting cholesterol efflux, octimibate derivatives were screened and investigated for the expression of ATP-binding cassette transporter A1 (ABCA1). Western blotting and qPCR analysis were conducted to determine the molecular mechanism associated with ABCA1 expression in THP-1 macrophages; results revealed that Oxa17, an octimibate derivative, enhanced ABCA1 expression through liver X receptors alpha (LXRα) activation but not through the microRNA pathway. We also investigated the role of Oxa17 in high-fat diet (HFD)-fed mice used as an in vivo atherosclerosis-prone model. In ldlr-/- mice, Oxa17 increased plasma high-density lipoprotein (HDL) and reduced plaque formation in the aorta. Plaque stability improved via reduction of macrophage accumulation and via narrowing of the necrotic core size under Oxa17 treatment. Our study demonstrates that Oxa17 is a novel and potential agent for ASCVD treatment with atheroprotective and anti-inflammatory properties.
Collapse
Affiliation(s)
- Pi-Fen Tsui
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ching-Yuh Chern
- Department of Applied Chemistry, National Chiayi University, Chiayi City 60004, Taiwan
| | - Chih-Feng Lien
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Research Institute and Departments of Internal Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan; Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chin-Sheng Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
29
|
Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. Foam Cells as Therapeutic Targets in Atherosclerosis with a Focus on the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:2529. [PMID: 33802600 PMCID: PMC7961492 DOI: 10.3390/ijms22052529] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a major cause of human cardiovascular disease, which is the leading cause of mortality around the world. Various physiological and pathological processes are involved, including chronic inflammation, dysregulation of lipid metabolism, development of an environment characterized by oxidative stress and improper immune responses. Accordingly, the expansion of novel targets for the treatment of atherosclerosis is necessary. In this study, we focus on the role of foam cells in the development of atherosclerosis. The specific therapeutic goals associated with each stage in the formation of foam cells and the development of atherosclerosis will be considered. Processing and metabolism of cholesterol in the macrophage is one of the main steps in foam cell formation. Cholesterol processing involves lipid uptake, cholesterol esterification and cholesterol efflux, which ultimately leads to cholesterol equilibrium in the macrophage. Recently, many preclinical studies have appeared concerning the role of non-encoding RNAs in the formation of atherosclerotic lesions. Non-encoding RNAs, especially microRNAs, are considered regulators of lipid metabolism by affecting the expression of genes involved in the uptake (e.g., CD36 and LOX1) esterification (ACAT1) and efflux (ABCA1, ABCG1) of cholesterol. They are also able to regulate inflammatory pathways, produce cytokines and mediate foam cell apoptosis. We have reviewed important preclinical evidence of their therapeutic targeting in atherosclerosis, with a special focus on foam cell formation.
Collapse
Affiliation(s)
- Amin Javadifar
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.J.); (S.R.)
| | - Sahar Rastgoo
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.J.); (S.R.)
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 93338 Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93338 Lodz, Poland
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108-2718, USA;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
30
|
Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int J Mol Sci 2021; 22:ijms22041593. [PMID: 33562440 PMCID: PMC7915494 DOI: 10.3390/ijms22041593] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Diana Jhoseline Medina-Leyte
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico
| | - Antonia González-Garrido
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Correspondence:
| |
Collapse
|
31
|
Zhang S, Li L, Wang J, Zhang T, Ye T, Wang S, Xing D, Chen W. Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs. Clin Chim Acta 2021; 516:100-110. [PMID: 33545111 DOI: 10.1016/j.cca.2021.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Coronary heart disease (CHD) with atherosclerosis is the leading cause of death worldwide. ABCA1 and ABCG1 promote cholesterol efflux to suppress foam cell generation and reduce atherosclerosis development. Long noncoding RNAs (lncRNAs) are emerging as a unique group of RNA transcripts that longer than 200 nucleotides and have no protein-coding potential. Many studies have found that lncRNAs regulate cholesterol efflux to influence atherosclerosis development. ABCA1 is regulated by different lncRNAs, including MeXis, GAS5, TUG1, MEG3, MALAT1, Lnc-HC, RP5-833A20.1, LOXL1-AS1, CHROME, DAPK1-IT1, SIRT1 AS lncRNA, DYNLRB2-2, DANCR, LeXis, LOC286367, and LncOR13C9. ABCG1 is also regulated by different lncRNAs, including TUG1, GAS5, RP5-833A20.1, DYNLRB2-2, ENST00000602558.1, and AC096664.3. Thus, various lncRNAs are associated with the roles of ABCA1 and ABCG1 on cholesterol efflux in atherosclerosis regulation. However, some lncRNAs play dual roles in ABCA1 expression and atherosclerosis, and the functions of some lncRNAs in atherosclerosis have not been investigated in vivo. In this article, we review the roles of lncRNAs in atherosclerosis and focus on new insights into lncRNAs associated with the roles of ABCA1 and ABCG1 on cholesterol efflux and the potential of these lncRNAs as novel therapeutic targets in atherosclerosis.
Collapse
Affiliation(s)
- Shun Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Lu Li
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jie Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Tingting Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Ting Ye
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shuai Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China.
| |
Collapse
|
32
|
Citrin KM, Fernández-Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Ann N Y Acad Sci 2021; 1495:55-77. [PMID: 33521946 DOI: 10.1111/nyas.14566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Since many microRNAs have multiple mRNA targets, they are uniquely positioned to regulate the expression of several molecules and pathways simultaneously. For example, the multiple stages of cholesterol metabolism are heavily influenced by microRNA activity. Understanding the scope of microRNAs that control this pathway is highly relevant to diseases of perturbed cholesterol metabolism, most notably cardiovascular disease (CVD). Atherosclerosis is a common cause of CVD that involves inflammation and the accumulation of cholesterol-laden cells in the arterial wall. However, several different cell types participate in atherosclerosis, and perturbations in cholesterol homeostasis may have unique effects on the specialized functions of these various cell types. Therefore, our review discusses the current knowledge of microRNA-mediated control of cholesterol homeostasis, followed by speculation as to how these microRNA-mRNA target interactions might have distinctive effects on different cell types that participate in atherosclerosis.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Yajaira Suárez
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
33
|
Implications for MicroRNA involvement in the prognosis and treatment of atherosclerosis. Mol Cell Biochem 2021; 476:1327-1336. [PMID: 33389489 DOI: 10.1007/s11010-020-03992-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs) are important molecules which implicated in various processes, such as differentiation, development, cell survival, cell apoptosis and also cell metabolism. Investigations over decades have revealed that various genes and signaling pathways are implicated in beginning and development of atherosclerosis, several miRNAs being involved in these dysregulated genes and pathways. miRNAs have provided new molecular vision in the context of atherosclerosis. miRNAs are considered as important regulators of cellular migration, differentiation, proliferation, lipid uptake and efflux, as well as cytokine production. Application of miRNAs as a biomarker in diagnosis, prognosis and even therapy is quiet exciting. Although animal researches showed promising results, still some practical difficulties and technical challenges need to be addressed before translation from researches into clinical practices. In this review, we present important data about three critical cells endothelial cell (EC), vascular smooth muscle cell (VSMC), and monocyte/macrophage and regulation of these cells through miRNAs. Furthermore, we discuss about the potential of miRNAs as a prognostic and diagnostic biomarkers, therapeutic opportunities and challenges, and also future perspective.
Collapse
|
34
|
Liu D, Zhao D, Zhao Y, Wang Y, Zhao Y, Wen C. Inhibition of microRNA-155 Alleviates Cognitive Impairment in Alzheimer's Disease and Involvement of Neuroinflammation. Curr Alzheimer Res 2020; 16:473-482. [PMID: 31456514 DOI: 10.2174/1567205016666190503145207] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/25/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuroinflammation has important effects on cognitive functions in the pathophysiological process of Alzheimer's Disease (AD). In the current report, we determined the effects of microRNA-155 (miR-155) on the levels of IL-1β, IL-6 and TNF-α, and their respective receptors in the hippocampus using a rat model of AD. METHODS Real-time RT-PCR, ELISA and western blot analysis were used to examine the miR-155, PICs and PIC receptors. The Morris water maze and spatial working memory tests were used to assess cognitive functions. RESULTS miR-155 was increased in the hippocampus of AD rats, accompanied by amplification of IL-1β, IL-6 and TNF-α. Intracerebroventricular infusion of miR-155 inhibitor, but not its scramble attenuated the increases of IL-1β, IL-6 and TNF-α and upregulation of their receptors. MiR-155 inhibitor also attenuated upregulation of apoptotic Caspase-3 in the hippocampus of AD rats. Notably, inhibition of miR- 155 or PIC receptors largely recovered the impaired learning performance in AD rat. CONCLUSION We showed the critical role of miR-155 in regulating the memory impairment in AD rats likely via engagement of neuroinflammatory mechanisms, suggesting that miR-155 and its signaling molecules may present prospects in preventing and/or improving the development of the impaired cognitive functions in AD.
Collapse
Affiliation(s)
- Dandan Liu
- Center of Physical Examination, The First Hospital of Jilin University Changchun, Jilin 130021, China
| | - Dandan Zhao
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University Changchun, Jilin 130021, China
| | - Yingkai Zhao
- Department of Gerontology, The First Hospital of Jilin University Changchun, Jilin 130021, China
| | - Yan Wang
- Department of Gerontology, The First Hospital of Jilin University Changchun, Jilin 130021, China
| | - Yong Zhao
- Department of Thoracic Surgery The First Hospital of Jilin University Changchun, Jilin 130021, China
| | - Chengfei Wen
- Department of Cardiology, The First Hospital (Eastern Division) of Jilin University, Changchun, Jilin 130031, China
| |
Collapse
|
35
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|
36
|
Saw PE, Xu X, Chen J, Song EW. Non-coding RNAs: the new central dogma of cancer biology. SCIENCE CHINA-LIFE SCIENCES 2020; 64:22-50. [PMID: 32930921 DOI: 10.1007/s11427-020-1700-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
The central dogma of molecular biology states that the functions of RNA revolve around protein translation. Until the last decade, most researches were geared towards characterization of RNAs as intermediaries in protein translation, namely, messenger RNAs (mRNAs) as temporary copies of genetic information, ribosomal RNAs (rRNAs) as a main component of ribosome, or translators of codon sequence (tRNAs). The statistical reality, however, is that these processes account for less than 2% of the genome, and insufficiently explain the functionality of 98% of transcribed RNAs. Recent discoveries have unveiled thousands of unique non-coding RNAs (ncRNAs) and shifted the perception of them from being "junk" transcriptional products to "yet to be elucidated"-and potentially monumentally important-RNAs. Most ncRNAs are now known as key regulators in various networks in which they could lead to specific cellular responses and fates. In major cancers, ncRNAs have been identified as both oncogenic drivers and tumor suppressors, indicating a complex regulatory network among these ncRNAs. Herein, we provide a comprehensive review of the various ncRNAs and their functional roles in cancer, and the pre-clinical and clinical development of ncRNA-based therapeutics. A deeper understanding of ncRNAs could facilitate better design of personalized therapeutics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
37
|
Chen LW, Tsai MC, Chern CY, Tsao TP, Lin FY, Chen SJ, Tsui PF, Liu YW, Lu HJ, Wu WL, Lin WS, Tsai CS, Lin CS. A chalcone derivative, 1m-6, exhibits atheroprotective effects by increasing cholesterol efflux and reducing inflammation-induced endothelial dysfunction. Br J Pharmacol 2020; 177:5375-5392. [PMID: 32579243 DOI: 10.1111/bph.15175] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis, resulting from lipid dysregulation and vascular inflammation, causes atherosclerotic cardiovascular disease (ASCVD), which contributes to morbidity and mortality worldwide. Chalcone and its derivatives possess beneficial properties, including anti-inflammatory, antioxidant and antitumour activity with unknown cardioprotective effects. We aimed to develop an effective chalcone derivative with antiatherogenic potential. EXPERIMENTAL APPROACH Human THP-1 cells and HUVECs were used as in vitro models. Western blots and real-time PCRs were performed to quantify protein, mRNA and miRNA expressions. The cholesterol efflux capacity was assayed by 3 H labelling of cholesterol. LDL receptor knockout (Ldlr-/- ) mice fed a high-fat diet were used as an in vivo atherogenesis model. Haematoxylin and eosin and oil red O staining were used to analyse plaque formation. KEY RESULTS Using ATP-binding cassette transporter A1 (ABCA1) expression we identified the chalcone derivative, 1m-6, which enhances ABCA1 expression and promotes cholesterol efflux in THP-1 macrophages. Moreover, 1m-6 stabilizes ABCA1 mRNA and suppresses the expression of potential ABCA1-regulating miRNAs through nuclear factor erythroid 2-related factor 2 (Nrf2)/haem oxygenase-1 (HO-1) signalling. Additionally, 1m-6 significantly inhibits TNF-α-induced expression of adhesion molecules, vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), plus production of proinflammatory cytokines via inhibition of JAK/STAT3 activation and the modulation of Nrf2/HO-1 signalling in HUVECs. In atherosclerosis-prone mice, 1m-6 significantly reduces lipid accumulation and atherosclerotic plaque formation. CONCLUSION AND IMPLICATIONS Our study demonstrates that 1m-6 produces promising atheroprotective effects by enhancing cholesterol efflux and suppressing inflammation-induced endothelial dysfunction, which opens a new avenue for treating ASCVD. LINKED ARTICLES This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Liv Weichien Chen
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Yuh Chern
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| | - Tien-Ping Tsao
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Cardiology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Research Institute and Department of Internal Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pi-Fen Tsui
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Wen Liu
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsien-Jui Lu
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| | - Wan-Lin Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wei-Shiang Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.,Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
38
|
Gramlich OW, Brown AJ, Godwin CR, Chimenti MS, Boland LK, Ankrum JA, Kardon RH. Systemic Mesenchymal Stem Cell Treatment Mitigates Structural and Functional Retinal Ganglion Cell Degeneration in a Mouse Model of Multiple Sclerosis. Transl Vis Sci Technol 2020; 9:16. [PMID: 32855863 PMCID: PMC7422913 DOI: 10.1167/tvst.9.8.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/26/2020] [Indexed: 01/14/2023] Open
Abstract
Purpose The purpose of this study was to determine mesenchymal stem cell (MSC) therapy efficacy on rescuing the visual system in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS) and to provide new mechanistic insights. Methods EAE was induced in female C57BL6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG)35–55, complete Freund's adjuvant, and pertussis toxin. The findings were compared to sham-immunized mice. Half of the EAE mice received intraperitoneally delivered stem cells (EAE + MSC). Clinical progression was monitored according to a five-point EAE scoring scheme. Pattern electroretinogram (PERG) and retinal nerve fiber layer (RNFL) thickness were measured 32 days after induction. Retinas were harvested to determine retinal ganglion cell (RGC) density and prepared for RNA-sequencing. Results EAE animals that received MSC treatment seven days after EAE induction showed significantly lower motor-sensory impairment, improvement in the PERG amplitude, and preserved RNFL. Analysis of RNA-sequencing data demonstrated statistically significant differences in gene expression in the retina of MSC-treated EAE mice. Differentially expressed genes were enriched for pathways involved in endoplasmic reticulum stress, endothelial cell differentiation, HIF-1 signaling, and cholesterol transport in the MSC-treated EAE group. Conclusions Systemic MSC treatment positively affects RGC function and survival in EAE mice. Better cholesterol handling by increased expression of Abca1, the cholesterol efflux regulatory protein, paired with the resolution of HIF-1 signaling activation might explain the improvements seen in PERG of EAE animals after MSC treatment. Translational Relevance Using MSC therapy in a mouse model of MS, we discovered previously unappreciated biochemical pathways associated with RGC neuroprotection, which have the potential to be pharmacologically targeted as a new treatment regimen.
Collapse
Affiliation(s)
- Oliver W Gramlich
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Alexander J Brown
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA.,Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cheyanne R Godwin
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Lauren K Boland
- Roy J. Carver Department of Biomedical Engineering College, The University of Iowa, Iowa City, IA, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering College, The University of Iowa, Iowa City, IA, USA
| | - Randy H Kardon
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| |
Collapse
|
39
|
Peters LJF, Biessen EAL, Hohl M, Weber C, van der Vorst EPC, Santovito D. Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease. Front Physiol 2020; 11:793. [PMID: 32733281 PMCID: PMC7358539 DOI: 10.3389/fphys.2020.00793] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of non-coding RNA that play an important role in the regulation of gene expression and thereby in many physiological and pathological processes. Furthermore, miRNAs are released in the extracellular space, for example in vesicles, and are detectable in various biological fluids, such as serum, plasma, and urine. Over the last years, it has been shown that miRNAs are crucial in the development of several cardiovascular diseases (CVDs). This review discusses the (patho)physiological implications of miRNAs in CVD, ranging from cardiovascular risk factors (i.e., hypertension, diabetes, dyslipidemia), to atherosclerosis, myocardial infarction, and cardiac remodeling. Moreover, the intriguing possibility of their use as disease-specific diagnostic and prognostic biomarkers for human CVDs will be discussed in detail. Finally, as several approaches have been developed to alter miRNA expression and function (i.e., mimics, antagomirs, and target-site blockers), we will highlight the miRNAs with the most promising therapeutic potential that may represent suitable candidates for therapeutic intervention in future translational studies and ultimately in clinical trials. All in all, this review gives a comprehensive overview of the most relevant miRNAs in CVD and discusses their potential use as biomarkers and even therapeutic targets.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Erik A. L. Biessen
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mathias Hohl
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg, Germany
| | - Christian Weber
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Donato Santovito
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
40
|
Salerno AG, van Solingen C, Scotti E, Wanschel ACBA, Afonso MS, Oldebeken SR, Spiro W, Tontonoz P, Rayner KJ, Moore KJ. LDL Receptor Pathway Regulation by miR-224 and miR-520d. Front Cardiovasc Med 2020; 7:81. [PMID: 32528976 PMCID: PMC7256473 DOI: 10.3389/fcvm.2020.00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNA) have emerged as important post-transcriptional regulators of metabolic pathways that contribute to cellular and systemic lipoprotein homeostasis. Here, we identify two conserved miRNAs, miR-224, and miR-520d, which target gene networks regulating hepatic expression of the low-density lipoprotein (LDL) receptor (LDLR) and LDL clearance. In silico prediction of miR-224 and miR-520d target gene networks showed that they each repress multiple genes impacting the expression of the LDLR, including the chaperone molecules PCSK9 and IDOL that limit LDLR expression at the cell surface and the rate-limiting enzyme for cholesterol synthesis HMGCR, which is the target of LDL-lowering statin drugs. Using gain- and loss-of-function studies, we tested the role of miR-224 and miR-520d in the regulation of those predicted targets and their impact on LDLR expression. We show that overexpression of miR-224 or miR-520d dose-dependently reduced the activity of PCSK9, IDOL, and HMGCR 3'-untranslated region (3'-UTR)-luciferase reporter constructs and that this repression was abrogated by mutation of the putative miR-224 or miR-520d response elements in the PCSK9, IDOL, and HMGCR 3'-UTRs. Compared to a control miRNA, overexpression of miR-224 or miR-520d in hepatocytes inhibited PCSK9, IDOL, and HMGCR mRNA and protein levels and decreased PCSK9 secretion. Furthermore, miR-224 and miR-520d repression of PCSK9, IDOL, and HMGCR was associated with an increase in LDLR protein levels and cell surface expression, as well as enhanced LDL binding. Notably, the effects of miR-224 and miR-520d were additive to the effects of statins in upregulating LDLR expression. Finally, we show that overexpression of miR-224 in the livers of Ldlr +/- mice using lipid nanoparticle-mediated delivery resulted in a 15% decrease in plasma levels of LDL cholesterol, compared to a control miRNA. Together, these findings identify roles for miR-224 and miR-520d in the posttranscriptional control of LDLR expression and function.
Collapse
Affiliation(s)
- Alessandro G Salerno
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Coen van Solingen
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Elena Scotti
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amarylis C B A Wanschel
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Milessa S Afonso
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Scott R Oldebeken
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Westley Spiro
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Peter Tontonoz
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Kathryn J Moore
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States.,Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
41
|
Abstract
Over sixty percent of all mammalian protein-coding genes are estimated to be regulated by microRNAs (miRNAs), and unsurprisingly miRNA dysregulation has been linked with cancer. Aberrant miRNA expression in cancer cells has been linked with tumourigenesis and drug resistance. In the past decade, increasing number of studies have demonstrated that cholesterol accumulation fuels tumour growth and contributes to drug resistance, therefore, miRNAs controlling cholesterol metabolism and homeostasis are obvious hypothetical targets for investigating their role in cholesterol-mediated drug resistance in cancer. In this review, we have collated published evidences to consolidate this hypothesis and have scrutinized it by utilizing computational tools to explore the role of miRNAs in cholesterol-mediated drug resistance in breast cancer cells. We found that hsa-miR-128 and hsa-miR-223 regulate genes mediating lipid signalling and cholesterol metabolism, cancer drug resistance and breast cancer genes. The analysis demonstrates that targeting these miRNAs in cancer cells presents an opportunity for developing new strategies to combat anticancer drug resistance.
Collapse
|
42
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
43
|
Cheng J, Cheng A, Clifford BL, Wu X, Hedin U, Maegdefessel L, Pamir N, Sallam T, Tarling EJ, de Aguiar Vallim TQ. MicroRNA-144 Silencing Protects Against Atherosclerosis in Male, but Not Female Mice. Arterioscler Thromb Vasc Biol 2020; 40:412-425. [PMID: 31852219 PMCID: PMC7018399 DOI: 10.1161/atvbaha.119.313633] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Atherosclerosis is a leading cause of death in developed countries. MicroRNAs act as fine-tuners of gene expression and have been shown to have important roles in the pathophysiology and progression of atherosclerosis. We, and others, previously demonstrated that microRNA-144 (miR-144) functions to post-transcriptionally regulate ABCA1 (ATP binding cassette transporter A1) and plasma HDL (high-density lipoprotein) cholesterol levels. Here, we explore how miR-144 inhibition may protect against atherosclerosis. Approach and Results: We demonstrate that miR-144 silencing reduced atherosclerosis in male, but not female low-density lipoprotein receptor null (Ldlr-/-) mice. MiR-144 antagonism increased circulating HDL cholesterol levels, remodeled the HDL particle, and enhanced reverse cholesterol transport. Notably, the effects on HDL and reverse cholesterol transport were more pronounced in male mice suggesting sex-specific differences may contribute to the effects of silencing miR-144 on atherosclerosis. As a molecular mechanism, we identify the oxysterol metabolizing enzyme CYP7B1 (cytochrome P450 enzyme 7B1) as a miR-144 regulated gene in male, but not female mice. Consistent with miR-144-dependent changes in CYP7B1 activity, we show decreased levels of 27-hydroxycholesterol, a known proatherogenic sterol and the endogenous substrate for CYP7B1 in male, but not female mice. CONCLUSIONS Our data demonstrate silencing miR-144 has sex-specific effects and that treatment with antisense oligonucleotides to target miR-144 might result in enhancements in reverse cholesterol transport and oxysterol metabolism in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Joan Cheng
- Department of Biological Chemistry, University of California Los Angeles, California, 90095, USA
| | - Angela Cheng
- Department of Biological Chemistry, University of California Los Angeles, California, 90095, USA
| | - Bethan L. Clifford
- Department of Medicine, University of California Los Angeles, California, 90095, USA
| | - Xiaohui Wu
- Department of Medicine, University of California Los Angeles, California, 90095, USA
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar – Technical University Munich, Munich, Germany
| | - Nathalie Pamir
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Tamer Sallam
- Department of Medicine, University of California Los Angeles, California, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, California, 90095, USA
| | - Elizabeth J. Tarling
- Department of Medicine, University of California Los Angeles, California, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, California, 90095, USA
- Johnsson Comprehensive Cancer Center, University of California Los Angeles, California, 90095, USA
| | - Thomas Q. de Aguiar Vallim
- Department of Biological Chemistry, University of California Los Angeles, California, 90095, USA
- Department of Medicine, University of California Los Angeles, California, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, California, 90095, USA
- Johnsson Comprehensive Cancer Center, University of California Los Angeles, California, 90095, USA
| |
Collapse
|
44
|
D'Ardes D, Santilli F, Guagnano MT, Bucci M, Cipollone F. From Endothelium to Lipids, Through microRNAs and PCSK9: A Fascinating Travel Across Atherosclerosis. High Blood Press Cardiovasc Prev 2020; 27:1-8. [PMID: 31925708 DOI: 10.1007/s40292-019-00356-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
Lipids and endothelium are pivotal players on the scene of atherosclerosis and their interaction is crucial for the establishment of the pathological processes. The endothelium is not only the border of the arterial wall: it plays a key role in regulating circulating fatty acids and lipoproteins and vice versa it is regulated by these lipidic molecules thereby promoting atherosclerosis. Inflammation is another important element in the relationship between lipids and endothelium. Recently, proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recognized as a fundamental regulator of LDL-C and anti-PCSK9 monoclonal antibodies have been approved for therapeutic use in hypercholesterolemia, with the promise to subvert the natural history of the disease. Moreover, growing experimental and clinical evidence is enlarging our understanding of the mechanisms through which this protein may facilitate the genesis of atherosclerosis, independently of its impact on lipid metabolism. In addition, environmental stimuli may affect the post-transcriptional regulation of genes through micro-RNAs, which in turn play a key role in orchestrating the crosstalk between endothelium and cholesterol. Advances in experimental research, with development of high throughput techniques, have led, over the last century, to a tremendous progress in the understanding and fine tuning of the molecular mechanisms leading to atherosclerosis. Identification of pivotal keystone molecules bridging lipid metabolism, endothelial dysfunction and atherogenesis will provide the mechanistic substrate to test valuable targets for prediction, prevention and treatment of atherosclerosis-related disease.
Collapse
Affiliation(s)
- D D'Ardes
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy
| | - F Santilli
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
| | - M T Guagnano
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
| | - M Bucci
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy
| | - F Cipollone
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy.
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy.
| |
Collapse
|
45
|
Shoeibi S. Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta Physiol (Oxf) 2020; 228:e13353. [PMID: 31344321 DOI: 10.1111/apha.13353] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a group of small single strand and noncoding RNAs that regulate several physiological and molecular signalling pathways. Alterations of miRNA expression profiles may be involved with pathophysiological processes underlying the development of atherosclerosis and cardiovascular diseases, including changes in the functions of the endothelial cells and vascular smooth muscle cells, such as cell proliferation, migration and inflammation, which are involved in angiogenesis, macrophage function and foam cell formation. Thus, miRNAs can be considered to have a crucial role in the progression, modulation and regulation of every stage of atherosclerosis. Such potential biomarkers will enable us to predict therapeutic response and prognosis of cardiovascular diseases and adopt effective preclinical and clinical treatment strategies. In the present review article, the current data regarding the role of miRNAs in atherosclerosis were summarized and the potential miRNAs as prognostic, diagnostic and theranostic biomarkers in preclinical and clinical studies were further discussed. The highlights of this review are expected to present opportunities for future research of clinical therapeutic approaches in vascular diseases resulting from atherosclerosis with an emphasis on miRNAs.
Collapse
Affiliation(s)
- Sara Shoeibi
- Atherosclerosis Research Center Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
46
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
47
|
Identification of a novel cholesterol-lowering dipeptide, phenylalanine-proline (FP), and its down-regulation of intestinal ABCA1 in hypercholesterolemic rats and Caco-2 cells. Sci Rep 2019; 9:19416. [PMID: 31857643 PMCID: PMC6923426 DOI: 10.1038/s41598-019-56031-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
There has been no report about in vivo active cholesterol-lowering dipeptide in any protein origin, despite their potential health benefits. Cattle heart protein hydrolysate ultra-filtrate (HPHU, molecular weight < ca. 1,000 Da peptide mixture) exhibits cholesterol-lowering activity in hypercholesterolemic rats, but the active peptide in HPHU that lowers serum cholesterol levels and its molecular mechanism are unknown. In this study, we separated and purified HPHU to identify a novel cholesterol-lowering dipeptide (phenylalanine-proline, FP) and characterized the mechanism underlying its effects in vivo and in vitro. We identified FP as an active peptide from HPHU by MALDI-TOF mass spectrometry. FP significantly decreased serum total and non-HDL cholesterol and hepatic cholesterol levels in rats. FP significantly increased serum HDL cholesterol, accompanied by a significant decrease in the atherogenic index. FP also significantly increased fecal cholesterol and acidic steroid excretion. Moreover, FP significantly decreased ATP-binding cassette transporter A1 (ABCA1) expression in the rat jejunum and reduced cholesterol absorption in Caco-2 cells. We found a novel cholesterol-lowering dipeptide FP that could improve cholesterol metabolism via the down-regulation of intestinal ABCA1. The cholesterol-lowering action induced by FP was disappeared in PepT1KO mice. FP-induced cholesterol-lowering action is mediated via PepT1 in mice.
Collapse
|
48
|
MicroRNAs as the actors in the atherosclerosis scenario. J Physiol Biochem 2019; 76:1-12. [PMID: 31808077 DOI: 10.1007/s13105-019-00710-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is considered as the most common cardiovascular disease and a leading cause of global mortality, which develops through consecutive steps. Various cellular and molecular biomarkers such as microRNAs are identified to be involved in atherosclerosis progression. MicroRNAs are a group of endogenous, short, non-coding RNAs, which are able to bind to specific sequences on target messenger RNAs and thereby modulate gene expression post-transcriptionally. MicroRNAs are key players in wide range of biological processes; thus, their expression level is regulated in pathophysiological conditions. Ample evidences including in vitro and in vivo studies approved a critical role of microRNAs in epigenetic and the sequential processes of atherosclerosis from risk factors to plaque formation, progression, and rupture. Based on these findings, miRNAs seems to be promising candidates for therapeutic approach. This review summarizes the role of miRNAs in atherosclerosis development, epigenetic, and therapy. Moreover, the application of exosomes in miRNA delivery, and/or their prognostic and diagnostic values are also discussed.
Collapse
|
49
|
Tian J, Popal MS, Zhao Y, Liu Y, Chen K, Liu Y. Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application. Aging Dis 2019; 10:1302-1310. [PMID: 31788341 PMCID: PMC6844582 DOI: 10.14336/ad.2018.1020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022] Open
Abstract
Exosome, is identified as a nature nanocarrier and intercellular messenger that regulates cell to cell communication. Autophagy is critical in maintenance of protein homeostasis by degradation of damaged proteins and organelles. Autophagy and exosomes take pivotal roles in cellular homeostasis and cardiovascular disease. Currently, the coordinated mechanisms for exosomes and autophagy in the maintenance of cellular fitness are now garnering much attention. In the present review, we discussed the interplay of exosomes and autophagy in the context of physiology and pathology of the heart, which might provide novel insights for diagnostic and therapeutic application of cardiovascular diseases.
Collapse
Affiliation(s)
- Jinfan Tian
- 1Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mohammad Sharif Popal
- 1Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yingke Zhao
- 3Li Ka Shing Faculty of Medicine, The University of HongKong, Pokfulam, Hong Kong
| | - Yanfei Liu
- 4Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Keji Chen
- 2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- 2Cardiovascular disease center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Fernández-de Frutos M, Galán-Chilet I, Goedeke L, Kim B, Pardo-Marqués V, Pérez-García A, Herrero JI, Fernández-Hernando C, Kim J, Ramírez CM. MicroRNA 7 Impairs Insulin Signaling and Regulates Aβ Levels through Posttranscriptional Regulation of the Insulin Receptor Substrate 2, Insulin Receptor, Insulin-Degrading Enzyme, and Liver X Receptor Pathway. Mol Cell Biol 2019; 39:e00170-19. [PMID: 31501273 PMCID: PMC6817752 DOI: 10.1128/mcb.00170-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/14/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023] Open
Abstract
Brain insulin resistance is a key pathological feature contributing to obesity, diabetes, and neurodegenerative disorders, including Alzheimer's disease (AD). Besides the classic transcriptional mechanism mediated by hormones, posttranscriptional regulation has recently been shown to regulate a number of signaling pathways that could lead to metabolic diseases. Here, we show that microRNA 7 (miR-7), an abundant microRNA in the brain, targets insulin receptor (INSR), insulin receptor substrate 2 (IRS-2), and insulin-degrading enzyme (IDE), key regulators of insulin homeostatic functions in the central nervous system (CNS) and the pathology of AD. In this study, we found that insulin and liver X receptor (LXR) activators promote the expression of the intronic miR-7-1 in vitro and in vivo, along with its host heterogeneous nuclear ribonucleoprotein K (HNRNPK) gene, encoding an RNA binding protein (RBP) that is involved in insulin action at the posttranscriptional level. Our data show that miR-7 expression is altered in the brains of diet-induced obese mice. Moreover, we found that the levels of miR-7 are also elevated in brains of AD patients; this inversely correlates with the expression of its target genes IRS-2 and IDE. Furthermore, overexpression of miR-7 increased the levels of extracellular Aβ in neuronal cells and impaired the clearance of extracellular Aβ by microglial cells. Taken together, these results represent a novel branch of insulin action through the HNRNPK-miR-7 axis and highlight the possible implication of these posttranscriptional regulators in a range of diseases underlying metabolic dysregulation in the brain, from diabetes to Alzheimer's disease.
Collapse
Affiliation(s)
| | - Inmaculada Galán-Chilet
- Genomic and Genetic Diagnosis Unit, Biomedical Research Institute Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Byungwook Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Ana Pérez-García
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | - J Ignacio Herrero
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cristina M Ramírez
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|