1
|
Liu F, Cai H. Diabetes and calcific aortic valve disease: implications of glucose-lowering medication as potential therapy. Front Pharmacol 2025; 16:1583267. [PMID: 40356984 PMCID: PMC12066769 DOI: 10.3389/fphar.2025.1583267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Calcific aortic valve disease (CAVD) is a progressive disease, of which the 2-year mortality is >50% for symptomatic disease. However, there are currently no pharmacotherapies to prevent the progression of CAVD unless transcatheter or surgical aortic valve replacement is performed. The prevalence of diabetes among CAVD has increased rapidly in recent decades, especially among those undergoing aortic valve replacement. Diabetes and its comorbidities, such as hypertension, hyperlipidemia, chronic kidney disease and ageing, participated jointly in the initiation and progression of CAVD, which increased the management complexity in patients with CAVD. Except from hyperglycemia, the molecular links between diabetes and CAVD included inflammation, oxidative stress and endothelial dysfunction. Traditional cardiovascular drugs like lipid-lowering agents and renin-angiotensin system blocking drugs have proven to be unsuccessful in retarding the progression of CAVD in clinical trials. In recent years, almost all kinds of glucose-lowering medications have been specifically assessed for decelerating the development of CAVD. Based on the efficacy for atherosclerotic cardiovascular disease and CAVD, this review summarized current knowledge about glucose-lowering medications as promising treatment options with the potential to retard CAVD.
Collapse
Affiliation(s)
| | - Haipeng Cai
- Department of Cardiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
2
|
Blaser MC, Bäck M, Lüscher TF, Aikawa E. Calcific aortic stenosis: omics-based target discovery and therapy development. Eur Heart J 2025; 46:620-634. [PMID: 39656785 PMCID: PMC11825147 DOI: 10.1093/eurheartj/ehae829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Calcific aortic valve disease (CAVD) resulting in aortic stenosis (AS) is the most common form of valvular heart disease, affecting 2% of those over age 65. Those who develop symptomatic severe AS have an average further lifespan of <2 years without valve replacement, and three-quarters of these patients will develop heart failure, undergo valve replacement, or die within 5 years. There are no approved pharmaceutical therapies for AS, due primarily to a limited understanding of the molecular mechanisms that direct CAVD progression in the complex haemodynamic environment. Here, advances in efforts to understand the pathogenesis of CAVD and to identify putative drug targets derived from recent multi-omics studies [including (epi)genomics, transcriptomics, proteomics, and metabolomics] of blood and valvular tissues are reviewed. The recent explosion of single-cell omics-based studies in CAVD and the pathobiological and potential drug discovery insights gained from the application of omics to this disease area are a primary focus. Lastly, the translation of knowledge gained in valvular pathobiology into clinical therapies is addressed, with a particular emphasis on treatment regimens that consider sex-specific, renal, and lipid-mediated contributors to CAVD, and ongoing Phase I/II/III trials aimed at the prevention/treatment of AS are described.
Collapse
Affiliation(s)
- Mark C Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, 17th Floor, Boston, MA 02115, USA
| | - Magnus Bäck
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Valvular and Coronary Disease, Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Heart Division, Royal Brompton and Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, 17th Floor, Boston, MA 02115, USA
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 741, Boston, MA 02115, USA
| |
Collapse
|
3
|
Selig JI, Sugimura Y, Katahira S, Polidori M, Jacobi LA, Medovoj O, Betke S, Barth M, Lichtenberg A, Akhyari P, Minol JP. The Focal Induction of Reactive Oxygen Species in Rats as a Trigger of Aortic Valve Degeneration. Antioxidants (Basel) 2024; 13:1570. [PMID: 39765897 PMCID: PMC11673780 DOI: 10.3390/antiox13121570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Degenerative aortic valve disease (DAVD) is a multifactorial process. We developed an animal model to analyze the isolated, local effect of reactive oxygen species (ROS) on its pathophysiology. METHODS We utilized a photodynamic reaction (PDR) as a source of ROS in the aortic valve by aiming a laser at the aortic valve for 60 min after the administration of a photosensitizer 24 h prior. ROS, laser, and sham groups (n = 7 each) for every observation period (t = 0; t = 8 d; t = 84 d; t = 168 d) were established. The amount of ROS generation; morphological changes; inflammatory, immune, and apoptotic reactions; and hemodynamic changes in the aortic valves were assessed using appropriate histological, immunohistological, immunohistochemical, and echocardiographic methods. RESULTS The ROS group displayed an increased amount of ROS (p < 0.01) and increased inflammatory activation of the endothelium (p < 0.05) at t = 0. In the ROS group, aortic valves were calcified (p < 0.05) and the transvalvular gradient was increased (p < 0.01) at t = 168 d. CONCLUSION The small animal model employed here may serve as a platform for analyzing ROS's isolated role in the DAVD context.
Collapse
Affiliation(s)
- Jessica Isabel Selig
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
| | - Yukiharu Sugimura
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
- Department of Cardiac Surgery, University of Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Shintaro Katahira
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai 980-8574, Japan
| | - Marco Polidori
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
| | - Laura Alida Jacobi
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
| | - Olga Medovoj
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
| | - Sarah Betke
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
| | - Mareike Barth
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
- Department of Cardiac Surgery, University of Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
- Cardiovascular Research Institute Dusseldorf (CARID), University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
- Department of Cardiac Surgery, University of Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Jan-Philipp Minol
- Department of Cardiac Surgery, University of Dusseldorf, Moorenstrasse 5, 40225 Dusseldorf, Germany; (J.I.S.); (Y.S.); (S.K.); (M.P.); (L.A.J.); (O.M.); (S.B.); (M.B.); (A.L.)
| |
Collapse
|
4
|
Katahira S, Barth M, Döpp R, Sugimura Y, Schmidt V, Selig JI, Saiki Y, Jankowski J, Marx N, Jahnen-Dechent W, Lichtenberg A, Akhyari P. Pioglitazone treatment mitigates cardiovascular bioprosthetic degeneration in a chronic kidney disease model. Front Pharmacol 2024; 15:1412169. [PMID: 39175545 PMCID: PMC11338925 DOI: 10.3389/fphar.2024.1412169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Aims Chronic kidney disease (CKD) is a risk factor for the development of cardiovascular diseases, e.g., atherosclerosis and calcific aortic valve disease, leading inevitably to valve replacement surgery. CKD patients with bioprosthetic cardiovascular grafts, in turn, have a higher risk of premature graft degeneration. Peroxisome proliferator-activated receptor gamma (PPARγ) activation by pioglitazone has cardio-renal protective properties, and research using a heterotopic valve implantation model has shown anti-degenerative effects of PPARγ activation on bioprosthetic valved grafts (BVG) in rats. The present work aims to analyze a potential protective effect of pioglitazone treatment on BVG in an adenine-induced rat model of CKD. Methods and Results BVG of Sprague Dawley rats were heterotopically implanted in Wistar rats in an infrarenal position for 4 and 8 weeks. Animals were distributed into three groups for each time point: 1) control group receiving standard chow, 2) CKD group receiving 0.25% adenine and 3) CKD + pioglitazone group (300 mg per kg of 0.25% adenine chow). BVG function was analyzed by echocardiography. Plasma analytes were determined and explanted grafts were analyzed by semi-quantitative real-time PCR, Western blot analysis, histology and immunohistology.PPARγ activation significantly reduced CKD-induced calcification of aortic and valvular segments of BVG by 44% and 53%, respectively. Pioglitazone treatment significantly also reduced CKD-induced intima hyperplasia by 60%. Plasma analysis revealed significantly attenuated potassium and phosphate levels after pioglitazone treatment. Moreover, PPARγ activation led to significantly decreased interleukin-6 gene expression (by 57%) in BVG compared to CKD animals. Pioglitazone treatment leads to functional improvement of BVG. Conclusion This study broadens the understanding of the potential value of PPARγ activation in cardio-renal diseases and delineates pioglitazone treatment as a valuable option to prevent bioprosthetic graft failure in CKD. Further mechanistic studies, e.g., using small molecules activating PPARγ signaling pathways, are necessary for the evaluation of involved mechanisms. Additionally, the translation into pre-clinical studies using large animals is intended as the next research project.
Collapse
Affiliation(s)
- Shintaro Katahira
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mareike Barth
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
- Department of Cardiac Surgery, Medical Faculty, University Hospital RWTH Aachen, Aachen, Germany
| | - Robin Döpp
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Yukiharu Sugimura
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - Vera Schmidt
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Jessica Isabel Selig
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I (Cardiology), University Hospital RWTH Aachen University, Aachen, Germany
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Artur Lichtenberg
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Payam Akhyari
- Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Adhikari R, Shiwakoti S, Kim E, Choi IJ, Park SH, Ko JY, Chang K, Oak MH. Niclosamide Inhibits Aortic Valve Interstitial Cell Calcification by Interfering with the GSK-3β/β-Catenin Signaling Pathway. Biomol Ther (Seoul) 2023; 31:515-525. [PMID: 37366053 PMCID: PMC10468423 DOI: 10.4062/biomolther.2022.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The most common heart valve disorder is calcific aortic valve stenosis (CAVS), which is characterized by a narrowing of the aortic valve. Treatment with the drug molecule, in addition to surgical and transcatheter valve replacement, is the primary focus of researchers in this field. The purpose of this study is to determine whether niclosamide can reduce calcification in aortic valve interstitial cells (VICs). To induce calcification, cells were treated with a pro-calcifying medium (PCM). Different concentrations of niclosamide were added to the PCM-treated cells, and the level of calcification, mRNA, and protein expression of calcification markers was measured. Niclosamide inhibited aortic valve calcification as observed from reduced alizarin red s staining in niclosamide treated VICs and also decreased the mRNA and protein expressions of calcification-specific markers: runt-related transcription factor 2 and osteopontin. Niclosamide also reduced the formation of reactive oxygen species, NADPH oxidase activity and the expression of Nox2 and p22phox. Furthermore, in calcified VICs, niclosamide inhibited the expression of β-catenin and phosphorylated glycogen synthase kinase (GSK-3β), as well as the phosphorylation of AKT and ERK. Taken together, our findings suggest that niclosamide may alleviate PCM-induced calcification, at least in part, by targeting oxidative stress mediated GSK-3β/β-catenin signaling pathway via inhibiting activation of AKT and ERK, and may be a potential treatment for CAVS.
Collapse
Affiliation(s)
- Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Eunmin Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ik Jun Choi
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Hee Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Kiyuk Chang
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| |
Collapse
|
6
|
Assmann AK, Winnicki V, Sugimura Y, Chekhoeva A, Barth M, Assmann A, Lichtenberg A, Akhyari P. Impact of PPAR-gamma activation on the durability of biological heart valve prostheses in hypercholesterolaemic rats. EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY : OFFICIAL JOURNAL OF THE EUROPEAN ASSOCIATION FOR CARDIO-THORACIC SURGERY 2022; 63:6984719. [PMID: 36629469 DOI: 10.1093/ejcts/ezad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Hypercholesterolaemia and obesity are risk factors for the development of calcified aortic valve disease and common comorbidities in respective patients. Peroxisome proliferator-activated receptor gamma activation has been shown to reduce the progression of native aortic valve sclerosis, while its effect on bioprosthetic valve degeneration is yet unknown. This project aims to analyse the impact of pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, on the degeneration of biological aortic valve conduits in an implantation model in obese and hypercholesterolaemic rats. METHODS Cryopreserved allogenic rat aortic valve conduits (n = 40) were infrarenally implanted into Wistar rats on high-fat (34.6%) diet. One cohort was treated with pioglitazone (75 mg/kg chow; n = 20, group PIO) and compared to untreated rats (n = 20, group control). After 4 or 12 weeks, conduits were explanted and analysed by (immuno-)histology and real-time polymerase chain reaction. RESULTS A significantly decreased intima hyperplasia occurred in group PIO compared to control after 4 (P = 0.014) and 12 weeks (P = 0.045). Calcification of the intima was significantly decreased in PIO versus control at 12 weeks (P = 0.0001). No significant inter-group differences were shown for media calcification after 4 and 12 weeks. Echocardiographically, significantly lower regurgitation through the implanted aortic valve conduit was observed in PIO compared to control after 4 (P = 0.018) and 12 weeks (P = 0.0004). Inflammatory activity was comparable between both groups. CONCLUSIONS Systemic peroxisome proliferator-activated receptor gamma activation decreases intima hyperplasia and subsequent intima calcification of cryopreserved allografts in obese, hypercholesterolaemic recipients. Additionally, it seems to inhibit functional impairment of the implanted aortic valve. Further preclinical studies are required to determine the long-term impact of peroxisome proliferator-activated receptor gamma agonists on graft durability.
Collapse
Affiliation(s)
- Anna Kathrin Assmann
- Department of Cardiac Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Vanessa Winnicki
- Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Yukiharu Sugimura
- Department of Cardiac Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Agunda Chekhoeva
- Department of Cardiac Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Mareike Barth
- Department of Cardiac Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Assmann
- Department of Cardiac Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery and Research Group for Experimental Surgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
7
|
Lee SH, Kim N, Kim M, Woo SH, Han I, Park J, Kim K, Park KS, Kim K, Shim D, Park SE, Zhang JY, Go DM, Kim DY, Yoon WK, Lee SP, Chung J, Kim KW, Park JH, Lee SH, Lee S, Ann SJ, Lee SH, Ahn HS, Jeong SC, Kim TK, Oh GT, Park WY, Lee HO, Choi JH. Single-cell transcriptomics reveal cellular diversity of aortic valve and the immunomodulation by PPARγ during hyperlipidemia. Nat Commun 2022; 13:5461. [PMID: 36115863 PMCID: PMC9482653 DOI: 10.1038/s41467-022-33202-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Valvular inflammation triggered by hyperlipidemia has been considered as an important initial process of aortic valve disease; however, cellular and molecular evidence remains unclear. Here, we assess the relationship between plasma lipids and valvular inflammation, and identify association of low-density lipoprotein with increased valvular lipid and macrophage accumulation. Single-cell RNA sequencing analysis reveals the cellular heterogeneity of leukocytes, valvular interstitial cells, and valvular endothelial cells, and their phenotypic changes during hyperlipidemia leading to recruitment of monocyte-derived MHC-IIhi macrophages. Interestingly, we find activated PPARγ pathway in Cd36+ valvular endothelial cells increased in hyperlipidemic mice, and the conservation of PPARγ activation in non-calcified human aortic valves. While the PPARγ inhibition promotes inflammation, PPARγ activation using pioglitazone reduces valvular inflammation in hyperlipidemic mice. These results show that low-density lipoprotein is the main lipoprotein accumulated in the aortic valve during hyperlipidemia, leading to early-stage aortic valve disease, and PPARγ activation protects the aortic valve against inflammation. Identifying the mechanisms underlying the early inflammatory phase of aortic valve disease is crucial for disease prevention. Here the authors perform single-cell RNA sequencing to show the immunomodulatory role of PPARγ in valvular endothelial cells during hyperlipidemia.
Collapse
|
8
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
9
|
Dargam V, Ng HH, Nasim S, Chaparro D, Irion CI, Seshadri SR, Barreto A, Danziger ZC, Shehadeh LA, Hutcheson JD. S2 Heart Sound Detects Aortic Valve Calcification Independent of Hemodynamic Changes in Mice. Front Cardiovasc Med 2022; 9:809301. [PMID: 35694672 PMCID: PMC9174427 DOI: 10.3389/fcvm.2022.809301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background Calcific aortic valve disease (CAVD) is often undiagnosed in asymptomatic patients, especially in underserved populations. Although artificial intelligence has improved murmur detection in auscultation exams, murmur manifestation depends on hemodynamic factors that can be independent of aortic valve (AoV) calcium load and function. The aim of this study was to determine if the presence of AoV calcification directly influences the S2 heart sound. Methods Adult C57BL/6J mice were assigned to the following 12-week-long diets: (1) Control group (n = 11) fed a normal chow, (2) Adenine group (n = 4) fed an adenine-supplemented diet to induce chronic kidney disease (CKD), and (3) Adenine + HP (n = 9) group fed the CKD diet for 6 weeks, then supplemented with high phosphate (HP) for another 6 weeks to induce AoV calcification. Phonocardiograms, echocardiogram-based valvular function, and AoV calcification were assessed at endpoint. Results Mice on the Adenine + HP diet had detectable AoV calcification (9.28 ± 0.74% by volume). After segmentation and dimensionality reduction, S2 sounds were labeled based on the presence of disease: Healthy, CKD, or CKD + CAVD. The dataset (2,516 S2 sounds) was split subject-wise, and an ensemble learning-based algorithm was developed to classify S2 sound features. For external validation, the areas under the receiver operating characteristic curve of the algorithm to classify mice were 0.9940 for Healthy, 0.9717 for CKD, and 0.9593 for CKD + CAVD. The algorithm had a low misclassification performance of testing set S2 sounds (1.27% false positive, 1.99% false negative). Conclusion Our ensemble learning-based algorithm demonstrated the feasibility of using the S2 sound to detect the presence of AoV calcification. The S2 sound can be used as a marker to identify AoV calcification independent of hemodynamic changes observed in echocardiography.
Collapse
Affiliation(s)
- Valentina Dargam
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Hooi Hooi Ng
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Department of Human and Molecular Genetics, Florida International University, Miami, FL, United States
| | - Sana Nasim
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Daniel Chaparro
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Camila Iansen Irion
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Coral Gables, FL, United States
| | - Suhas Rathna Seshadri
- Department of Medical Education, University of Miami Miller School of Medicine, Coral Gables, FL, United States
| | - Armando Barreto
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, United States
| | - Zachary C. Danziger
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Lina A. Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Coral Gables, FL, United States
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Coral Gables, FL, United States
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
10
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
11
|
Samanta J, Mondal A, Das S, Chakraborty S, Sengupta A. Induction of cardiomyocyte calcification is dependent on FoxO1/NFATc3/Runx2 signaling. In Vitro Cell Dev Biol Anim 2021; 57:973-986. [PMID: 34845564 DOI: 10.1007/s11626-021-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
Cardiovascular disorders (CAVDs) being a major concern over the past several years due to the huge number of morbidity and mortality worldwide, a number of studies have been done on the various aspects of cardiac problems. One of the various CAVDs is cardiovascular calcification. A number of investigations and research work have been done previously on the molecular mechanism of vascular and heart valve calcification but the mechanism of myocardial and cardiomyocyte calcification has remained uninvestigated. A number of case studies have shown the presence of calcific deposits in the myocardial/ventricular region of the heart in fetal condition as well as in individuals of different ages but no detailed studies have been done yet. In this study, we have mainly investigated the role of Forkhead box transcription factor FoxO1 and nuclear factor of activated T-cells NFATc3 in cardiomyocyte calcification. Our studies in H9c2 cardiomyocytes show that calcific deposition in cardiomyocytes does not occur in 15 d but upon osteogenic induction for 1 mo where FoxO1 expression gets reduced thereby increasing the expression of its downstream target NFATc3, thus increasing the expression of the osteogenic marker Runx2. Detailed studies on the molecular mechanism of cardiomyocyte calcification will help in finding out therapeutic strategies in the treatment of cardiac calcification.
Collapse
Affiliation(s)
- Jayeeta Samanta
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, West Bengal, India
| | - Arunima Mondal
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, West Bengal, India
| | - Shreya Das
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, West Bengal, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Arunima Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
12
|
Dharmarajan S, Speer MY, Pierce K, Lally J, Leaf EM, Lin ME, Scatena M, Giachelli CM. Role of Runx2 in Calcific Aortic Valve Disease in Mouse Models. Front Cardiovasc Med 2021; 8:687210. [PMID: 34778386 PMCID: PMC8585763 DOI: 10.3389/fcvm.2021.687210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Calcific aortic valve disease is common in the aging population and is characterized by the histological changes of the aortic valves including extracellular matrix remodeling, osteochondrogenic differentiation, and calcification. Combined, these changes lead to aortic sclerosis, aortic stenosis (AS), and eventually to heart failure. Runt-related transcription factor 2 (Runx2) is a transcription factor highly expressed in the calcified aortic valves. However, its definitive role in the progression of calcific aortic valve disease (CAVD) has not been determined. In this study, we utilized constitutive and transient conditional knockout mouse models to assess the molecular, histological, and functional changes in the aortic valve due to Runx2 depletion. Methods: Lineage tracing studies were performed to determine the provenance of the cells giving rise to Runx2+ osteochondrogenic cells in the aortic valves of LDLr-/- mice. Hyperlipidemic mice with a constitutive or temporal depletion of Runx2 in the activated valvular interstitial cells (aVICs) and sinus wall cells were further investigated. Following feeding with a diabetogenic diet, the mice were examined for changes in gene expression, blood flow dynamics, calcification, and histology. Results: The aVICs and sinus wall cells gave rise to Runx2+ osteochondrogenic cells in diseased mouse aortic valves. The conditional depletion of Runx2 in the SM22α+ aVICs and sinus wall cells led to the decreased osteochondrogenic gene expression in diabetic LDLr-/- mice. The transient conditional depletion of Runx2 in the aVICs and sinus wall cells of LDLr-/-ApoB100 CAVD mice early in disease led to a significant reduction in the aortic peak velocity, mean velocity, and mean gradient, suggesting the causal role of Runx2 on the progression of AS. Finally, the leaflet hinge and sinus wall calcification were significantly decreased in the aortic valve following the conditional and temporal Runx2 depletion, but no significant effect on the valve cusp calcification or thickness was observed. Conclusions: In the aortic valve disease, Runx2 was expressed early and was required for the osteochondrogenic differentiation of the aVICs and sinus wall cells. The transient depletion of Runx2 in the aVICs and sinus wall cells in a mouse model of CAVD with a high prevalence of hemodynamic valve dysfunction led to an improved aortic valve function. Our studies also suggest that leaflet hinge and sinus wall calcification, even in the absence of significant leaflet cusp calcification, may be sufficient to cause significant valve dysfunctions in mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cecilia M. Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Donato M, Ferri N, Lupo MG, Faggin E, Rattazzi M. Current Evidence and Future Perspectives on Pharmacological Treatment of Calcific Aortic Valve Stenosis. Int J Mol Sci 2020; 21:ijms21218263. [PMID: 33158204 PMCID: PMC7663524 DOI: 10.3390/ijms21218263] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS), the most common heart valve disease, is characterized by the slow progressive fibro-calcific remodeling of the valve leaflets, leading to progressive obstruction to the blood flow. CAVS is an increasing health care burden and the development of an effective medical treatment is a major medical need. To date, no effective pharmacological therapies have proven to halt or delay its progression to the severe symptomatic stage and aortic valve replacement represents the only available option to improve clinical outcomes and to increase survival. In the present report, the current knowledge and latest advances in the medical management of patients with CAVS are summarized, placing emphasis on lipid-lowering agents, vasoactive drugs, and anti-calcific treatments. In addition, novel potential therapeutic targets recently identified and currently under investigation are reported.
Collapse
Affiliation(s)
- Maristella Donato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Elisabetta Faggin
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
| | - Marcello Rattazzi
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
- Correspondence: ; Tel.: +39-0498-211-867 or +39-0422-322-207
| |
Collapse
|
14
|
Chu Y, Lan RS, Huang R, Feng H, Kumar R, Dayal S, Chan K, Dai D. Glutathione peroxidase-1 overexpression reduces oxidative stress, and improves pathology and proteome remodeling in the kidneys of old mice. Aging Cell 2020; 19:e13154. [PMID: 32400101 PMCID: PMC7294784 DOI: 10.1111/acel.13154] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/25/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
This study investigated the direct roles of hydrogen peroxide (H2 O2 ) in kidney aging using transgenic mice overexpressing glutathione peroxidase-1 (GPX1 TG). We demonstrated that kidneys in old mice recapitulated kidneys in elderly humans and were characterized by glomerulosclerosis, tubular atrophy, interstitial fibrosis, and loss of cortical mass. Scavenging H2 O2 by GPX1 TG significantly reduced mitochondrial and total cellular reactive oxygen species (ROS) and mitigated oxidative damage, thus improving these pathologies. The potential mechanisms by which ROS are increased in the aged kidney include a decreased abundance of an anti-aging hormone, Klotho, in kidney tissue, and decreased expression of nuclear respiratory factor 2 (Nrf2), a master regulator of the stress response. Decreased Klotho or Nrf2 was not improved in the kidneys of old GPX1 TG mice, even though mitochondrial morphology was better preserved. Using laser capture microdissection followed by label-free shotgun proteomics analysis, we show that the glomerular proteome in old mice was characterized by decreased abundance of cytoskeletal proteins (critical for maintaining normal glomerular function) and heat shock proteins, leading to increased accumulation of apolipoprotein E and inflammatory molecules. Targeted proteomic analysis of kidney tubules from old mice showed decreased abundance of fatty acid oxidation enzymes and antioxidant proteins, as well as increased abundance of glycolytic enzymes and molecular chaperones. GPX1 TG partially attenuated the remodeling of glomerular and tubule proteomes in aged kidneys. In summary, mitochondria from GPX1 TG mice are protected and kidney aging is ameliorated via its antioxidant activities, independent and downstream of Nrf2 or Klotho signaling.
Collapse
Affiliation(s)
- Yi Chu
- Department of PathologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Renny S. Lan
- Proteomics CoreDepartment of Biochemistry and Molecular BiologyUniversity of Arkansas Medical Sciences College of MedicineLittle RockArkansas
| | - Rui Huang
- Department of Statistics and Actuarial ScienceCollege of Liberal Arts and SciencesUniversity of IowaIowa CityIowa
| | - Hao Feng
- Department of PathologyCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Rahul Kumar
- Department of Internal MedicineCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Sanjana Dayal
- Department of Internal MedicineCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Kung‐Sik Chan
- Department of Statistics and Actuarial ScienceCollege of Liberal Arts and SciencesUniversity of IowaIowa CityIowa
| | - Dao‐Fu Dai
- Department of PathologyCarver College of MedicineUniversity of IowaIowa CityIowa
| |
Collapse
|
15
|
Liu H, Wang L, Pan Y, Wang X, Ding Y, Zhou C, Shah AM, Zhao G, Zhang M. Celastrol Alleviates Aortic Valve Calcification Via Inhibition of NADPH Oxidase 2 in Valvular Interstitial Cells. JACC Basic Transl Sci 2019; 5:35-49. [PMID: 32043019 PMCID: PMC7000868 DOI: 10.1016/j.jacbts.2019.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
The reactive oxygen species–generating enzyme Nox2 is up-regulated in the leaflets of both rabbit and human with CAVD. Nox2 is markedly induced in cultured porcine AVICs after osteogenic stimulation. Knockdown of endogenous Nox2 substantially suppressed AVIC calcification. Celastrol, a natural compound capable of inhibiting Nox2 activity, significantly decreased AVIC calcification in vitro, and mitigated the severity of aortic valve fibrosis, calcification, and stenosis in a rabbit model of CAVD in vivo. The protective effects of celastrol may, in part, involve the inhibition of Nox2-mediated glycogen synthase kinase 3 beta/β-catenin pathway.
This study sought to investigate whether reactive oxygen species (ROS)–generating reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2) contributes to calcific aortic valve disease (CAVD) or whether celastrol, a natural Nox2 inhibitor, may provide potential therapeutic target for CAVD. CAVD is an active and cellular-driven fibrocalcific process characterized by differentiation of aortic valvular interstitial cells (AVICs) toward an osteogenic-like phenotype. ROS levels increase in calcified aortic valves, while the sources of ROS and their roles in the pathogenesis of CAVD are elusive. The roles of Nox2 and the effects of celastrol were studied using cultured porcine AVICs in vitro and a rabbit CAVD model in vivo. Nox2 proteins were significantly upregulated in human aortic valves with CAVD. In vitro, Nox2 was markedly induced upon stimulation of AVICs with osteogenic medium, along with the increases in ROS production and calcium nodule formation. Celastrol significantly decreased calcium deposition of AVICs by 35%, with a reduction of ROS generation. Knockdown of endogenous Nox2 substantially suppressed AVIC calcification by 39%, the inhibitory effect being similar to celastrol treatment. Mechanistically, either celastrol treatment or knockdown of Nox2 significantly inhibited glycogen synthase kinase 3 beta/β-catenin signaling, leading to attenuation of fibrogenic and osteogenic responses of AVICs. In a rabbit CAVD model, administration of celastrol significantly reduced aortic valve ROS production, fibrosis, calcification, and severity of aortic stenosis, with less left ventricular dilatation and better preserved contractile function. Upregulation of Nox2 is critically involved in CAVD. Celastrol is effective to alleviate CAVD, likely through the inhibition of Nox2-mediated glycogen synthase kinase 3 beta/β-catenin pathway in AVICs.
Collapse
Key Words
- AV, aortic valve
- AVIC, aortic valvular interstitial cell
- CAVD, calcific aortic valve disease
- GSK3B, glycogen synthase kinase 3 beta
- HC, high cholesterol
- LV, left ventricular
- Nox2
- Nox2, reduced nicotinamide adenine dinucleotide phosphate oxidase 2
- OGM, osteogenic medium
- OPN, osteopontin
- ROS, reactive oxygen species
- Runx2, runt-related transcription factor 2
- fibrosis
- reactive oxygen species
- stenosis
- tripterine
- valve interstitial cells
- vitD2, vitamin D2
Collapse
Affiliation(s)
- Huibing Liu
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Libo Wang
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Yating Pan
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Xuehui Wang
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Yuan Ding
- Department of Ultrasonography, First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Chaoyuan Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Guoan Zhao
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Min Zhang
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
16
|
Tintut Y, Hsu JJ, Demer LL. Lipoproteins in Cardiovascular Calcification: Potential Targets and Challenges. Front Cardiovasc Med 2018; 5:172. [PMID: 30533416 PMCID: PMC6265366 DOI: 10.3389/fcvm.2018.00172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/08/2018] [Indexed: 12/16/2022] Open
Abstract
Previously considered a degenerative process, cardiovascular calcification is now established as an active process that is regulated in several ways by lipids, phospholipids, and lipoproteins. These compounds serve many of the same functions in vascular and valvular calcification as they do in skeletal bone calcification. Hyperlipidemia leads to accumulation of lipoproteins in the subendothelial space of cardiovascular tissues, which leads to formation of mildly oxidized phospholipids, which are known bioactive factors in vascular cell calcification. One lipoprotein of particular interest is Lp(a), which showed genome-wide significance for the presence of aortic valve calcification and stenosis. It carries an important enzyme, autotaxin, which produces lysophosphatidic acid (LPA), and thus has a key role in inflammation among other functions. Matrix vesicles, extruded from the plasma membrane of cells, are the sites of initiation of mineral formation. Phosphatidylserine, a phospholipid in the membranes of matrix vesicles, is believed to complex with calcium and phosphate ions, creating a nidus for hydroxyapatite crystal formation in cardiovascular as well as in skeletal bone mineralization. This review focuses on the contributions of lipids, phospholipids, lipoproteins, and autotaxin in cardiovascular calcification, and discusses possible therapeutic targets.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey J Hsu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Novel pharmacological targets for calcific aortic valve disease: Prevention and treatments. Pharmacol Res 2018; 136:74-82. [DOI: 10.1016/j.phrs.2018.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/24/2022]
|
18
|
Cai Z, Liu B, Wei J, Fu Z, Wang Y, Wang Y, Shen J, Jia L, Su S, Wang X, Lin X, Chen H, Li F, Wang J, Xiang M. Deficiency of CCAAT/enhancer-binding protein homologous protein (CHOP) prevents diet-induced aortic valve calcification in vivo. Aging Cell 2017; 16:1334-1341. [PMID: 28891115 PMCID: PMC5676062 DOI: 10.1111/acel.12674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2017] [Indexed: 12/22/2022] Open
Abstract
Aortic valve (AoV) calcification is common in aged populations. Its subsequent aortic stenosis has been linked with increased morbidity, but still has no effective pharmacological intervention. Our previous data show endoplasmic reticulum (ER) stress is involved in AoV calcification. Here, we investigated whether deficiency of ER stress downstream effector CCAAT/enhancer-binding protein homology protein (CHOP) may prevent development of AoV calcification. AoV calcification was evaluated in Apoe-/- mice (n = 10) or in mice with dual deficiencies of ApoE and CHOP (Apoe-/- CHOP-/- , n = 10) fed with Western diet for 24 weeks. Histological and echocardiographic analysis showed that genetic ablation of CHOP attenuated AoV calcification, pro-calcification signaling activation, and apoptosis in the leaflets of Apoe-/- mice. In cultured human aortic valvular interstitial cells (VIC), we found oxidized low-density lipoprotein (oxLDL) promoted apoptosis and osteoblastic differentiation of VIC via CHOP activation. Using conditioned media (CM) from oxLDL-treated VIC, we further identified that oxLDL triggered osteoblastic differentiation of VIC via paracrine pathway, while depletion of apoptotic bodies (ABs) in CM suppressed the effect. CM from oxLDL-exposed CHOP-silenced cells prevented osteoblastic differentiation of VIC, while depletion of ABs did not further enhance this protective effect. Overall, our study indicates that CHOP deficiency protects against Western diet-induced AoV calcification in Apoe-/- mice. CHOP deficiency prevents oxLDL-induced VIC osteoblastic differentiation via preventing VIC-derived ABs releasing.
Collapse
Affiliation(s)
- Zhejun Cai
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Baoqing Liu
- Department of Cardiovascular SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jia Wei
- Department of UrologyChildren's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zurong Fu
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yidong Wang
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yaping Wang
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jian Shen
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Liangliang Jia
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Shengan Su
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xiaoya Wang
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xiaoping Lin
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Han Chen
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Fei Li
- Department of Cardiovascular SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jian'an Wang
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Meixiang Xiang
- Department of CardiologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
19
|
Gillis K, Roosens B, Bala G, Remory I, Hernot S, Delvenne P, Mestrez F, Droogmans S, Cosyns B. Interaction of renal failure and dyslipidaemia in the development of calcific aortic valve disease in rats. Acta Cardiol 2017; 72:537-546. [PMID: 28657494 DOI: 10.1080/00015385.2017.1311138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Calcific aortic valve disease (CAVD) is currently the most common heart valve disease worldwide and is known to be an active process. Both renal failure and dyslipidaemia are considered to be promoting factors for the development of valvular calcifications. The aim of this study is to prospectively evaluate the respective contribution and interaction of renal failure and dyslipidaemia on CAVD in a rat model, using echocardiography and compared with histology. METHODS AND RESULTS Sixty-eight male Wistar rats were prospectively divided in eight groups, each fed a different diet to induce renal failure alone and combined with hyperlipidaemia or hypercholesterolemia. CAVD was detected and quantified by calibrated integrated backscatter of ultrasound (cIB) and compared with the histological calcium score. The study follow-up was 20 weeks. At the end of the study, the cIB value and the calcium score of the aortic valve were significantly increased in the group with isolated renal failure but not with dyslipidaemia. The combination of renal failure with high cholesterol or high-fat diet did not significantly increase calcifications further. CONCLUSIONS Renal failure alone does induce aortic valve calcifications in a rat model of CAVD, whereas dyslipidaemia alone does not. The combination of renal failure with dyslipidaemia does not increase calcification further. These findings suggest that a combination of atherosclerotic and calcifying factors is not required to induce aortic valve calcifications in this model.
Collapse
Affiliation(s)
- Kris Gillis
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Jette, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Bram Roosens
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Jette, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Gezim Bala
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Jette, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Isabel Remory
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital (CHU) of Liège, Liège, Belgium
| | - Fabienne Mestrez
- Department of Nephrology, University Hospital (CHU) Ambroise Paré, Mons, Belgium
| | - Steven Droogmans
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Jette, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Bernard Cosyns
- Centrum voor Hart-en Vaatziekten (CHVZ), UZ Brussel, Jette, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Jette, Belgium
| |
Collapse
|
20
|
Angel PM, Narmoneva DA, Sewell-Loftin MK, Munjal C, Dupuis L, Landis BJ, Jegga A, Kern CB, Merryman WD, Baldwin HS, Bressan GM, Hinton RB. Proteomic Alterations Associated with Biomechanical Dysfunction are Early Processes in the Emilin1 Deficient Mouse Model of Aortic Valve Disease. Ann Biomed Eng 2017; 45:2548-2562. [PMID: 28812215 DOI: 10.1007/s10439-017-1899-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
Abstract
Aortic valve (AV) disease involves stiffening of the AV cusp with progression characterized by inflammation, fibrosis, and calcification. Here, we examine the relationship between biomechanical valve function and proteomic changes before and after the development of AV pathology in the Emilin1-/- mouse model of latent AV disease. Biomechanical studies were performed to quantify tissue stiffness at the macro (micropipette) and micro (atomic force microscopy (AFM)) levels. Micropipette studies showed that the Emilin1-/- AV annulus and cusp regions demonstrated increased stiffness only after the onset of AV disease. AFM studies showed that the Emilin1-/- cusp stiffens before the onset of AV disease and worsens with the onset of disease. Proteomes from AV cusps were investigated to identify protein functions, pathways, and interaction network alterations that occur with age- and genotype-related valve stiffening. Protein alterations due to Emilin1 deficiency, including changes in pathways and functions, preceded biomechanical aberrations, resulting in marked depletion of extracellular matrix (ECM) proteins interacting with TGFB1, including latent transforming growth factor beta 3 (LTBP3), fibulin 5 (FBLN5), and cartilage intermediate layer protein 1 (CILP1). This study identifies proteomic dysregulation is associated with biomechanical dysfunction as early pathogenic processes in the Emilin1-/- model of AV disease.
Collapse
Affiliation(s)
- P M Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - D A Narmoneva
- Division of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - M K Sewell-Loftin
- Division of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - C Munjal
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229, USA
| | - L Dupuis
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - B J Landis
- Division of Pediatric Cardiology, Indiana University, Indianapolis, IN, USA
| | - A Jegga
- Division of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - C B Kern
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - W D Merryman
- Division of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - H S Baldwin
- Division of Pediatric Cardiology, Vanderbilt University, Nashville, TN, USA
| | - G M Bressan
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Robert B Hinton
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229, USA.
| |
Collapse
|
21
|
Iijima M, Aubin H, Steinbrink M, Schiffer F, Assmann A, Weisel RD, Matsui Y, Li RK, Lichtenberg A, Akhyari P. Bioactive coating of decellularized vascular grafts with a temperature-sensitive VEGF-conjugated hydrogel accelerates autologous endothelialization in vivo. J Tissue Eng Regen Med 2017; 12:e513-e522. [DOI: 10.1002/term.2321] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/06/2016] [Accepted: 09/26/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Makoto Iijima
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Düsseldorf Germany
| | - Hug Aubin
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Düsseldorf Germany
| | - Meike Steinbrink
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Düsseldorf Germany
| | - Franziska Schiffer
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Düsseldorf Germany
| | - Alexander Assmann
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Düsseldorf Germany
| | - Richard D. Weisel
- Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiovascular Surgery; University of Toronto; Toronto Ontario Canada
| | - Yoshiro Matsui
- Department of Cardiovascular and Thoracic Surgery; Hokkaido University, Graduate school of Medicine; Sapporo Japan
| | - Ren-Ke Li
- Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiovascular Surgery; University of Toronto; Toronto Ontario Canada
| | - Artur Lichtenberg
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Düsseldorf Germany
| | - Payam Akhyari
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Düsseldorf Germany
| |
Collapse
|
22
|
Choi B, Lee S, Kim SM, Lee EJ, Lee SR, Kim DH, Jang JY, Kang SW, Lee KU, Chang EJ, Song JK. Dipeptidyl Peptidase-4 Induces Aortic Valve Calcification by Inhibiting Insulin-Like Growth Factor-1 Signaling in Valvular Interstitial Cells. Circulation 2017; 135:1935-1950. [DOI: 10.1161/circulationaha.116.024270] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/31/2017] [Indexed: 01/08/2023]
Abstract
Background:
Calcification of the aortic valve leads to increased leaflet stiffness and consequently to the development of calcific aortic valve disease. However, the underlying molecular and cellular mechanisms of calcification remain unclear. Here, we identified that dipeptidyl peptidase-4 (DPP-4, also known as CD26) increases valvular calcification and promotes calcific aortic valve disease progression.
Methods:
We obtained the aortic valve tissues from humans and murine models (wild-type and endothelial nitric oxide synthase-deficient-mice) and cultured the valvular interstitial cells (VICs) and valvular endothelial cells from the cusps. We induced osteogenic differentiation in the primary cultured VICs and examined the effects of the DPP-4 inhibitor on the osteogenic changes in vitro and aortic valve calcification in endothelial nitric oxide synthase-deficient-mice. We also induced calcific aortic stenosis in male New Zealand rabbits (weight, 2.5–3.0 kg) by a cholesterol-enriched diet+vitamin D2 (25 000 IU, daily). Echocardiography was performed to assess the aortic valve area and the maximal and mean transaortic pressure gradients at baseline and 3-week intervals thereafter. After 12 weeks, we harvested the heart and evaluated the aortic valve tissue using immunohistochemistry.
Results:
We found that nitric oxide depletion in human valvular endothelial cells activates NF-κB in human VICs. Consequently, the NF-κB promotes DPP-4 expression, which then induces the osteogenic differentiation of VICs by limiting autocrine insulin-like growth factor-1 signaling. The inhibition of DPP-4 enzymatic activity blocked the osteogenic changes in VICs in vitro and reduced the aortic valve calcification in vivo in a mouse model. Sitagliptin administration in a rabbit calcific aortic valve disease model led to significant improvements in the rate of change in aortic valve area, transaortic peak velocity, and maximal and mean pressure gradients over 12 weeks. Immunohistochemistry staining confirmed the therapeutic effect of Sitagliptin in terms of reducing the calcium deposits in the rabbit aortic valve cusps. In rabbits receiving Sitagliptin, the plasma insulin-like growth factor-1 levels were significantly increased, in line with DPP-4 inhibition.
Conclusions:
DPP-4-dependent insulin-like growth factor-1 inhibition in VICs contributes to aortic valve calcification, suggesting that DPP-4 could serve as a potential therapeutic target to inhibit calcific aortic valve disease progression.
Collapse
Affiliation(s)
- Bongkun Choi
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sahmin Lee
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Min Kim
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Jin Lee
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Ro Lee
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae-Hee Kim
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Yoon Jang
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Wook Kang
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki-Up Lee
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Ju Chang
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Kwan Song
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Sritharen Y, Enriquez-Sarano M, Schaff HV, Casaclang-Verzosa G, Miller JD. Pathophysiology of Aortic Valve Stenosis: Is It Both Fibrocalcific and Sex Specific? Physiology (Bethesda) 2017; 32:182-196. [PMID: 28404735 PMCID: PMC6148342 DOI: 10.1152/physiol.00025.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/24/2022] Open
Abstract
Our understanding of the fundamental biology and identification of efficacious therapeutic targets in aortic valve stenosis has lagged far behind the fields of atherosclerosis and heart failure. In this review, we highlight the most clinically relevant problems facing men and women with fibrocalcific aortic valve stenosis, discuss the fundamental biology underlying valve calcification and fibrosis, and identify key molecular points of intersection with sex hormone signaling.
Collapse
Affiliation(s)
- Yoginee Sritharen
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Hartzell V Schaff
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - Grace Casaclang-Verzosa
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jordan D Miller
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota;
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Surgery, Mayo Clinic, Rochester, Minnesota; and the
- Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
24
|
Maafi F, Li B, Gebhard C, Brodeur MR, Nachar W, Villeneuve L, Lesage F, Rhainds D, Rhéaume E, Tardif JC. Development of a new bioactivatable fluorescent probe for quantification of apolipoprotein A-I proteolytic degradation in vitro and in vivo. Atherosclerosis 2017; 258:8-19. [PMID: 28167355 DOI: 10.1016/j.atherosclerosis.2017.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 01/04/2017] [Accepted: 01/19/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND AIMS The potential benefits of high-density lipoproteins (HDL) against atherosclerosis are attributed to its major protein component, apolipoprotein A-I (apoA-I). Most of the apoA-I in the vascular wall appears to be in its lipid-poor form. The latter, however, is subjected to degradation by proteases localized in atherosclerotic plaques, which, in turn, has been shown to negatively impact its atheroprotective functions. Here, we report the development and in vivo use of a bioactivatable near-infrared full-length apoA-I-Cy5.5 fluorescent probe for the assessment of apoA-I-degrading proteolytic activities. METHODS Fluorescence quenching was obtained by saturation of Cy5.5 fluorophore molecules on apoA-I protein. ApoA-I cleavage led to near-infrared fluorescence enhancement. In vitro proteolysis of the apoA-I probe by a variety of proteases including serine, cysteine, and metalloproteases resulted in an up to 11-fold increase in fluorescence (n = 5, p ≤ 0.05). RESULTS We detected activation of the probe in atherosclerotic mice aorta sections using in situ zymography and showed that broad-spectrum protease inhibitors protected the probe from degradation, resulting in decreased fluorescence (-54%, n = 6 per group, p ≤ 0.0001). In vivo, the injected probe showed stronger fluorescence emission in the aorta of human apoB transgenic Ldlr-/- atherosclerotic mice (ATX) as compared to wild-type mice. In vivo observations were confirmed by ex vivo aorta imaging quantification where a 10-fold increase in fluorescent signal in ATX mice (p ≤ 0.05 vs. control mice) was observed. CONCLUSIONS The use of this probe in different applications may help to assess new molecular mechanisms of atherosclerosis and may improve current HDL-based therapies by enhancing apoA-I functionality.
Collapse
Affiliation(s)
- Foued Maafi
- Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Baoqiang Li
- Montreal Heart Institute and Université de Montréal, Quebec, Canada; Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, Quebec, Canada
| | | | | | - Walid Nachar
- Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Louis Villeneuve
- Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Frédéric Lesage
- Montreal Heart Institute and Université de Montréal, Quebec, Canada; Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, Quebec, Canada
| | - David Rhainds
- Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Eric Rhéaume
- Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | | |
Collapse
|
25
|
Effects of Raloxifene on the Proliferation and Apoptosis of Human Aortic Valve Interstitial Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5473204. [PMID: 27999800 PMCID: PMC5141314 DOI: 10.1155/2016/5473204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/02/2022]
Abstract
We aimed to explore the effects of raloxifene (RAL) on the proliferation and apoptosis of human aortic valve interstitial cells (AVICs). Different concentrations of RAL were used to act on AVICs. MTS kit is used to test the effects of different concentrations of RAL on the proliferation of AVICs. Cell cycle and apoptosis test used flow cytometry after seven-day treatment. The relative expression levels of caspase-3 and caspase-8 are tested with RT-qPCR and Western blot. The results of MTS testing revealed that the absorbance value (OD value) of the cells in the concentration groups of 10 and 100 nmol/L RAL at a wavelength of 490 nm at five, seven, and nine days significantly decreased compared with that in the control group. Meanwhile, the results of flow cytometry of the cells collected after seven days showed that the ratio of the S stage and the cell apoptosis rate of AVICs can be significantly reduced by RAL in the concentration groups of 10 and 100 nmol/L. The mRNA and protein expressions of caspase-3 and caspase-8 were significantly decreased compared with those in the control group. This study laid the foundation for further treatment of aortic valve disease by using RAL.
Collapse
|
26
|
Peroxisome Proliferator-Activated Receptor-γ Is Critical to Cardiac Fibrosis. PPAR Res 2016; 2016:2198645. [PMID: 27293418 PMCID: PMC4880703 DOI: 10.1155/2016/2198645] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily, which plays a central role in regulating lipid and glucose metabolism. However, accumulating evidence demonstrates that PPARγ agonists have potential to reduce inflammation, influence the balance of immune cells, suppress oxidative stress, and improve endothelial function, which are all involved in the cellular and molecular mechanisms of cardiac fibrosis. Thus, in this review we discuss the role of PPARγ in various cardiovascular conditions associated with cardiac fibrosis, including diabetes mellitus, hypertension, myocardial infarction, heart failure, ischemia/reperfusion injury, atrial fibrillation, and several other cardiovascular disease (CVD) conditions, and summarize the developmental status of PPARγ agonists for the clinical management of CVD.
Collapse
|
27
|
Silva JC, César FA, de Oliveira EM, Turato WM, Tripodi GL, Castilho G, Machado-Lima A, de Las Heras B, Boscá L, Rabello MM, Hernandes MZ, Pitta MGR, Pitta IR, Passarelli M, Rudnicki M, Abdalla DSP. New PPARγ partial agonist improves obesity-induced metabolic alterations and atherosclerosis in LDLr(-/-) mice. Pharmacol Res 2016; 104:49-60. [PMID: 26706782 DOI: 10.1016/j.phrs.2015.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) regulates multiple pathways involved in the pathogenesis of obesity and atherosclerosis. Here, we evaluated the therapeutic potential of GQ-177, a new thiazolidinedione, on diet-induced obesity and atherosclerosis. The intermolecular interaction between PPARγ and GQ-177 was examined by virtual docking and PPAR activation was determined by reporter gene assay identifying GQ-177 as a partial and selective PPARγ agonist. For the evaluation of biological activity of GQ-177, low-density lipoprotein receptor-deficient (LDLr(-/-)) C57/BL6 mice were fed either a high fat diabetogenic diet (diet-induced obesity), or a high fat atherogenic diet, and treated with vehicle, GQ-177 (20mg/kg/day), pioglitazone (20mg/kg/day, diet-induced obesity model) or rosiglitazone (15mg/kg/day, atherosclerosis model) for 28 days. In diet-induced obesity mice, GQ-177 improved insulin sensitivity and lipid profile, increased plasma adiponectin and GLUT4 mRNA in adipose tissue, without affecting body weight, food consumption, fat accumulation and bone density. Moreover, GQ-177 enhanced hepatic mRNA levels of proteins involved in lipid metabolism. In the atherosclerosis mice, GQ-177 inhibited atherosclerotic lesion progression, increased plasma HDL and mRNA levels of PPARγ and ATP-binding cassette A1 in atherosclerotic lesions. GQ-177 acts as a partial PPARγ agonist that improves obesity-associated insulin resistance and dyslipidemia with atheroprotective effects in LDLr(-/-) mice.
Collapse
Affiliation(s)
- Jacqueline C Silva
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda A César
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Edson M de Oliveira
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Walter M Turato
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo L Tripodi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriela Castilho
- Lipids Laboratory (LIM-10), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Adriana Machado-Lima
- Lipids Laboratory (LIM-10), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Beatriz de Las Heras
- Department of Pharmacology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Marcelo M Rabello
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Marcelo Z Hernandes
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Marina G R Pitta
- Core of Therapeutic Innovation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ivan R Pitta
- Core of Therapeutic Innovation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Marisa Passarelli
- Lipids Laboratory (LIM-10), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Martina Rudnicki
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dulcineia S P Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
28
|
Chu Y, Lund DD, Doshi H, Keen HL, Knudtson KL, Funk ND, Shao JQ, Cheng J, Hajj GP, Zimmerman KA, Davis MK, Brooks RM, Chapleau MW, Sigmund CD, Weiss RM, Heistad DD. Fibrotic Aortic Valve Stenosis in Hypercholesterolemic/Hypertensive Mice. Arterioscler Thromb Vasc Biol 2016; 36:466-74. [PMID: 26769049 DOI: 10.1161/atvbaha.115.306912] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/04/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Hypercholesterolemia and hypertension are associated with aortic valve stenosis (AVS) in humans. We have examined aortic valve function, structure, and gene expression in hypercholesterolemic/hypertensive mice. APPROACH AND RESULTS Control, hypertensive, hypercholesterolemic (Apoe(-/-)), and hypercholesterolemic/hypertensive mice were studied. Severe aortic stenosis (echocardiography) occurred only in hypercholesterolemic/hypertensive mice. There was minimal calcification of the aortic valve. Several structural changes were identified at the base of the valve. The intercusp raphe (or seam between leaflets) was longer in hypercholesterolemic/hypertensive mice than in other mice, and collagen fibers at the base of the leaflets were reoriented to form a mesh. In hypercholesterolemic/hypertensive mice, the cusps were asymmetrical, which may contribute to changes that produce AVS. RNA sequencing was used to identify molecular targets during the developmental phase of stenosis. Genes related to the structure of the valve were identified, which differentially expressed before fibrotic AVS developed. Both RNA and protein of a profibrotic molecule, plasminogen activator inhibitor 1, were increased greatly in hypercholesterolemic/hypertensive mice. CONCLUSIONS Hypercholesterolemic/hypertensive mice are the first model of fibrotic AVS. Hypercholesterolemic/hypertensive mice develop severe AVS in the absence of significant calcification, a feature that resembles AVS in children and some adults. Structural changes at the base of the valve leaflets include lengthening of the raphe, remodeling of collagen, and asymmetry of the leaflets. Genes were identified that may contribute to the development of fibrotic AVS.
Collapse
Affiliation(s)
- Yi Chu
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Donald D Lund
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Hardik Doshi
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Henry L Keen
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Kevin L Knudtson
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Nathan D Funk
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Jian Q Shao
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Justine Cheng
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Georges P Hajj
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Kathy A Zimmerman
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Melissa K Davis
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Robert M Brooks
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Mark W Chapleau
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Curt D Sigmund
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Robert M Weiss
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.)
| | - Donald D Heistad
- From the Departments of Internal Medicine (Y.C., D.D.L., H.D., N.D.F., J.C., G.P.H., K.A.Z., M.K.D., R.M.B., M.W.C., R.M.W., D.D.H.), Pharmacology (H.L.K., C.D.S., D.D.H.), Molecular Physiology and Biophysics (M.W.C.), Central Microscopy Research Facility (J.Q.S.), Iowa Institute of Human Genetics Genomics Division (K.L.K.), University of Iowa Carver College of Medicine, Iowa City; Veterans Administration Medical Center, Iowa City (M.W.C.); and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (D.D.H.).
| |
Collapse
|
29
|
Peroxisome proliferator-activated receptor (PPAR) gamma in cardiovascular disorders and cardiovascular surgery. J Cardiol 2015; 66:271-8. [DOI: 10.1016/j.jjcc.2015.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/08/2015] [Accepted: 05/14/2015] [Indexed: 12/28/2022]
|
30
|
Porras AM, Masters KS. Wave mice: a new tool in the quest to characterize aortic valvular disease etiologies. J Thorac Dis 2015; 7:E332-4. [PMID: 26543623 PMCID: PMC4598510 DOI: 10.3978/j.issn.2072-1439.2015.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ana M Porras
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
31
|
Hajj GP, Chu Y, Lund DD, Magida JA, Funk ND, Brooks RM, Baumbach GL, Zimmerman KA, Davis MK, El Accaoui RN, Hameed T, Doshi H, Chen B, Leinwand LA, Song LS, Heistad DD, Weiss RM. Spontaneous Aortic Regurgitation and Valvular Cardiomyopathy in Mice. Arterioscler Thromb Vasc Biol 2015; 35:1653-62. [PMID: 25997932 DOI: 10.1161/atvbaha.115.305729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/08/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We studied the mechanistic links between fibrocalcific changes in the aortic valve and aortic valve function in mice homozygous for a hypomorphic epidermal growth factor receptor mutation (Wave mice). We also studied myocardial responses to aortic valve dysfunction in Wave mice. APPROACH AND RESULTS At 1.5 months of age, before development of valve fibrosis and calcification, aortic regurgitation, but not aortic stenosis, was common in Wave mice. Aortic valve fibrosis, profibrotic signaling, calcification, osteogenic markers, lipid deposition, and apoptosis increased dramatically by 6 and 12 months of age in Wave mice. Aortic regurgitation remained prevalent, however, and aortic stenosis was rare, at all ages. Proteoglycan content was abnormally increased in aortic valves of Wave mice at all ages. Treatment with pioglitazone prevented abnormal valve calcification, but did not protect valve function. There was significant left ventricular volume overload, hypertrophy, and fetal gene expression, at all ages in Wave mice with aortic regurgitation. Left ventricular systolic function was normal until 6 months of age in Wave mice, but became impaired by 12 months of age. Myocardial transverse tubules were normal in the presence of left ventricular hypertrophy at 1.5 and 3 months of age, but became disrupted by 12 months of age. CONCLUSIONS We present the first comprehensive phenotypic and molecular characterization of spontaneous aortic regurgitation and volume-overload cardiomyopathy in an experimental model. In Wave mice, fibrocalcific changes are not linked to valve dysfunction and are epiphenomena arising from structurally incompetent myxomatous valves.
Collapse
Affiliation(s)
- Georges P Hajj
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Yi Chu
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Donald D Lund
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Jason A Magida
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Nathan D Funk
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Robert M Brooks
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Gary L Baumbach
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Kathy A Zimmerman
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Melissa K Davis
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Ramzi N El Accaoui
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Tariq Hameed
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Hardik Doshi
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - BiYi Chen
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Leslie A Leinwand
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Long-Sheng Song
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder
| | - Donald D Heistad
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder.
| | - Robert M Weiss
- From the Department of Internal Medicine (G.P.H., Y.C., D.D.L., N.D.F., R.M.B., K.A.Z., M.K.D., R.N.E.A., T.H., H.D., B.C., L.-S.S., D.D.H., R.M.W.), Department of Pharmacology (D.D.H.), and Department of Pathology (G.L.B.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Molecular, Cellular, and Developmental Biology (J.A.M., L.A.L., D.D.H.), University of Colorado, Boulder.
| |
Collapse
|
32
|
Chu Y, Wilson K, Gu H, Wegman-Points L, Dooley SA, Pierce GL, Cheng G, Pena Silva RA, Heistad DD, Hasan D. Myeloperoxidase is increased in human cerebral aneurysms and increases formation and rupture of cerebral aneurysms in mice. Stroke 2015; 46:1651-6. [PMID: 25922506 DOI: 10.1161/strokeaha.114.008589] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/23/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral aneurysm (CA) affects 3% of the population and is associated with hemodynamic stress and inflammation. Myeloperoxidase, a major oxidative enzyme associated with inflammation, is increased in patients with CA, but whether myeloperoxidase contributes to CA is not known. We tested the hypotheses that myeloperoxidase is increased within human CA and is critical for formation and rupture of CA in mice. METHODS Blood was drawn from the lumen of CAs and femoral arteries of 25 patients who underwent endovascular coiling of CA, and plasma myeloperoxidase concentrations were measured with ELISA. Effects of endogenous myeloperoxidase on CA formation and rupture were studied in myeloperoxidase knockout mice and wild-type (WT) mice using an angiotensin II-elastase induction model of CA. In addition, effects of myeloperoxidase on inflammatory gene expression in endothelial cells were analyzed. RESULTS Plasma concentrations of myeloperoxidase were 2.7-fold higher within CA than in femoral arterial blood in patients with CA. myeloperoxidase-positive cells were increased in aneurysm tissue compared with superficial temporal artery of patients with CA. Incidence of aneurysms and subarachnoid hemorrhage was significantly lower in myeloperoxidase knockout than in WT mice. In cerebral arteries, proinflammatory molecules, including tumor necrosis factor-α, cyclooxygenase-2 (COX2), chemokine (C-X-C motif) ligand 1 (CXCL1), chemokine (C motif) ligand (XCL1), matrix metalloproteinase (MMP) 8, cluster of differentiation 68 (CD68), and matrix metalloproteinase 13, and leukocytes were increased, and α-smooth muscle actin was decreased, in WT but not in myeloperoxidase knockout mice after induction of CA. Myeloperoxidase per se increased expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in endothelial cells. CONCLUSIONS These findings suggest that myeloperoxidase may contribute importantly to formation and rupture of CA.
Collapse
Affiliation(s)
- Yi Chu
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Katina Wilson
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - He Gu
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Lauren Wegman-Points
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Sarah A Dooley
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Gary L Pierce
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Guangjie Cheng
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Ricardo A Pena Silva
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Donald D Heistad
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - David Hasan
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.).
| |
Collapse
|
33
|
Heistad D, Doshi H. Lipoprotein-Associated Phospholipase A2 and Aortic Stenosis. JACC Cardiovasc Imaging 2015; 8:34-36. [DOI: 10.1016/j.jcmg.2014.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 10/31/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
|
34
|
|
35
|
Wang W, Vootukuri S, Meyer A, Ahamed J, Coller BS. Association between shear stress and platelet-derived transforming growth factor-β1 release and activation in animal models of aortic valve stenosis. Arterioscler Thromb Vasc Biol 2014; 34:1924-32. [PMID: 24903096 DOI: 10.1161/atvbaha.114.303852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Aortic valve stenosis (AS) is characterized by fibrosis and calcification of valves leading to aortic valve narrowing, resulting in high wall shear stress across the valves. We previously demonstrated that high shear stress can activate platelet-derived transforming growth factor-β1 (TGF-β1), a cytokine that induces fibrosis and calcification. The aim of this study was to investigate the role of shear-induced platelet release of TGF-β1 and its activation in AS. APPROACH AND RESULTS We studied hypercholesterolemic Ldlr(-/-)Apob(100/100)/Mttp(fl/fl)/Mx1Cre(+/+) (Reversa) mice that develop AS on Western diet and a surgical ascending aortic constriction mouse model that acutely simulates the hemodynamics of AS to study shear-induced platelet TGF-β1 release and activation. Reversa mice on Western diet for 6 months had thickening of the aortic valves, increased wall shear stress, and increased plasma TGF-β1 levels. There were weak and moderate correlations between wall shear stress and TGF-β1 levels in the progression and reversed Reversa groups and a stronger correlation in the ascending aortic constriction model in wild-type mice but not in mice with a targeted deletion of megakaryocyte and platelet TGF-β1 (Tgfb1(flox)). Plasma total TGF-β1 levels correlated with collagen deposition in the stenotic valves in Reversa mice. Although active TGF-β1 levels were too low to be measured directly, we found (1) canonical TGF-β1 (phosphorylated small mothers against decapentaplegic 2/3) signaling in the leukocytes and canonical and noncanonical (phosphorylated extracellular signal-regulated kinases 1/2) TGF-β1 signaling in aortic valves of Reversa mice on a Western diet, and (2) TGF-β1 signaling of both pathways in the ascending aortic constriction stenotic area in wild-type but not Tgfb1(flox) mice. CONCLUSIONS Shear-induced, platelet-derived TGF-β1 activation may contribute to AS.
Collapse
Affiliation(s)
- Wei Wang
- From the Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY
| | - Spandana Vootukuri
- From the Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY
| | - Alexander Meyer
- From the Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY
| | - Jasimuddin Ahamed
- From the Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY
| | - Barry S Coller
- From the Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY.
| |
Collapse
|
36
|
Mathieu P, Boulanger MC, Bouchareb R. Molecular biology of calcific aortic valve disease: towards new pharmacological therapies. Expert Rev Cardiovasc Ther 2014; 12:851-62. [PMID: 24857537 DOI: 10.1586/14779072.2014.923756] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Calcific aortic valve disease (CAVD) is a chronic process leading to fibrosis and mineralization of the aortic valve. Investigations in the last several years have emphasized that key underlying molecular processes are involved in the pathogenesis of CAVD. In this regard, the processing of lipids and their retention has been underlined as an important mechanism that triggers inflammation. In turn, inflammation promotes/enhances the mineralization of valve interstitial cells, the main cellular component of the aortic valve. On the other hand, transformation of valve interstitial cells into myofibroblasts and osteoblast-like cells is determined by several signaling pathways having reciprocal cross-talks. In addition, the mineralization of the aortic valve has been shown to rely on ectonucleotidase and purinergic signaling. In this review, the authors have highlighted key molecular underpinnings of CAVD that may have significant relevance for the development of novel pharmaceutical therapies.
Collapse
Affiliation(s)
- Patrick Mathieu
- Department of Surgery, Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Laval University, Quebec, Canada
| | | | | |
Collapse
|
37
|
Shindyapina AV, Mkrtchyan GV, Gneteeva T, Buiucli S, Tancowny B, Kulka M, Aliper A, Zhavoronkov A. Mineralization of the Connective Tissue: A Complex Molecular Process Leading to Age-Related Loss of Function. Rejuvenation Res 2014; 17:116-33. [DOI: 10.1089/rej.2013.1475] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Anastasia V. Shindyapina
- Lomonosov Moscow State University, Moscow, Russian Federation
- Bioinformatics and Medical Information Technology Laboratory. Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
- First Open Institute for Regenerative Medicine for Young Scientists, Moscow, Russia
| | - Garik V. Mkrtchyan
- Lomonosov Moscow State University, Moscow, Russian Federation
- Bioinformatics and Medical Information Technology Laboratory. Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- First Open Institute for Regenerative Medicine for Young Scientists, Moscow, Russia
| | - Tatiana Gneteeva
- First Open Institute for Regenerative Medicine for Young Scientists, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sveatoslav Buiucli
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
- First Open Institute for Regenerative Medicine for Young Scientists, Moscow, Russia
| | - B. Tancowny
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | - M. Kulka
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | - Alexander Aliper
- Bioinformatics and Medical Information Technology Laboratory. Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
- First Open Institute for Regenerative Medicine for Young Scientists, Moscow, Russia
| | - Alexander Zhavoronkov
- Bioinformatics and Medical Information Technology Laboratory. Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
- First Open Institute for Regenerative Medicine for Young Scientists, Moscow, Russia
- The Biogerontology Research Foundation, Reading, United Kingdom
| |
Collapse
|
38
|
Abstract
Calcific aortic valve disease (CAVD) is a major contributor to cardiovascular morbidity and mortality and, given its association with age, the prevalence of CAVD is expected to continue to rise as global life expectancy increases. No drug strategies currently exist to prevent or treat CAVD. Given that valve replacement is the only available clinical option, patients often cope with a deteriorating quality of life until diminished valve function demands intervention. The recognition that CAVD results from active cellular mechanisms suggests that the underlying pathways might be targeted to treat the condition. However, no such therapeutic strategy has been successfully developed to date. One hope was that drugs already used to treat vascular complications might also improve CAVD outcomes, but the mechanisms of CAVD progression and the desired therapeutic outcomes are often different from those of vascular diseases. Therefore, we discuss the benchmarks that must be met by a CAVD treatment approach, and highlight advances in the understanding of CAVD mechanisms to identify potential novel therapeutic targets.
Collapse
Affiliation(s)
- Joshua D Hutcheson
- Center for Interdisciplinary Cardiovascular Sciences, 3 Blackfan Circle, 17th Floor, Center for Life Sciences Boston, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, 3 Blackfan Circle, 17th Floor, Center for Life Sciences Boston, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - W David Merryman
- Department of Biomedical Engineering, 2213 Garland Avenue, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
39
|
Avogaro A, Rattazzi M, Fadini GP. Ectopic calcification in diabetic vascular disease. Expert Opin Ther Targets 2014; 18:595-609. [DOI: 10.1517/14728222.2014.894021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Cai Z, Li F, Gong W, Liu W, Duan Q, Chen C, Ni L, Xia Y, Cianflone K, Dong N, Wang DW. Endoplasmic Reticulum Stress Participates in Aortic Valve Calcification in Hypercholesterolemic Animals. Arterioscler Thromb Vasc Biol 2013; 33:2345-54. [PMID: 23928865 DOI: 10.1161/atvbaha.112.300226] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhejun Cai
- From the Institute of Hypertension and Department of Internal Medicine, Tongji Hospital (Z.C., W.G., Q.D., C.C., L.N., D.W.W.), and Department of Cardiovascular Surgery, Union Hospital (F.L., N.D.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, China (Z.C.); Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular
| | - Fei Li
- From the Institute of Hypertension and Department of Internal Medicine, Tongji Hospital (Z.C., W.G., Q.D., C.C., L.N., D.W.W.), and Department of Cardiovascular Surgery, Union Hospital (F.L., N.D.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, China (Z.C.); Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular
| | - Wei Gong
- From the Institute of Hypertension and Department of Internal Medicine, Tongji Hospital (Z.C., W.G., Q.D., C.C., L.N., D.W.W.), and Department of Cardiovascular Surgery, Union Hospital (F.L., N.D.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, China (Z.C.); Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular
| | - Wanjun Liu
- From the Institute of Hypertension and Department of Internal Medicine, Tongji Hospital (Z.C., W.G., Q.D., C.C., L.N., D.W.W.), and Department of Cardiovascular Surgery, Union Hospital (F.L., N.D.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, China (Z.C.); Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular
| | - Quanlu Duan
- From the Institute of Hypertension and Department of Internal Medicine, Tongji Hospital (Z.C., W.G., Q.D., C.C., L.N., D.W.W.), and Department of Cardiovascular Surgery, Union Hospital (F.L., N.D.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, China (Z.C.); Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular
| | - Chen Chen
- From the Institute of Hypertension and Department of Internal Medicine, Tongji Hospital (Z.C., W.G., Q.D., C.C., L.N., D.W.W.), and Department of Cardiovascular Surgery, Union Hospital (F.L., N.D.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, China (Z.C.); Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular
| | - Li Ni
- From the Institute of Hypertension and Department of Internal Medicine, Tongji Hospital (Z.C., W.G., Q.D., C.C., L.N., D.W.W.), and Department of Cardiovascular Surgery, Union Hospital (F.L., N.D.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, China (Z.C.); Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular
| | - Yong Xia
- From the Institute of Hypertension and Department of Internal Medicine, Tongji Hospital (Z.C., W.G., Q.D., C.C., L.N., D.W.W.), and Department of Cardiovascular Surgery, Union Hospital (F.L., N.D.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, China (Z.C.); Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular
| | - Katherine Cianflone
- From the Institute of Hypertension and Department of Internal Medicine, Tongji Hospital (Z.C., W.G., Q.D., C.C., L.N., D.W.W.), and Department of Cardiovascular Surgery, Union Hospital (F.L., N.D.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, China (Z.C.); Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular
| | - Nianguo Dong
- From the Institute of Hypertension and Department of Internal Medicine, Tongji Hospital (Z.C., W.G., Q.D., C.C., L.N., D.W.W.), and Department of Cardiovascular Surgery, Union Hospital (F.L., N.D.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, China (Z.C.); Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular
| | - Dao Wen Wang
- From the Institute of Hypertension and Department of Internal Medicine, Tongji Hospital (Z.C., W.G., Q.D., C.C., L.N., D.W.W.), and Department of Cardiovascular Surgery, Union Hospital (F.L., N.D.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou, China (Z.C.); Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular
| |
Collapse
|
41
|
Weiss RM, Miller JD, Heistad DD. Fibrocalcific aortic valve disease: opportunity to understand disease mechanisms using mouse models. Circ Res 2013; 113:209-22. [PMID: 23833295 DOI: 10.1161/circresaha.113.300153] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies in vitro and in vivo continue to identify complex-regulated mechanisms leading to overt fibrocalcific aortic valve disease (FCAVD). Assessment of the functional impact of those processes requires careful studies of models of FCAVD in vivo. Although the genetic basis for FCAVD is unknown for most patients with FCAVD, several disease-associated genes have been identified in humans and mice. Some gene products which regulate valve development in utero also protect against fibrocalcific disease during postnatal aging. Valve calcification can occur via processes that resemble bone formation. But valve calcification can also occur by nonosteogenic mechanisms, such as formation of calcific apoptotic nodules. Anticalcific interventions might preferentially target either osteogenic or nonosteogenic calcification. Although FCAVD and atherosclerosis share several risk factors and mechanisms, there are fundamental differences between arteries and the aortic valve, with respect to disease mechanisms and responses to therapeutic interventions. Both innate and acquired immunity are likely to contribute to FCAVD. Angiogenesis is a feature of inflammation, but may also contribute independently to progression of FCAVD, possibly by actions of pericytes that are associated with new blood vessels. Several therapeutic interventions seem to be effective in attenuating the development of FCAVD in mice. Therapies which are effective early in the course of FCAVD, however, are not necessarily effective in established disease.
Collapse
Affiliation(s)
- Robert M Weiss
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | | | | |
Collapse
|