1
|
Ng CT, Fong LY, Tan JJ, Abdullah MNH. Endothelial barrier disruptive effect of IFN-Ƴ and TNF-α: Synergism of pro-inflammatory cytokines. Cytokine 2025; 190:156922. [PMID: 40158467 DOI: 10.1016/j.cyto.2025.156922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Crosstalk and synergy between interferon-γ (IFN-Ƴ) and tumor necrosis factor-α (TNF-α) in endothelial cells have previously been documented, however, there is an absence of articles reviewing the synergistic effect of IFN-Ƴ and TNF-α in regulating the endothelial barrier function. This review discusses the regulatory mechanisms and recent evidence of the synergism of IFN-γ and TNF-α in causing destabilization of endothelial junctions in various clinical studies and preclinical models. Articles were retrieved from electronic databases such as Web of Science, PubMed, Google Scholar, and Scopus. The search terms used were "interferon", "interferon-gamma", "tumor necrosis factor-α", "vascular inflammation", "endothelial barrier", "endothelial permeability" and "synergism". We selected articles published between 2004 and 2024. Through the Rho-associated protein kinase (ROCK) and p38 mitogen-activated protein (MAP) kinase pathways, our results showed that IFN-γ controls the remodeling of actin and the stability of junctions. In comparison to IFN-γ, the signaling cascades triggered by TNF-α involve a variety of pathways such as nuclear factor-kappa B (NF-κB), small GTPases, tyrosine kinases, integrin receptors, and barrier-stabilizing molecules such as Ras-related proteins 1A (Rap1A) and Rac family small GTPase 1 (Rac1). In the context of IFN-γ and TNF-α synergism, combined IFN-γ and TNF-α alter adherens and tight junctions. It is deduced that c-Jun N-terminal kinase (JNK), signal transducers and activators of transcription (STAT1), and caspase signaling pathways regulate endothelial barrier disruption caused by IFN-γ and TNF-α. Collectively, the mechanism underlying the synergistic action of IFN-γ and TNF-α is still lacking. Future work is needed to explore the crosstalk pathways of IFN-γ and TNF-α involved in the regulation of endothelial barrier function such as modulation of extracellular matrix (ECM) structure, involvement of tyrosine kinases and roles of small GTPases.
Collapse
Affiliation(s)
- Chin Theng Ng
- Unit of Physiology, Faculty of Medicine, AIMST University, Bedong 08100, Kedah, Malaysia.
| | - Lai Yen Fong
- Department of Pre-clinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Muhammad Nazrul Hakim Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Mitra P, Saha U, Stephen KJ, Prasad P, Jena S, Patel AK, Bv H, Mondal SK, Kurkalang S, Roy S, Ghosh A, Roy SS, Das Sarma J, Biswas NK, Acharya M, Sharan R, Arun P, Jolly MK, Maitra A, Singh S. Tie2 activity in cancer associated myofibroblasts serves as novel target against reprogramming of cancer cells to embryonic-like cell state and associated poor prognosis in oral carcinoma patients. J Exp Clin Cancer Res 2025; 44:142. [PMID: 40349056 PMCID: PMC12065280 DOI: 10.1186/s13046-025-03405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Myofibroblastic cancer-associated fibroblasts (CAF) in tumor stroma serves as an independent poor prognostic indicator, supporting higher stemness in oral cancer; however, the underlying biology is not fully comprehended. Here, we have explored the crucial role of Tunica Interna Endothelial Cell Kinase (Tie2/TEK) signaling in transition and maintenance of myofibroblastic phenotype of CAFs, and as possible link with the poor prognosis of head and neck squamous cell carcinoma (HNSCC) patients. METHODS Bulk and single cell RNA-sequencing (scRNAseq) methods and in-depth bioinformatic analysis were applied for CAF and cancer cells co-culture for studying molecular relationships. In vitro 3D-spheroid-forming ability, expression of stemness markers, in vivo tumor formation ability in zebrafish embryo and syngeneic mouse allografts formation was conducted to test stemness, upon targeting CAF-specific Tie2 activity by gene silencing or with small molecule inhibitor. Immunohistochemistry analysis was performed to locate the distribution of Tie2 and αSMA in primary tumors of oral carcinoma. Prognosis in HNSCC patient cohort from The Cancer Genome Atlas (TCGA) study was analysed based on single sample gene set enrichment score (ssGSEA) and Kaplan-Meier analysis. RESULTS Autocrine or exogenous TGFβ-induction in CAF led to the recruitment of histone deacetylase 2 (HDAC2) on the promoter of Tie2-antagonist, Angiopoietin-2 (ANGPT2), resulting in its downregulation, leading to phosphorylation of Tie2 (Y992) and subsequent activation of SRC (Y418). This led to SRC/ROCK mediated αSMA-positive stress-fiber formation with gain of myofibroblast phenotype. The CAF-specific Tie2-signaling was responsible for producing embryonic-like cell state in co-cultured cancer cells; with enhanced tumor initiating ability. Tie2 activity in CAF exerted the dynamic gene expression reprogramming, with the upregulation of 'cell migration' and downregulation of 'protein biosynthesis' related gene-regulatory-network modules in malignant cells. The AUCell scores calculated for gene signatures derived from these modules showed significant concordance in independently reported scRNAseq studies of HNSCC tumors and significant association with poor prognosis in HNSCC patient cohort. CONCLUSIONS CAF-specific Tie2 activity may serve as direct stromal-target against cancer cell plasticity leading to poor prognosis of oral cancer patients. Overall, our work has provided wider applicability of Tie2-specific functions in tumor biology, along with its known role in endothelial cell-specific function.
Collapse
Affiliation(s)
- Paromita Mitra
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Uday Saha
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Priyanka Prasad
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
| | - Subhashree Jena
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ankit Kumar Patel
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Umea University, Umea, Sweden
| | | | | | - Sillarine Kurkalang
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Comprehensive Cancer Center, University of Chicago Medicine, Chicago, IL, USA
| | - Sumitava Roy
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Arnab Ghosh
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Shantanu Saha Roy
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
| | | | - Nidhan Kumar Biswas
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Moulinath Acharya
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | | | | | - Arindam Maitra
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep Singh
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India.
- Regional Centre for Biotechnology, Faridabad, India.
| |
Collapse
|
3
|
Zhong X, Fei Y, Zhao H, Chen J, Gao M, Huang Y, Fei W. Mechanistic studies and therapeutic potential of angiopoietin in head and neck tumor angiogenesis. Front Oncol 2025; 15:1529225. [PMID: 40260291 PMCID: PMC12010120 DOI: 10.3389/fonc.2025.1529225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 04/23/2025] Open
Abstract
Head and neck tumors represent a prevalent category of oral and maxillofacial malignancies, posing significant therapeutic and prognostic challenges due to their complex anatomical structure, tumor heterogeneity, and resistance to conventional therapies. Recent studies have highlighted the strong association between tumor progression and neoangiogenesis, with the angiopoietin (ANG) family playing a central role in this process. Comprising ANG1, ANG2, ANG3, and ANG4, these factors regulate multiple signaling pathways that promote cellular growth, differentiation, and proliferation, thereby driving angiogenesis and accelerating tumor growth and metastasis. Therefore, a comprehensive investigation of the ANG family's role in head and neck tumors may offer critical insights into tumorigenesis mechanisms and unveil novel therapeutic targets. Such research has the potential to improve treatment outcomes and enhance the quality of life for patients.
Collapse
Affiliation(s)
- Xiaojuan Zhong
- School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Yujie Fei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Haihui Zhao
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mingyu Gao
- Yibin Second People’s Hospital, Yibin, Sichuan, China
| | - Yi Huang
- Department of Maxillofacial Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Fei
- Department of Maxillofacial Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Oral and Maxillofacial Surgery, Wenjiang Hospital, Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Li J, Hou H, Li J, Zhang K. Angiopoietins/Tie2 signaling axis and its role in angiogenesis of psoriasis. Acta Histochem 2025; 127:152228. [PMID: 39752990 DOI: 10.1016/j.acthis.2024.152228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 03/01/2025]
Abstract
Hyperplasia of microvessels in the superficial dermis is the main pathological feature of psoriasis, and is linked to the pathogenesis of psoriasis. Thus, anti-angiogenic therapy may be effective for psoriasis. Angiopoietins (Angs) are crucial angiogenic factors. Ang1 supports a static mature vascular phenotype, while Ang2 is associated with the formation of abnormal vascular structure, vascular leakage and inflammation. The Ang/Tie2 axis and its signal transduction play an important role in regulation of vascular stability, angiogenesis and inflammation. Targeting the Ang/Tie2 signal axis can normalize microvessels in psoriatic lesions. This paper reviews Ang/Tie2 signal axis and its role in angiogenesis of psoriasis, aiming to provide new ideas and strategies for anti-angiogenic therapy of psoriasis.
Collapse
Affiliation(s)
- Jiao Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, Shanxi Province 030009, China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, Shanxi Province 030009, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, Shanxi Province 030009, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, Shanxi Province 030009, China.
| |
Collapse
|
5
|
Druey KM, Arnaud L, Parikh SM. Systemic capillary leak syndrome. Nat Rev Dis Primers 2024; 10:86. [PMID: 39543164 DOI: 10.1038/s41572-024-00571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
The vascular endothelial barrier maintains intravascular volume and metabolic homeostasis. Although plasma fluids and proteins extravasate continuously from tissue microvasculature (capillaries, post-capillary venules), systemic vascular leakage increases in critical illness associated with sepsis, burns and trauma, among others, or in association with certain drugs or toxin exposures. Systemically dysregulated fluid homeostasis, which can lead to hypovolaemia, hypotensive shock and widespread tissue oedema, has been termed systemic capillary leak syndrome (SCLS) when overt secondary causes (for example, heart or liver failure) are excluded. In severe forms, SCLS is complicated by compartment syndrome in the extremities and multi-organ dysfunction syndrome due to shock and systemic hypoperfusion. The different forms of SCLS include idiopathic SCLS (ISCLS) and secondary SCLS (SSCLS), which can be triggered by several conditions, including certain infections and haematological malignancies. A subgroup of patients with ISCLS have monoclonal gammopathy-associated SCLS (also known as Clarkson disease), which is an ultra-rare and extreme form of ISCLS. ISCLS can be managed effectively with monthly prophylactic immunoglobulin therapy whereas SSCLS frequently does not recur once the underlying condition resolves or the offending agent is discontinued. Thus, differentiation between ISCLS, SSCLS and other causes of oedema is crucial for quick diagnosis and positive patient outcomes.
Collapse
Affiliation(s)
- Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Laurent Arnaud
- Department of Rheumatology, French National Reference Center for Autoimmune Diseases (RESO), INSERM UMR-S 1109, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Samir M Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Sha L, Zhao Y, Li S, Wei D, Tao Y, Wang Y. Insights to Ang/Tie signaling pathway: another rosy dawn for treating retinal and choroidal vascular diseases. J Transl Med 2024; 22:898. [PMID: 39367441 PMCID: PMC11451039 DOI: 10.1186/s12967-024-05441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 10/06/2024] Open
Abstract
Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.
Collapse
Affiliation(s)
- Lulu Sha
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Yange Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
7
|
Pan Y, Li J, Wu J, Yang C, Wu S, Yang K, Yang X, Chen Q, Fu G, Liu C. Hyperbaric oxygen therapy enhances osteointegration of reimplanted cranial flap by regulating osteogenesis-angiogenesis coupling. J Orthop Res 2024; 42:2197-2209. [PMID: 38751166 DOI: 10.1002/jor.25875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/04/2024] [Accepted: 04/28/2024] [Indexed: 10/19/2024]
Abstract
Craniectomy is a lifesaving procedure to alleviate dangerously high intracranial pressure by removing a bone flap from the calvarium. However, the osteointegration of reimplanted bone flap with the existing bone tissue is still a clinical challenge. Hyperbaric oxygen (HBO) therapy has shown efficacy in promoting bone repair and could be a promising treatment for accelerating postoperative recovery. However, the specific cell types that are responsive to HBO treatment are not well understood. In this study, we created a murine model of craniectomy, with reimplantation of the cranial flap after 1 week. The effects of HBO treatment on bone formation and blood vessel formation around reimplanted bone were examined by micro-computed tomography, histological staining, and immunofluorescence staining. Single-cell RNA sequencing (scRNAseq) was utilized to identify key cell subtypes and signaling pathways after HBO treatment. We found that HBO treatment increased bone volume around reimplanted cranial flaps. HBO also increased the volume of Osterix-expressing cells and type H vessels. scRNAseq data showed more mature osteoblasts and endothelial cells, with higher expressions of adhesion and migration-related genes after HBO treatment. Cell-cell interaction analysis revealed a higher expression level of genes between mature osteoblasts and endothelial cells from the angiopoietin 2-integrin α5β1 pathway. Taken together, HBO therapy promotes the healing process of craniectomy by regulating the crosstalk between vascular endothelial cells and osteogenic cells. These findings provide evidence in a preclinical model that HBO therapy enhances osteointegration by regulating angiogenesis-osteogenesis coupling, providing a scientific basis for utilizing HBO therapy for accelerating postoperative recovery after craniectomy.
Collapse
Affiliation(s)
- Yonghao Pan
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Jiawei Li
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Jianqun Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chengyu Yang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Siying Wu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Kunhua Yang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xue Yang
- Shenzhen Children's Hospital, Shenzhen, Futian District, China
| | - Qian Chen
- Shenzhen Children's Hospital, Shenzhen, Futian District, China
| | - Guibing Fu
- Shenzhen Children's Hospital, Shenzhen, Futian District, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
8
|
Wakasugi R, Suzuki K, Kaneko-Kawano T. Molecular Mechanisms Regulating Vascular Endothelial Permeability. Int J Mol Sci 2024; 25:6415. [PMID: 38928121 PMCID: PMC11203514 DOI: 10.3390/ijms25126415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Vascular endothelial cells form a monolayer in the vascular lumen and act as a selective barrier to control the permeability between blood and tissues. To maintain homeostasis, the endothelial barrier function must be strictly integrated. During acute inflammation, vascular permeability temporarily increases, allowing intravascular fluid, cells, and other components to permeate tissues. Moreover, it has been suggested that the dysregulation of endothelial cell permeability may cause several diseases, including edema, cancer, and atherosclerosis. Here, we reviewed the molecular mechanisms by which endothelial cells regulate the barrier function and physiological permeability.
Collapse
Affiliation(s)
| | | | - Takako Kaneko-Kawano
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Shiga, Japan; (R.W.); (K.S.)
| |
Collapse
|
9
|
Shin J, Ahn SH, Oh DJ. Pseudomonas aeruginosa N-3-Oxododecanoyl Homoserine Lactone Disrupts Endothelial Integrity by Activating the Angiopoietin-Tie System. Cell Biochem Biophys 2024; 82:1555-1566. [PMID: 38762714 DOI: 10.1007/s12013-024-01307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
The activation of the angiopoietin (Angpt)-Tie system is linked to endothelial dysfunction during sepsis. Bacterial quorum-sensing molecules function as pathogen-associated molecular patterns. However, their impact on the endothelium and the Angpt-Tie system remains unclear. Therefore, this study investigated whether treatment with N-3-oxododecanoyl homoserine lactone (3OC12-HSL), a quorum-sensing molecule derived from Pseudomonas aeruginosa, impaired endothelial function in human umbilical vein endothelial cells. 3OC12-HSL treatment impaired tube formation even at sublethal concentrations, and immunocytochemistry analysis revealed that it seemed to reduce vascular endothelial-cadherin expression at the cell-cell interface. Upon assessing the mRNA expression patterns of genes associated with the Angpt-Tie axis, the expressions of Angpt2, Forkhead box protein O1, Tie1, and vascular endothelial growth factor 2 were found to be upregulated in the 3OC12-HSL-treated cells. Moreover, western blot analysis revealed that 3OC12-HSL treatment increased Angpt2 expression. A co-immunoprecipitation assay was conducted to assess the effect of 3OC12-HSL on the IQ motif containing GTPase activating protein 1 (IQGAP1) and Rac1 complex and the interaction between these proteins was consistently maintained regardless of 3OC12-HSL treatment. Next, recombinant human (rh)-Angpt1 was added to assess whether it modulated the effects of 3OC12-HSL treatment. rh-Angpt1 addition increased cellular viability, improved endothelial function, and reversed the overall patterns of mRNA and protein expression in endothelial cells treated with 3OC12-HSL. Additionally, it was related to the increased expression of phospho-Akt and the IQGAP1 and Rac1 complex. Collectively, our findings indicated that 3OC12-HSL from Pseudomonas aeruginosa can impair endothelial integrity via the activation of the Angpt-Tie axis, which appeared to be reversed by rh-Angpt1 treatment.
Collapse
Affiliation(s)
- Jungho Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sun Hee Ahn
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea.
| |
Collapse
|
10
|
Price DR, Garcia JGN. A Razor's Edge: Vascular Responses to Acute Inflammatory Lung Injury/Acute Respiratory Distress Syndrome. Annu Rev Physiol 2024; 86:505-529. [PMID: 38345908 PMCID: PMC11259086 DOI: 10.1146/annurev-physiol-042222-030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Historically considered a metabolically inert cellular layer separating the blood from the underlying tissue, the endothelium is now recognized as a highly dynamic, metabolically active tissue that is critical to organ homeostasis. Under homeostatic conditions, lung endothelial cells (ECs) in healthy subjects are quiescent, promoting vasodilation, platelet disaggregation, and anti-inflammatory mechanisms. In contrast, lung ECs are essential contributors to the pathobiology of acute respiratory distress syndrome (ARDS), as the quiescent endothelium is rapidly and radically altered upon exposure to environmental stressors, infectious pathogens, or endogenous danger signals into an effective and formidable regulator of innate and adaptive immunity. These dramatic perturbations, produced in a tsunami of inflammatory cascade activation, result in paracellular gap formation between lung ECs, sustained lung edema, and multi-organ dysfunction that drives ARDS mortality. The astonishing plasticity of the lung endothelium in negotiating this inflammatory environment and efforts to therapeutically target the aberrant ARDS endothelium are examined in further detail in this review.
Collapse
Affiliation(s)
- David R Price
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, USA
| | - Joe G N Garcia
- Center for Inflammation Sciences and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA;
| |
Collapse
|
11
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
12
|
Huang Q, Le Y, Li S, Bian Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir Res 2024; 25:30. [PMID: 38218783 PMCID: PMC10788036 DOI: 10.1186/s12931-024-02678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition associated with critically ill patients, characterized by bilateral chest radiographical opacities with refractory hypoxemia due to noncardiogenic pulmonary edema. Despite significant advances, the mortality of ARDS remains unacceptably high, and there are still no effective targeted pharmacotherapeutic agents. With the outbreak of coronavirus disease 19 worldwide, the mortality of ARDS has increased correspondingly. Comprehending the pathophysiology and the underlying molecular mechanisms of ARDS may thus be essential to developing effective therapeutic strategies and reducing mortality. To facilitate further understanding of its pathogenesis and exploring novel therapeutics, this review provides comprehensive information of ARDS from pathophysiology to molecular mechanisms and presents targeted therapeutics. We first describe the pathogenesis and pathophysiology of ARDS that involve dysregulated inflammation, alveolar-capillary barrier dysfunction, impaired alveolar fluid clearance and oxidative stress. Next, we summarize the molecular mechanisms and signaling pathways related to the above four aspects of ARDS pathophysiology, along with the latest research progress. Finally, we discuss the emerging therapeutic strategies that show exciting promise in ARDS, including several pharmacologic therapies, microRNA-based therapies and mesenchymal stromal cell therapies, highlighting the pathophysiological basis and the influences on signal transduction pathways for their use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China
| | - Yue Le
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| | - Yi Bian
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
13
|
An C, Sun F, Liu C, Huang S, Xu T, Zhang C, Ge S. IQGAP1 promotes mitochondrial damage and activation of the mtDNA sensor cGAS-STING pathway to induce endothelial cell pyroptosis leading to atherosclerosis. Int Immunopharmacol 2023; 123:110795. [PMID: 37597406 DOI: 10.1016/j.intimp.2023.110795] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Atherosclerosis (AS) is the most common cardiovascular disease and has limited therapeutic options. IQ motif-containing GTPase-activating protein 1 (IQGAP1) is an important scaffolding protein regulating mitochondrial function influencing endothelial cell activity. Evidence suggests that mitochondrial damage can lead to leakage of mtDNA into the cytoplasm to activate the DNA sensor cGAS-STING to mediate pyroptosis. However, whether IQGAP1 induces NLRP3-mediated endothelial cell pyroptosis by regulating mitochondrial function and activating the DNA sensor cGAS-STING, and its underlying mechanisms remain unclear. In vivo, ApoE-/- C57BL/J and Ldlr-/- C57BL/J mice were pre-injected with adeno-associated virus (AAV) by the tail vein to specifically silence IQGAP1 expression and were fed a high-fat diet (HFD) for 12 weeks. IQGAP1 knockdown reduced mtDNA release and decreased the expression of DNA receptors and pyroptosis-related molecules as determined by immunohistochemistry and immunofluorescence. In vitro, palmitic acid (0.3 mmol/L) was incubated with human umbilical vein endothelial cells (HUVECs) for 24 h. Overexpression of IQGAP1 in HUVECs, flow cytometry, and mitochondrial superoxide staining revealed increased levels of ROS. Moreover, the mitochondrial tracker with dsDNA co-localization showed the release of mtDNA into the cytoplasm increased, which activated the DNA receptor cGAS-STING. Protein blotting and TUNEL staining revealed that IQGAP1 promoted NLRP3-mediated pyroptosis. Furthermore, cGAS or STING small-molecule inhibitors RU.521 or C-176 reverse IQGAP1-promoted HUVECs from undergoing NLRP3-mediated pyroptosis. These results suggest that IQGAP1 promotes oxidative stress and mtDNA release, activates the DNA sensor cGAS-STING, and leads to NLRP3-mediated pyroptosis. The present study provides new insights into the mechanisms underlying AS and identifies new pharmacological targets for treatment.
Collapse
Affiliation(s)
- Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Fei Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Can Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Shaojun Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
14
|
Heuberger D, Wendel-Garcia PD, Sazpinar O, Müller M, Klein H, Kim BS, Andermatt R, Erlebach R, Schuepbach RA, Buehler PK, David S, Hofmaenner DA. The Angiopoietin-2/Angiopoietin-1 ratio increases early in burn patients and predicts mortality. Cytokine 2023; 169:156266. [PMID: 37354645 DOI: 10.1016/j.cyto.2023.156266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Angiopoietin-2 (Angpt-2) is involved in the pathogenesis of the capillary leak syndrome in sepsis and has been shown to be associated with worse outcomes in diverse critical illnesses. It is however unclear whether Angpt-2 plays a similar role in severely burned patients during the early phase characterized by massive capillary leakage. Our aim was to analyze the Angiopoietin-2/Angiopoietin-1 ratio (Angpt-2/Angpt-1 ratio) over the first two days in critically ill burn patients and examine its association with survival and further clinical parameters. METHODS Adult burn patients with a total burn surface area (TBSA) ≥ 20% treated in the burn intensive care unit (ICU) of the University Hospital of Zurich, Switzerland, were included. Serum samples were collected prospectively and serum Angpt-1 and Angpt-2 were measured by enzyme-linked immunosorbent assay (ELISA) over the first two days after burn insult and stratified according to survival status, TBSA and the abbreviated burn severity index (ABSI). Due to hemodilution in the initial resuscitation phase, the Angpt-2/Angpt-1 ratio was normalized to albumin. RESULTS Fifty-six patients were included with a median age of 51.5 years. Overall mortality was 14.3% (8/56 patients). The total amount of infused crystalloids was 12́902 ml (IQR 9́362-16́770 ml) at 24 h and 18́461 ml (IQR 13́024-23́766 ml) at 48 h. The amount of substituted albumin was 20 g (IQR 10-50 g) at 24 h and 50 g (IQR 20-60 g) at 48 h. The albumin-corrected Angpt-2/Angpt-1 ratios increased over the first 48 h after the burn insult (d0: 0.5 pg*l/ml*g [IQR 0.24 - 0.80 pg*l/ml*g]; d1: 0.83 pg*l/ml*g [IQR 0.29 - 1.98 pg*l/ml*g]; d2: 1.76 pg*l/ml*g [IQR 0.70 - 3.23 pg*l/ml*g]; p < 0.001) and were significantly higher in eventual ICU non-survivors (p = 0.005), in patients with a higher TBSA (p = 0.001) and in patients with a higher ABSI (p = 0.001). CONCLUSIONS In analogy to the pathological host response in sepsis, the Angpt-2/Angpt-1 ratio steadily increases in the first two days in critically ill burn patients, suggesting a putative involvement in the pathogenesis of capillary leakage in burns. A higher Angpt-2/Angpt-1 ratio is associated with mortality, total burn surface area and burn scores.
Collapse
Affiliation(s)
- Dorothea Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Pedro David Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Onur Sazpinar
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Mattia Müller
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Holger Klein
- Plastic and Hand Surgery, Cantonal Hospital Aarau, Tellstrasse 25, CH-5001 Aarau, Switzerland.
| | - Bong-Sung Kim
- Plastic and Hand Surgery, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Rea Andermatt
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Rolf Erlebach
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Philipp K Buehler
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Daniel A Hofmaenner
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| |
Collapse
|
15
|
Hellenthal KEM, Brabenec L, Wagner NM. Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells 2022; 11:cells11121935. [PMID: 35741064 PMCID: PMC9221661 DOI: 10.3390/cells11121935] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic inflammation can be triggered by infection, surgery, trauma or burns. During systemic inflammation, an overshooting immune response induces tissue damage resulting in organ dysfunction and mortality. Endothelial cells make up the inner lining of all blood vessels and are critically involved in maintaining organ integrity by regulating tissue perfusion. Permeability of the endothelial monolayer is strictly controlled and highly organ-specific, forming continuous, fenestrated and discontinuous capillaries that orchestrate the extravasation of fluids, proteins and solutes to maintain organ homeostasis. In the physiological state, the endothelial barrier is maintained by the glycocalyx, extracellular matrix and intercellular junctions including adherens and tight junctions. As endothelial cells are constantly sensing and responding to the extracellular environment, their activation by inflammatory stimuli promotes a loss of endothelial barrier function, which has been identified as a hallmark of systemic inflammation, leading to tissue edema formation and hypotension and thus, is a key contributor to lethal outcomes. In this review, we provide a comprehensive summary of the major players, such as the angiopoietin-Tie2 signaling axis, adrenomedullin and vascular endothelial (VE-) cadherin, that substantially contribute to the regulation and dysregulation of endothelial permeability during systemic inflammation and elucidate treatment strategies targeting the preservation of vascular integrity.
Collapse
|
16
|
Pape T, Idowu TO, Etzrodt VM, Stahl K, Seeliger B, Haller H, David S. Modulation of the Permeability-Inducing Factor Angiopoietin-2 Through Bifonazole in Systemic Inflammation. Shock 2021; 56:1049-1056. [PMID: 33756505 DOI: 10.1097/shk.0000000000001777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Vascular barrier breakdown in sepsis represents a key component of the maladaptive host response to infection and the release of endothelial Angiopoietin-2 (Angpt-2) is a mechanistic driver of endothelial hyperpermeability. Angpt-2 is associated with morbidity and mortality but a targeted therapeutic approach is not available. We screened for U.S. Food and Drug Administration (FDA) approved drugs that might have off-target effects decreasing Angpt-2 and therefore, ameliorating capillary leakage. METHODS Endothelial cells were isolated from human umbilical veins (HUVECs) and used for in vitro studies at baseline and after stimulation (FDA-library screening, RT-PCR, ELISA, immunocytochemistry, MTT assay). On the functional level, we assessed real-time transendothelial electrical resistance (TER) using an electric cell-substrate impedance sensing device. RESULTS We found that the anti-fungal Bifonazole (BIFO) reduces spontaneous Angpt-2 release in a time- and dose-dependent manner after 8, 12, and 24 h (24 h: veh: 15.6 ± 0.7 vs. BIFO: 8.6 ± 0.8 ng/mL, P < 0.0001). Furthermore, we observed a reduction in its intra-cellular content by 33% (P < 0.001). Stimulation with tumor necrosis factor α induced a strong release of Angpt-2 that could analogously be blocked by additional treatment with BIFO (veh: 1.58 ± 0.2 vs. BIFO: 1.02 ± 0.1, P < 0.0001). Quantification of endothelial permeability by TER revealed that BIFO was sufficient to reduce Thrombin-induced barrier breakdown (veh: 0.82 ± 0.1 vs. BIFO: 1.01 ± 0.02, P < 0.05). CONCLUSION The antifungal BIFO reduces both release and biosynthesis of the endothelial-destabilizing factor Angpt-2 in vitro thereby improving vascular barrier function. Additional studies are needed to further investigate the underlying mechanism and to translate these findings to in vivo models.
Collapse
Affiliation(s)
- Thorben Pape
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | | | | | - Klaus Stahl
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
- Division of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Benjamin Seeliger
- Division of Respiratory Medicine and German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Sascha David
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Targeting the Ang2/Tie2 Axis with Tanshinone IIA Elicits Vascular Normalization in Ischemic Injury and Colon Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7037786. [PMID: 34804370 PMCID: PMC8598375 DOI: 10.1155/2021/7037786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023]
Abstract
Pathological angiogenesis, as exhibited by aberrant vascular structure and function, has been well deemed to be a hallmark of cancer and various ischemic diseases. Therefore, strategies to normalize vasculature are of potential therapeutic interest in these diseases. Recently, identifying bioactive compounds from medicinal plant extracts to reverse abnormal vasculature has been gaining increasing attention. Tanshinone IIA (Tan IIA), an active component of Salvia miltiorrhiza, has been shown to play significant roles in improving blood circulation and delaying tumor progression. However, the underlying mechanisms responsible for the therapeutic effects of Tan IIA are not fully understood. Herein, we established animal models of HT-29 human colon cancer xenograft and hind limb ischemia to investigate the role of Tan IIA in regulating abnormal vasculature. Interestingly, our results demonstrated that Tan IIA could significantly promote the blood flow, alleviate the hypoxia, improve the muscle quality, and ameliorate the pathological damage after ischemic insult. Meanwhile, we also revealed that Tan IIA promoted the integrity of vascular structure, reduced vascular leakage, and attenuated the hypoxia in HT-29 tumors. Moreover, the circulating angiopoietin 2 (Ang2), which is extremely high in these two pathological states, was substantially depleted in the presence of Tan IIA. Also, the activation of Tie2 was potentiated by Tan IIA, resulting in decreased vascular permeability and elevated vascular integrity. Mechanistically, we uncovered that Tan IIA maintained vascular stability by targeting the Ang2-Tie2-AKT-MLCK cascade. Collectively, our data suggest that Tan IIA normalizes vessels in tumors and ischemic injury via regulating the Ang2/Tie2 signaling pathway.
Collapse
|
18
|
New mechanism-based approaches to treating and evaluating the vasculopathy of scleroderma. Curr Opin Rheumatol 2021; 33:471-479. [PMID: 34402454 DOI: 10.1097/bor.0000000000000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Utilizing recent insight into the vasculopathy of scleroderma (SSc), the review will highlight new opportunities for evaluating and treating the disease by promoting stabilization and protection of the microvasculature. RECENT FINDINGS Endothelial junctional signaling initiated by vascular endothelial-cadherin (VE-cadherin) and Tie2 receptors, which are fundamental to promoting vascular health and stability, are disrupted in SSc. This would be expected to not only diminish their protective activity, but also increase pathological processes that are normally restrained by these signaling mediators, resulting in pathological changes in vascular function and structure. Indeed, key features of SSc vasculopathy, from the earliest signs of edema and puffy fingers to pathological disruption of hemodynamics, nutritional blood flow, capillary structure and angiogenesis are all consistent with this altered endothelial signaling. It also likely contributes to further progression of the disease including tissue fibrosis, and organ and tissue injury. SUMMARY Restoring protective endothelial junctional signaling should combat the vasculopathy of SSc and prevent further deterioration in vascular and organ function. Indeed, this type of targeted approach has achieved remarkable results in preclinical models for other diseases. Furthermore, tracking this endothelial junctional signaling, for example by assessing vascular permeability, should facilitate insight into disease progression and its response to therapy.
Collapse
|
19
|
Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data. Eye (Lond) 2021; 35:1305-1316. [PMID: 33564135 PMCID: PMC8182896 DOI: 10.1038/s41433-020-01377-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
The angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) pathway is an emerging key regulator in vascular development and maintenance. Its relevance to clinicians and basic scientists as a potential therapeutic target in retinal and choroidal vascular diseases is highlighted by recent preclinical and clinical evidence. The Ang/Tie pathway plays an important role in the regulation of vascular stability, in angiogenesis under physiological and pathological conditions, as well as in inflammation. Under physiological conditions, angiopoietin-1 (Ang-1) binds to and phosphorylates the Tie2 receptor, leading to downstream signalling that promotes cell survival and vascular stability. Angiopoietin-2 (Ang-2) is upregulated under pathological conditions and acts as a context-dependent agonist/antagonist of the Ang-1/Tie2 axis, causing vascular destabilisation and sensitising blood vessels to the effects of vascular endothelial growth factor-A (VEGF-A). Ang-2 and VEGF-A synergistically drive vascular leakage, neovascularisation and inflammation, key components of retinal vascular diseases. Preclinical evidence suggests that modulating the Ang/Tie pathway restores vascular stabilisation and reduces inflammation. This review discusses how targeting the Ang/Tie pathway or applying Ang-2/VEGF-A combination therapy may be a valuable therapeutic strategy for restoring vascular stability and reducing inflammation in the treatment of retinal and choroidal vascular diseases.
Collapse
|
20
|
Platelets docking to VWF prevent leaks during leukocyte extravasation by stimulating Tie-2. Blood 2021; 136:627-639. [PMID: 32369573 DOI: 10.1182/blood.2019003442] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Neutrophil extravasation requires opening of the endothelial barrier but does not necessarily cause plasma leakage. Leaks are prevented by contractile actin filaments surrounding the diapedesis pore, keeping this opening tightly closed around the transmigrating neutrophils. We have identified the receptor system that is responsible for this. We show that silencing, or gene inactivation, of endothelial Tie-2 results in leak formation in postcapillary venules of the inflamed cremaster muscle at sites of neutrophil extravasation, as visualized by fluorescent microspheres. Leakage was dependent on neutrophil extravasation, because it was absent upon neutrophil depletion. We identified the Cdc42 GTPase exchange factor FGD5 as a downstream target of Tie-2 that is essential for leakage prevention during neutrophil extravasation. Looking for the Tie-2 agonist and its source, we found that platelet-derived angiopoietin-1 (Angpt1) was required to prevent neutrophil-induced leaks. Intriguingly, blocking von Willebrand factor (VWF) resulted in vascular leaks during transmigration, indicating that platelets interacting with endothelial VWF activate Tie-2 by secreting Angpt1, thereby preventing diapedesis-induced leakiness.
Collapse
|
21
|
Vestweber D. Vascular Endothelial Protein Tyrosine Phosphatase Regulates Endothelial Function. Physiology (Bethesda) 2021; 36:84-93. [PMID: 33595386 DOI: 10.1152/physiol.00026.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP) is a receptor-type PTP (RPTP), predominantly expressed in vascular endothelial cells. It regulates embryonic and tumor angiogenesis and controls vascular permeability and homeostasis in inflammation. Major substrates are the tyrosine kinase receptor Tie-2 and the adhesion molecule VE-cadherin. This review describes how VE-PTP controls vascular functions by its various substrates and the therapeutic potential of VE-PTP in various pathophysiological settings.
Collapse
|
22
|
Role of endothelial microRNA 155 on capillary leakage in systemic inflammation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:76. [PMID: 33618730 PMCID: PMC7901081 DOI: 10.1186/s13054-021-03500-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/10/2021] [Indexed: 01/07/2023]
Abstract
Background Capillary leakage is a key contributor to the pathological host response to infections. The underlying mechanisms remain incompletely understood, and the role of microRNAs (MIR) has not been investigated in detail. We hypothesized that specific MIRs might be regulated directly in the endothelium thereby contributing to vascular leakage.
Methods SmallRNA sequencing of endotoxemic murine pulmonary endothelial cells (ECs) was done to detect regulated vascular MIRs. In vivo models: transgenic zebrafish (flk1:mCherry/l-fabp:eGFP-DPB), knockout/wildtype mouse (B6.Cg-Mir155tm1.1Rsky/J); disease models: LPS 17.5 mg/kgBW and cecal ligation and puncture (CLP); in vitro models: stimulated human umbilical vein EC (HUVECs), transendothelial electrical resistance. Results Endothelial MIR155 was identified as a promising candidate in endotoxemic murine pulmonary ECs (25 × upregulation). Experimental overexpression in a transgenic zebrafish line and in HUVECs was sufficient to induce spontaneous vascular leakage. To the contrary, genetic MIR155 reduction protects against permeability both in vitro and in endotoxemia in vivo in MIR155 heterozygote knockout mice thereby improving survival by 40%. A tight junction protein, Claudin-1, was down-regulated both in endotoxemia and by experimental MIR155 overexpression. Translationally, MIR155 was detectable at high levels in bronchoalveolar fluid of patients with ARDS compared to healthy human subjects. Conclusions We found that MIR155 is upregulated in the endothelium in mouse and men as part of a systemic inflammatory response and might contribute to the pathophysiology of vascular leakage in a Claudin-1-dependent manner. Future studies have to clarify whether MIR155 could be a potential therapeutic target. ![]()
Collapse
|
23
|
Hayashi SI, Rakugi H, Morishita R. Insight into the Role of Angiopoietins in Ageing-Associated Diseases. Cells 2020; 9:E2636. [PMID: 33302426 PMCID: PMC7762563 DOI: 10.3390/cells9122636] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Angiopoietin (Ang) and its receptor, TIE signaling, contribute to the development and maturation of embryonic vasculature as well as vascular remodeling and permeability in adult tissues. Targeting both this signaling pathway and the major pathway with vascular endothelial growth factor (VEGF) is expected to permit clinical applications, especially in antiangiogenic therapies against tumors. Several drugs targeting the Ang-TIE signaling pathway in cancer patients are under clinical development. Similar to how cancer increases with age, unsuitable angiogenesis or endothelial dysfunction is often seen in other ageing-associated diseases (AADs) such as atherosclerosis, Alzheimer's disease, type 2 diabetes, chronic kidney disease and cardiovascular diseases. Thus, the Ang-TIE pathway is a possible molecular target for AAD therapy. In this review, we focus on the potential role of the Ang-TIE signaling pathway in AADs, especially non-cancer-related AADs. We also suggest translational insights and future clinical applications of this pathway in those AADs.
Collapse
Affiliation(s)
- Shin-ichiro Hayashi
- Department of Clinical Gene Therapy, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan;
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Epac1 Is Crucial for Maintenance of Endothelial Barrier Function through A Mechanism Partly Independent of Rac1. Cells 2020; 9:cells9102170. [PMID: 32992982 PMCID: PMC7601253 DOI: 10.3390/cells9102170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Epac1 (exchange protein activated by cAMP) stabilizes the endothelial barrier, but detailed studies are limited by the side effects of pharmacological Epac1 modulators and transient transfections. Here, we compare the key properties of barriers between endothelial cells derived from wild-type (WT) and Epac1-knockout (KO) mice myocardium. We found that KO cell layers, unlike WT layers, had low and cAMP-insensitive trans-endothelial resistance (TER). They also had fragmented VE-cadherin staining despite having augmented cAMP levels and increased protein expression of Rap1, Rac1, RhoA, and VE-cadherin. The simultaneous direct activation of Rac1 and RhoA by CN04 compensated Epac1 loss, since TER was increased. In KO-cells, inhibition of Rac1 activity had no additional effect on TER, suggesting that other mechanisms compensate the inhibition of the Rac1 function to preserve barrier properties. In summary, Epac1 is crucial for baseline and cAMP-mediated barrier stabilization through mechanisms that are at least partially independent of Rac1.
Collapse
|
25
|
Idowu TO, Etzrodt V, Seeliger B, Bolanos-Palmieri P, Thamm K, Haller H, David S. Identification of specific Tie2 cleavage sites and therapeutic modulation in experimental sepsis. eLife 2020; 9:e59520. [PMID: 32838837 PMCID: PMC7447424 DOI: 10.7554/elife.59520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Endothelial Tie2 signaling plays a pivotal role in vascular barrier maintenance at baseline and after injury. We previously demonstrated that a sharp drop in Tie2 expression observed across various murine models of critical illnesses is associated with increased vascular permeability and mortality. Matrix metalloprotease (MMP)-14-mediated Tie2 ectodomain shedding has recently been recognized as a possible mechanism for Tie2 downregulation in sepsis. Here, we identified the exact MMP14-mediated Tie2 ectodomain cleavage sites and could show that pharmacological MMP14 blockade in experimental murine sepsis exerts barrier protective and anti-inflammatory effects predominantly through the attenuation of Tie2 cleavage to improve survival both in a pre-treatment and rescue approach. Overall, we show that protecting Tie2 shedding might offer a new therapeutic opportunity for the treatment of septic vascular leakage.
Collapse
Affiliation(s)
- Temitayo O Idowu
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Valerie Etzrodt
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Benjamin Seeliger
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical SchoolHannoverGermany
| | - Patricia Bolanos-Palmieri
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
- Department of Nephrology and Hypertension, University Hospital of ErlangenErlangenGermany
| | - Kristina Thamm
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Sascha David
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
- Institute for Intensive Care, University Hospital ZurichZurichSwitzerland
| |
Collapse
|
26
|
Mo CF, Li J, Yang SX, Guo HJ, Liu Y, Luo XY, Wang YT, Li MH, Li JY, Zou Q. IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent ROS accumulation and activation of Src/FAK signalling in hepatocellular carcinoma. Br J Cancer 2020; 123:1154-1163. [PMID: 32632148 PMCID: PMC7525663 DOI: 10.1038/s41416-020-0970-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) has a crucial role in the progression of hepatocellular carcinoma (HCC). Tumour cells must develop anoikis resistance in order to survive before metastasis. This study aimed to investigate the mechanism of IQGAP1 in HBV-mediated anoikis evasion and metastasis in HCC cells. METHODS IQGAP1 expression was detected by immunohistochemistry, real-time PCR and immunoblot analysis. Lentiviral-mediated stable upregulation or knockdown of IGAQP1, immunoprecipitation, etc. were used in function and mechanism study. RESULTS IQGAP1 was markedly upregulated in HBV-positive compared with HBV-negative HCC cells and tissues. IQGAP1 was positively correlated to poor prognosis of HBV-associated HCC patients. IQGAP1 overexpression significantly enhanced the anchorage-independent growth and metastasis, whereas IQGAP1-deficient HCC cells are more sensitive to anoikis. Mechanistically, we found that HBV-induced ROS enhanced the association of IQGAP1 and Rac1 that activated Rac1, leading to phosphorylation of Src/FAK pathway. Antioxidants efficiently inhibited IQGAP1-mediated anoikis resistance and metastasis. CONCLUSIONS Our study indicated an important mechanism by which upregulated IQGAP1 by HBV promoted anoikis resistance, migration and invasion of HCC cells through Rac1-dependent ROS accumulation and activation of Src/FAK signalling, suggesting IQGAP1 as a prognostic indicator and a novel therapeutic target in HCC patients with HBV infection.
Collapse
Affiliation(s)
- Chun-Fen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| | - Jun Li
- Department of Gastroenterology, The first affiliated hospital of Chengdu medical college, Chengdu, China
| | - Shu-Xia Yang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Hui-Jie Guo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Xing-Yan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yan-Tang Wang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Min-Hui Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jing-Yi Li
- Department of Urology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China. .,School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China.
| | - Qiang Zou
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
27
|
Su S, Xu A, Chen Y, Li W, Zha X, Wang Y, Sun G. Transcriptomic Analysis of Pulmonary Microvascular Endothelial Cells with IQGAP1 Knockdown. DNA Cell Biol 2020; 39:1127-1140. [PMID: 32364766 DOI: 10.1089/dna.2020.5451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Shihong Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Aihui Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wanzhen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaojun Zha
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yani Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Duong CN, Vestweber D. Mechanisms Ensuring Endothelial Junction Integrity Beyond VE-Cadherin. Front Physiol 2020; 11:519. [PMID: 32670077 PMCID: PMC7326147 DOI: 10.3389/fphys.2020.00519] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 12/30/2022] Open
Abstract
Endothelial junctions provide blood and lymph vessel integrity and are essential for the formation of a vascular system. They control the extravasation of solutes, leukocytes and metastatic cells from blood vessels and the uptake of fluid and leukocytes into the lymphatic vascular system. A multitude of adhesion molecules mediate and control the integrity and permeability of endothelial junctions. VE-cadherin is arguably the most important adhesion molecule for the formation of vascular structures, and the stability of their junctions. Interestingly, despite this prominence, its elimination from junctions in the adult organism has different consequences in the vasculature of different organs, both for blood and lymph vessels. In addition, even in tissues where the lack of VE-cadherin leads to strong plasma leaks from venules, the physical integrity of endothelial junctions is preserved. Obviously, other adhesion molecules can compensate for a loss of VE-cadherin and this review will discuss which other adhesive mechanisms contribute to the stability and regulation of endothelial junctions and cooperate with VE-cadherin in intact vessels. In addition to adhesion molecules, endothelial receptors will be discussed, which stimulate signaling processes that provide junction stability by modulating the actomyosin system, which reinforces tension of circumferential actin and dampens pulling forces of radial stress fibers. Finally, we will highlight most recent reports about the formation and control of the specialized button-like junctions of initial lymphatics, which represent the entry sites for fluid and cells into the lymphatic vascular system.
Collapse
Affiliation(s)
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
29
|
Odak I, Depkat-Jakob A, Beck M, Jarek M, Yu Y, Seidler U, David S, Ganser A, Förster R, Prinz I, Koenecke C. Donor-derived IL-17A and IL-17F deficiency triggers Th1 allo-responses and increases gut leakage during acute GVHD. PLoS One 2020; 15:e0231222. [PMID: 32251446 PMCID: PMC7135231 DOI: 10.1371/journal.pone.0231222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/18/2020] [Indexed: 12/03/2022] Open
Abstract
IL-17A and IL-17F cytokines are important regulators of acute graft-versus-host-disease (GVHD). However, contrary effects of these cytokines in inflammatory diseases have been reported. To investigate the effects of donor-derived IL-17A and IL-17F on GVHD, we made use of single (Il17a-/- or Il17f-/-) and double deficient (Il17af-/-) allogeneic donor CD4+ T cells. We could demonstrate that transplantation of Il17af-/- CD4+ donor T cells led to aggravated GVHD. However, this phenotype was not observed after transplantation of single, Il17a-/- or Il17f-/-, deficient CD4+ T cells, suggesting redundant effects of IL-17A and IL-17F. Moreover, Il17af-/- cell recipients showed an increase of systemic IFNγ, indicating a heightened pro-inflammatory state, as well as infiltration of IFNγ-secreting CD4+ T cells in the recipients’ intestinal tract. These recipients exhibited significant gut leakage, and markedly macrophage infiltration in the gastrointestinal epithelial layer. Moreover, we saw evidence of impaired recovery of gut epithelial cells in recipients of Il17af-/- CD4+ T cells. In this study, we show that IL-17A/F double deficiency of donor CD4+ T cells leads to accelerated GVHD and therefore highlight the importance of these cytokines. Together, IL-17 cytokines might serve as a brake to an intensified Th1 response, leading to the exacerbated gut damage in acute GVHD.
Collapse
Affiliation(s)
- Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Maleen Beck
- Department of Hematology, Hemostasis, Oncology and Stem-Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Jarek
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Yan Yu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Sascha David
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem-Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem-Cell Transplantation, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
30
|
Sheen YS, Lin MH, Tzeng WC, Chu CY. Purpuric drug eruptions induced by EGFR tyrosine kinase inhibitors are associated with IQGAP1-mediated increase in vascular permeability. J Pathol 2020; 250:452-463. [PMID: 32030757 DOI: 10.1002/path.5393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 01/19/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are used as a treatment for non-small-cell lung cancer. There have been some reports of EGFR-TKIs being associated with vascular adverse events. We found that EGFR-TKIs decreased the proliferation of HMEC-1s (immortalized human dermal microvascular endothelial cells) and HMVECs (human dermal microvascular endothelial cells), and also inhibited the phosphorylation of EGFR and ERK. We examined the mRNA expression profile of erlotinib-treated HMEC-1s and identified IQ motif containing GTPase activating protein 1 (IQGAP1) as the most consistently up-regulated transcript and protein. IQGAP1 was also overexpressed and co-localized with endothelial cells in the lesional skin. Notably, increased IQGAP1 expression was associated with decreased transendothelial electrical resistance and increased vascular permeability in vitro. Erlotinib treatment enriched the staining of IQGAP1 and reduced the intensities of α-catenin at the sites of cell-cell contact. In conclusion, erlotinib induces adherens junction dysfunction by modulating the expression of IQGAP1 in dermal endothelial cells. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Hsien Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hisn-Chu, Taiwan
| | - Wen-Chia Tzeng
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
31
|
Stahl K, Schmidt BMW, Hoeper MM, Skripuletz T, Möhn N, Beutel G, Eder M, Welte T, Ganser A, Falk CS, Koenecke C, David S. Extracorporeal cytokine removal in severe CAR-T cell associated cytokine release syndrome. J Crit Care 2020; 57:124-129. [PMID: 32113143 DOI: 10.1016/j.jcrc.2020.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Life-threatening complications of CD-19 Chimeric antigen receptor - T (CAR-T) cells such as the cytokine release syndrome (CRS)) have been reported. Treatment is limited to IL-6 blockade and steroids although global removal of elevated soluble inflammatory factors might be more effective. METHODS Clinical course of a CRS patient treated with extracorporeal cytokine adsorption (Cytosorb®). A panel of 48 cytokines, chemokines and endothelial markers has been analyzed longitudinally. Ex vivo stimulation of endothelial cells to visualize (immunocytochemistry) and quantify (ECIS, TER) endothelial barrier effects. RESULTS Following CAR-T cell application a 65 years old male developed grade 4 CRS with refractory shock (3 vasopressors) and severe capillary leakage (+37 L/24 h resuscitation). Treatment included IL-6 blockade, methylprednisolone and additionally Cytosorb hemoperfusion. While multiple soluble inflammatory factors were elevated and most of them decreased by more than 50% following Cytosorb, markers of endothelial injury increased steadily (e.g. Angpt-2/Angpt-1) leading to profound endothelial activation and leakage in ex vivo assays. CONCLUSION This is the first reported use of cytokine adsorption for CRS showing efficacy in absorption of various cytokines but not endothelial growth factors. A randomized controlled trial to evaluate additional Cytosorb treatment in CRS is currently recruiting at our institution (NCT04048434).
Collapse
Affiliation(s)
- Klaus Stahl
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Bernhard M W Schmidt
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| | - Marius M Hoeper
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany.
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| | - Nora Möhn
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| | - Gernot Beutel
- Department of Hematology, Hemostasis, Oncology and Stem cell transplantation, Hannover Medical School, Hannover, Germany.
| | - Matthias Eder
- Department of Hematology, Hemostasis, Oncology and Stem cell transplantation, Hannover Medical School, Hannover, Germany.
| | - Tobias Welte
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany.
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem cell transplantation, Hannover Medical School, Hannover, Germany.
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany.
| | - Christian Koenecke
- Department of Hematology, Hemostasis, Oncology and Stem cell transplantation, Hannover Medical School, Hannover, Germany.
| | - Sascha David
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
32
|
Ruan Y, Dong W, Kang L, Lei X, Zhang R, Wang F, Zhu X. The Changes of Twist1 Pathway in Pulmonary Microvascular Permeability in a Newborn Rat Model of Hyperoxia-Induced Acute Lung Injury. Front Pediatr 2020; 8:190. [PMID: 32391293 PMCID: PMC7190807 DOI: 10.3389/fped.2020.00190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/31/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Bronchopulmonary dysplasia (BPD) is a chronic lung disease in preterm infants, which is characterized by alveolar and vascular dysplasia and increased vascular permeability. Hyperoxia is a critical factor in the pathogenesis of BPD, hyperoxia-induced acute lung injury (HALI) model has similar pathological manifestations as human BPD, therefore, may provide insight into the pathogenesis of human BPD. Studies have shown that Twist1 regulates pulmonary vascular permeability of LPS-induced lung injury through the Ang-Tie2 pathway. However, the effect of Twist1 pathway on vascular permeability in HALI has not been reported. Methods: We randomly exposed newborn rats to the room air or hyperoxia for 14 days. Lung histopathology, immunofluorescence, vascular permeability, mRNA and protein expression was assessed on day 1,7,14. Results: Our results verified that hyperoxia caused alveolar and vascular developmental disorders and increased pulmonary vascular permeability, which was consistent with previous findings. In hyperoxia-exposed rat lungs, the expressions of Twist1, Ang1, Tie1, Tie2, and pTie2 were significantly reduced, whereas the expression of Ang2 was significantly increased. Next, we observed a significant down-regulation of the Akt/Foxo1 pathway. Conclusion: In HALI, the pulmonary microvascular permeability was increased, accompanied by changes in Twist1-Tie2 pathway which combined to Angs, and downregulation of Tie1 and Akt/Foxo1 pathway.
Collapse
Affiliation(s)
- Ying Ruan
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lan Kang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoping Lei
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rong Zhang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fan Wang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaodan Zhu
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Zheng X, Zhang W, Wang Z. Simvastatin preparations promote PDGF-BB secretion to repair LPS-induced endothelial injury through the PDGFRβ/PI3K/Akt/IQGAP1 signalling pathway. J Cell Mol Med 2019; 23:8314-8327. [PMID: 31576676 PMCID: PMC6850957 DOI: 10.1111/jcmm.14709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
Endothelial barrier dysfunction is a critical pathophysiological process of sepsis. Impaired endothelial cell migration is one of the main reasons for endothelial dysfunction. Statins may have a protective effect on endothelial barrier function. However, the effect and mechanism of statins on lipopolysaccharide (LPS)‐induced endothelial barrier dysfunction remain unclear. Simvastatin (SV) was loaded in nanostructured lipid carriers to produce SV nanoparticles (SV‐NPs). Normal SV and SV‐NPs were used to treat human umbilical vein vascular endothelial cells (HUVECs) injured by LPS. Barrier function was evaluated by monitoring cell monolayer permeability and transendothelial electrical resistance, and cell migration ability was measured by a wound healing assay. LY294002 and imatinib were used to inhibit the activity of PI3K/Akt and platelet‐derived growth factor receptor (PDGFR) β. IQ‐GTPase‐activating protein 1 (IQGAP1) siRNA was used to knockdown endogenous IQGAP1, which was used to verify the role of the PDGFRβ/PI3K/Akt/IQGAP1 pathway in SV/SV‐NPs‐mediated barrier protection in HUVECs injured by LPS. The results show that SV/SV‐NPs promoted the migration and decreased the permeability of HUVECs treated with LPS, and the efficacy of the SV‐NPs exceeded that of SV significantly. LY294002, imatinib and IQGAP1 siRNA all suppressed the barrier protection of SV/SV‐NPs. SV/SV‐NPs promoted the secretion of platelet‐derived growth factor‐BB (PDGF‐BB) and activated the PDGFRβ/PI3K/Akt/IQGAP1 pathway. SV preparations restored endothelial barrier function by restoring endothelial cell migration, which is involved in the regulation of the PDGFRβ/PI3K/Akt/IQGAP1 pathway and PDGF‐BB secretion. As an appropriate formulation for restoring endothelial dysfunction, SV‐NPs may be more effective than SV.
Collapse
Affiliation(s)
- Xia Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wang Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Wang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
35
|
Gutbier B, Neuhauß AK, Reppe K, Ehrler C, Santel A, Kaufmann J, Scholz M, Weissmann N, Morawietz L, Mitchell TJ, Aliberti S, Hippenstiel S, Suttorp N, Witzenrath M. Prognostic and Pathogenic Role of Angiopoietin-1 and -2 in Pneumonia. Am J Respir Crit Care Med 2019; 198:220-231. [PMID: 29447449 DOI: 10.1164/rccm.201708-1733oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RATIONALE During pneumonia, pathogen-host interaction evokes inflammation and lung barrier dysfunction. Tie2 activation by angiopoietin-1 reduces, whereas Tie2 blockade by angiopoietin-2 increases, inflammation and permeability during sepsis. The role of angiopoietin-1/-2 in pneumonia remains unidentified. OBJECTIVES To investigate the prognostic and pathogenic impact of angiopoietins in regulating pulmonary vascular barrier function and inflammation in bacterial pneumonia. METHODS Serum angiopoietin levels were quantified in pneumonia patients of two independent cohorts (n = 148, n = 395). Human postmortem lung tissue, pneumolysin- or angiopoietin-2-stimulated endothelial cells, isolated perfused and ventilated mouse lungs, and mice with pneumococcal pneumonia were investigated. MEASUREMENTS AND MAIN RESULTS In patients with pneumonia, decreased serum angiopoietin-1 and increased angiopoietin-2 levels were observed as compared with healthy subjects. Higher angiopoietin-2 serum levels were found in patients with community-acquired pneumonia who died within 28 days of diagnosis compared with survivors. Receiver operating characteristic analysis revealed improved prognostic accuracy of CURB-65 for 28-day survival, intensive care treatment, and length of hospital stay if combined with angiopoietin-2 serum levels. In vitro, pneumolysin enhanced endothelial angiopoietin-2 release, angiopoietin-2 increased endothelial permeability, and angiopoietin-1 reduced pneumolysin-evoked endothelial permeability. Ventilated and perfused lungs of mice with angiopoietin-2 knockdown showed reduced permeability on pneumolysin stimulation. Increased pulmonary angiopoietin-2 and reduced angiopoietin-1 mRNA expression were observed in Streptococcus pneumoniae-infected mice. Finally, angiopoietin-1 therapy reduced inflammation and permeability in murine pneumonia. CONCLUSIONS These data suggest a central role of angiopoietin-1/-2 in pneumonia-evoked inflammation and permeability. Increased angiopoietin-2 serum levels predicted mortality and length of hospital stay, and angiopoietin-1 may provide a therapeutic target for severe pneumonia.
Collapse
Affiliation(s)
- Birgitt Gutbier
- 1 Division of Pulmonary Inflammation and.,2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anne-Kathrin Neuhauß
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katrin Reppe
- 1 Division of Pulmonary Inflammation and.,2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carolin Ehrler
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | - Markus Scholz
- 4 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Norbert Weissmann
- 5 Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Lars Morawietz
- 6 Pathology, Healthcare Center Fuerstenberg-Karree, Berlin, Germany
| | - Timothy J Mitchell
- 7 Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stefano Aliberti
- 8 Department of Pathophysiology and Transplantation, University of Milan, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; and
| | - Stefan Hippenstiel
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,9 CAPNETZ STIFTUNG, Hannover, Germany
| | - Martin Witzenrath
- 1 Division of Pulmonary Inflammation and.,2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,9 CAPNETZ STIFTUNG, Hannover, Germany
| | | |
Collapse
|
36
|
Braun LJ, Zinnhardt M, Vockel M, Drexler HC, Peters K, Vestweber D. VE-PTP inhibition stabilizes endothelial junctions by activating FGD5. EMBO Rep 2019; 20:e47046. [PMID: 31267715 PMCID: PMC6607018 DOI: 10.15252/embr.201847046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/01/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023] Open
Abstract
Inhibition of VE-PTP, an endothelial receptor-type tyrosine phosphatase, triggers phosphorylation of the tyrosine kinase receptor Tie-2, which leads to the suppression of inflammation-induced vascular permeability. Analyzing the underlying mechanism, we show here that inhibition of VE-PTP and activation of Tie-2 induce tyrosine phosphorylation of FGD5, a GTPase exchange factor (GEF) for Cdc42, and stimulate its translocation to cell contacts. Interfering with the expression of FGD5 blocks the junction-stabilizing effect of VE-PTP inhibition in vitro and in vivo. Likewise, FGD5 is required for strengthening cortical actin bundles and inhibiting radial stress fiber formation, which are each stimulated by VE-PTP inhibition. We identify Y820 of FGD5 as the direct substrate for VE-PTP. The phosphorylation of FGD5-Y820 is required for the stabilization of endothelial junctions and for the activation of Cdc42 by VE-PTP inhibition but is dispensable for the recruitment of FGD5 to endothelial cell contacts. Thus, activation of FGD5 is a two-step process that comprises membrane recruitment and phosphorylation of Y820. These steps are necessary for the junction-stabilizing effect stimulated by VE-PTP inhibition and Tie-2 activation.
Collapse
Affiliation(s)
- Laura J Braun
- Max Planck Institute of Molecular BiomedicineMünsterGermany
| | | | - Matthias Vockel
- Max Planck Institute of Molecular BiomedicineMünsterGermany
- Present address:
Institute for Human GeneticsUniversity of MünsterMünsterGermany
| | | | | | | |
Collapse
|
37
|
Multiplexed, high-throughput measurements of cell contraction and endothelial barrier function. J Transl Med 2019; 99:138-145. [PMID: 30310180 PMCID: PMC6309267 DOI: 10.1038/s41374-018-0136-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
Vascular leakage, protein exudation, and edema formation are events commonly triggered by inflammation and facilitated by gaps that form between adjacent endothelial cells (ECs) of the vasculature. In such paracellular gap formation, the role of EC contraction is widely implicated, and even therapeutically targeted. However, related measurement approaches remain slow, tedious, and complex to perform. Here, we have developed a multiplexed, high-throughput screen to simultaneously quantify paracellular gaps, EC contractile forces, and to visualize F-actin stress fibers, and VE-cadherin. As proof-of-principle, we examined barrier-protective mechanisms of the Rho-associated kinase inhibitor, Y-27632, and the canonical agonist of the Tie2 receptor, Angiopoietin-1 (Angpt-1). Y-27632 reduced EC contraction and actin stress fiber formation, whereas Angpt-1 did not. Yet both agents reduced thrombin-, LPS-, and TNFα-induced paracellular gap formation. This unexpected result suggests that Angpt-1 can achieve barrier defense without reducing EC contraction, a mechanism that has not been previously described. This insight was enabled by the multiplex nature of the force-based platform. The high-throughput format we describe should accelerate both mechanistic studies and the screening of pharmacological modulators of endothelial barrier function.
Collapse
|
38
|
Knaup H, Stahl K, Schmidt BMW, Idowu TO, Busch M, Wiesner O, Welte T, Haller H, Kielstein JT, Hoeper MM, David S. Early therapeutic plasma exchange in septic shock: a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:285. [PMID: 30373638 PMCID: PMC6206942 DOI: 10.1186/s13054-018-2220-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Background Given the pathophysiological key role of the host response to an infection rather than the infection per se, an ideal therapeutic strategy would also target this response. This study was designed to demonstrate safety and feasibility of early therapeutic plasma exchange (TPE) in severely ill individuals with septic shock. Methods This was a prospective single center, open-label, nonrandomized pilot study enrolling 20 patients with early septic shock (onset < 12 h) requiring high doses of norepinephrine (NE; > 0.4 μg/kg/min) out of 231 screened septic patients. Clinical and biochemical data were obtained before and after TPE. Plasma samples were taken for ex-vivo stimulation of human umbilical vein endothelial cells (HUVECs) to analyze barrier function (immunocytochemistry and transendothelial electrical resistance (TER)). Cytokines were measured by cytometric bead array (CBA) and enzyme-linked immunosorbent assays (ELISAs). An immediate response was defined as > 20% NE reduction from baseline to the end of TPE. Results TPE was well tolerated without the occurrence of any adverse events and was associated with a rapid reduction in NE (0.82 (0.61–1.17) vs. 0.56 (0.41–0.78) μg/kg/min, p = 0.002) to maintain mean arterial pressure (MAP) above 65 mmHg. The observed 28-day mortality was 65%. Key proinflammatory cytokines and permeability factors (e.g., interleukin (IL)-6, IL-1b, and angiopoietin-2) were significantly reduced after TPE, while the protective antipermeability factor angiopoietin-1 was not changed. Ex-vivo stimulation of HUVECs with plasma obtained before TPE induced substantial cellular hyperpermeability, which was completely abolished with plasma obtained after TPE. Conclusions Inclusion of early septic shock patients with high doses of vasopressors was feasible and TPE was safe. Rapid hemodynamic improvement and favorable changes in the cytokine profile in patients with septic shock were observed. It has yet to be determined whether early TPE also improves outcomes in this patient cohort. An appropriately powered multicenter randomized controlled trial is desirable. Trial registration Clinicaltrials.gov, NCT03065751. Retrospectively registered on 28 February 2017. Electronic supplementary material The online version of this article (10.1186/s13054-018-2220-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hannah Knaup
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Klaus Stahl
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bernhard M W Schmidt
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Temitayo O Idowu
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Markus Busch
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Olaf Wiesner
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Jan T Kielstein
- Medical Clinic V, Nephrology, Rheumatology, Blood Purification, Academic Teaching Hospital Brunswick, Braunschweig, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Sascha David
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
39
|
Thamm K, Schrimpf C, Retzlaff J, Idowu TO, van Meurs M, Zijlstra JG, Ghosh CC, Zeitvogel J, Werfel TA, Haller H, Parikh SM, David S. Molecular Regulation of Acute Tie2 Suppression in Sepsis. Crit Care Med 2018; 46:e928-e936. [PMID: 29979219 PMCID: PMC6095816 DOI: 10.1097/ccm.0000000000003269] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Tie2 is a tyrosine kinase receptor expressed by endothelial cells that maintains vascular barrier function. We recently reported that diverse critical illnesses acutely decrease Tie2 expression and that experimental Tie2 reduction suffices to recapitulate cardinal features of the septic vasculature. Here we investigated molecular mechanisms driving Tie2 suppression in settings of critical illness. DESIGN Laboratory and animal research, postmortem kidney biopsies from acute kidney injury patients and serum from septic shock patients. SETTING Research laboratories and ICU of Hannover Medical School, Harvard Medical School, and University of Groningen. PATIENTS Deceased septic acute kidney injury patients (n = 16) and controls (n = 12) and septic shock patients (n = 57) and controls (n = 22). INTERVENTIONS Molecular biology assays (Western blot, quantitative polymerase chain reaction) + in vitro models of flow and transendothelial electrical resistance experiments in human umbilical vein endothelial cells; murine cecal ligation and puncture and lipopolysaccharide administration. MEASUREMENTS AND MAIN RESULTS We observed rapid reduction of both Tie2 messenger RNA and protein in mice following cecal ligation and puncture. In cultured endothelial cells exposed to tumor necrosis factor-α, suppression of Tie2 protein was more severe than Tie2 messenger RNA, suggesting distinct regulatory mechanisms. Evidence of protein-level regulation was found in tumor necrosis factor-α-treated endothelial cells, septic mice, and septic humans, all three of which displayed elevation of the soluble N-terminal fragment of Tie2. The matrix metalloprotease 14 was both necessary and sufficient for N-terminal Tie2 shedding. Since clinical settings of Tie2 suppression are often characterized by shock, we next investigated the effects of laminar flow on Tie2 expression. Compared with absence of flow, laminar flow induced both Tie2 messenger RNA and the expression of GATA binding protein 3. Conversely, septic lungs exhibited reduced GATA binding protein 3, and knockdown of GATA binding protein 3 in flow-exposed endothelial cells reduced Tie2 messenger RNA. Postmortem tissue from septic patients showed a trend toward reduced GATA binding protein 3 expression that was associated with Tie2 messenger RNA levels (p < 0.005). CONCLUSIONS Tie2 suppression is a pivotal event in sepsis that may be regulated both by matrix metalloprotease 14-driven Tie2 protein cleavage and GATA binding protein 3-driven flow regulation of Tie2 transcript.
Collapse
Affiliation(s)
- Kristina Thamm
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Claudia Schrimpf
- Department of Vascular & Endovascular Surgery, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jennifer Retzlaff
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Temitayo O Idowu
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Matijs van Meurs
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan G Zijlstra
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Chandra C Ghosh
- Beth Israel Deaconess and Harvard Medical School, CVBR, Boston, United States
| | - Jana Zeitvogel
- Department of Dermatology, Venerology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Thomas A Werfel
- Department of Dermatology, Venerology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Samir M Parikh
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sascha David
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
40
|
Wollborn J, Schlegel N, Schick MA. [Phosphodiesterase 4 inhibition for treatment of endothelial barrier and microcirculation disorders in sepsis]. Anaesthesist 2018; 66:347-352. [PMID: 28429038 DOI: 10.1007/s00101-017-0305-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sepsis is commonly associated with loss of microvascular endothelial barrier function (capillary leak) and dysfunctional microcirculation, which both promote organ failure. The development of a distinct therapy of impaired endothelial barrier function and disturbed microcirculation is highly relevant because both of these phenomena constitute crucial processes which critically influence the prognosis of patients. Numerous in vivo and in vitro trials over the past years have fostered a better understanding of the pathophysiology of capillary leak. Furthermore, promising data in animal models show that therapeutic modulation of endothelial barrier function and microcirculation can be achieved by stabilizing endothelial cAMP (cyclic adenosine monophosphate) levels followed by activation of Rho-GTPase Rac1, e. g. by phosphodiesterase 4 inhibitors. This review summarizes and discusses recent findings of cellular mechanisms and in vivo trials.
Collapse
Affiliation(s)
- J Wollborn
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland
| | - N Schlegel
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - M A Schick
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland.
| |
Collapse
|
41
|
Angiopoietin 2 promotes angiogenesis in tissue-engineered bone and improves repair of bone defects by inducing autophagy. Biomed Pharmacother 2018; 105:932-939. [PMID: 30021387 DOI: 10.1016/j.biopha.2018.06.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022] Open
Abstract
Angiogenesis plays a key role in the repair of large segmental bone defects with tissue-engineered bones. However, there is no effective method of promoting angiogenesis in tissue-engineered bone. Both angiopoietin 2 (Ang2) and autophagy have been shown to be involved in angiogenesis, but their roles in angiogenesis of tissue-engineered bone remains unknown. In this in vivo study, a radius bone defect was created in New Zealand white rabbits, which were then treated by implantation of a hydroxyapatite/collagen scaffold followed by injection of different concentrations of Ang2. Expression of the autophagic modulators microtubule-associated protein 1 light chain 3 (LC3), Beclin-1, and SQSTM1/P62 were measured via western blotting, while the angiogenic modulators VEGF and CD31 were detected by western blotting and immunohistochemistry, respectively. X-ray imaging combined with general observation was used to evaluate bone defect healing. Expression of LC3 -I/LC3-II, Beclin-1, VEGF, and CD31 in the callus area increased and SQSTM1/p62 decreased in a dose-dependent manner with increasing Ang2 concentration. In the group treated with a high concentration of Ang2, the new callus grew well, accompanied by remarkable angiogenesis, leading to good repair of the bone defects. However, in the low concentration of Ang2 group, in spite of the existence of angiogenesis and new bone formation, the bone defects were not repaired. Furthermore, angiogenesis and osteogenesis were both obstructed in the control group. In conclusion, our study demonstrated that a high concentration of Ang2 promoted angiogenesis in tissue-engineered bone and improved repair of bone defects by inducing autophagy.
Collapse
|
42
|
Leligdowicz A, Richard-Greenblatt M, Wright J, Crowley VM, Kain KC. Endothelial Activation: The Ang/Tie Axis in Sepsis. Front Immunol 2018; 9:838. [PMID: 29740443 PMCID: PMC5928262 DOI: 10.3389/fimmu.2018.00838] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Sepsis, a dysregulated host response to infection that causes life-threatening organ dysfunction, is a highly heterogeneous syndrome with no specific treatment. Although sepsis can be caused by a wide variety of pathogenic organisms, endothelial dysfunction leading to vascular leak is a common mechanism of injury that contributes to the morbidity and mortality associated with the syndrome. Perturbations to the angiopoietin (Ang)/Tie2 axis cause endothelial cell activation and contribute to the pathogenesis of sepsis. In this review, we summarize how the Ang/Tie2 pathway is implicated in sepsis and describe its prognostic as well as therapeutic utility in life-threatening infections.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Melissa Richard-Greenblatt
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Julie Wright
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Valerie M Crowley
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Kevin C Kain
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Trollmann R, Mühlberger T, Richter M, Boie G, Feigenspan A, Brackmann F, Jung S. Differential regulation of angiogenesis in the developing mouse brain in response to exogenous activation of the hypoxia-inducible transcription factor system. Brain Res 2018; 1688:91-102. [PMID: 29548688 DOI: 10.1016/j.brainres.2018.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/18/2022]
Abstract
Angiogenesis due to hypoxic-ischemic (HI) injury represents a crucial compensatory mechanism of the developing brain that is mainly regulated by hypoxia-inducible transcription factors (HIF). Pharmacological stimulation of HIF is suggested as a neuroprotective option, however, studies of its effects on vascular development are limited. We analyzed the influence of the prolyl-4-hydroxylase inhibitor (PHI), FG-4497, and erythropoietin (rhEPO) on post-hypoxic angiogenesis (angiogenic growth factors, vessel structures) in the developing mouse brain (P7) assessed after a regeneration period of 72 h. Exposure to systemic hypoxia (8% O2, 6 h) was followed by treatment (i.p.) with rhEPO (2500/5000 IU/kg) at 0, 24 and 48 h or FG-4497 (60/100 mg/kg) compared to controls. In response to FG-4497 treatment cortical and hippocampal vessel area and branching were significantly increased compared to controls. This was associated with elevated ANGPT-2 as well as decreased ANGPT-1 and TIE-2 mRNA levels. In response to rhEPO, mildly increased angiogenesis was associated with elevated ANGPT-2 but also TIE-2 mRNA levels in comparison to controls. In conclusion, present data demonstrate a differential regulation of the angiopoietin/TIE-2 system in response to PHI and rhEPO in the post-hypoxic developing brain pointing to potential functional consequences for vascular regeneration and vessel development.
Collapse
Affiliation(s)
- Regina Trollmann
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| | - Theresa Mühlberger
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| | - Mandy Richter
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| | - Gudrun Boie
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| | - Andreas Feigenspan
- Institute of Animal Physiology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany.
| | - Florian Brackmann
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| | - Susan Jung
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University of Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW As a subset of the organism-wide reaction to severe infection, the host vascular response has received increasing attention in recent years. The transformation that small blood vessels undergo to facilitate the clearance of pathogens may become harmful to the host if it occurs too broadly or if it is sustained too long. Adverse clinical manifestations of leaky and inflamed blood vessels include edema impairing the function of critical organs and circulatory shock. RECENT FINDINGS The study suggests that this host vascular response may be both measurable and potentially targetable. Tie2 is a receptor tyrosine kinase (RTK) heavily enriched in the vascular endothelium whose tonic signaling actively maintains vascular quiescence. When Tie2 becomes inactivated, important molecular brakes are released in the endothelium, which in turn potentiate inflammation and vascular leakage. The ligands of Tie2, Angiopoietin-1 and Angiopoietin-2, regulate its activation status. Genetic and molecular studies spanning thousands of humans link Tie2 and imbalance of the Angiopoietins to major adverse clinical events arising from bacterial sepsis, other severe infections, and even acute sterile inflammation. SUMMARY The Tie2 signaling axis may constitute a molecular switch in systemic inflammation that can be measured and manipulated to target the host vascular response therapeutically.
Collapse
|
45
|
Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018; 222. [PMID: 28231640 DOI: 10.1111/apha.12860] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The endothelial barrier consists of intercellular contacts localized in the cleft between endothelial cells, which is covered by the glycocalyx in a sievelike manner. Both types of barrier-forming junctions, i.e. the adherens junction (AJ) serving mechanical anchorage and mechanotransduction and the tight junction (TJ) sealing the intercellular space to limit paracellular permeability, are tethered to the actin cytoskeleton. Under resting conditions, the endothelium thereby builds a selective layer controlling the exchange of fluid and solutes with the surrounding tissue. However, in the situation of an inflammatory response such as in anaphylaxis or sepsis intercellular contacts disintegrate in post-capillary venules leading to intercellular gap formation. The resulting oedema can cause shock and multi-organ failure. Therefore, maintenance as well as coordinated opening and closure of interendothelial junctions is tightly regulated. The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins. In the resting state, junctional Rac1 and RhoA activity is enhanced by junctional components, actin-binding proteins, cAMP signalling and extracellular cues such as sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang-1). In addition, phosphorylation of AJ components is prevented by junction-associated phosphatases including vascular endothelial protein tyrosine phosphatase (VE-PTP). In contrast, inflammatory mediators inhibiting cAMP/Rac1 signalling cause strong activation of RhoA and induce AJ phosphorylation finally leading to endocytosis and cleavage of VE-cadherin. This results in dissolution of TJs the outcome of which is endothelial barrier breakdown.
Collapse
Affiliation(s)
- M. Y. Radeva
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| | - J. Waschke
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| |
Collapse
|
46
|
Birukov KG, Karki P. Injured lung endothelium: mechanisms of self-repair and agonist-assisted recovery (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217752660. [PMID: 29261029 PMCID: PMC6022073 DOI: 10.1177/2045893217752660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The lung endothelium is vulnerable to both exogenous and endogenous insults, so a properly coordinated efficient repair system is essential for the timely recovery of the lung after injury. The agents that cause endothelial injury and dysfunction fall into a broad range from mechanical forces such as pathological cyclic stretch and shear stress to bacterial pathogens and their virulent components, vasoactive agonists including thrombin and histamine, metabolic causes including high glucose and oxidized low-density lipoprotein (OxLDL), circulating microparticles, and inflammatory cytokines. The repair mechanisms employed by endothelial cells (EC) can be broadly categorized into three groups: (1) intrinsic mechanism of recovery regulated by the cross-talk between small GTPases as exemplified by Rap1-mediated EC barrier recovery from Rho-mediated thrombin-induced EC hyperpermeability; (2) agonist-assisted recovery facilitated by the activation of Rac and Rap1 with subsequent inhibition of Rho signaling as observed with many barrier protective agonists including oxidized phospholipids, sphingosine 1-phosphate, prostacyclins, and hepatocyte growth factor; and (3) self-recovery of EC by the secretion of growth factors and other pro-survival bioactive compounds including anti-inflammatory molecules such as lipoxins during the resolution of inflammation. In this review, we will discuss the molecular and cellular mechanisms of pulmonary endothelium repair that is critical for the recovery from various forms of lung injuries.
Collapse
Affiliation(s)
- Konstantin G. Birukov
- Department of Anesthesiology, University of
Maryland Baltimore, School of Medicine, Baltimore, MD, USA,Konstantin G. Birukov, Department of Anesthesiology,
University of Maryland, School of Medicine, 20 Penn Street, HSF-2, Room 145 Baltimore, MD
21201, USA.
| | - Pratap Karki
- Division of Pulmonary and Critical Care
Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine,
Baltimore, MD, USA
| |
Collapse
|
47
|
Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clin Sci (Lond) 2017; 131:87-103. [PMID: 27941161 PMCID: PMC5146956 DOI: 10.1042/cs20160129] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/23/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022]
Abstract
Endothelial cells that form the inner layer of blood and lymphatic vessels are important regulators of vascular functions and centrally involved in the pathogenesis of vascular diseases. In addition to the vascular endothelial growth factor (VEGF) receptor pathway, the angiopoietin (Ang)-Tie system is a second endothelial cell specific ligand-receptor signalling system necessary for embryonic cardiovascular and lymphatic development. The Ang-Tie system also regulates postnatal angiogenesis, vessel remodelling, vascular permeability and inflammation to maintain vascular homoeostasis in adult physiology. This system is implicated in numerous diseases where the vasculature has an important contribution, such as cancer, sepsis, diabetes, atherosclerosis and ocular diseases. Furthermore, mutations in the TIE2 signalling pathway cause defects in vascular morphogenesis, resulting in venous malformations and primary congenital glaucoma. Here, we review recent advances in the understanding of the Ang-Tie signalling system, including cross-talk with the vascular endothelial protein tyrosine phosphatase (VE-PTP) and the integrin cell adhesion receptors, focusing on the Ang-Tie system in vascular development and pathogenesis of vascular diseases.
Collapse
|
48
|
Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov 2017; 16:635-661. [PMID: 28529319 DOI: 10.1038/nrd.2016.278] [Citation(s) in RCA: 400] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The endothelial angiopoietin (ANG)-TIE growth factor receptor pathway regulates vascular permeability and pathological vascular remodelling during inflammation, tumour angiogenesis and metastasis. Drugs that target the ANG-TIE pathway are in clinical development for oncological and ophthalmological applications. The aim is to complement current vascular endothelial growth factor (VEGF)-based anti-angiogenic therapies in cancer, wet age-related macular degeneration and macular oedema. The unique function of the ANG-TIE pathway in vascular stabilization also renders this pathway an attractive target in sepsis, organ transplantation, atherosclerosis and vascular complications of diabetes. This Review covers key aspects of the function of the ANG-TIE pathway in vascular disease and describes the recent development of novel therapeutics that target this pathway.
Collapse
Affiliation(s)
- Pipsa Saharinen
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 5A, University of Oulu, 90220 Oulu, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, FI-00014 Helsinki, Finland
| |
Collapse
|
49
|
Komarova YA, Kruse K, Mehta D, Malik AB. Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res 2017; 120:179-206. [PMID: 28057793 DOI: 10.1161/circresaha.116.306534] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
The monolayer of endothelial cells lining the vessel wall forms a semipermeable barrier (in all tissue except the relatively impermeable blood-brain and inner retinal barriers) that regulates tissue-fluid homeostasis, transport of nutrients, and migration of blood cells across the barrier. Permeability of the endothelial barrier is primarily regulated by a protein complex called adherens junctions. Adherens junctions are not static structures; they are continuously remodeled in response to mechanical and chemical cues in both physiological and pathological settings. Here, we discuss recent insights into the post-translational modifications of junctional proteins and signaling pathways regulating plasticity of adherens junctions and endothelial permeability. We also discuss in the context of what is already known and newly defined signaling pathways that mediate endothelial barrier leakiness (hyperpermeability) that are important in the pathogenesis of cardiovascular and lung diseases and vascular inflammation.
Collapse
Affiliation(s)
- Yulia A Komarova
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Kevin Kruse
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Dolly Mehta
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Asrar B Malik
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago.
| |
Collapse
|
50
|
Abstract
Systemic inflammation is a hallmark of commonly encountered diseases ranging from bacterial sepsis to sterile syndromes such as major trauma. Derangements in the host vasculature contribute to the cardinal manifestations of sepsis in profound ways. Recent studies of control pathways regulating the vascular endothelium have illuminated how this single cell layer toggles between quiescence and activation to affect the development of shock and multiorgan dysfunction. This article focuses on one such control pathway, the Tie2 receptor and its ligands the angiopoietins, to describe a growing body of genetic, biochemical, mechanistic, and human studies that implicate Tie2 as a critical switch. In health, activated Tie2 maintains the endothelium in a quiescent state characterized by dynamic barrier function and antiadhesion against circulating leukocytes. In sepsis and related diseases, expression of the angiopoietins becomes markedly imbalanced and Tie2 signaling is greatly attenuated. These rapid molecular changes potentiate pathophysiologic responses throughout the body, resulting in injurious vascular leakage and organ inflammation. The Tie2 axis, therefore, may be a promising avenue for future translational studies.
Collapse
Affiliation(s)
- Samir M Parikh
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|