1
|
Kolanovic D, Pasupuleti R, Wallner J, Mlynek G, Wiltschi B. Site-Specific Immobilization Boosts the Performance of a Galectin-1 Biosensor. Bioconjug Chem 2024; 35:1944-1958. [PMID: 39625149 DOI: 10.1021/acs.bioconjchem.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The analysis of protein-bound glycans has gained significant attention due to their pivotal roles in physiological and pathological processes like cell-cell recognition, immune response, and disease progression. Routine methods for glycan analysis are challenged by the very similar physicochemical properties of their carbohydrate components. As an alternative, lectins, which are proteins that specifically bind to glycans, have been integrated into biosensors for glycan detection. However, the effectiveness of protein-based biosensors depends heavily on the immobilization of proteins on the sensor surface. To enhance the sensitivity and/or selectivity of lectin biosensors, it is crucial to immobilize the lectin in an optimal orientation for ligand binding without compromising its function. Random immobilization methods often result in arbitrary orientation and reduced sensitivity. To address this, we explored a directed immobilization strategy relying on a reactive noncanonical amino acid (ncAA) and bioorthogonal chemistry. In this study, we site-specifically incorporated the reactive noncanonical lysine derivative, Nε-((2-azidoethoxy)carbonyl)-l-lysine, into a cysteine-less single-chain variant of human galectin-1 (scCSGal-1). The reactive bioorthogonal azide group allowed the directed immobilization of the lectin on a biosensor surface using strain-promoted azide-alkyne cycloaddition. Biolayer interferometry data demonstrated that the controlled, directed attachment of scCSGal-1 to the biosensor surface enhanced the binding sensitivity to glycosylated von Willebrand factor by about 12-fold compared to random immobilization. These findings emphasize the importance of controlled protein orientation in biosensor design. They also highlight the power of single site-specific genetic encoding of reactive ncAAs and bioorthogonal chemistry to improve the performance of lectin-based diagnostic tools.
Collapse
Affiliation(s)
- Dajana Kolanovic
- acib - Austrian Centre of Industrial Biotechnology, Graz 8010, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz 8010, Austria
| | - Rajeev Pasupuleti
- acib - Austrian Centre of Industrial Biotechnology, Graz 8010, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz 8010, Austria
| | - Jakob Wallner
- BOKU Core Facility Biomolecular & Cellular Analysis, BOKU University, Vienna 1190, Austria
| | - Georg Mlynek
- BOKU Core Facility Biomolecular & Cellular Analysis, BOKU University, Vienna 1190, Austria
| | - Birgit Wiltschi
- acib - Austrian Centre of Industrial Biotechnology, Graz 8010, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, BOKU University, Vienna 1190, Austria
| |
Collapse
|
2
|
Chion A, Byrne C, Atiq F, Doherty D, Aguila S, Fazavana J, Lopes P, Karampini E, Amin A, Preston RJS, Baker RI, McKinnon TAJ, Zhu S, Gilbert JC, Emsley J, Jilma B, O’Donnell JS. The aptamer BT200 blocks interaction of K1405-K1408 in the VWF-A1 domain with macrophage LRP1. Blood 2024; 144:1445-1456. [PMID: 38996211 PMCID: PMC11451302 DOI: 10.1182/blood.2024024055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
ABSTRACT Rondaptivon pegol (previously BT200) is a pegylated RNA aptamer that binds to the A1 domain of von Willebrand factor (VWF). Recent clinical trials demonstrated that BT200 significantly increased plasma VWF-factor VIII levels by attenuating VWF clearance. The biological mechanism(s) through which BT200 attenuates in vivo clearance of VWF has not been defined. We hypothesized that BT200 interaction with the VWF-A1 domain may increase plasma VWF levels by attenuating macrophage-mediated clearance. We observed that full-length and VWF-A1A2A3 binding to macrophages and VWF-A1 domain binding to lipoprotein receptor-related protein 1 (LRP1) cluster II and cluster IV were concentration-dependently inhibited by BT200. Additionally, full-length VWF binding to LRP1 expressed on HEK293T (HEK-LRP1) cells was also inhibited by BT200. Importantly, BT200 interacts with the VWF-A1 domain in proximity to a conserved cluster of 4 lysine residues (K1405, K1406, K1407, and K1408). Alanine mutagenesis of this K1405-K1408 cluster (VWF-4A) significantly (P < .001) attenuated binding of VWF to both LRP1 clusters II and IV. Furthermore, in vivo clearance of VWF-4A was significantly (P < .001) reduced than that of wild-type VWF. BT200 did not significantly inhibit binding of VWF-4A to LRP1 cluster IV or HEK-LRP1 cells. Finally, BT200 interaction with the VWF-A1 domain also inhibited binding to macrophage galactose lectin and the SR-AI scavenger receptor. Collectively, our findings demonstrate that BT200 prolongs VWF half-life by attenuating macrophage-mediated clearance and specifically the interaction of K1405-K1408 in the VWF-A1 domain with macrophage LRP1. These data support the concept that targeted inhibition of VWF clearance pathways represents a novel therapeutic approach for von Willebrand disease and hemophilia A.
Collapse
Affiliation(s)
- Alain Chion
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ciara Byrne
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ferdows Atiq
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dearbhla Doherty
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sonia Aguila
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Murcia, Spain
| | - Judicael Fazavana
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Patricia Lopes
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ellie Karampini
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aamir Amin
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Roger J. S. Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross I. Baker
- Western Australia Centre for Thrombosis and Haemostasis, Perth Blood Institute, Murdoch University, Perth, WA, Australia
- Irish-Australian Blood Collaborative Network, Dublin, Ireland
| | - Thomas A. J. McKinnon
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, United Kingdom
| | | | | | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, United Kingdom
- National Coagulation Centre, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
3
|
Atiq F, O’Donnell JS. Novel functions for von Willebrand factor. Blood 2024; 144:1247-1256. [PMID: 38728426 PMCID: PMC11561537 DOI: 10.1182/blood.2023021915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT For many years, it has been known that von Willebrand factor (VWF) interacts with factor VIII, collagen, and platelets. In addition, the key roles played by VWF in regulating normal hemostasis have been well defined. However, accumulating recent evidence has shown that VWF can interact with a diverse array of other novel ligands. To date, over 60 different binding partners have been described, with interactions mapped to specific VWF domains in some cases. Although the biological significance of these VWF-binding interactions has not been fully elucidated, recent studies have identified some of these novel ligands as regulators of various aspects of VWF biology, including biosynthesis, proteolysis, and clearance. Conversely, VWF binding has been shown to directly affect the functional properties for some of its ligands. In keeping with those observations, exciting new roles for VWF in regulating a series of nonhemostatic biological functions have also emerged. These include inflammation, wound healing, angiogenesis, and bone metabolism. Finally, recent evidence supports the hypothesis that the nonhemostatic functions of VWF directly contribute to pathogenic mechanisms in a variety of diverse diseases including sepsis, malaria, sickle cell disease, and liver disease. In this manuscript, we review the accumulating data regarding novel ligand interactions for VWF and critically assess how these interactions may affect cellular biology. In addition, we consider the evidence that nonhemostatic VWF functions may contribute to the pathogenesis of human diseases beyond thrombosis and bleeding.
Collapse
Affiliation(s)
- Ferdows Atiq
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Coagulation Centre, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Hordijk S, Carter T, Bierings R. A new look at an old body: molecular determinants of Weibel-Palade body composition and von Willebrand factor exocytosis. J Thromb Haemost 2024; 22:1290-1303. [PMID: 38307391 DOI: 10.1016/j.jtha.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Endothelial cells, forming a monolayer along blood vessels, intricately regulate vascular hemostasis, inflammatory responses, and angiogenesis. A key determinant of these functions is the controlled secretion of Weibel-Palade bodies (WPBs), which are specialized endothelial storage organelles housing a presynthesized pool of the hemostatic protein von Willebrand factor and various other hemostatic, inflammatory, angiogenic, and vasoactive mediators. This review delves into recent mechanistic insights into WPB biology, including the biogenesis that results in their unique morphology, the acquisition of intraluminal vesicles and other cargo, and the contribution of proton pumps to organelle acidification. Additionally, in light of a number of proteomic approaches to unravel the regulatory networks that control WPB formation and secretion, we provide a comprehensive overview of the WPB exocytotic machinery, including their molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Sophie Hordijk
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. https://twitter.com/SophieHordijk
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Ruben Bierings
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Sarafanov AG. Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice. Int J Mol Sci 2023; 24:ijms24108584. [PMID: 37239930 DOI: 10.3390/ijms24108584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Factor VIII (FVIII) is an important component of blood coagulation as its congenital deficiency results in life-threatening bleeding. Current prophylactic therapy of the disease (hemophilia A) is based on 3-4 intravenous infusions of therapeutic FVIII per week. This poses a burden on patients, demanding reduction of infusion frequency by using FVIII with extended plasma half-life (EHL). Development of these products requires understanding FVIII plasma clearance mechanisms. This paper overviews (i) an up-to-date state of the research in this field and (ii) current EHL FVIII products, including recently approved efanesoctocog alfa, for which the plasma half-life exceeds a biochemical barrier posed by von Willebrand factor, complexed with FVIII in plasma, which results in ~1 per week infusion frequency. We focus on the EHL FVIII products' structure and function, in particular related to the known discrepancy in results of one-stage clotting (OC) and chromogenic substrate (CS) assays used to assign the products' potency, dosing, and for clinical monitoring in plasma. We suggest a possible root cause of these assays' discrepancy that is also pertinent to EHL factor IX variants used to treat hemophilia B. Finally, we discuss approaches in designing future EHL FVIII variants, including those to be used for hemophilia A gene therapy.
Collapse
Affiliation(s)
- Andrey G Sarafanov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
6
|
Galectin-3 and Blood Group: Binding Properties, Effects on Plasma Levels, and Consequences for Prognostic Performance. Int J Mol Sci 2023; 24:ijms24054415. [PMID: 36901846 PMCID: PMC10002292 DOI: 10.3390/ijms24054415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Previous studies have reported an association between ABO type blood group and cardiovascular (CV) events and outcomes. The precise mechanisms underpinning this striking observation remain unknown, although differences in von Willebrand factor (VWF) plasma levels have been proposed as an explanation. Recently, galectin-3 was identified as an endogenous ligand of VWF and red blood cells (RBCs) and, therefore, we aimed to explore the role of galectin-3 in different blood groups. Two in vitro assays were used to assess the binding capacity of galectin-3 to RBCs and VWF in different blood groups. Additionally, plasma levels of galectin-3 were measured in different blood groups in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study (2571 patients hospitalized for coronary angiography) and validated in a community-based cohort of the Prevention of Renal and Vascular End-stage Disease (PREVEND) study (3552 participants). To determine the prognostic value of galectin-3 in different blood groups, logistic regression and cox regression models were used with all-cause mortality as the primary outcome. First, we demonstrated that galectin-3 has a higher binding capacity for RBCs and VWF in non-O blood groups, compared to blood group O. Additionally, LURIC patients with non-O blood groups had substantially lower plasma levels of galectin-3 (15.0, 14.9, and 14.0 μg/L in blood groups A, B, and AB, respectively, compared to 17.1 μg/L in blood group O, p < 0.0001). Finally, the independent prognostic value of galectin-3 for all-cause mortality showed a non-significant trend towards higher mortality in non-O blood groups. Although plasma galectin-3 levels are lower in non-O blood groups, the prognostic value of galectin-3 is also present in subjects with a non-O blood group. We conclude that physical interaction between galectin-3 and blood group epitopes may modulate galectin-3, which may affect its performance as a biomarker and its biological activity.
Collapse
|
7
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
8
|
Influence of Von Willebrand Disease (VWD) and pregnancy on the expression of angiogenic factors in the porcine female reproductive tract. Reprod Biol 2022; 22:100700. [DOI: 10.1016/j.repbio.2022.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
9
|
Mansour AA, Krautter F, Zhi Z, Iqbal AJ, Recio C. The interplay of galectins-1, -3, and -9 in the immune-inflammatory response underlying cardiovascular and metabolic disease. Cardiovasc Diabetol 2022; 21:253. [PMID: 36403025 PMCID: PMC9675972 DOI: 10.1186/s12933-022-01690-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Galectins are β-galactoside-binding proteins that bind and crosslink molecules via their sugar moieties, forming signaling and adhesion networks involved in cellular communication, differentiation, migration, and survival. Galectins are expressed ubiquitously across immune cells, and their function varies with their tissue-specific and subcellular location. Particularly galectin-1, -3, and -9 are highly expressed by inflammatory cells and are involved in the modulation of several innate and adaptive immune responses. Modulation in the expression of these proteins accompany major processes in cardiovascular diseases and metabolic disorders, such as atherosclerosis, thrombosis, obesity, and diabetes, making them attractive therapeutic targets. In this review we consider the broad cellular activities ascribed to galectin-1, -3, and -9, highlighting those linked to the progression of different inflammatory driven pathologies in the context of cardiovascular and metabolic disease, to better understand their mechanism of action and provide new insights into the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Adel Abo Mansour
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Franziska Krautter
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhaogong Zhi
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional -BIOPharm, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
10
|
Fei F, Zhang M, Tarighat SS, Joo EJ, Yang L, Heisterkamp N. Galectin-1 and Galectin-3 in B-Cell Precursor Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:ijms232214359. [PMID: 36430839 PMCID: PMC9694201 DOI: 10.3390/ijms232214359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Acute lymphoblastic leukemias arising from the malignant transformation of B-cell precursors (BCP-ALLs) are protected against chemotherapy by both intrinsic factors as well as by interactions with bone marrow stromal cells. Galectin-1 and Galectin-3 are lectins with overlapping specificity for binding polyLacNAc glycans. Both are expressed by bone marrow stromal cells and by hematopoietic cells but show different patterns of expression, with Galectin-3 dynamically regulated by extrinsic factors such as chemotherapy. In a comparison of Galectin-1 x Galectin-3 double null mutant to wild-type murine BCP-ALL cells, we found reduced migration, inhibition of proliferation, and increased sensitivity to drug treatment in the double knockout cells. Plant-derived carbohydrates GM-CT-01 and GR-MD-02 were used to inhibit extracellular Galectin-1/-3 binding to BCP-ALL cells in co-culture with stromal cells. Treatment with these compounds attenuated migration of the BCP-ALL cells to stromal cells and sensitized human BCP-ALL cells to vincristine and the targeted tyrosine kinase inhibitor nilotinib. Because N-glycan sialylation catalyzed by the enzyme ST6Gal1 can regulate Galectin cell-surface binding, we also compared the ability of BCP-ALL wild-type and ST6Gal1 knockdown cells to resist vincristine treatment when they were co-cultured with Galectin-1 or Galectin-3 knockout stromal cells. Consistent with previous results, stromal Galectin-3 was important for maintaining BCP-ALL fitness during chemotherapy exposure. In contrast, stromal Galectin-1 did not significantly contribute to drug resistance, and there was no clear effect of ST6Gal1-catalysed N-glycan sialylation. Taken together, our results indicate a complicated joint contribution of Galectin-1 and Galectin-3 to BCP-ALL survival, with different roles for endogenous and stromal produced Galectins. These data indicate it will be important to efficiently block both extracellular and intracellular Galectin-1 and Galectin-3 with the goal of reducing BCP-ALL persistence in the protective bone marrow niche during chemotherapy.
Collapse
Affiliation(s)
- Fei Fei
- Section of Molecular Carcinogenesis, Department of Pediatrics, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital, Los Angeles, CA 90027, USA
| | - Mingfeng Zhang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
| | - Somayeh S. Tarighat
- Section of Molecular Carcinogenesis, Department of Pediatrics, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital, Los Angeles, CA 90027, USA
| | - Eun Ji Joo
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
- Correspondence: ; Tel.: +1-626-218-7503
| |
Collapse
|
11
|
Li X, Lu Z. Role of von Willebrand factor in the angiogenesis of lung adenocarcinoma (Review). Oncol Lett 2022; 23:198. [PMID: 35572495 PMCID: PMC9100484 DOI: 10.3892/ol.2022.13319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xin Li
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
12
|
Francis CR, Kushner EJ. Trafficking in blood vessel development. Angiogenesis 2022; 25:291-305. [PMID: 35449244 PMCID: PMC9249721 DOI: 10.1007/s10456-022-09838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/03/2022] [Indexed: 02/17/2023]
Abstract
Blood vessels demonstrate a multitude of complex signaling programs that work in concert to produce functional vasculature networks during development. A known, but less widely studied, area of endothelial cell regulation is vesicular trafficking, also termed sorting. After moving through the Golgi apparatus, proteins are shuttled to organelles, plugged into membranes, recycled, or degraded depending on the internal and extrinsic cues. A snapshot of these protein-sorting systems can be viewed as a trafficking signature that is not only unique to endothelial tissue, but critically important for blood vessel form and function. In this review, we will cover how vesicular trafficking impacts various aspects of angiogenesis, such as sprouting, lumen formation, vessel stabilization, and secretion, emphasizing the role of Rab GTPase family members and their various effectors.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
13
|
Zhi Z, Jooss NJ, Sun Y, Colicchia M, Slater A, Moran LA, Cheung HYF, Di Y, Rayes J, Poulter NS, Watson SP, Iqbal AJ. Galectin-9 activates platelet ITAM receptors glycoprotein VI and C-type lectin-like receptor-2. J Thromb Haemost 2022; 20:936-950. [PMID: 34936188 DOI: 10.1111/jth.15625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelets are multifunctional cellular mediators in many physiological and pathophysiological processes such as thrombosis, angiogenesis, and inflammation. Several members of galectins, a family of carbohydrate-binding proteins with a broad range of immunomodulatory actions, have been reported to activate platelets. OBJECTIVE In this study, we investigated the role of galectin-9 (Gal-9) as a novel ligand for platelet glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2). METHODS Platelet spreading, aggregation, and P-selectin expression in response to Gal-9 were measured in washed platelet suspensions via static adhesion assay, light transmission aggregometry, and flow cytometry, respectively. Solid-phase binding assay and protein phosphorylation studies were utilized to validate the interaction between Gal-9 and GPVI, and immunoprecipitation for detecting CLEC-2 phosphorylation. Wild-type (WT), GPVI-knockout (Gp6-/- ), and GPVI and CLEC-2-double knockout (Gp6-/- /Gp1ba-Cre-Clec1bfl/fl ) mice were used. RESULTS We have shown that recombinant Gal-9 stimulates aggregation in human and mouse washed platelets dose-dependently. Platelets from both species adhere and spread on immobilized Gal-9 and express P-selectin. Gal-9 competitively inhibited the binding of human recombinant D1 and D2 domains of GPVI to collagen. Gal-9 stimulated tyrosine phosphorylation of CLEC-2 and proteins known to lie downstream of GPVI and CLEC-2 including spleen tyrosine kinase and linker of activated T cells in human platelets. GPVI-deficient murine platelets exhibited significantly impaired aggregation in response to Gal-9, which was further abrogated in GPVI and CLEC-2-double-deficient platelets. CONCLUSIONS We have identified Gal-9 as a novel platelet agonist that induces activation through interaction with GPVI and CLEC-2.
Collapse
Affiliation(s)
- Zhaogong Zhi
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Natalie J Jooss
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Yi Sun
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Martina Colicchia
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Luis A Moran
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Hilaire Yam Fung Cheung
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ying Di
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Ward SE, O'Sullivan JM, Moran AB, Spencer DIR, Gardner RA, Sharma J, Fazavana J, Monopoli M, McKinnon TAJ, Chion A, Haberichter S, O'Donnell JS. Sialylation on O-linked glycans protects von Willebrand factor from macrophage galactose lectin-mediated clearance. Haematologica 2022; 107:668-679. [PMID: 33763999 PMCID: PMC8883566 DOI: 10.3324/haematol.2020.274720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Terminal sialylation determines the plasma half-life of von Willebrand factor (VWF). A role for macrophage galactose lectin (MGL) in regulating hyposialylated VWF clearance has recently been proposed. In this study, we showed that MGL influences physiological plasma VWF clearance. MGL inhibition was associated with a significantly extended mean residence time and 3-fold increase in endogenous plasma VWF antigen levels (P<0.05). Using a series of VWF truncations, we further demonstrated that the A1 domain of VWF is predominantly responsible for enabling the MGL interaction. Binding of both full-length and VWF-A1-A2-A3 to MGL was significantly enhanced in the presence of ristocetin (P<0.05), suggesting that the MGL-binding site in A1 is not fully accessible in globular VWF. Additional studies using different VWF glycoforms demonstrated that VWF O-linked glycans, clustered at either end of the A1 domain, play a key role in protecting VWF against MGLmediated clearance. Reduced sialylation has been associated with pathological, increased clearance of VWF in patients with von Willebrand disease. Herein, we demonstrate that specific loss of α2-3 linked sialylation from O-glycans results in markedly increased MGL-binding in vitro, and markedly enhanced MGL-mediated clearance of VWF in vivo. Our data further show that the asialoglycoprotein receptor (ASGPR) does not have a significant role in mediating the increased clearance of VWF following loss of O-sialylation. Conversely however, we observed that loss of N-linked sialylation from VWF drives enhanced circulatory clearance predominantly via the ASGPR. Collectively, our data support the hypothesis that in addition to regulating physiological VWF clearance, the MGL receptor works in tandem with ASGPR to modulate enhanced clearance of aberrantly sialylated VWF in the pathogenesis of von Willebrand disease.
Collapse
Affiliation(s)
- Soracha E Ward
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Jamie M O'Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Alan B Moran
- Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, United Kingdom; Leiden University Medical Centre, Centre for Proteomics and Metabolomics, 2300 RC Leiden
| | | | | | - Jyotika Sharma
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Judicael Fazavana
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Marco Monopoli
- Department of Chemistry, RCSI, 123 St. Stephen's Green, Dublin 2
| | - Thomas A J McKinnon
- Faculty of Medicine, Imperial College, Hammersmith Hospital, Ducane Road, London
| | - Alain Chion
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | | | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland; National Coagulation Centre, St James's Hospital, Dublin.
| |
Collapse
|
15
|
O’Donnell AS, Fazavana J, O’Donnell JS. The von Willebrand factor - ADAMTS-13 axis in malaria. Res Pract Thromb Haemost 2022; 6:e12641. [PMID: 35128300 PMCID: PMC8804941 DOI: 10.1002/rth2.12641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cerebral malaria (CM) continues to be associated with major morbidity and mortality, particularly in children aged <5 years in sub-Saharan Africa. Although the biological mechanisms underpinning severe malaria pathophysiology remain incompletely understood, studies have shown that cytoadhesion of malaria-infected erythrocytes to endothelial cells (ECs) within the cerebral microvasculature represents a key step in this process. Furthermore, these studies have also highlighted that marked EC activation, with secretion of Weibel-Palade bodies (WPBs), occurs at a remarkably early stage following malaria infection. As a result, plasma levels of proteins normally stored within WPBs (including high-molecular-weight von Willebrand factor [VWF] multimers, VWF propeptide, and angiopoietin-2) are significantly elevated. In this review, we provide an overview of recent studies that have identified novel roles through which these secreted WPB glycoproteins may directly facilitate malaria pathogenesis through a number of different platelet-dependent and platelet-independent pathways. Collectively, these emerging insights suggest that hemostatic dysfunction, and in particular disruption of the normal VWF-ADAMTS-13 axis, may be of specific importance in triggering cerebral microangiopathy. Defining the molecular mechanisms involved may offer the opportunity to develop novel targeted therapeutic approaches, which are urgently needed as the mortality rate associated with CM remains in the order of 20%.
Collapse
Affiliation(s)
- Andrew S. O’Donnell
- Department of PaediatricsUniversity Maternity Hospital LimerickLimerickIreland
| | - Judicael Fazavana
- Irish Centre for Vascular BiologySchool of Pharmacy & Biomolecular SciencesRoyal College of Surgeons in IrelandDublin 2Ireland
| | - James S. O’Donnell
- Irish Centre for Vascular BiologySchool of Pharmacy & Biomolecular SciencesRoyal College of Surgeons in IrelandDublin 2Ireland
- National Coagulation CentreSt James’s HospitalDublinIreland
- National Children’s Research CentreOur Lady’s Children’s Hospital CrumlinDublinIreland
| |
Collapse
|
16
|
Mojzisch A, Brehm MA. The Manifold Cellular Functions of von Willebrand Factor. Cells 2021; 10:2351. [PMID: 34572000 PMCID: PMC8466076 DOI: 10.3390/cells10092351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The plasma glycoprotein von Willebrand factor (VWF) is exclusively synthesized in endothelial cells (ECs) and megakaryocytes, the precursor cells of platelets. Its primary function lies in hemostasis. However, VWF is much more than just a "fishing hook" for platelets and a transporter for coagulation factor VIII. VWF is a true multitasker when it comes to its many roles in cellular processes. In ECs, VWF coordinates the formation of Weibel-Palade bodies and guides several cargo proteins to these storage organelles, which control the release of hemostatic, inflammatory and angiogenic factors. Leukocytes employ VWF to assist their rolling on, adhesion to and passage through the endothelium. Vascular smooth muscle cell proliferation is supported by VWF, and it regulates angiogenesis. The life cycle of platelets is accompanied by VWF from their budding from megakaryocytes to adhesion, activation and aggregation until the end in apoptosis. Some tumor cells acquire the ability to produce VWF to promote metastasis and hide in a shell of VWF and platelets, and even the maturation of osteoclasts is regulated by VWF. This review summarizes the current knowledge on VWF's versatile cellular functions and the resulting pathophysiological consequences of their dysregulation.
Collapse
Affiliation(s)
- Angelika Mojzisch
- Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Maria A. Brehm
- School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| |
Collapse
|
17
|
Dickhout A, Tullemans BME, Heemskerk JWM, Thijssen VLJL, Kuijpers MJE, Koenen RR. Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. PLoS One 2021; 16:e0244736. [PMID: 33411760 PMCID: PMC7790394 DOI: 10.1371/journal.pone.0244736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Galectin-1 (gal-1) is a carbohydrate-binding lectin with important functions in angiogenesis, immune response, hemostasis and inflammation. Comparable functions are exerted by platelet factor 4 (CXCL4), a chemokine stored in the α-granules of platelets. Previously, gal-1 was found to activate platelets through integrin αIIbβ3. Both gal-1 and CXCL4 have high affinities for polysaccharides, and thus may mutually influence their functions. The aim of this study was to investigate a possible synergism of gal-1 and CXCL4 in platelet activation. Platelets were treated with increasing concentrations of gal-1, CXCL4 or both, and aggregation, integrin activation, P-selectin and phosphatidyl serine (PS) exposure were determined by light transmission aggregometry and by flow cytometry. To investigate the influence of cell surface sialic acid, platelets were treated with neuraminidase prior to stimulation. Gal-1 and CXCL4 were found to colocalize on the platelet surface. Stimulation with gal-1 led to integrin αIIbβ3 activation and to robust platelet aggregation, while CXCL4 weakly triggered aggregation and primarily induced P-selectin expression. Co-incubation of gal-1 and CXCL4 potentiated platelet aggregation compared with gal-1 alone. Whereas neither gal-1 and CXCL4 induced PS-exposure on platelets, prior removal of surface sialic acid strongly potentiated PS exposure. In addition, neuraminidase treatment increased the binding of gal-1 to platelets and lowered the activation threshold for gal-1. However, CXCL4 did not affect binding of gal-1 to platelets. Taken together, stimulation of platelets with gal-1 and CXCL4 led to distinct and complementary activation profiles, with additive rather than synergistic effects.
Collapse
Affiliation(s)
- Annemiek Dickhout
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Bibian M. E. Tullemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Victor L. J. L. Thijssen
- Amsterdam UMC, location VUmc, Medical Oncology & Radiation Oncology, Amsterdam, The Netherlands
- * E-mail: (RRK); (VLJLT)
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Rory R. Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- * E-mail: (RRK); (VLJLT)
| |
Collapse
|
18
|
Brait VH, Miró-Mur F, Pérez-de-Puig I, Notario L, Hurtado B, Pedragosa J, Gallizioli M, Jiménez-Altayó F, Arbaizar-Rovirosa M, Otxoa-de-Amezaga A, Monteagudo J, Ferrer-Ferrer M, de la Rosa X, Bonfill-Teixidor E, Salas-Perdomo A, Hernández-Vidal A, Garcia-de-Frutos P, Lauzurica P, Planas AM. CD69 Plays a Beneficial Role in Ischemic Stroke by Dampening Endothelial Activation. Circ Res 2019; 124:279-291. [PMID: 30582456 DOI: 10.1161/circresaha.118.313818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE CD69 is an immunomodulatory molecule induced during lymphocyte activation. Following stroke, T-lymphocytes upregulate CD69 but its function is unknown. OBJECTIVE We investigated whether CD69 was involved in brain damage following an ischemic stroke. METHODS AND RESULTS We used adult male mice on the C57BL/6 or BALB/c backgrounds, including wild-type mice and CD69-/- mice, and CD69+/+ and CD69-/- lymphocyte-deficient Rag2-/- mice, and generated chimeric mice. We induced ischemia by transient or permanent middle cerebral artery occlusion. We measured infarct volume, assessed neurological function, and studied CD69 expression, as well as platelet function, fibrin(ogen) deposition, and VWF (von Willebrand factor) expression in brain vessels and VWF content and activity in plasma, and performed the tail-vein bleeding test and the carotid artery ferric chloride-induced thrombosis model. We also performed primary glial cell cultures and sorted brain CD45-CD11b-CD31+ endothelial cells for mRNA expression studies. We blocked VWF by intravenous administration of anti-VWF antibodies. CD69-/- mice showed larger infarct volumes and worse neurological deficits than the wild-type mice after ischemia. This worsening effect was not attributable to lymphocytes or other hematopoietic cells. CD69 deficiency lowered the time to thrombosis in the carotid artery despite platelet function not being affected. Ischemia upregulated Cd69 mRNA expression in brain endothelial cells. CD69-deficiency increased fibrin(ogen) accumulation in the ischemic tissue, and plasma VWF content and activity, and VWF expression in brain vessels. Blocking VWF reduced infarct volume and reverted the detrimental effect of CD69-/- deficiency. CONCLUSIONS CD69 deficiency promotes a prothrombotic phenotype characterized by increased VWF and worse brain damage after ischemic stroke. The results suggest that CD69 acts as a downregulator of endothelial activation.
Collapse
Affiliation(s)
- Vanessa H Brait
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Francesc Miró-Mur
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Isabel Pérez-de-Puig
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Laura Notario
- Grupo de Activación Inmunológica, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (L.N., P.L.)
| | - Begoña Hurtado
- Department of Cell Death and Proliferation (B.H., P.G.-d.-F.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Jordi Pedragosa
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Mattia Gallizioli
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Francesc Jiménez-Altayó
- Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (F.J.A.)
| | - Maria Arbaizar-Rovirosa
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Amaia Otxoa-de-Amezaga
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Juan Monteagudo
- Hemotherapy and Haemostasis Service, Hospital Clinic, Barcelona, Spain (J.M.)
| | - Maura Ferrer-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Xavier de la Rosa
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Ester Bonfill-Teixidor
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Angélica Salas-Perdomo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Alba Hernández-Vidal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Pablo Garcia-de-Frutos
- Department of Cell Death and Proliferation (B.H., P.G.-d.-F.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Pilar Lauzurica
- Grupo de Activación Inmunológica, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (L.N., P.L.)
| | - Anna M Planas
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| |
Collapse
|
19
|
Chen X, Cheng X, Zhang S, Wu D. ADAMTS13: An Emerging Target in Stroke Therapy. Front Neurol 2019; 10:772. [PMID: 31379722 PMCID: PMC6650536 DOI: 10.3389/fneur.2019.00772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Thrombosis is the predominant underlying mechanism of acute ischemic stroke (AIS). Though thrombolysis with tPA has been proven to be effective in treating AIS within the time window, the majority of AIS patients fail to receive tPA due to various reasons. Current medical therapies for AIS have limited efficacy and pose a risk of intracerebral hemorrhage. ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13) is a metalloprotease that effectively breaks down the von Willebrand Factor (VWF), a key factor in thrombus formation. Previous studies have proven that dysfunction of ADAMTS13 is associated with many diseases. Recently, ADAMTS13 has been reported to be closely related to stroke. In this review, we briefly described the structure of ADAMTS13 and its role in thrombosis, inflammation, as well as angiogenesis. We then focused on the relationship between ADAMTS13 and AIS, ranging from ischemic stroke occurrence, to AIS treatment and prognosis. Based on research findings from in vitro, animal, and clinical studies, we propose that ADAMTS13 is a potential biomarker to guide appropriate treatment for ischemic stroke and a promising therapeutic agent for tPA resistant thrombi.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shufan Zhang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Stowell SR, Stowell CP. Biologic roles of the ABH and Lewis histo-blood group antigens part II: thrombosis, cardiovascular disease and metabolism. Vox Sang 2019; 114:535-552. [PMID: 31090093 DOI: 10.1111/vox.12786] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
The ABH and Lewis antigens were among the first of the human red blood cell polymorphisms to be identified and, in the case of the former, play a dominant role in transfusion and transplantation. But these two therapies are largely twentieth-century innovations, and the ABH and related carbohydrate antigens are not only expressed on a very wide range of human tissues, but were present in primates long before modern humans evolved. Although we have learned a great deal about the biochemistry and genetics of these structures, the biological roles that they play in human health and disease are incompletely understood. This review and its companion, which appeared in a previous issue of Vox Sanguinis, will focus on a few of the biologic and pathologic processes which appear to be affected by histo-blood group phenotype. The first of the two reviews explored the interactions of two bacteria with the ABH and Lewis glycoconjugates of their human host cells, and described the possible connections between the immune response of the human host to infection and the development of the AB-isoagglutinins. This second review will describe the relationship between ABO phenotype and thromboembolic disease, cardiovascular disease states, and general metabolism.
Collapse
Affiliation(s)
- Sean R Stowell
- Center for Apheresis, Center for Transfusion and Cellular Therapies, Emory Hospital, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher P Stowell
- Blood Transfusion Service, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Abel WF, Funk CR, Blenda AV. Galectins in the Pathogenesis of Cerebrovascular Accidents: An Overview. J Exp Neurosci 2019; 13:1179069519836794. [PMID: 31007530 PMCID: PMC6458655 DOI: 10.1177/1179069519836794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/19/2019] [Indexed: 01/04/2023] Open
Abstract
Due to limitations of neuroimaging, such as the isodense appearance of blood to neuronal tissue in subacute hemorrhagic stroke, a body of studies have been performed to evaluate candidate biomarkers which may aid in accurate determination of cerebrovascular accident type. Beyond aiding in the delineation of stroke cause, biomarkers could also confer useful prognostic information to help clinicians plan use of resources. One of the candidate biomarkers studied for detection of cerebrovascular accident (CVA) includes a class of proteins called galectins. Galectins bind β-galactoside through a highly conserved carbohydrate recognition domain, endowing an ability to interact with carbohydrate moieties on glycoproteins, some of which are relevant to CVA response. Furthermore, galectins-1, -2, -3, -9, and -12 are expressed in tissues relevant to CVA, and some exhibit characteristics (eg, extracellular secretion) that could render feasible their detection in serum. Galectins-1 and -3 appear to have the largest amounts of preclinical evidence, consistently demonstrating increased activity and expression levels during CVA. However, a lack of standardization of biochemical assays across cohort studies limits further translation of these basic science studies. This review aims to increase awareness of the biochemical roles of galectins in CVA, while also highlighting challenges and remaining questions preventing the translation of basic science observations into a clinically useful test.
Collapse
Affiliation(s)
- William F Abel
- University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | | | - Anna V Blenda
- University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| |
Collapse
|
22
|
Zhong X, Qian X, Chen G, Song X. The role of galectin-3 in heart failure and cardiovascular disease. Clin Exp Pharmacol Physiol 2019; 46:197-203. [PMID: 30372548 DOI: 10.1111/1440-1681.13048] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao Zhong
- Cardiovascular Center; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| | - Xiaoqian Qian
- Department of Nephrology; Xin Hua Hospital Affiliated; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Guangping Chen
- Department of Physiology; Emory University School of Medicine; Atlanta Georgia
| | - Xiang Song
- Cardiovascular Center; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| |
Collapse
|
23
|
Schillemans M, Karampini E, Kat M, Bierings R. Exocytosis of Weibel-Palade bodies: how to unpack a vascular emergency kit. J Thromb Haemost 2019; 17:6-18. [PMID: 30375718 PMCID: PMC7379738 DOI: 10.1111/jth.14322] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 01/17/2023]
Abstract
The blood vessel wall has a number of self-healing properties, enabling it to minimize blood loss and prevent or overcome infections in the event of vascular trauma. Endothelial cells prepackage a cocktail of hemostatic, inflammatory and angiogenic mediators in their unique secretory organelles, the Weibel-Palade bodies (WPBs), which can be immediately released on demand. Secretion of their contents into the vascular lumen through a process called exocytosis enables the endothelium to actively participate in the arrest of bleeding and to slow down and direct leukocytes to areas of inflammation. Owing to their remarkable elongated morphology and their secretory contents, which span the entire size spectrum of small chemokines all the way up to ultralarge von Willebrand factor multimers, WPBs constitute an ideal model system for studying the molecular mechanisms of secretory organelle biogenesis, exocytosis, and content expulsion. Recent studies have now shown that, during exocytosis, WPBs can undergo several distinct modes of fusion, and can utilize fundamentally different mechanisms to expel their contents. In this article, we discuss recent advances in our understanding of the composition of the WPB exocytotic machinery and how, because of its configuration, it is able to support WPB release in its various forms.
Collapse
Affiliation(s)
- M. Schillemans
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - E. Karampini
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - M. Kat
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - R. Bierings
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- HematologyErasmus University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
24
|
O'Sullivan JM, Ward S, Lavin M, O'Donnell JS. von Willebrand factor clearance - biological mechanisms and clinical significance. Br J Haematol 2018; 183:185-195. [DOI: 10.1111/bjh.15565] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jamie M. O'Sullivan
- Haemostasis Research Group; Irish Centre for Vascular Biology; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Soracha Ward
- Haemostasis Research Group; Irish Centre for Vascular Biology; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Michelle Lavin
- Haemostasis Research Group; Irish Centre for Vascular Biology; Royal College of Surgeons in Ireland; Dublin Ireland
- National Coagulation Centre; St James's Hospital; Dublin Ireland
| | - James S. O'Donnell
- Haemostasis Research Group; Irish Centre for Vascular Biology; Royal College of Surgeons in Ireland; Dublin Ireland
- National Coagulation Centre; St James's Hospital; Dublin Ireland
| |
Collapse
|
25
|
Randi AM, Smith KE, Castaman G. von Willebrand factor regulation of blood vessel formation. Blood 2018; 132:132-140. [PMID: 29866817 PMCID: PMC6182264 DOI: 10.1182/blood-2018-01-769018] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Several important physiological processes, from permeability to inflammation to hemostasis, take place at the vessel wall and are regulated by endothelial cells (ECs). Thus, proteins that have been identified as regulators of one process are increasingly found to be involved in other vascular functions. Such is the case for von Willebrand factor (VWF), a large glycoprotein best known for its critical role in hemostasis. In vitro and in vivo studies have shown that lack of VWF causes enhanced vascularization, both constitutively and following ischemia. This evidence is supported by studies on blood outgrowth EC (BOEC) from patients with lack of VWF synthesis (type 3 von Willebrand disease [VWD]). The molecular pathways are likely to involve VWF binding partners, such as integrin αvβ3, and components of Weibel-Palade bodies, such as angiopoietin-2 and galectin-3, whose storage is regulated by VWF; these converge on the master regulator of angiogenesis and endothelial homeostasis, vascular endothelial growth factor signaling. Recent studies suggest that the roles of VWF may be tissue specific. The ability of VWF to regulate angiogenesis has clinical implications for a subset of VWD patients with severe, intractable gastrointestinal bleeding resulting from vascular malformations. In this article, we review the evidence showing that VWF is involved in blood vessel formation, discuss the role of VWF high-molecular-weight multimers in regulating angiogenesis, and review the value of studies on BOEC in developing a precision medicine approach to validate novel treatments for angiodysplasia in congenital VWD and acquired von Willebrand syndrome.
Collapse
Affiliation(s)
- Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Koval E Smith
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, Florence, Italy
| |
Collapse
|
26
|
Suthahar N, Meijers WC, Silljé HH, Ho JE, Liu FT, de Boer RA. Galectin-3 Activation and Inhibition in Heart Failure and Cardiovascular Disease: An Update. Theranostics 2018; 8:593-609. [PMID: 29344292 PMCID: PMC5771079 DOI: 10.7150/thno.22196] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/24/2017] [Indexed: 12/15/2022] Open
Abstract
Galectin-3 is a versatile protein orchestrating several physiological and pathophysiological processes in the human body. In the last decade, considerable interest in galectin-3 has emerged because of its potential role as a biotarget. Galectin-3 is differentially expressed depending on the tissue type, however its expression can be induced under conditions of tissue injury or stress. Galectin-3 overexpression and secretion is associated with several diseases and is extensively studied in the context of fibrosis, heart failure, atherosclerosis and diabetes mellitus. Monomeric (extracellular) galectin-3 usually undergoes further "activation" which significantly broadens the spectrum of biological activity mainly by modifying its carbohydrate-binding properties. Self-interactions of this protein appear to play a crucial role in regulating the extracellular activities of this protein, however there is limited and controversial data on the mechanisms involved. We therefore summarize (recent) literature in this area and describe galectin-3 from a binding perspective providing novel insights into mechanisms by which galectin-3 is known to be "activated" and how such activation may be regulated in pathophysiological scenarios.
Collapse
Affiliation(s)
- Navin Suthahar
- University Medical Center Groningen, University of Groningen, Department of Cardiology, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Wouter C. Meijers
- University Medical Center Groningen, University of Groningen, Department of Cardiology, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Herman H.W. Silljé
- University Medical Center Groningen, University of Groningen, Department of Cardiology, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Jennifer E. Ho
- Massachusetts General Hospital, Cardiovascular Research Center, Boston, MA, USA
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Rudolf A. de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, PO Box 30.001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
27
|
Franchini M, Mannucci PM. Gastrointestinal angiodysplasia and bleeding in von Willebrand disease. Thromb Haemost 2017; 112:427-31. [DOI: 10.1160/th13-11-0952] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/08/2014] [Indexed: 12/24/2022]
Abstract
SummaryVon Willebrand disease (VWD), the most common genetic bleeding disorder, is characterised by a quantitative or qualitative defect of von Willebrand factor (VWF). Patients with VWD suffer from mucocutaneous bleeding, of severity usually proportional to the degree of VWF defect. In particular, gastrointestinal bleeding associated with angiodysplasia is often a severe symptom of difficult management. This review focuses on the pathophysiology, diagnosis and treatment of VWD-associated gastrointestinal angiodysplasia and related bleeding.
Collapse
|
28
|
Xu H, Cao Y, Yang X, Cai P, Kang L, Zhu X, Luo H, Lu L, Wei L, Bai X, Zhu Y, Zhao BQ, Fan W. ADAMTS13 controls vascular remodeling by modifying VWF reactivity during stroke recovery. Blood 2017; 130:11-22. [PMID: 28428179 PMCID: PMC5501147 DOI: 10.1182/blood-2016-10-747089] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/16/2017] [Indexed: 12/12/2022] Open
Abstract
Angiogenic response is essential for ischemic brain repair. The von Willebrand factor (VWF)-cleaving protease disintegrin and metalloprotease with thrombospondin type I motif, member 13 (ADAMTS13) is required for endothelial tube formation in vitro, but there is currently no in vivo evidence supporting a function of ADAMTS13 in angiogenesis. Here we show that mice deficient in ADAMTS13 exhibited reduced neovascularization, brain capillary perfusion, pericyte and smooth muscle cell coverage on microvessels, expression of the tight junction and basement membrane proteins, and accelerated blood-brain barrier (BBB) breakdown and extravascular deposits of serum proteins in the peri-infarct cortex at 14 days after stroke. Deficiency of VWF or anti-VWF antibody treatment significantly increased microvessels, perfused capillary length, and reversed pericyte loss and BBB changes in Adamts13-/- mice. Furthermore, we observed that ADAMTS13 deficiency decreased angiopoietin-2 and galectin-3 levels in the isolated brain microvessels, whereas VWF deficiency had the opposite effect. Correlating with this, overexpression of angiopoietin-2 by adenoviruses treatment or administration of recombinant galectin-3 normalized microvascular reductions, pericyte loss, and BBB breakdown in Adamts13-/- mice. The vascular changes induced by angiopoietin-2 overexpression and recombinant galectin-3 treatment in Adamts13-/- mice were abolished by the vascular endothelial growth factor receptor-2 antagonist SU1498. Importantly, treating wild-type mice with recombinant ADAMTS13 at 7 days after stroke markedly increased neovascularization and vascular repair and improved functional recovery at 14 days. Our results suggest that ADAMTS13 controls key steps of ischemic vascular remodeling and that recombinant ADAMTS13 is a putative therapeutic avenue for promoting stroke recovery.
Collapse
Affiliation(s)
- Haochen Xu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongliang Cao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xing Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ping Cai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lijing Kang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ximin Zhu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haiyu Luo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lu Lu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lixiang Wei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofei Bai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuanbo Zhu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bing-Qiao Zhao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenying Fan
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Hartholt RB, van Velzen AS, Peyron I, Ten Brinke A, Fijnvandraat K, Voorberg J. To serve and protect: The modulatory role of von Willebrand factor on factor VIII immunogenicity. Blood Rev 2017; 31:339-347. [PMID: 28716211 DOI: 10.1016/j.blre.2017.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/26/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022]
Abstract
Hemophilia A is a bleeding disorder characterized by the absence or dysfunction of blood coagulation factor VIII (FVIII). Patients are treated with regular infusions of FVIII concentrate. In response to treatment, approximately 30% of patients with severe hemophilia A develop inhibitory antibodies targeting FVIII. Both patient and treatment related risk factors for inhibitor development have been described. Multiple studies comparing the immunogenicity of recombinant and plasma-derived FVIII have yielded conflicting results. The randomized controlled SIPPET (Survey of Inhibitors in Plasma-Product Exposed Toddlers) trial demonstrated an increased risk of inhibitor development of recombinant FVIII when compared to von Willebrand factor (VWF)-containing plasma-derived FVIII. Presently, it is unclear which mechanism underlies the reduced immunogenicity of plasma-derived FVIII. In this review we address the potential role of VWF on FVIII immunogenicity and we discuss how VWF affects the immune recognition, processing and presentation of FVIII. We also briefly discuss the potential impact of glycan-composition on FVIII immunogenicity. It is well established that VWF shields the uptake of FVIII by antigen presenting cells. We have recently shown that VWF binds to the surface of dendritic cells. Here, we present a novel model in which surface bound FVIII-VWF complexes regulate the internalization of FVIII. Binding of FVIII to VWF is critically dependent on sulfation of Tyr1699 (HVGS numbering) in the light chain of FVIII. Incomplete sulfation of Tyr1699 has been suggested to occur in several recombinant FVIII products resulting in a loss of VWF binding. We hypothesize that this results in alternative pathways of FVIII internalization by antigen presenting cells which are not regulated by VWF. This hypothetical mechanism may explain the reduced immunogenicity of VWF containing plasma-derived FVIII concentrates as found in the SIPPET study.
Collapse
Affiliation(s)
- Robin B Hartholt
- Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | - Alice S van Velzen
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands.
| | - Ivan Peyron
- Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | - Anja Ten Brinke
- Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | - Karin Fijnvandraat
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands.
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
30
|
O'Sullivan JM, Aguila S, McRae E, Ward SE, Rawley O, Fallon PG, Brophy TM, Preston RJS, Brady L, Sheils O, Chion A, O'Donnell JS. N-linked glycan truncation causes enhanced clearance of plasma-derived von Willebrand factor. J Thromb Haemost 2016; 14:2446-2457. [PMID: 27732771 DOI: 10.1111/jth.13537] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 12/31/2022]
Abstract
Essentials von Willebrands factor (VWF) glycosylation plays a key role in modulating in vivo clearance. VWF glycoforms were used to examine the role of specific glycan moieties in regulating clearance. Reduction in sialylation resulted in enhanced VWF clearance through asialoglycoprotein receptor. Progressive VWF N-linked glycan trimming resulted in increased macrophage-mediated clearance. Click to hear Dr Denis discuss clearance of von Willebrand factor in a free presentation from the ISTH Academy SUMMARY: Background Enhanced von Willebrand factor (VWF) clearance is important in the etiology of both type 1 and type 2 von Willebrand disease (VWD). In addition, previous studies have demonstrated that VWF glycans play a key role in regulating in vivo clearance. However, the molecular mechanisms underlying VWF clearance remain poorly understood. Objective To define the molecular mechanisms through which VWF N-linked glycan structures influence in vivo clearance. Methods By use of a series of exoglycosidases, different plasma-derived VWF (pd-VWF) glycoforms were generated. In vivo clearance of these glycoforms was then assessed in VWF-/- mice in the presence or absence of inhibitors of asialoglycoprotein receptor (ASGPR), or following clodronate-induced macrophage depletion. Results Reduced amounts of N-linked and O-linked sialylation resulted in enhanced pd-VWF clearance modulated via ASGPR. In addition to this role of terminal sialylation, we further observed that progressive N-linked glycan trimming also resulted in markedly enhanced VWF clearance. Furthermore, these additional N-linked glycan effects on clearance were ASGPR-independent, and instead involved enhanced macrophage clearance that was mediated, at least in part, through LDL receptor-related protein 1. Conclusion The carbohydrate determinants expressed on VWF regulate susceptibility to proteolysis by ADAMTS-13. In addition, our findings now further demonstrate that non-sialic acid carbohydrate determinants expressed on VWF also play an unexpectedly important role in modulating in vivo clearance through both hepatic ASGPR-dependent and macrophage-dependent pathways. In addition, these data further support the hypothesis that variation in VWF glycosylation may be important in the pathophysiology underlying type 1C VWD.
Collapse
Affiliation(s)
- J M O'Sullivan
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - S Aguila
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - E McRae
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - S E Ward
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - O Rawley
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - P G Fallon
- Inflammation and Immunity Research Group, Institute of Molecular Medicine, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - T M Brophy
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - R J S Preston
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - L Brady
- Department of Histopathology, Sir Patrick Dun Research Laboratory, Trinity College Dublin, St James's Hospital Dublin, Dublin, Ireland
| | - O Sheils
- Department of Histopathology, Sir Patrick Dun Research Laboratory, Trinity College Dublin, St James's Hospital Dublin, Dublin, Ireland
| | - A Chion
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - J S O'Donnell
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
- National Centre for Hereditary Coagulation Disorders, St James's Hospital, Dublin, Ireland
| |
Collapse
|
31
|
Gogia S, Neelamegham S. Role of fluid shear stress in regulating VWF structure, function and related blood disorders. Biorheology 2016; 52:319-35. [PMID: 26600266 PMCID: PMC4927820 DOI: 10.3233/bir-15061] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Von Willebrand factor (VWF) is the largest glycoprotein in blood. It plays a crucial role in primary hemostasis via its binding interaction with platelet and endothelial cell surface receptors, other blood proteins and extra-cellular matrix components. This protein is found as a series of repeat units that are disulfide bonded to form multimeric structures. Once in blood, the protein multimer distribution is dynamically regulated by fluid shear stress which has two opposing effects: it promotes the aggregation or self-association of multiple VWF units, and it simultaneously reduces multimer size by facilitating the force-dependent cleavage of the protein by various proteases, most notably ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type repeats, motif 1 type 13). In addition to these effects, fluid shear also controls the solution and substrate-immobilized structure of VWF, the nature of contact between blood platelets and substrates, and the biomechanics of the GpIbα–VWF bond. These features together regulate different physiological and pathological processes including normal hemostasis, arterial and venous thrombosis, von Willebrand disease, thrombotic thrombocytopenic purpura and acquired von Willebrand syndrome. This article discusses current knowledge of VWF structure–function relationships with emphasis on the effects of hydrodynamic shear, including rapid methods to estimate the nature and magnitude of these forces in selected conditions. It shows that observations made by many investigators using solution and substrate-based shearing devices can be reconciled upon considering the physical size of VWF and the applied mechanical force in these different geometries.
Collapse
Affiliation(s)
- Shobhit Gogia
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY 14260, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
32
|
N-linked glycans within the A2 domain of von Willebrand factor modulate macrophage-mediated clearance. Blood 2016; 128:1959-1968. [PMID: 27554083 DOI: 10.1182/blood-2016-04-709436] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
Enhanced von Willebrand factor (VWF) clearance is important in the etiology of von Willebrand disease. However, the molecular mechanisms underlying VWF clearance remain poorly understood. In this study, we investigated the role of VWF domains and specific glycan moieties in regulating in vivo clearance. Our findings demonstrate that the A1 domain of VWF contains a receptor-recognition site that plays a key role in regulating the interaction of VWF with macrophages. In A1-A2-A3 and full-length VWF, this macrophage-binding site is cryptic but becomes exposed following exposure to shear or ristocetin. Previous studies have demonstrated that the N-linked glycans within the A2 domain play an important role in modulating susceptibility to ADAMTS13 proteolysis. We further demonstrate that these glycans presented at N1515 and N1574 also play a critical role in protecting VWF against macrophage binding and clearance. Indeed, loss of the N-glycan at N1515 resulted in markedly enhanced VWF clearance that was significantly faster than that observed with any previously described VWF mutations. In addition, A1-A2-A3 fragments containing the N1515Q or N1574Q substitutions also demonstrated significantly enhanced clearance. Importantly, clodronate-induced macrophage depletion significantly attenuated the increased clearance observed with N1515Q and N1574Q in both full-length VWF and A1-A2-A3. Finally, we further demonstrate that loss of these N-linked glycans does not enhance clearance in VWF in the presence of a structurally constrained A2 domain. Collectively, these novel findings support the hypothesis that conformation of the VWF A domains plays a critical role in modulating macrophage-mediated clearance of VWF in vivo.
Collapse
|
33
|
Nossent JC, Raymond WD, Eilertsen GØ. Increased von Willebrand factor levels in patients with systemic lupus erythematosus reflect inflammation rather than increased propensity for platelet activation. Lupus Sci Med 2016; 3:e000162. [PMID: 27651919 PMCID: PMC5013501 DOI: 10.1136/lupus-2016-000162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 01/17/2023]
Abstract
Background von Willebrand factor (VWF) is involved in platelet plug formation and protein transport. Increased VWF levels in systemic lupus erythematous (SLE) are considered risk factors for vascular events. VWF protein levels, however, do not accurately reflect its platelet-aggregating function, which has not been examined in SLE. Methods Cross-sectional study with clinical and laboratory data obtained in patients with SLE (n=92) from a regional lupus registry. VWF function was determined by ristocetin-induced platelet aggregation (VWF ristocetin cofactor, VWF:RCo) and VWF levels by turbidimetric assay (VWF antigen, VWF:Ag). The platelet-aggregating activity per VWF unit was estimated by the VWF RCo/Ag ratio. Healthy controls served as comparators and associations were evaluated by non-parametric methods. Results VWF:Ag (142% vs 107%, p=0.001) and VWF:RCo levels (123% vs 78%, p<0.041) were increased in patients with SLE, but VWF RCo/Ag ratio was similar as in controls (0.83 vs 0.82, p=0.8). VWF:Ag levels were higher in patients experiencing serositis but unrelated to other manifestations, thrombotic disease, Systemic Lupus Erythematous Disease Activity Index 2000 or Systemic Lupus International Collaborative Clinics-Damage Index. VWF:Ag levels correlated significantly with VWF:RCo levels (Rs 0.8, p<0.001), erythrocyte sedimentation rate (ESR) (Rs 0.32, p<0.01), anti-dsDNA Ab (Rs 0.27, p<0.01), total IgG (Rs 0.33 p<0.01), fibrinogen (Rs 0.28, p<0.01) and ceruloplasmin (Rs 0.367, p<0.01) levels. VWF:RCo levels were not related to clinical findings but were correlated with ESR, anti-dsDNA and transferrin levels. No serological associations existed for VWF RCo/Ag ratio (all p>0.2). Conclusions In this SLE cohort, VWF:Ag behaved similarly to acute-phase reactants, but VWF:Ag increases were not matched by increases in functional activity per unit of VWF. Thus, more VWF did not increase the propensity for platelet aggregation in SLE.
Collapse
Affiliation(s)
- Johannes C Nossent
- Rheumatology Department, School of Medicine, The University of Western Australia/Consultant, Sir Charles Gairdner Hospital , Perth, Western Australia , Australia
| | - Warren D Raymond
- Rheumatology Department, School of Medicine & Pharmacology, The University of Western Australia , Crawley, Western Australia , Australia
| | - Gro Østli Eilertsen
- Department of Clinical Medicine , UiT The Arctic University of Norway/Consultant RNNK , Tromsø , Norway
| |
Collapse
|
34
|
O'Sullivan JM, Jenkins PV, Rawley O, Gegenbauer K, Chion A, Lavin M, Byrne B, O'Kennedy R, Preston RJS, Brophy TM, O'Donnell JS. Galectin-1 and Galectin-3 Constitute Novel-Binding Partners for Factor VIII. Arterioscler Thromb Vasc Biol 2016; 36:855-63. [PMID: 27013611 DOI: 10.1161/atvbaha.115.306915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/14/2016] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Recent studies have demonstrated that galectin-1 (Gal-1) and galectin-3 (Gal-3) can bind von Willebrand factor and directly modulate von Willebrand factor-dependent early thrombus formation in vivo. Because the glycans expressed on human factor VIII (FVIII) are similar to those of von Willebrand factor, we investigated whether galectins might also bind and modulate the activity of FVIII. APPROACH AND RESULTS Immunosorbant assays and surface plasmon resonance analysis confirmed that Gal-1 and Gal-3 bound purified FVIII with high affinity. Exoglycosidase removal of FVIII N-linked glycans significantly reduced binding to both Gal-1 and Gal-3. Moreover, combined removal of both the N- and O-glycans of FVIII further attenuated Gal-3 binding. Notably, specific digestion of FVIII high-mannose glycans at N239 and N2118 significantly impaired FVIII affinity for Gal-1. Importantly Gal-1, but not Gal-3, bound to free FVIII in the plasma milieu, and significantly inhibited FVIII functional activity. Interestingly, commercial recombinant FVIII (rFVIII) concentrates are manufactured in different cell lines and differ in their glycosylation profiles. Although the biological mechanism has not been defined, recent studies in previously untreated patients with severe hemophilia A reported significant differences in inhibitor development associated with different rFVIII products. Interestingly, Gal-1 and Gal-3 both displayed enhanced affinity for BHK-rFVIII compared with CHO-rFVIII. Furthermore, binding of Gal-1 and Gal-3 to BDD-FVIII was markedly reduced compared with full-length rFVIII. CONCLUSIONS We have identified Gal-1 and Gal-3 as novel-binding partners for human FVIII and demonstrated that Gal-1 binding can influence the procoagulant activity of FVIII.
Collapse
Affiliation(s)
- Jamie M O'Sullivan
- From the Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences (J.M.O., P.V.J., O.R., K.G., A.C., M.L., T.M.B., J.S.O.) and National Centre for Hereditary Coagulation Disorders (J.S.O.), St. James's Hospital, and Department of Clinical Medicine, School of Medicine (R.J.S.P.), Trinity College, Dublin, Ireland; School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland (B.B., R.O.); and National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland (R.J.S.P.)
| | - P Vince Jenkins
- From the Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences (J.M.O., P.V.J., O.R., K.G., A.C., M.L., T.M.B., J.S.O.) and National Centre for Hereditary Coagulation Disorders (J.S.O.), St. James's Hospital, and Department of Clinical Medicine, School of Medicine (R.J.S.P.), Trinity College, Dublin, Ireland; School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland (B.B., R.O.); and National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland (R.J.S.P.)
| | - Orla Rawley
- From the Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences (J.M.O., P.V.J., O.R., K.G., A.C., M.L., T.M.B., J.S.O.) and National Centre for Hereditary Coagulation Disorders (J.S.O.), St. James's Hospital, and Department of Clinical Medicine, School of Medicine (R.J.S.P.), Trinity College, Dublin, Ireland; School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland (B.B., R.O.); and National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland (R.J.S.P.)
| | - Kristina Gegenbauer
- From the Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences (J.M.O., P.V.J., O.R., K.G., A.C., M.L., T.M.B., J.S.O.) and National Centre for Hereditary Coagulation Disorders (J.S.O.), St. James's Hospital, and Department of Clinical Medicine, School of Medicine (R.J.S.P.), Trinity College, Dublin, Ireland; School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland (B.B., R.O.); and National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland (R.J.S.P.)
| | - Alain Chion
- From the Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences (J.M.O., P.V.J., O.R., K.G., A.C., M.L., T.M.B., J.S.O.) and National Centre for Hereditary Coagulation Disorders (J.S.O.), St. James's Hospital, and Department of Clinical Medicine, School of Medicine (R.J.S.P.), Trinity College, Dublin, Ireland; School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland (B.B., R.O.); and National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland (R.J.S.P.)
| | - Michelle Lavin
- From the Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences (J.M.O., P.V.J., O.R., K.G., A.C., M.L., T.M.B., J.S.O.) and National Centre for Hereditary Coagulation Disorders (J.S.O.), St. James's Hospital, and Department of Clinical Medicine, School of Medicine (R.J.S.P.), Trinity College, Dublin, Ireland; School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland (B.B., R.O.); and National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland (R.J.S.P.)
| | - Barry Byrne
- From the Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences (J.M.O., P.V.J., O.R., K.G., A.C., M.L., T.M.B., J.S.O.) and National Centre for Hereditary Coagulation Disorders (J.S.O.), St. James's Hospital, and Department of Clinical Medicine, School of Medicine (R.J.S.P.), Trinity College, Dublin, Ireland; School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland (B.B., R.O.); and National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland (R.J.S.P.)
| | - Richard O'Kennedy
- From the Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences (J.M.O., P.V.J., O.R., K.G., A.C., M.L., T.M.B., J.S.O.) and National Centre for Hereditary Coagulation Disorders (J.S.O.), St. James's Hospital, and Department of Clinical Medicine, School of Medicine (R.J.S.P.), Trinity College, Dublin, Ireland; School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland (B.B., R.O.); and National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland (R.J.S.P.)
| | - Roger J S Preston
- From the Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences (J.M.O., P.V.J., O.R., K.G., A.C., M.L., T.M.B., J.S.O.) and National Centre for Hereditary Coagulation Disorders (J.S.O.), St. James's Hospital, and Department of Clinical Medicine, School of Medicine (R.J.S.P.), Trinity College, Dublin, Ireland; School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland (B.B., R.O.); and National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland (R.J.S.P.)
| | - Teresa M Brophy
- From the Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences (J.M.O., P.V.J., O.R., K.G., A.C., M.L., T.M.B., J.S.O.) and National Centre for Hereditary Coagulation Disorders (J.S.O.), St. James's Hospital, and Department of Clinical Medicine, School of Medicine (R.J.S.P.), Trinity College, Dublin, Ireland; School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland (B.B., R.O.); and National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland (R.J.S.P.)
| | - James S O'Donnell
- From the Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences (J.M.O., P.V.J., O.R., K.G., A.C., M.L., T.M.B., J.S.O.) and National Centre for Hereditary Coagulation Disorders (J.S.O.), St. James's Hospital, and Department of Clinical Medicine, School of Medicine (R.J.S.P.), Trinity College, Dublin, Ireland; School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland (B.B., R.O.); and National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland (R.J.S.P.).
| |
Collapse
|
35
|
Darrow AL, Shohet RV. Galectin-3 deficiency exacerbates hyperglycemia and the endothelial response to diabetes. Cardiovasc Diabetol 2015; 14:73. [PMID: 26047815 PMCID: PMC4499178 DOI: 10.1186/s12933-015-0230-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Diabetes promotes maladaptive changes in the endothelium that lead to its dysfunction and contribute to the vascular pathology of diabetes. We have previously reported the up-regulation of galectin-3, a β-galactoside-binding lectin, in the endothelium and sera of diabetic mice, implicating this molecule in diabetic vasculopathy and suggesting its potential as a biomarker of the disease. Therefore, we sought to assess the role of galectin-3 in the vascular pathology of diabetes. Methods Galectin-3 knockout mice (KO) and wild-type mice (WT) were fed either a high-fat diet (HFD) (60 % fat calories) to produce insulin resistant diabetes, or standard chow (12 % fat calories), and their metabolic and endothelial responses were measured. After 8 weeks, the aortic and skeletal muscle endothelia were isolated by fluorescence sorting of CD105+/CD45− cells and comprehensive transcriptional analyses were performed. Transcripts differentially dysregulated by HFD in KO endothelium compared to WT were confirmed by semi-quantitative RT-PCR, and protein expression was determined by immunofluorescence of aortic and muscle tissue. Ingenuity® Pathway Analysis was used to identify pathways up-regulated by HFD in the KO, such as the coagulation cascade, and measurements of blood clotting activity were performed to confirm these results. Results KO mice demonstrate greater hyperglycemia and impaired glucose tolerance but lower insulin levels on HFD compared to WT. KO mice demonstrate a more robust transcriptional response to HFD in the vascular endothelium compared to WT. Transcripts dysregulated in the KO endothelium after HFD are involved in glucose uptake and insulin signaling, vasoregulation, coagulation, and atherogenesis. One of the most down-regulated transcripts in the endothelium of the KO after HFD was the glucose transporter, Glut4/Slc2a4. GLUT4 immunofluorescence confirmed lower protein abundance in the endothelium and muscle of the HFD-fed KO. Prothrombin time was decreased in the diabetic KO indicating increased coagulation activity. Conclusions Galectin-3 deficiency leads to exacerbated metabolic derangement and endothelial dysfunction. The impaired tissue uptake of glucose in KO mice can be attributed to the reduced expression of GLUT4. Enhanced coagulation activity in the diabetic KO suggests a protective role for galectin-3 against thrombosis. These studies demonstrate that galectin-3 deficiency contributes both to the pathogenesis of diabetes and the associated vasculopathy. Electronic supplementary material The online version of this article (doi:10.1186/s12933-015-0230-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- April L Darrow
- Center for Cardiovascular Research and Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA. .,Department of Cell and Molecular Biology, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Ralph V Shohet
- Center for Cardiovascular Research and Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA.
| |
Collapse
|
36
|
Hsieh TJ, Lin HY, Tu Z, Huang BS, Wu SC, Lin CH. Structural Basis Underlying the Binding Preference of Human Galectins-1, -3 and -7 for Galβ1-3/4GlcNAc. PLoS One 2015; 10:e0125946. [PMID: 25945972 PMCID: PMC4422656 DOI: 10.1371/journal.pone.0125946] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
Galectins represent β-galactoside-binding proteins and are known to bind Galβ1-3/4GlcNAc disaccharides (abbreviated as LN1 and LN2, respectively). Despite high sequence and structural homology shared by the carbohydrate recognition domain (CRD) of all galectin members, how each galectin displays different sugar-binding specificity still remains ambiguous. Herein we provided the first structural evidence of human galectins-1, 3-CRD and 7 in complex with LN1. Galectins-1 and 3 were shown to have higher affinity for LN2 than for LN1, while galectin-7 displayed the reversed specificity. In comparison with the previous LN2-complexed structures, the results indicated that the average glycosidic torsion angle of galectin-bound LN1 (ψLN1 ≈ 135°) was significantly differed from that of galectin-bound LN2 (ψLN2 ≈ -108°), i.e. the GlcNAc moiety adopted a different orientation to maintain essential interactions. Furthermore, we also identified an Arg-Asp/Glu-Glu-Arg salt-bridge network and the corresponding loop (to position the second Asp/Glu residue) critical for the LN1/2-binding preference.
Collapse
Affiliation(s)
- Tung-Ju Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsien-Ya Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Bo-Shun Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Shang-Chuen Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Daidone V, Saga G, Barbon G, Pontara E, Cattini MG, Morpurgo M, Zanotti G, Casonato A. The p.R1819_C1948delinsS mutation makes von Willebrand factor ADAMTS13-resistant and reduces its collagen-binding capacity. Br J Haematol 2015; 170:564-73. [PMID: 25904363 DOI: 10.1111/bjh.13472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/23/2015] [Indexed: 12/21/2022]
Abstract
This report concerns abnormal ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13) and collagen interactions coinciding with the p.R1819_C1948delinsS von Willebrand factor (VWF) mutation associated with the deletion of the C-terminus of the A3 domain (amino acids 1819-1947) in a patient with a history of bleeding. The von Willebrand disease (VWD) phenotype of the patient featured low plasma and platelet VWF, multimers with smears extending over the highest normal oligomers in plasma, but not platelets, and an impaired collagen-binding capacity. In vitro full-length p.R1819_C1948delinsS VWF expression showed impaired VWF release, increased cellular content with normally-multimerized VWF and impaired collagen binding. The recombinant p.R1819_C1948delinsS VWF fragment, extending from domains A2 to B3 (p.R1819_C1948delinsS A2-B3 VWF), was completely resistant to proteolysis by ADAMTS13 in the presence of 1·5 mol/l urea, unlike its normal counterpart. The defect stems from impaired ADAMTS13 binding to p.R1819_C1948delinsS A2-B3, analysed under static conditions. Partial deletion of the C-terminus of the A3 domain thus makes VWF resistant to ADAMTS13, interfering with ADAMTS13 binding to VWF, and impairing the collagen-binding capacity of VWF. The p.R1819_C1948delinsS mutation has both haemorrhagic features (defective collagen binding, reduced VWF levels) and prothrombotic (ADAMTS13 resistance) features, and the latter probably mitigate the patient's bleeding symptoms.
Collapse
Affiliation(s)
- Viviana Daidone
- Thrombohaemorrhagic Disorders Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Giorgia Saga
- Thrombohaemorrhagic Disorders Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Giovanni Barbon
- Thrombohaemorrhagic Disorders Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Elena Pontara
- Thrombohaemorrhagic Disorders Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Maria G Cattini
- Thrombohaemorrhagic Disorders Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Margherita Morpurgo
- Pharmaceutical Chemistry and Pharmacology Department, University of Padua, Padua, Italy
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alessandra Casonato
- Thrombohaemorrhagic Disorders Unit, Department of Medicine, University of Padua, Padua, Italy
| |
Collapse
|
38
|
Abstract
To understand the placement of a certain protein in a physiological system and the pathogenesis of related disorders, it is not only of interest to determine its function but also important to describe the sequential steps in its life cycle, from synthesis to secretion and ultimately its clearance. von Willebrand factor (VWF) is a particularly intriguing case in this regard because of its important auxiliary roles (both intra- and extracellular) that implicate a wide range of other proteins: its presence is required for the formation and regulated release of endothelial storage organelles, the Weibel-Palade bodies (WPBs), whereas VWF is also a key determinant in the clearance of coagulation factor VIII. Thus, understanding the molecular and cellular basis of the VWF life cycle will help us gain insight into the pathogenesis of von Willebrand disease, design alternative treatment options to prolong the factor VIII half-life, and delineate the role of VWF and coresidents of the WPBs in the prothrombotic and proinflammatory response of endothelial cells. In this review, an update on our current knowledge on VWF biosynthesis, secretion, and clearance is provided and we will discuss how they can be affected by the presence of protein defects.
Collapse
|
39
|
Abstract
Galectins are an evolutionarily ancient family of glycan-binding proteins (GBPs) and are found in all animals. Although they were discovered over 30 years ago, ideas about their biological functions continue to evolve. Current evidence indicates that galectins, which are the only known GBPs that occur free in the cytoplasm and extracellularly, are involved in a variety of intracellular and extracellular pathways contributing to homeostasis, cellular turnover, cell adhesion, and immunity. Here we review evolving insights into galectin biology from a historical perspective and explore current evidence regarding biological roles of galectins.
Collapse
|
40
|
Pugliese G, Iacobini C, Pesce CM, Menini S. Galectin-3: an emerging all-out player in metabolic disorders and their complications. Glycobiology 2014; 25:136-50. [PMID: 25303959 DOI: 10.1093/glycob/cwu111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Galectin-3 has been increasingly recognized as an important modulator of several biological functions, by interacting with several molecules inside and outside the cell, and an emerging player in numerous disease conditions. Galectin-3 exerts various and sometimes contrasting effects according to its location, type of injury or site of damage. Strong evidence indicates that galectin-3 participates in the pathogenesis of diabetic complications via its receptor function for advanced glycation end-products (AGEs) and advanced lipoxidation end-products (ALEs). AGEs/ALEs are produced to an increased extent in target organs of complications, such as kidney and vessels; here, lack of galectin-3 impairs their removal, leading to accelerated damage. In contrast, in the liver, AGE/ALE tissue content and injury are decreased, because lack of galectin-3 results in reduced uptake and tissue accumulation of these by-products. Some of these effects can be explained by changes in the expression of receptor for AGEs (RAGE), associated with galectin-3 deletion and consequent changes in AGE/ALE tissue levels. Furthermore, galectin-3 might exert AGE/ALE- and RAGE-independent effects, favoring resolution of inflammation and modulating fibrogenesis and ectopic osteogenesis. These effects are mediated by intracellular and extracellular galectin-3, the latter via interaction with N-glycans at the cell surface to form lattice structures. Recently, galectin-3 has been implicated in the development of metabolic disorders because it favors glucose homeostasis and prevents the deleterious activation of adaptive and innate immune response to obesogenic/diabetogenic stimuli. In conclusion, galectin-3 is an emerging all-out player in metabolic disorders and their complications that deserves further investigation as the potential target of therapeutic intervention.
Collapse
Affiliation(s)
- Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039, Rome 00189, Italy
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039, Rome 00189, Italy
| | - Carlo M Pesce
- DINOGMI, University of Genoa Medical School, Genoa 16132, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039, Rome 00189, Italy
| |
Collapse
|
41
|
Cattaneo V, Tribulatti MV, Carabelli J, Carestia A, Schattner M, Campetella O. Galectin-8 elicits pro-inflammatory activities in the endothelium. Glycobiology 2014; 24:966-73. [PMID: 24957054 DOI: 10.1093/glycob/cwu060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Galectins (Gals), a family of mammalian lectins, play diverse roles under physiological and pathological conditions. Here, we analyzed the tandem-repeat Gal-8 synthesis, secretion and effects on the endothelium physiology. Gal-8M and Gal-8L isoforms were secreted under basal conditions by human microvascular endothelial cells (HMEC-1). However, expression and secretion of the Gal-8M isoform, but not Gal-8L, were increased in response to bacterial lipopolysaccharide (LPS) stimulus and returned to control values after LPS removal. Similarly, cell surface Gal-8 exposure was increased after stimulation with LPS. To evaluate Gal-8 effects on the endothelium physiology, HMEC-1 cells were incubated in the presence of recombinant Gal-8M. Pretreated HMEC-1 cells became proadhesive to human normal platelets, indicating that Gal-8 actually activates endothelial cells. This effect was specific for lectin activity as it was prevented by the simultaneous addition of lactose, but not by sucrose. Endothelial cells also increased their exposition of von Willebrand factor after Gal-8 treatment, which constitutes another feature of cell activation that could be, in turn, responsible for the observed platelet adhesion. Several pro-inflammatory molecules were abundantly produced by Gal-8 stimulated endothelial cells: CXCL1 (GRO-α), GM-CSF, IL-6 and CCL5 (RANTES), and in a lower degree CCL2 (MCP-1), CXCL3 (GRO-γ) and CXCL8 (IL-8). In agreement, Gal-8M induced nuclear factor kappa B phosphorylation. Altogether, these results not only confirm the pro-inflammatory role we have already proposed for Gal-8 in other cellular systems but also suggest that this lectin is orchestrating the interaction between leukocytes, platelets and endothelial cells.
Collapse
Affiliation(s)
- Valentina Cattaneo
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB-INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín B1650HMP, Buenos Aires, Argentina
| | - María Virginia Tribulatti
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB-INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín B1650HMP, Buenos Aires, Argentina
| | - Julieta Carabelli
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB-INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín B1650HMP, Buenos Aires, Argentina
| | - Agostina Carestia
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental (IMEX), CONICET-Academia Nacional de Medicina, C1425AUM Ciudad Autónoma de Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental (IMEX), CONICET-Academia Nacional de Medicina, C1425AUM Ciudad Autónoma de Buenos Aires, Argentina
| | - Oscar Campetella
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB-INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín B1650HMP, Buenos Aires, Argentina;
| |
Collapse
|
42
|
Etulain J, Schattner M. Glycobiology of platelet-endothelial cell interactions. Glycobiology 2014; 24:1252-9. [DOI: 10.1093/glycob/cwu056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
43
|
Von Willebrand factor, angiodysplasia and angiogenesis. Mediterr J Hematol Infect Dis 2013; 5:e2013060. [PMID: 24106610 PMCID: PMC3787682 DOI: 10.4084/mjhid.2013.060] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/20/2013] [Indexed: 12/21/2022] Open
Abstract
The large multimeric glycoprotein Von Willebrand factor (VWF) is best known for its role in haemostasis; however in recent years other functions of VWF have been identified, indicating that this protein is involved in multiple vascular processes. We recently described a new role for VWF in controlling angiogenesis, which may have significant clinical implications for patients with Von Willebrand disease (VWD), a genetic or acquired condition caused by the deficiency or dysfunction of VWF. VWD can be associated with angiodysplasia, a condition of degenerative blood vessels often present in the gastrointestinal tract, linked to dysregulated angiogenesis. Angiodysplasia can cause severe intractable bleeding, often refractory to conventional VWD treatments. In this review we summarise the evidence showing that VWF controls angiogenesis, and review the angiogenic pathways which have been implicated in this process. We discuss the possible mechanisms though which VWF regulates angiopoietin-2 (Ang-2) and integrin αvβ3, leading to signalling through vascular endothelial growth factor receptor-2 (VEGFR2), one of the most potent activators of angiogenesis. We also review the evidence that links VWF with angiodysplasia, and how the newly identified function of VWF in controlling angiogenesis may pave the way for the development of novel therapies for the treatment of angiodysplasia in congenital VWD and in acquired conditions such as Heyde syndrome.
Collapse
|
44
|
Yepuru M, Wu Z, Kulkarni A, Yin F, Barrett CM, Kim J, Steiner MS, Miller DD, Dalton JT, Narayanan R. Steroidogenic enzyme AKR1C3 is a novel androgen receptor-selective coactivator that promotes prostate cancer growth. Clin Cancer Res 2013; 19:5613-25. [PMID: 23995860 DOI: 10.1158/1078-0432.ccr-13-1151] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Castration-resistant prostate cancer (CRPC) may occur by several mechanisms including the upregulation of androgen receptor (AR), coactivators, and steroidogenic enzymes, including aldo keto reductase 1C3 (AKR1C3). AKR1C3 converts weaker 17-keto androgenic precursors to more potent 17-hydroxy androgens and is consistently the major upregulated gene in CRPC. The studies in the manuscript were undertaken to examine the role of AKR1C3 in AR function and CRPC. EXPERIMENTAL DESIGN LNCaP cells stably transfected with AKR1C3 and VCaP cells endogenously expressing AKR1C3 were used to understand the effect of AKR1C3 on prostate cancer cell and tumor growth in nude mice. Chromatin immunoprecipitation, confocal microscopy, and co-immunoprecipitation studies were used to understand the recruitment of AKR1C3, intracellular localization of AKR1C3 and its interaction with AR in cells, tumor xenograft, and in Gleason sum 7 CRPC tissues. Cells were transiently transfected for AR transactivation. Novel small-molecule AKR1C3-selective inhibitors were synthesized and characterized in androgen-dependent prostate cancer and CRPC models. RESULTS We identified unique AR-selective coactivator- and prostate cancer growth-promoting roles for AKR1C3. AKR1C3 overexpression promotes the growth of both androgen-dependent prostate cancer and CRPC xenografts, with concomitant reactivation of androgen signaling. AKR1C3 interacted with AR in prostate cancer cells, xenografts, and in human CRPC samples and was recruited to the promoter of an androgen-responsive gene. The coactivator and growth-promoting functions of AKR1C3 were inhibited by an AKR1C3-selective competitive inhibitor. CONCLUSIONS AKR1C3 is a novel AR-selective enzymatic coactivator and may represent the first of more than 200 known nuclear hormone receptor coactivators that can be pharmacologically targeted.
Collapse
Affiliation(s)
- Muralimohan Yepuru
- Authors' Affiliations: Preclinical Research and Development, GTx Inc.; and Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
On the versatility of von Willebrand factor. Mediterr J Hematol Infect Dis 2013; 5:e2013046. [PMID: 23936617 PMCID: PMC3736882 DOI: 10.4084/mjhid.2013.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022] Open
Abstract
Von Willebrand factor (VWF) is a large multimeric protein, the function of which has been demonstrated to be pivotal to the haemostatic system. Indeed, quantitative and/or qualitative abnormalities of VWF are associated with the bleeding disorder Von Willebrand disease (VWD). Moreover, increased plasma concentrations of VWF have been linked to an increased risk for thrombotic complications. In the previous decades, many studies have contributed to our understanding of how VWF is connected to the haemostatic system, particularly with regard to structure-function relationships. Interactive sites for important ligands of VWF (such as factor VIII, collagen, glycoprotein Ibα, integrin αIIbβ3 and protease ADAMTS13) have been identified, and mutagenesis studies have confirmed the physiological relevance of the interactions between VWF and these ligands. However, we have also become aware that VWF has a more versatile character than previously thought, given its potential role in various non-hemostatic processes, like intimal thickening, tumor cell apoptosis and inflammatory processes. In the presence review, a summary of our knowledge on VWF structure-function relationships is provided in the context of the “classical” haemostatic task of VWF and in perspective of pathological processes beyond haemostasis.
Collapse
|
46
|
Pappelbaum KI, Gorzelanny C, Grässle S, Suckau J, Laschke MW, Bischoff M, Bauer C, Schorpp-Kistner M, Weidenmaier C, Schneppenheim R, Obser T, Sinha B, Schneider SW. Ultralarge von Willebrand factor fibers mediate luminal Staphylococcus aureus adhesion to an intact endothelial cell layer under shear stress. Circulation 2013; 128:50-9. [PMID: 23720451 DOI: 10.1161/circulationaha.113.002008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND During pathogenesis of infective endocarditis, Staphylococcus aureus adherence often occurs without identifiable preexisting heart disease. However, molecular mechanisms mediating initial bacterial adhesion to morphologically intact endocardium are largely unknown. METHODS AND RESULTS Perfusion of activated human endothelial cells with fluorescent bacteria under high-shear-rate conditions revealed 95% attachment of the S aureus by ultralarge von Willebrand factor (ULVWF). Flow experiments with VWF deletion mutants and heparin indicate a contribution of the A-type domains of VWF to bacterial binding. In this context, analyses of different bacterial deletion mutants suggest the involvement of wall teichoic acid but not of staphylococcal protein A. The presence of inactivated platelets and serum increased significantly ULVWF-mediated bacterial adherence. ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin motifs 13) caused a dose-dependent reduction of bacterial binding and a reduced length of ULVWF, but single cocci were still tethered by ULVWF at physiological levels of ADAMTS13. To further prove the role of VWF in vivo, we compared wild-type mice with VWF knockout mice. Binding of fluorescent bacteria was followed in tumor necrosis factor-α-stimulated tissue by intravital microscopy applying the dorsal skinfold chamber model. Compared with wild-type mice (n=6), we found less bacteria in postcapillary (60±6 versus 32±5 bacteria) and collecting venules (48±5 versus 18±4 bacteria; P<0.05) of VWF knockout mice (n=5). CONCLUSIONS Our data provide the first evidence that ULVWF contributes to the initial pathogenic step of S aureus-induced endocarditis in patients with an apparently intact endothelium. An intervention reducing the ULVWF formation with heparin or ADAMTS13 suggests novel therapeutic options to prevent infective endocarditis.
Collapse
Affiliation(s)
- Karin I Pappelbaum
- Experimental Dermatology, Department of Dermatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Elucidating the role of carbohydrate determinants in regulating hemostasis: insights and opportunities. Blood 2013; 121:3801-10. [DOI: 10.1182/blood-2012-10-415000] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent improvement in modern analytical technologies has stimulated an explosive growth in the study of glycobiology. In turn, this has lead to a richer understanding of the crucial role of N- and O-linked carbohydrates in dictating the properties of the proteins to which they are attached and, in particular, their centrality in the control of protein synthesis, longevity, and activity. Given their importance, it is unsurprising that both gross and subtle defects in glycosylation often contribute to human disease pathology. In this review, we discuss the accumulating evidence for the significance of glycosylation in mediating the functions of the plasma glycoproteins involved in hemostasis and thrombosis. In particular, the role of naturally occurring coagulation protein glycoforms and inherited defects in carbohydrate attachment in modulating coagulation is considered. Finally, we describe the therapeutic opportunities presented by new insights into the role of attached carbohydrates in shaping coagulation protein function and the promise of carbohydrate modification in the delivery of novel therapeutic biologics with enhanced functional properties for the treatment of hemostatic disorders.
Collapse
|
48
|
Franchini M, Mannucci PM. Von Willebrand disease-associated angiodysplasia: a few answers, still many questions. Br J Haematol 2013; 161:177-82. [PMID: 23432086 DOI: 10.1111/bjh.12272] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The association between angiodysplasia and von Willebrand disease (VWD) has been known for more than 40 years. Bleeding in the gastrointestinal tract associated with angiodysplasia worsens the clinical course of this inherited haemorrhagic disorder and management may become difficult and challenging. Angiodysplasia associated with acquired defects or dysfunctions of von Willebrand factor (VWF) has also been reported in a variety of conditions such as monoclonal gammopathies, Heyde syndrome and in carriers of ventricular assist devices. The most recent advances concerning the mechanistic, clinical and therapeutic aspects of VWD-associated angiodysplasia are summarized in this review, together with the limitations of our knowledge that warrant further research in the frame of international cooperation.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Haematology, Carlo Poma Hospital, Mantova, Italy
| | | |
Collapse
|
49
|
Franchini M, Frattini F, Crestani S, Bonfanti C, Lippi G. von Willebrand factor and cancer: a renewed interest. Thromb Res 2013; 131:290-2. [PMID: 23394808 DOI: 10.1016/j.thromres.2013.01.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/30/2022]
Abstract
Von Willebrand factor (VWF), the largest human plasma protein, is an adhesive multimeric glycoprotein that mediates platelet adhesion to both the subendothelial matrix and endothelial surfaces and acts as a carrier for coagulation factor VIII in the circulation. Besides its essential role in hemostasis, there is growing evidence from the literature that VWF has an additional antitumor effect, mainly by exerting negative modulation on angiogenesis and apoptosis. Current knowledge on the link between VWF and cancer is summarized in this review, based on an analysis of the most important experimental and clinical studies.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy.
| | | | | | | | | |
Collapse
|
50
|
Abstract
vWF (von Willebrand factor) is a key component for maintenance of normal haemostasis, acting as the carrier protein of the coagulant Factor VIII and mediating platelet adhesion at sites of vascular injury. There is ample evidence that vWF glycan moieties are crucial determinants of its expression and function. Of particular clinical interest, ABH antigens influence vWF plasma levels according to the blood group of individuals, although the molecular mechanism underlying this phenomenon remains incompletely understood. The present paper reports analyses of the human plasma vWF N-glycan population using advanced MS. Glycomics analyses revealed approximately 100 distinct N-glycan compositions and identified a variety of structural features, including lactosaminic extensions, ABH antigens and sulfated antennae, as well as bisecting and terminal GlcNAc residues. We estimate that some 300 N-glycan structures are carried by human vWF. Glycoproteomics analyses mapped ten of the consensus sites known to carry N-glycans. Glycan populations were found to be distinct, although many structural features were shared across all sites. Notably, the H antigen is not restricted to particular N-glycosylation sites. Also, the Asn(2635) site, previously designated as unoccupied, was found to be highly glycosylated. The delineation of such varied glycan populations in conjunction with current models explaining vWF activity will facilitate research aimed at providing a better understanding of the influence of glycosylation on vWF function.
Collapse
|