1
|
Slarve I, Wang Y, Ding Y, Niu X, Tang Q, Jia C, Tu T, Hong H, Zhang G, Gu Y, Xu Z, Skinner S, He L, Hua B, Nguyen P, Zhou Y, Chen L, Ashouri K, Martynova A, Nakhoul C, Rastegarpour A, Alachkar H, Lenz HJ, El-Khoueiry A, Sher L, Chopra S, Yuan L, Stiles BL. Isoform specific regulation of osteopontin by AKT2 in hepatocytes and livers. Cell Signal 2025; 132:111799. [PMID: 40216173 DOI: 10.1016/j.cellsig.2025.111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Elevated levels of osteopontin (OPN), an inflammatory cytokine, are correlated with chronic inflammatory conditions and liver cancer. In this study, we explored the regulation of OPN in liver and hepatocytes by AKT1 vs. AKT2, the two AKT isoforms expressed in hepatocytes and livers. Using a mouse model lacking PTEN (phosphatase and tensin homologue deleted on chromosome 10), the negative regulator of phosphatidylinositol 3-kinase (PI3K)/AKT signaling, expression of secreted phosphoprotein 1 (Spp1), the gene encoding OPN, was found to be the topmost significantly upregulated gene in the liver. Using an add-back experiment in hepatocytes isolated from these mice, we show that PTEN regulates the expression of Spp1 mRNA as well as OPN protein levels. Exploring how PTEN regulates the expression of Spp1/OPN, we investigated the differential roles of AKT1 vs. AKT2 using hepatocytes isolated from mice lacking each AKT isoform in the liver. We showed here that levels of Spp1/OPN in hepatocytes are lost with deletion of Akt2 but not Akt1. Deletion of Akt2 significantly attenuated both basal expression of OPN and its response to IGF-1 stimulation. AKT1 loss, on the other hand, permitted more robust induction of OPN by IGF-1 stimulation. Furthermore, mice lacking AKT2 and PTEN exhibit significantly lower OPN expression in the liver. Together, this study showed that OPN levels are regulated by the PI3K/AKT signal in hepatocytes and that AKT2 but not AKT1 is responsible for its induction in response to stimulation of the PI3K signaling pathway.
Collapse
Affiliation(s)
- Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Yushan Wang
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Yining Ding
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiaoteng Niu
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Qi Tang
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Chengyou Jia
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; Department of Nuclear Medicine, Central Laboratory for Medical Research, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Taojian Tu
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Handan Hong
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Guo Zhang
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Yiwei Gu
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Zifei Xu
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Samantha Skinner
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Lina He
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Phillip Nguyen
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Lulu Chen
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Karam Ashouri
- Division of Medical Oncology, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Anastasia Martynova
- Division of Medical Oncology, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Christina Nakhoul
- Division of Medical Oncology, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Ali Rastegarpour
- Division of Medical Oncology, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Houda Alachkar
- Department of Clinical Pharmacy, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Anthony El-Khoueiry
- Division of Medical Oncology, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Linda Sher
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shefali Chopra
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Liyun Yuan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Bangyan Li Stiles
- Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Luciani L, Pedrelli M, Parini P. Modification of lipoprotein metabolism and function driving atherogenesis in diabetes. Atherosclerosis 2024; 394:117545. [PMID: 38688749 DOI: 10.1016/j.atherosclerosis.2024.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, characterized by raised blood glucose levels and impaired lipid metabolism resulting from insulin resistance and relative insulin deficiency. In diabetes, the peculiar plasma lipoprotein phenotype, consisting in higher levels of apolipoprotein B-containing lipoproteins, hypertriglyceridemia, low levels of HDL cholesterol, elevated number of small, dense LDL, and increased non-HDL cholesterol, results from an increased synthesis and impaired clearance of triglyceride rich lipoproteins. This condition accelerates the development of the atherosclerotic cardiovascular disease (ASCVD), the most common cause of death in T2DM patients. Here, we review the alteration of structure, functions, and distribution of circulating lipoproteins and the pathophysiological mechanisms that induce these modifications in T2DM. The review analyzes the influence of diabetes-associated metabolic imbalances throughout the entire process of the atherosclerotic plaque formation, from lipoprotein synthesis to potential plaque destabilization. Addressing the different pathophysiological mechanisms, we suggest improved approaches for assessing the risk of adverse cardiovascular events and clinical strategies to reduce cardiovascular risk in T2DM and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lorenzo Luciani
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Interdisciplinary Center for Health Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Tu T, Alba MM, Datta AA, Hong H, Hua B, Jia Y, Khan J, Nguyen P, Niu X, Pammidimukkala P, Slarve I, Tang Q, Xu C, Zhou Y, Stiles BL. Hepatic macrophage mediated immune response in liver steatosis driven carcinogenesis. Front Oncol 2022; 12:958696. [PMID: 36276076 PMCID: PMC9581256 DOI: 10.3389/fonc.2022.958696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Obesity confers an independent risk for carcinogenesis. Classically viewed as a genetic disease, owing to the discovery of tumor suppressors and oncogenes, genetic events alone are not sufficient to explain the progression and development of cancers. Tumor development is often associated with metabolic and immunological changes. In particular, obesity is found to significantly increase the mortality rate of liver cancer. As its role is not defined, a fundamental question is whether and how metabolic changes drive the development of cancer. In this review, we will dissect the current literature demonstrating that liver lipid dysfunction is a critical component driving the progression of cancer. We will discuss the involvement of inflammation in lipid dysfunction driven liver cancer development with a focus on the involvement of liver macrophages. We will first discuss the association of steatosis with liver cancer. This will be followed with a literature summary demonstrating the importance of inflammation and particularly macrophages in the progression of liver steatosis and highlighting the evidence that macrophages and macrophage produced inflammatory mediators are critical for liver cancer development. We will then discuss the specific inflammatory mediators and their roles in steatosis driven liver cancer development. Finally, we will summarize the molecular pattern (PAMP and DAMP) as well as lipid particle signals that are involved in the activation, infiltration and reprogramming of liver macrophages. We will also discuss some of the therapies that may interfere with lipid metabolism and also affect liver cancer development.
Collapse
Affiliation(s)
- Taojian Tu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Aditi A. Datta
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Handan Hong
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Jared Khan
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Phillip Nguyen
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Xiatoeng Niu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Pranav Pammidimukkala
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Qi Tang
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Chenxi Xu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Bangyan L. Stiles,
| |
Collapse
|
4
|
Actis Dato V, Benitez-Amaro A, Garcia E, Claudi L, Lhoëst MTL, Iborra A, Escola-Gil JC, Guerra JM, Samouillan V, Enrich C, Chiabrando G, Llorente-Cortés V. Targeting cholesteryl ester accumulation in the heart improves cardiac insulin response. Biomed Pharmacother 2022; 152:113270. [PMID: 35709652 DOI: 10.1016/j.biopha.2022.113270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Antibodies against the P3 sequence (Gly1127-Cys1140) of LRP1 (anti-P3 Abs) specifically block cholesteryl ester (CE) accumulation in vascular cells. LRP1 is a key regulator of insulin receptor (InsR) trafficking in different cell types. The link between CE accumulation and the insulin response are largely unknown. Here, the effects of P3 peptide immunization on the alterations induced by a high-fat diet (HFD) in cardiac insulin response were evaluated. METHODS Irrelevant (IrP)- or P3 peptide-immunized rabbits were randomized into groups fed either HFD or normal chow. Cardiac lipid content was characterized by thin-layer chromatography, confocal microscopy, and electron microscopy. LRP1, InsR and glucose transporter type 4 (GLUT4) levels were determined in membranes and total lysates from rabbit heart. The interaction between InsR and LRP1 was analyzed by immunoprecipitation and confocal microscopy. Insulin signaling activity and glucose uptake were evaluated in HL-1 cells exposed to rabbit serum from the different groups. FINDINGS HFD reduces cardiac InsR and GLUT4 membrane levels and the interactions between LRP1/InsR. Targeting the P3 sequence on LRP1 through anti-P3 Abs specifically reduces CE accumulation in the heart independently of changes in the circulating lipid profile. This restores InsR and GLUT4 levels in cardiac membranes as well as the LRP1/InsR interactions of HFD-fed rabbits. In addition, anti-P3 Abs restores the insulin signaling cascade and glucose uptake in HL-1 cells exposed to hypercholesterolemic rabbit serum. INTERPRETATION LRP1-immunotargeting can block CE accumulation within the heart with specificity, selectivity, and efficacy, thereby improving the cardiac insulin response; this has important therapeutic implications for a wide range of cardiac diseases. FUNDING Fundació MARATÓ TV3: grant 101521-10, Instiuto de Salud Carlos III (ISCIII) and ERDFPI18/01584, Fundación BBVA Ayudas a Equipos de Investigación 2019. SECyT-UNC grants PROYECTOS CONSOLIDAR 2018-2021; FONCyT, Préstamo BID PICT grant 2015-0807 and grant 2017-4497.
Collapse
Affiliation(s)
- Virginia Actis Dato
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Aleyda Benitez-Amaro
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Eduardo Garcia
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Lene Claudi
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Maria Teresa LaChica Lhoëst
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Antoni Iborra
- SCAC, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Joan Carles Escola-Gil
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau. CIBER de Diabetes y enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona. Spain
| | - Jose Maria Guerra
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autonoma de Barcelona, Barcelona, Spain; CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Valerie Samouillan
- CIRIMAT, Université de Toulouse, Université Paul Sabatier, Equipe PHYPOL, 31062 Toulouse, France
| | - Carlos Enrich
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gustavo Chiabrando
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.
| | - Vicenta Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
5
|
Glucocorticosteroids and the Risk of NAFLD in Inflammatory Bowel Disease. Can J Gastroenterol Hepatol 2022; 2022:4344905. [PMID: 35600209 PMCID: PMC9117063 DOI: 10.1155/2022/4344905] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
Each year, the incidence of nonalcoholic fatty liver (NAFLD) disease increases. NAFLD is a chronic disease. One of the most common causes of NAFLD is an inadequate lifestyle, which is characterized by a lack or low physical activity and eating highly processed foods rich in saturated fat and salt and containing low amount of fiber. Moreover, disturbances in intestinal microbiome and the use of certain drugs may predispose to NAFLD. NAFLD is an increasingly described disease in patients with inflammatory bowel disease (IBD). Recent data also indicate a frequent coexistence of metabolic syndrome in this group of patients. Certain groups of drugs also increase the risk of developing inflammation, liver fibrosis, and cirrhosis. Particularly important in the development of NAFLD are steroids, which are used in the treatment of many diseases, for example, IBD. NAFLD is one of the most frequent parenteral manifestations of the disease in IBD patients. However, there is still insufficient information on what dose and exposure time of selected types of steroids may lead to the development of NAFLD. It is necessary to conduct further research in this direction. Therefore, patients with IBD should be constantly monitored for risk factors for the development of NAFLD.
Collapse
|
6
|
Stahel P, Xiao C, Nahmias A, Tian L, Lewis GF. Multi-organ Coordination of Lipoprotein Secretion by Hormones, Nutrients and Neural Networks. Endocr Rev 2021; 42:815-838. [PMID: 33743013 PMCID: PMC8599201 DOI: 10.1210/endrev/bnab008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Plasma triglyceride-rich lipoproteins (TRL), particularly atherogenic remnant lipoproteins, contribute to atherosclerotic cardiovascular disease. Hypertriglyceridemia may arise in part from hypersecretion of TRLs by the liver and intestine. Here we focus on the complex network of hormonal, nutritional, and neuronal interorgan communication that regulates secretion of TRLs and provide our perspective on the relative importance of these factors. Hormones and peptides originating from the pancreas (insulin, glucagon), gut [glucagon-like peptide 1 (GLP-1) and 2 (GLP-2), ghrelin, cholecystokinin (CCK), peptide YY], adipose tissue (leptin, adiponectin) and brain (GLP-1) modulate TRL secretion by receptor-mediated responses and indirectly via neural networks. In addition, the gut microbiome and bile acids influence lipoprotein secretion in humans and animal models. Several nutritional factors modulate hepatic lipoprotein secretion through effects on the central nervous system. Vagal afferent signaling from the gut to the brain and efferent signals from the brain to the liver and gut are modulated by hormonal and nutritional factors to influence TRL secretion. Some of these factors have been extensively studied and shown to have robust regulatory effects whereas others are "emerging" regulators, whose significance remains to be determined. The quantitative importance of these factors relative to one another and relative to the key regulatory role of lipid availability remains largely unknown. Our understanding of the complex interorgan regulation of TRL secretion is rapidly evolving to appreciate the extensive hormonal, nutritional, and neural signals emanating not only from gut and liver but also from the brain, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Priska Stahel
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Avital Nahmias
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lili Tian
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary Franklin Lewis
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Srivastava RAK, Hurley TR, Oniciu D, Adeli K, Newton RS. Discovery of analogues of non-β oxidizable long-chain dicarboxylic fatty acids as dual inhibitors of fatty acids and cholesterol synthesis: Efficacy of lead compound in hyperlipidemic hamsters reveals novel mechanism. Nutr Metab Cardiovasc Dis 2021; 31:2490-2506. [PMID: 34172319 DOI: 10.1016/j.numecd.2021.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Cholesterol and triglycerides are risk factors for developing cardiovascular disease. Therefore, appropriate cells and assays are required to discover and develop dual cholesterol and fatty acid inhibitors. A predictive hyperlipidemic animal model is needed to evaluate mechanism of action of lead molecule for therapeutic indications. METHODS AND RESULTS Primary hepatocytes from rat, hamster, rabbit, and humans were compared for suitability to screen compounds by de novo lipogenesis (DNL) using14C-acetate. Hyperlipidemic hamsters were used to evaluate efficacy and mode of action. In rat hepatocytes DNL assay, both the central moiety and carbon chain length influenced the potency of lipogenesis inhibition. In hyperlipidemic hamsters, ETC-1002 decreased plasma cholesterol and triglycerides by 41% and 49% at the 30 mg/kg dose. Concomitant decreases in non-esterified fatty acids (-34%) and increases in ketone bodies (20%) were associated with induction of hepatic CPT1-α. Reductions in proatherogenic VLDL-C and LDL-C (-71% and -64%) occurred partly through down-regulation of DGAT2 and up-regulation of LPL and PDK4. Activation of PLIN1 and PDK4 dampened adipogenesis and showed inverse correlation with adipose mass. Hepatic concentrations of cholesteryl ester and TG decreased by 67% and 64%, respectively. Body weight decreased with concomitant decreases in epididymal fat. Plasma and liver concentrations of ETC-1002 agreed with the observed dose-response efficacy. CONCLUSIONS Taken together, ETC-1002 reduced proatherogenic lipoproteins, hepatic lipids and adipose tissues in hyperlipidemic hamsters via induction of LPL, CPT1-α, PDK4, and PLIN1, and downregulation of DGAT2. These characteristics may be useful in the treatment of fatty livers that causes non-alcoholic steatohepatitis.
Collapse
|
8
|
Chen CY, Li Y, Zeng N, He L, Zhang X, Tu T, Tang Q, Alba M, Mir S, Stiles EX, Hong H, Cadenas E, Stolz AA, Li G, Stiles BL. Inhibition of Estrogen-Related Receptor α Blocks Liver Steatosis and Steatohepatitis and Attenuates Triglyceride Biosynthesis. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1240-1254. [PMID: 33894178 PMCID: PMC8261472 DOI: 10.1016/j.ajpath.2021.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023]
Abstract
The estrogen-related receptor (ERR) family of orphan nuclear receptors are transcriptional activators for genes involved in mitochondrial bioenergetics and metabolism. The goal of this study was to explore the role of ERRα in lipid metabolism and the potential effect of inhibiting ERRα on the development of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). In the current study, three experimental mouse models: high-fat diet, high-carbohydrate diet, and a genetic model of hepatic insulin resistance where the liver hyperinsulinemia signal is mimicked via hepatic deletion of Pten (phosphatase and tensin homolog deleted on chromosome 10), the negative regulator of the insulin/phosphatidylinositol 3-kinase signaling pathway, were used. A recently developed small-molecule inhibitor for ERRα was used to demonstrate that inhibiting ERRα blocked NAFLD development induced by either high-carbohydrate diet or high-fat diet feeding. ERRα inhibition also diminished lipid accumulation and attenuated NASH development in the Pten null mice. Glycerolipid synthesis was discovered as an additional mechanism for ERRα-regulated NAFLD/NASH development and glycerophosphate acyltransferase 4 was identified as a novel transcriptional target of ERRα. In summary, these results establish ERRα as a major transcriptional regulator of lipid biosynthesis in addition to its characterized primary function as a regulator for mitochondrial function. This study recognizes ERRα as a potential target for NAFLD/NASH treatment and elucidates novel signaling pathways regulated by ERRα.
Collapse
Affiliation(s)
- Chien-Yu Chen
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Yang Li
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Ni Zeng
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Lina He
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Xinwen Zhang
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Taojian Tu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Qi Tang
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Mario Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Sabrina Mir
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Eileen X Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Handan Hong
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Enrique Cadenas
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California; Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andrew A Stolz
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Macau
| | - Bangyan L Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
9
|
Daou N, Viader A, Cokol M, Nitzel A, Chakravarthy MV, Afeyan R, Tramontin T, Marukian S, Hamill MJ. A novel, multitargeted endogenous metabolic modulator composition impacts metabolism, inflammation, and fibrosis in nonalcoholic steatohepatitis-relevant primary human cell models. Sci Rep 2021; 11:11861. [PMID: 34088912 PMCID: PMC8178416 DOI: 10.1038/s41598-021-88913-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a complex metabolic disease of heterogeneous and multifactorial pathogenesis that may benefit from coordinated multitargeted interventions. Endogenous metabolic modulators (EMMs) encompass a broad set of molecular families, including amino acids and related metabolites and precursors. EMMs often serve as master regulators and signaling agents for metabolic pathways throughout the body and hold the potential to impact a complex metabolic disease like NASH by targeting a multitude of pathologically relevant biologies. Here, we describe a study of a novel EMM composition comprising five amino acids and an amino acid derivative (Leucine, Isoleucine, Valine, Arginine, Glutamine, and N-acetylcysteine [LIVRQNac]) and its systematic evaluation across multiple NASH-relevant primary human cell model systems, including hepatocytes, macrophages, and stellate cells. In these model systems, LIVRQNac consistently and simultaneously impacted biology associated with all three core pathophysiological features of NASH—metabolic, inflammatory, and fibrotic. Importantly, it was observed that while the individual constituent amino acids in LIVRQNac can impact specific NASH-related phenotypes in select cell systems, the complete combination was necessary to impact the range of disease-associated drivers examined. These findings highlight the potential of specific and potent multitargeted amino acid combinations for the treatment of NASH.
Collapse
Affiliation(s)
- Nadine Daou
- Axcella Health Inc., 840 Memorial Drive, Cambridge, MA, 02139, USA
| | | | - Murat Cokol
- Axcella Health Inc., 840 Memorial Drive, Cambridge, MA, 02139, USA
| | - Arianna Nitzel
- Axcella Health Inc., 840 Memorial Drive, Cambridge, MA, 02139, USA
| | | | | | | | | | - Michael J Hamill
- Axcella Health Inc., 840 Memorial Drive, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Chait A, Ginsberg HN, Vaisar T, Heinecke JW, Goldberg IJ, Bornfeldt KE. Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease. Diabetes 2020; 69:508-516. [PMID: 32198194 PMCID: PMC7085249 DOI: 10.2337/dbi19-0007] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/16/2020] [Indexed: 01/05/2023]
Abstract
Diabetes is now a pandemic disease. Moreover, a large number of people with prediabetes are at risk for developing frank diabetes worldwide. Both type 1 and type 2 diabetes increase the risk of atherosclerotic cardiovascular disease (CVD). Even with statin treatment to lower LDL cholesterol, patients with diabetes have a high residual CVD risk. Factors mediating the residual risk are incompletely characterized. An attractive hypothesis is that remnant lipoprotein particles (RLPs), derived by lipolysis from VLDL and chylomicrons, contribute to this residual risk. RLPs constitute a heterogeneous population of lipoprotein particles, varying markedly in size and composition. Although a universally accepted definition is lacking, for the purpose of this review we define RLPs as postlipolytic partially triglyceride-depleted particles derived from chylomicrons and VLDL that are relatively enriched in cholesteryl esters and apolipoprotein (apo)E. RLPs derived from chylomicrons contain apoB48, while those derived from VLDL contain apoB100. Clarity as to the role of RLPs in CVD risk is hampered by lack of a widely accepted definition and a paucity of adequate methods for their accurate and precise quantification. New specific methods for RLP quantification would greatly improve our understanding of their biology and role in promoting atherosclerosis in diabetes and other disorders.
Collapse
Affiliation(s)
- Alan Chait
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Henry N Ginsberg
- Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University, New York, NY
| | - Tomas Vaisar
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jay W Heinecke
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University, New York, NY
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| |
Collapse
|
11
|
Shree N, Venkategowda S, Venkatranganna MV, Datta I, Bhonde RR. Human adipose tissue mesenchymal stem cells as a novel treatment modality for correcting obesity induced metabolic dysregulation. Int J Obes (Lond) 2019; 43:2107-2118. [PMID: 31462691 DOI: 10.1038/s41366-019-0438-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/06/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Obesity induced metabolic dysregulation results in cluster of chronic conditions mainly hyperglycemia, hyperinsulinemia, dyslipidemia, diabetes, cardiovascular complications and insulin resistance. To investigate the effect of i.m. injection of human adipose tissue derived mesenchymal stem cells and its secretome in correcting obesity induced metabolic dysregulation in high fat diet fed obese model of mice and understand its mechanism of action. SUBJECTS We injected human adipose tissue derived mesenchymal stem cells (ADMSCs) suspension (CS), conditioned medium (CM) and the cell lysate (CL) intramuscularly in high fat diet (HFD)-induced C57BL/6 mice. Metformin was used as a positive control. ADMSCs were traced in vivo for its bio distribution after injection at different time points. RESULTS ADMSCs-treated mice exhibited remarkable decrease in insulin resistance as quantified by HOMA-IR and triglyceride glucose index with concomitant decrease in oxidized LDL and IL6 as compared with the untreated control. CS injection showed improvement in glucose tolerance and reduction in fatty infiltration in the liver, macrophage infiltration in adipose and hypertrophy of the islets resulting from HFD. Upregulation of miRNA-206, MyoD and increase in protein content of the skeletal muscle in CS-treated mice indicates plausible mechanism of action of ADMSCs treatment in ameliorating IR in HFD mice. CONCLUSION Of all the three treatments, CS was found to be the best. ADMSCs were found to have migrated to different organs in order to bring about the correction in dysregulated metabolism induced by obesity. Our results open up a novel treatment modality for possible therapeutic usage in human subjects by employing autologous or allogeneic ADMSCs for the better management of obesity induced metabolic dysregulation.
Collapse
Affiliation(s)
- Nitya Shree
- School of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India
| | | | | | | | - Ramesh R Bhonde
- School of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India. .,Dr. D.Y. Patil Vidyapeeth, Pune, India.
| |
Collapse
|
12
|
Brain metabolic and functional alterations in a liver-specific PTEN knockout mouse model. PLoS One 2018; 13:e0204043. [PMID: 30235271 PMCID: PMC6147462 DOI: 10.1371/journal.pone.0204043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/31/2018] [Indexed: 01/11/2023] Open
Abstract
Insulin resistance-as observed in aging, diabetes, obesity, and other pathophysiological situations, affects brain function, for insulin signaling is responsible for neuronal glucose transport and control of energy homeostasis and is involved in the regulation of neuronal growth and synaptic plasticity. This study investigates brain metabolism and function in a liver-specific Phosphatase and Tensin Homologue (Pten) knockout mouse model (Liver-PtenKO), a negative regulator of insulin signaling. The Liver-PtenKO mouse model showed an increased flux of glucose into the liver-thus resulting in an overall hypoglycemic and hypoinsulinemic state-and significantly lower hepatic production of the ketone body beta-hydroxybutyrate (as compared with age-matched control mice). The Liver-PtenKO mice exhibited increased brain glucose uptake, improved rate of glycolysis and flux of metabolites in the TCA cycle, and improved synaptic plasticity in the hippocampus. Brain slices from both control- and Liver-PtenKO mice responded to the addition of insulin (in terms of pAKT/AKT levels), thereby neglecting an insulin resistance scenario. This study underscores the significance of insulin signaling in brain bioenergetics and function and helps recognize deficits in diseases associated with insulin resistance.
Collapse
|
13
|
Lian J, Bahitham W, Panigrahi R, Nelson R, Li L, Watts R, Thiesen A, Lemieux MJ, Lehner R. Genetic variation in human carboxylesterase CES1 confers resistance to hepatic steatosis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:688-699. [DOI: 10.1016/j.bbalip.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/21/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
|
14
|
de Melo AF, Moreira CCL, Sales CF, Rentz T, Raposo HF, Garófalo MAR, Botion LM, Kettelhut IDC, de Oliveira HCF, Chaves VE. Increase in liver cytosolic lipases activities and VLDL-TAG secretion rate do not prevent the non-alcoholic fatty liver disease in cafeteria diet-fed rats. Biochimie 2018; 150:16-22. [DOI: 10.1016/j.biochi.2018.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
|
15
|
Chen J, Chen CY, Nguyen C, Chen L, Lee K, Stiles BL. Emerging signals regulating liver tumor initiating cells. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Doonan LM, Fisher EA, Brodsky JL. Can modulators of apolipoproteinB biogenesis serve as an alternate target for cholesterol-lowering drugs? Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:762-771. [PMID: 29627384 DOI: 10.1016/j.bbalip.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 12/23/2022]
Abstract
Understanding the molecular defects underlying cardiovascular disease is necessary for the development of therapeutics. The most common method to lower circulating lipids, which reduces the incidence of cardiovascular disease, is statins, but other drugs are now entering the clinic, some of which have been approved. Nevertheless, patients cannot tolerate some of these therapeutics, the drugs are costly, and/or the treatments are approved for only rare forms of disease. Efforts to find alternative treatments have focused on other factors, such as apolipoproteinB (apoB), which transports cholesterol in the blood stream. The levels of apoB are regulated by endoplasmic reticulum (ER) associated degradation as well as by a post ER degradation pathway in model systems, and we suggest that these events provide novel therapeutic targets. We discuss first how cardiovascular disease arises and how cholesterol is regulated, and then summarize the mechanisms of action of existing treatments for cardiovascular disease. We then review the apoB biosynthetic pathway, focusing on steps that might be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Lynley M Doonan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Edward A Fisher
- Departments of Medicine (Cardiology) and Cell Biology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
17
|
Chen CY, Chen J, He L, Stiles BL. PTEN: Tumor Suppressor and Metabolic Regulator. Front Endocrinol (Lausanne) 2018; 9:338. [PMID: 30038596 PMCID: PMC6046409 DOI: 10.3389/fendo.2018.00338] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN) is a dual phosphatase with both protein and lipid phosphatase activities. PTEN was first discovered as a tumor suppressor with growth and survival regulatory functions. In recent years, the function of PTEN as a metabolic regulator has attracted significant attention. As the lipid phosphatase that dephosphorylates phosphatidylinositol-3, 4, 5-phosphate (PIP3), PTEN reduces the level of PIP3, a critical 2nd messenger mediating the signal of not only growth factors but also insulin. In this review, we introduced the discovery of PTEN, the PTEN-regulated canonical and nuclear signals, and PTEN regulation. We then focused on the role of PTEN and PTEN-regulated signals in metabolic regulation. This included the role of PTEN in glycolysis, gluconeogenesis, glycogen synthesis, lipid metabolism as well as mitochondrial metabolism. We also included how PTEN and PTEN regulated metabolic functions may act paradoxically toward insulin sensitivity and tumor metabolism and growth. Further understanding of how PTEN regulates metabolism and how such regulations lead to different biological outcomes is necessary for interventions targeting at the PTEN-regulated signals in either cancer or diabetes treatment.
Collapse
Affiliation(s)
- Chien-Yu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Jingyu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Lina He
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Bangyan L. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Bangyan L. Stiles
| |
Collapse
|
18
|
Pharmacological inhibition of protein tyrosine phosphatase 1B protects against atherosclerotic plaque formation in the LDLR -/- mouse model of atherosclerosis. Clin Sci (Lond) 2017; 131:2489-2501. [PMID: 28899902 PMCID: PMC6365594 DOI: 10.1042/cs20171066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 02/03/2023]
Abstract
Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with type 1 or type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance, due to impaired insulin receptor (IR) signalling. Here, we demonstrate that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR prevents and reverses atherosclerotic plaque formation in an LDLR−/− mouse model of atherosclerosis. Acute (single dose) or chronic PTP1B inhibitor (trodusquemine) treatment of LDLR−/− mice decreased weight gain and adiposity, improved glucose homeostasis and attenuated atherosclerotic plaque formation. This was accompanied by a reduction in both, circulating total cholesterol and triglycerides, a decrease in aortic monocyte chemoattractant protein-1 (MCP-1) expression levels and hyperphosphorylation of aortic Akt/PKB and AMPKα. Our findings are the first to demonstrate that PTP1B inhibitors could be used in prevention and reversal of atherosclerosis development and reduction in CVD risk.
Collapse
|
19
|
Wnt/β-catenin activation and macrophage induction during liver cancer development following steatosis. Oncogene 2017; 36:6020-6029. [PMID: 28671671 PMCID: PMC5666317 DOI: 10.1038/onc.2017.207] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/28/2017] [Accepted: 05/21/2017] [Indexed: 12/25/2022]
Abstract
Obesity confers an independent risk for carcinogenesis. In the liver, steatosis often proceeds cancer formation; however, the mechanisms by which steatosis promotes carcinogenesis is unknown. We hypothesize that steatosis alters the microenvironment to promote proliferation of tumor initiating cells (TICs) and carcinogenesis. We used several liver cancer models to address the mechanisms underlying the role of obesity in cancer and verified these findings in patient populations. Using bioinformatics analysis and verified by biochemical assays, we identified that hepatosteatosis resulting from either Pten deletion or transgenic expression of HCV core/NS5A proteins, promotes the activation of Wnt/β-catenin. We verified that high fat diet lipid accumulation is also capable of inducing Wnt/β-catenin. Caloric restriction inhibits hepatosteatosis, reduces Wnt/β-catenin activation and blocks the expansion of TICs leading to complete inhibition of tumorigenesis without affecting the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) loss regulated protein kinase B (AKT) activation. Pharmacological inhibition or loss of the Wnt/β-catenin signal represses TIC growth in vitro, and decreases the accumulation of TICs in vivo. In human liver cancers, ontology analysis of gene set enrichment analysis (GSEA)-defined Wnt signature genes indicates that Wnt signaling is significantly induced in tumor samples compared with healthy livers. Indeed, Wnt signature genes predict 90% of tumors in a cohort of 558 patient samples. Selective depletion of macrophages leads to reduction of Wnt and suppresses tumor development, suggesting infiltrating macrophages as a key source for steatosis-induced Wnt expression. These data established Wnt/β-catenin as a novel signal produced by infiltrating macrophages induced by steatosis that promotes growth of tumor progenitor cells, underlying the increased risk of liver tumor development in obese individuals.
Collapse
|
20
|
Thompson D, Morrice N, Grant L, Le Sommer S, Ziegler K, Whitfield P, Mody N, Wilson HM, Delibegović M. Myeloid protein tyrosine phosphatase 1B (PTP1B) deficiency protects against atherosclerotic plaque formation in the ApoE -/- mouse model of atherosclerosis with alterations in IL10/AMPKα pathway. Mol Metab 2017; 6:845-853. [PMID: 28752048 PMCID: PMC5518727 DOI: 10.1016/j.molmet.2017.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
Objective Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with Type 1 or Type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance due to impaired insulin receptor (IR) signaling. Moreover, inflammatory cells, in particular macrophages, play a key role in pathogenesis of atherosclerosis and insulin resistance in humans. We hypothesized that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR, specifically in macrophages, would have beneficial anti-inflammatory effects and lead to protection against atherosclerosis and CVD. Methods We generated novel macrophage-specific PTP1B knockout mice on atherogenic background (ApoE−/−/LysM-PTP1B). Mice were fed standard or pro-atherogenic diet, and body weight, adiposity (echoMRI), glucose homeostasis, atherosclerotic plaque development, and molecular, biochemical and targeted lipidomic eicosanoid analyses were performed. Results Myeloid-PTP1B knockout mice on atherogenic background (ApoE−/−/LysM-PTP1B) exhibited a striking improvement in glucose homeostasis, decreased circulating lipids and decreased atherosclerotic plaque lesions, in the absence of body weight/adiposity differences. This was associated with enhanced phosphorylation of aortic Akt, AMPKα and increased secretion of circulating anti-inflammatory cytokine interleukin-10 (IL-10) and prostaglandin E2 (PGE2), without measurable alterations in IR phosphorylation, suggesting a direct beneficial effect of myeloid-PTP1B targeting. Conclusions Here we demonstrate that inhibiting the activity of PTP1B specifically in myeloid lineage cells protects against atherosclerotic plaque formation, under atherogenic conditions, in an ApoE−/− mouse model of atherosclerosis. Our findings suggest for the first time that macrophage PTP1B targeting could be a therapeutic target for atherosclerosis treatment and reduction of CVD risk. PTP1B inhibition as therapy for atherosclerosis/cardiovascular disease is proposed. Myeloid-PTP1B mice on ApoE−/− background (ApoE−/−/LysM-PTP1B) were generated. ApoE−/−/LysM-PTP1B had improved glucose homeostasis with no body weight differences. ApoE−/−/LysM-PTP1B had lower lipids and protection against atherosclerotic plaques. Protection was via a PGE2/IL-10/AMPKα mechanism.
Collapse
Affiliation(s)
- D Thompson
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | - N Morrice
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - L Grant
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - S Le Sommer
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - K Ziegler
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, Inverness, UK
| | - P Whitfield
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, Inverness, UK
| | - N Mody
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - H M Wilson
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - M Delibegović
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
21
|
Sunil V, Shree N, Venkataranganna M, Bhonde RR, Majumdar M. The anti diabetic and anti obesity effect of Memecylon umbellatum extract in high fat diet induced obese mice. Biomed Pharmacother 2017; 89:880-886. [DOI: 10.1016/j.biopha.2017.01.182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/28/2017] [Accepted: 01/29/2017] [Indexed: 12/15/2022] Open
|
22
|
Howell III GE, Mulligan C, Young D, Kondakala S. Exposure to chlorpyrifos increases neutral lipid accumulation with accompanying increased de novo lipogenesis and decreased triglyceride secretion in McArdle-RH7777 hepatoma cells. Toxicol In Vitro 2016; 32:181-9. [DOI: 10.1016/j.tiv.2016.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/09/2015] [Accepted: 01/06/2016] [Indexed: 01/14/2023]
|
23
|
Medina MW, Bauzon F, Naidoo D, Theusch E, Stevens K, Schilde J, Schubert C, Mangravite LM, Rudel LL, Temel RE, Runz H, Krauss RM. Transmembrane protein 55B is a novel regulator of cellular cholesterol metabolism. Arterioscler Thromb Vasc Biol 2014; 34:1917-23. [PMID: 25035345 DOI: 10.1161/atvbaha.113.302806] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Interindividual variation in pathways affecting cellular cholesterol metabolism can influence levels of plasma cholesterol, a well-established risk factor for cardiovascular disease. Inherent variation among immortalized lymphoblastoid cell lines from different donors can be leveraged to discover novel genes that modulate cellular cholesterol metabolism. The objective of this study was to identify novel genes that regulate cholesterol metabolism by testing for evidence of correlated gene expression with cellular levels of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) mRNA, a marker for cellular cholesterol homeostasis, in a large panel of lymphoblastoid cell lines. APPROACH AND RESULTS Expression array profiling was performed on 480 lymphoblastoid cell lines established from participants of the Cholesterol and Pharmacogenetics (CAP) statin clinical trial, and transcripts were tested for evidence of correlated expression with HMGCR as a marker of intracellular cholesterol homeostasis. Of these, transmembrane protein 55b (TMEM55B) showed the strongest correlation (r=0.29; P=4.0E-08) of all genes not previously implicated in cholesterol metabolism and was found to be sterol regulated. TMEM55B knockdown in human hepatoma cell lines promoted the decay rate of the low-density lipoprotein receptor, reduced cell surface low-density lipoprotein receptor protein, impaired low-density lipoprotein uptake, and reduced intracellular cholesterol. CONCLUSIONS Here, we report identification of TMEM55B as a novel regulator of cellular cholesterol metabolism through the combination of gene expression profiling and functional studies. The findings highlight the value of an integrated genomic approach for identifying genes that influence cholesterol homeostasis.
Collapse
Affiliation(s)
- Marisa W Medina
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.).
| | - Frederick Bauzon
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Devesh Naidoo
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Elizabeth Theusch
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Kristen Stevens
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Jessica Schilde
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Christian Schubert
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Lara M Mangravite
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Lawrence L Rudel
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Ryan E Temel
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Heiko Runz
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| | - Ronald M Krauss
- From the Children's Hospital Oakland Research Institute, CA (M.W.M., F.B., D.N., E.T., K.S., R.M.K.); Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany (J.S., H.R.); Sage Bionetworks, Seattle, WA (L.M.M.); Section on Lipid Sciences, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC (L.L.R., R.E.T.); and Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany (C.S., H.R.)
| |
Collapse
|
24
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
25
|
Jones A, Friedrich K, Rohm M, Schäfer M, Algire C, Kulozik P, Seibert O, Müller-Decker K, Sijmonsma T, Strzoda D, Sticht C, Gretz N, Dallinga-Thie GM, Leuchs B, Kögl M, Stremmel W, Diaz MB, Herzig S. TSC22D4 is a molecular output of hepatic wasting metabolism. EMBO Mol Med 2013; 5:294-308. [PMID: 23307490 PMCID: PMC3569644 DOI: 10.1002/emmm.201201869] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/05/2012] [Accepted: 11/16/2012] [Indexed: 01/10/2023] Open
Abstract
In mammals, proper storage and distribution of lipids in and between tissues is essential for the maintenance of energy homeostasis. Here, we show that tumour growth triggers hepatic metabolic dysfunction as part of the cancer cachectic phenotype, particularly by reduced hepatic very-low-density-lipoprotein (VLDL) secretion and hypobetalipoproteinemia. As a molecular cachexia output pathway, hepatic levels of the transcription factor transforming growth factor beta 1-stimulated clone (TSC) 22 D4 were increased in cancer cachexia. Mimicking high cachectic levels of TSC22D4 in healthy livers led to the inhibition of hepatic VLDL release and lipogenic genes, and diminished systemic VLDL levels under both normal and high fat dietary conditions. Liver-specific ablation of TSC22D4 triggered hypertriglyceridemia through the induction of hepatic VLDL secretion. Furthermore, hepatic TSC22D4 expression levels were correlated with the degree of body weight loss and VLDL hypo-secretion in cancer cachexia, and TSC22D4 deficiency rescued tumour cell-induced metabolic dysfunction in hepatocytes. Therefore, hepatic TSC22D4 activity may represent a molecular rationale for peripheral energy deprivation in subjects with metabolic wasting diseases, including cancer cachexia.
Collapse
Affiliation(s)
- Allan Jones
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance, Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg UniversityHeidelberg, Germany
| | - Kilian Friedrich
- Dept. of Gastroenterology, University Hospital HeidelbergHeidelberg, Germany
| | - Maria Rohm
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance, Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg UniversityHeidelberg, Germany
| | - Michaela Schäfer
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance, Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg UniversityHeidelberg, Germany
| | - Carolyn Algire
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance, Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg UniversityHeidelberg, Germany
| | - Philipp Kulozik
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance, Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg UniversityHeidelberg, Germany
| | - Oksana Seibert
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance, Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg UniversityHeidelberg, Germany
| | | | - Tjeerd Sijmonsma
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance, Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg UniversityHeidelberg, Germany
| | - Daniela Strzoda
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance, Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg UniversityHeidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Klinikum MannheimMannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Klinikum MannheimMannheim, Germany
| | | | | | - Manfred Kögl
- Genomics and Proteomics Core Facility, DKFZHeidelberg, Germany
| | - Wolfgang Stremmel
- Dept. of Gastroenterology, University Hospital HeidelbergHeidelberg, Germany
| | - Mauricio Berriel Diaz
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance, Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg UniversityHeidelberg, Germany
| | - Stephan Herzig
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance, Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg UniversityHeidelberg, Germany
| |
Collapse
|
26
|
Morris EM, Meers GME, Booth FW, Fritsche KL, Hardin CD, Thyfault JP, Ibdah JA. PGC-1α overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion. Am J Physiol Gastrointest Liver Physiol 2012; 303:G979-92. [PMID: 22899824 PMCID: PMC3469696 DOI: 10.1152/ajpgi.00169.2012] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/14/2012] [Indexed: 01/31/2023]
Abstract
Studies have shown that decreased mitochondrial content and function are associated with hepatic steatosis. We examined whether peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) overexpression and a subsequent increase in mitochondrial content and function in rat primary hepatocytes (in vitro) and Sprague-Dawley rats (in vivo) would comprehensively alter mitochondrial lipid metabolism, including complete (CO(2)) and incomplete (acid-soluble metabolites) fatty acid oxidation (FAO), tricarboxylic acid cycle flux, and triacylglycerol (TAG) storage and export. PGC-1α overexpression in primary hepatocytes produced an increase in markers of mitochondrial content and function (citrate synthase, mitochondrial DNA, and electron transport system complex proteins) and an increase in FAO, which was accompanied by reduced TAG storage and TAG secretion compared with control. Also, the PGC-1α-overexpressing hepatocytes were protected from excess TAG accumulation following overnight lipid treatment. PGC-1α overexpression in hepatocytes lowered expression of genes critical to VLDL assembly and secretion (apolipoprotein B and microsomal triglyceride transfer protein). Adenoviral transduction of rats with PGC-1α resulted in a liver-specific increase in PGC-1α expression and produced an in vivo liver phenotype of increased FAO via increased mitochondrial function that also resulted in reduced hepatic TAG storage and decreased plasma TAG levels. In conclusion, overexpression of hepatic PGC-1α and subsequent increases in FAO through elevated mitochondrial content and/or function result in reduced TAG storage and secretion in the in vitro and in vivo milieu.
Collapse
Affiliation(s)
- E Matthew Morris
- Department of Internal Medicine-Gastroenterology, University of Missouri, Columbia, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2012; 32:2104-12. [PMID: 22796579 DOI: 10.1161/atvbaha.111.241463] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin plays a central role in regulating energy metabolism, including hepatic transport of very low-density lipoprotein (VLDL)-associated triglyceride. Hepatic hypersecretion of VLDL and consequent hypertriglyceridemia leads to lower circulating high-density lipoprotein levels and generation of small dense low-density lipoproteins characteristic of the dyslipidemia commonly observed in metabolic syndrome and type 2 diabetes mellitus. Physiological fluctuations of insulin modulate VLDL secretion, and insulin inhibition of VLDL secretion upon feeding may be the first pathway to become resistant in obesity that leads to VLDL hypersecretion. This review summarizes the role of insulin-related signaling pathways that determine hepatic VLDL production. Disruption in signaling pathways that reduce generation of the second messenger phosphatidylinositide (3,4,5) triphosphate downstream of activated phosphatidylinositide 3-kinase underlies the development of VLDL hypersecretion. As insulin resistance progresses, a number of pathways are altered that further augment VLDL hypersecretion, including hepatic inflammatory pathways. Insulin plays a complex role in regulating glucose metabolism, and it is not surprising that the role of insulin in VLDL and lipid metabolism will prove equally complex.
Collapse
Affiliation(s)
- Janet D Sparks
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine, Rochester, NY, USA
| | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW A strong positive correlation between plasma apolipoprotein (apo) C-III and triglyceride concentrations has been invariably observed in human and animal studies. The hypertriglyceridemic effect of apo C-III has been conventionally explained by its extracellular roles in inhibiting lipolysis catalysed by lipoprotein lipase and attenuating triglyceride-rich lipoprotein clearance through receptor-dependent and/or independent mechanisms. However, recent experimental evidence suggests that apo C-III may also play an intracellular role in promoting hepatic triglyceride-rich lipoprotein production. RECENT FINDINGS Kinetic studies with humans and genetically modified mice have shown that apo C-III is linked with increased production of triglyceride-rich lipoproteins, such as very-low-density lipoprotein 1 (VLDL1). Mutational studies on human apo C-III variants (originally identified in humans with hypotriglyceridemia or hyperalphalipoproteinemia) provide the structure-function analysis of human apo C-III, demonstrating that loss-of-function mutations within human apo C-III impair the assembly and secretion of triglyceride-rich VLDL1 under lipid-rich conditions. SUMMARY The current review summarizes recent experimental evidence for an intrahepatic role of human apo C-III in promoting mobilization and utilization of triglyceride during VLDL1 assembly/secretion. Understanding mechanisms by which hepatic apo C-III expression is regulated under insulin resistance and diabetic conditions will lead to better and more rational strategies for the prevention and treatment of diabetic hypertriglyceridemia that is closely related to premature atherosclerosis.
Collapse
Affiliation(s)
- Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|