1
|
Rendon CJ, Watts SW, Contreras GA. PVAT adipocyte: energizing, modulating, and structuring vascular function during normotensive and hypertensive states. Am J Physiol Heart Circ Physiol 2025; 328:H1204-H1217. [PMID: 40250838 DOI: 10.1152/ajpheart.00093.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/20/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Hypertension represents the most common form of cardiovascular disease. It is characterized by significant remodeling of the various layers of the vascular system, including the outermost layer: the perivascular adipose tissue (PVAT). Given the tissue's pivotal role in regulating blood pressure, a comprehensive understanding of the changes that occur within PVAT during the progression of hypertension is essential. This article reviews the mechanisms through which PVAT modulates blood pressure, including the secretion of bioactive soluble factors, provision of mechanical support, and adipose-specific functions such as adipogenesis, lipogenesis, lipolysis, and extracellular matrix remodeling. Additionally, this review emphasizes the influence of hypertension on each of these regulatory mechanisms, thereby providing a deeper insight into the pathophysiological interplay between hypertension and PVAT biology.
Collapse
Affiliation(s)
- C Javier Rendon
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
2
|
Wu CJ, Liu H, Tu LJ, Hu JY. Peroxisome proliferator-activated receptor gamma mutation in familial partial lipodystrophy type three: A case report and review of literature. World J Diabetes 2024; 15:2360-2369. [PMID: 39676812 PMCID: PMC11580599 DOI: 10.4239/wjd.v15.i12.2360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/22/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Familial partial lipodystrophy disease (FPLD) is a collection of rare genetic diseases featuring partial loss of adipose tissue. However, metabolic difficulties, such as severe insulin resistance, diabetes, hypertriglyceridemia, and hypertension frequently occur alongside adipose tissue loss, making it susceptible to misdiagnosis and delaying effective treatment. Numerous genes are implicated in the occurrence of FPLD, and genetic testing has been for conditions linked to single gene mutation related to FPLD. Reviewing recent reports, treatment of the disease is limited to preventing and improving complications in patients. CASE SUMMARY In 2017, a 31-year-old woman with diabetes, hypertension and hypertriglyceridemia was hospitalized. We identified a mutation in her peroxisome proliferator-activated receptor gamma (PPARG) gene, Y151C (p.Tyr151Cys), which results in a nucleotide substitution residue 452 in the DNA-binding domain (DBD) of PPARG. The unaffected family member did not carry this mutation. Pioglitazone, a PPARG agonist, improved the patient's responsiveness to hypoglycemic and antihypertensive therapy. After one year of treatment in our hospital, the fasting blood glucose and glycosylated hemoglobin of the patient were close to normal. CONCLUSION We report a rare PPARG mutation, Y151C, which is located in the DBD of PPARG and leads to FPLD, and the preferred agent is PPARG agonists. We then summarized clinical phenotypic characteristics of FPLD3 caused by PPARG gene mutations, and clarified the relationship between different mutations of PPARG gene and the clinical manifestations of this type of FPLD. Additionally, current treatments for FPLD caused by PPARG mutations are reviewed.
Collapse
Affiliation(s)
- Chao-Jun Wu
- Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Hao Liu
- Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Li-Juan Tu
- Department of Endocrinology, Rare Disease Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Jiong-Yu Hu
- Department of Endocrinology, Rare Disease Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| |
Collapse
|
3
|
Soares RMV, da Silva MA, Campos JTADM, Lima JG. Familial partial lipodystrophy resulting from loss-of-function PPARγ pathogenic variants: phenotypic, clinical, and genetic features. Front Endocrinol (Lausanne) 2024; 15:1394102. [PMID: 39398333 PMCID: PMC11466747 DOI: 10.3389/fendo.2024.1394102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
The PPARG gene encodes a member of a nuclear receptor superfamily known as peroxisome proliferator-activated gamma (PPARγ). PPARγ plays an essential role in adipogenesis, stimulating the differentiation of preadipocytes into adipocytes. Loss-of-function pathogenic variants in PPARG reduce the activity of the PPARγ receptor and can lead to severe metabolic consequences associated with familial partial lipodystrophy type 3 (FPLD3). This review focuses on recent scientific data related to FPLD3, including the role of PPARγ in adipose tissue metabolism and the phenotypic and clinical consequences of loss-of-function variants in the PPARG gene. The clinical features of 41 PPARG pathogenic variants associated with FPLD3 patients were reviewed, highlighting the genetic and clinical heterogeneity observed among 91 patients. Most of them were female, and the average age at the onset and diagnosis of lipoatrophy was 21 years and 33 years, respectively. Considering the metabolic profile, hypertriglyceridemia (91.9% of cases), diabetes (77%), hypertension (59.5%), polycystic ovary syndrome (58.2% of women), and metabolic-dysfunction-associated fatty liver disease (87,5%). We also discuss the current treatment for FPLD3. This review provides new data concerning the genetic and clinical heterogeneity in FPLD3 and highlights the importance of further understanding the genetics of this rare disease.
Collapse
Affiliation(s)
- Reivla Marques Vasconcelos Soares
- Department of Clinical Medicine, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Monique Alvares da Silva
- Molecular Biology and Genomics Laboratory, Federal University of Rio Grande do Norte
(UFRN), Natal, RN, Brazil
| | - Julliane Tamara Araújo de Melo Campos
- Molecular Biology and Genomics Laboratory, Federal University of Rio Grande do Norte
(UFRN), Natal, RN, Brazil
- Department of Morphology (DMOR), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Josivan Gomes Lima
- Department of Clinical Medicine, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
4
|
Díaz-López EJ, Sánchez-Iglesias S, Castro AI, Cobelo-Gómez S, Prado-Moraña T, Araújo-Vilar D, Fernandez-Pombo A. Lipodystrophic Laminopathies: From Dunnigan Disease to Progeroid Syndromes. Int J Mol Sci 2024; 25:9324. [PMID: 39273270 PMCID: PMC11395136 DOI: 10.3390/ijms25179324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Lipodystrophic laminopathies are a group of ultra-rare disorders characterised by the presence of pathogenic variants in the same gene (LMNA) and other related genes, along with an impaired adipose tissue pattern and other features that are specific of each of these disorders. The most fascinating traits include their complex genotype-phenotype associations and clinical heterogeneity, ranging from Dunnigan disease, in which the most relevant feature is precisely adipose tissue dysfunction and lipodystrophy, to the other laminopathies affecting adipose tissue, which are also characterised by the presence of signs of premature ageing (Hutchinson Gilford-progeria syndrome, LMNA-atypical progeroid syndrome, mandibuloacral dysplasia types A and B, Nestor-Guillermo progeria syndrome, LMNA-associated cardiocutaneous progeria). This raises several questions when it comes to understanding how variants in the same gene can lead to similar adipose tissue disturbances and, at the same time, to such heterogeneous phenotypes and variable degrees of metabolic abnormalities. The present review aims to gather the molecular basis of adipose tissue impairment in lipodystrophic laminopathies, their main clinical aspects and recent therapeutic strategies. In addition, it also summarises the key aspects for their differential diagnosis.
Collapse
Affiliation(s)
- Everardo Josué Díaz-López
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Teresa Prado-Moraña
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Antia Fernandez-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Zhang N, Wei F, Ning S, Hu J, Shi H, Yao Z, Tang M, Zhang Y, Gong J, Ge J, Cui Z. PPARγ Agonist Rosiglitazone and Antagonist GW9662: Antihypertensive Effects on Chronic Intermittent Hypoxia-Induced Hypertension in Rats. J Cardiovasc Transl Res 2024; 17:803-815. [PMID: 38411834 DOI: 10.1007/s12265-024-10499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
The increased incidence of hypertension associated with obstructive sleep apnea (OSA) presents significant physical, psychological, and economic challenges. Peroxisome proliferator-activated receptor gamma (PPARγ) plays a role in both OSA and hypertension, yet the therapeutic potential of PPARγ agonists and antagonists for OSA-related hypertension remains unexplored. Therefore, we constructed a chronic intermittent hypoxia (CIH)-induced hypertension rat model that mimics the pathogenesis of OSA-related hypertension in humans. The model involved administering PPARγ agonist rosiglitazone (RSG), PPARγ antagonist GW9662, or normal saline, followed by regular monitoring of blood pressure and thoracic aorta analysis using staining and electron microscopy. Intriguingly, our results indicated that both RSG and GW9662 appeared to potently counteract CIH-induced hypertension. In silico study suggested that GW9662's antihypertensive effect might mediated through angiotensin II receptor type 1 (AGTR1). Our findings provide insights into the mechanisms of OSA-related hypertension and propose novel therapeutic targets.
Collapse
MESH Headings
- Animals
- PPAR gamma/agonists
- PPAR gamma/metabolism
- Hypertension/physiopathology
- Hypertension/drug therapy
- Hypertension/metabolism
- Rosiglitazone/pharmacology
- Disease Models, Animal
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Male
- Hypoxia/complications
- Hypoxia/drug therapy
- Anilides/pharmacology
- Rats, Sprague-Dawley
- Blood Pressure/drug effects
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/pathology
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/drug effects
- Chronic Disease
- Signal Transduction
- Sleep Apnea, Obstructive/drug therapy
- Sleep Apnea, Obstructive/physiopathology
- Sleep Apnea, Obstructive/complications
- Sleep Apnea, Obstructive/metabolism
- Molecular Docking Simulation
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Ningzhi Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Feng Wei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Sisi Ning
- Department of Cardiology, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital, Shanghai, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hongtao Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zhifeng Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Minna Tang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yongqiao Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jiaxin Gong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Zhaoqiang Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| |
Collapse
|
6
|
Sigmund CD. The 2023 Walter B. Cannon Award Lecture: Mechanisms Regulating Vascular Function and Blood Pressure by the PPARγ-RhoBTB1-CUL3 Pathway. FUNCTION 2024; 5:zqad071. [PMID: 38196837 PMCID: PMC10775765 DOI: 10.1093/function/zqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Human genetic and clinical trial data suggest that peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor transcription factor plays an important role in the regulation of arterial blood pressure. The examination of a series of novel animal models, coupled with transcriptomic and proteomic analysis, has revealed that PPARγ and its target genes employ diverse pathways to regulate vascular function and blood pressure. In endothelium, PPARγ target genes promote an antioxidant state, stimulating both nitric oxide (NO) synthesis and bioavailability, essential components of endothelial-smooth muscle communication. In vascular smooth muscle, PPARγ induces the expression of a number of genes that promote an antiinflammatory state and tightly control the level of cGMP, thus promoting responsiveness to endothelial-derived NO. One of the PPARγ targets in smooth muscle, Rho related BTB domain containing 1 (RhoBTB1) acts as a substrate adaptor for proteins to be ubiquitinated by the E3 ubiquitin ligase Cullin-3 and targeted for proteasomal degradation. One of these proteins, phosphodiesterase 5 (PDE5) is a target of the Cullin-3/RhoBTB1 pathway. Phosphodiesterase 5 degrades cGMP to GMP and thus regulates the smooth muscle response to NO. Moreover, expression of RhoBTB1 under condition of RhoBTB1 deficiency reverses established arterial stiffness. In conclusion, the coordinated action of PPARγ in endothelium and smooth muscle is needed to maintain NO bioavailability and activity, is an essential regulator of vasodilator/vasoconstrictor balance, and regulates blood vessel structure and stiffness.
Collapse
Affiliation(s)
- Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Kumar G, Fang S, Golosova D, Lu KT, Brozoski DT, Vazirabad I, Sigmund CD. Structure and Function of RhoBTB1 Required for Substrate Specificity and Cullin-3 Ubiquitination. FUNCTION 2023; 4:zqad034. [PMID: 37575477 PMCID: PMC10413933 DOI: 10.1093/function/zqad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
We identified Rho-related BTB domain containing 1 (RhoBTB1) as a key regulator of phosphodiesterase 5 (PDE5) activity, and through PDE5, a regulator of vascular tone. We identified the binding interface for PDE5 on RhoBTB1 by truncating full-length RhoBTB1 into its component domains. Co-immunoprecipitation analyses revealed that the C-terminal half of RhoBTB1 containing its two BTB domains and the C-terminal domain (B1B2C) is the minimal region required for PDE5 recruitment and subsequent proteasomal degradation via Cullin-3 (CUL3). The C-terminal domain was essential in recruiting PDE5 as constructs lacking this region could not participate in PDE5 binding or proteasomal degradation. We also identified Pro353 and Ser363 as key amino acid residues in the B1B2C region involved in CUL3 binding to RhoBTB1. Mutation of either of these residues exhibited impaired CUL3 binding and PDE5 degradation, although the binding to PDE5 was preserved. Finally, we employed ascorbate peroxidase 2 (APEX2) proximity labeling using a B1B2C-APEX2 fusion protein as bait to capture unknown RhoBTB1 binding partners. Among several B1B2C-binding proteins identified and validated, we focused on SET domain containing 2 (SETD2). SETD2 and RhoBTB1 directly interacted, and the level of SETD2 increased in response to pharmacological inhibition of the proteasome or Cullin complex, CUL3 deletion, and RhoBTB1-inhibition with siRNA. This suggests that SETD2 is regulated by the RhoBTB1-CUL3 axis. Future studies will determine whether SETD2 plays a role in cardiovascular function.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shi Fang
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daria Golosova
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ko-Ting Lu
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel T Brozoski
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ibrahim Vazirabad
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Gosseaume C, Fournier T, Jéru I, Vignaud ML, Missotte I, Archambeaud F, Debussche X, Droumaguet C, Fève B, Grillot S, Guerci B, Hieronimus S, Horsmans Y, Nobécourt E, Pienkowski C, Poitou C, Thissen JP, Lascols O, Degrelle S, Tsatsaris V, Vigouroux C, Vatier C. Perinatal, metabolic, and reproductive features in PPARG-related lipodystrophy. Eur J Endocrinol 2023; 188:7049146. [PMID: 36806620 DOI: 10.1093/ejendo/lvad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVE The adipogenic PPARG-encoded PPARγ nuclear receptor also displays essential placental functions. We evaluated the metabolic, reproductive, and perinatal features of patients with PPARG-related lipodystrophy. METHODS Current and retrospective data were collected in patients referred to a National Rare Diseases Reference Centre. RESULTS 26 patients from 15 unrelated families were studied (18 women, median age 43 years). They carried monoallelic PPARG variants except a homozygous patient with congenital generalized lipodystrophy. Among heterozygous patients aged 16 or more (n = 24), 92% had diabetes, 96% partial lipodystrophy (median age at diagnosis 24 and 37 years), 78% hypertriglyceridaemia, 71% liver steatosis, and 58% hypertension. The mean BMI was 26 ± 5.0 kg/m2. Women (n = 16) were frequently affected by acute pancreatitis (n = 6) and/or polycystic ovary syndrome (n = 12). Eleven women obtained one or several pregnancies, all complicated by diabetes (n = 8), hypertension (n = 4), and/or hypertriglyceridaemia (n = 10). We analysed perinatal data of patients according to the presence (n = 8) or absence (n = 9) of a maternal dysmetabolic environment. The median gestational age at birth was low in both groups (37 and 36 weeks of amenorrhea, respectively). As expected, the birth weight was higher in patients exposed to a foetal dysmetabolic environment of maternal origin. In contrast, 85.7% of non-exposed patients, in whom the variant is, or is very likely to be, paternally-inherited, were small for gestational age. CONCLUSIONS Lipodystrophy-related PPARG variants induce early metabolic complications. Our results suggest that placental expression of PPARG pathogenic variants carried by affected foetuses could impair prenatal growth and parturition. This justifies careful pregnancy monitoring in affected families.
Collapse
Affiliation(s)
- Camille Gosseaume
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
| | - Thierry Fournier
- Université Paris Cité, Inserm, 3PHM, Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre & Post Natal Microbiota, Paris, F-75006, France
| | - Isabelle Jéru
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - Marie-Léone Vignaud
- Université Paris Cité, Inserm, 3PHM, Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre & Post Natal Microbiota, Paris, F-75006, France
| | - Isabelle Missotte
- Department of Pediatrics, Territorial Hospital Center, Nouméa, New Caledonia, France
| | | | - Xavier Debussche
- Clinical Investigation and Clinical Epidemiology Center (CIC-EC INSERM/CHU/University), Reunion Island University Hospital, Saint-Denis de la Réunion, France
| | - Céline Droumaguet
- Department of Internal Medicine, Assistance Publique-Hôpitaux de Paris, Henri-Mondor Hospital, Créteil, France
| | - Bruno Fève
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Sophie Grillot
- Department of Endocrinology and Diabetology, Pays du Mont Blanc Hospital, Sallanches, France
| | - Bruno Guerci
- Department of Endocrinology, Diabetology and Nutrition, Brabois Hospital, University of Lorraine, Vandoeuvre Lès Nancy, France
| | - Sylvie Hieronimus
- Department of Diabetology and Nutrition, Nice University Hospital, Nice, France
| | - Yves Horsmans
- Department of Hepatogastroenterology, Clinical and Experimental Research Institute Louvain Catholic University, Saint-Luc University Hospital, Bruxelles, Belgium
| | - Estelle Nobécourt
- Department of Endocrinology, Metabolism and Nutrition, Saint-Pierre Hospital, Reunion Island University Hospital, Saint-Denis de la Réunion, France
| | - Catherine Pienkowski
- Reference Center for Rare Gynecologic Diseases, Endocrinology and Medical Gynecology Unit, Toulouse University Hospital, Toulouse, France
| | - Christine Poitou
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital, Sorbonne University, Inserm, Reference Center for Rare Diseases PRADORT (PRADer-Willi Syndrome and other Rare Obesities with Eating Disorders), Nutrition Department, Paris, France
| | - Jean-Paul Thissen
- Department of Hepatogastroenterology, Clinical and Experimental Research Institute Louvain Catholic University, Saint-Luc University Hospital, Bruxelles, Belgium
| | - Olivier Lascols
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - Séverine Degrelle
- Université Paris Cité, Inserm, 3PHM, Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre & Post Natal Microbiota, Paris, F-75006, France
- Inovarion, Paris, France
| | - Vassilis Tsatsaris
- Université Paris Cité, Inserm, 3PHM, Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre & Post Natal Microbiota, Paris, F-75006, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Camille Vatier
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris 75012, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| |
Collapse
|
9
|
Clinical Spectrum of LMNA-Associated Type 2 Familial Partial Lipodystrophy: A Systematic Review. Cells 2023; 12:cells12050725. [PMID: 36899861 PMCID: PMC10000975 DOI: 10.3390/cells12050725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Type 2 familial partial lipodystrophy (FPLD2) is a laminopathic lipodystrophy due to pathogenic variants in the LMNA gene. Its rarity implies that it is not well-known. The aim of this review was to explore the published data regarding the clinical characterisation of this syndrome in order to better describe FPLD2. For this purpose, a systematic review through a search on PubMed until December 2022 was conducted and the references of the retrieved articles were also screened. A total of 113 articles were included. FPLD2 is characterised by the loss of fat starting around puberty in women, affecting limbs and trunk, and its accumulation in the face, neck and abdominal viscera. This adipose tissue dysfunction conditions the development of metabolic complications associated with insulin resistance, such as diabetes, dyslipidaemia, fatty liver disease, cardiovascular disease, and reproductive disorders. However, a great degree of phenotypical variability has been described. Therapeutic approaches are directed towards the associated comorbidities, and recent treatment modalities have been explored. A comprehensive comparison between FPLD2 and other FPLD subtypes can also be found in the present review. This review aimed to contribute towards augmenting knowledge of the natural history of FPLD2 by bringing together the main clinical research in this field.
Collapse
|
10
|
Xie R, Tang S, Yang Y. Associations of peroxisome proliferator-activated receptor-γ Pro12Ala polymorphism with non-alcoholic fatty liver disease: A meta-analysis. J Diabetes Complications 2022; 36:108261. [PMID: 36055011 DOI: 10.1016/j.jdiacomp.2022.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Polymorphisms in peroxisome proliferator-activated receptor-γ pro12Ala (PPAR-γ Pro12Ala) have been associated with Non-alcoholic Fatty Liver Disease (NAFLD) in several studies. However, the results of these studies are not entirely consistent. Thus, we performed a meta-analysis to investigate the association between the PPAR-γ Pro12Ala polymorphisms and NAFLD. METHODS Studies were identified by searching PubMed database and manual assessment of the cited references in the retrieved articles. Study-specific relative risks (RRs) and 95 % confidence intervals (CIs) were estimated using a random-effect model. Study quality was assessed using the Newcastle-Ottawa scale. RESULTS Relevant medical researches show that 11 studies have been conducted on the analysis of NAFLD for meta-analysis, with a total of 2404 cases and 3959 participating controls. Meta-analysis results show that PPAR-γ Pro12Ala polymorphism and NALAD Ala alleles[no association between dominance model (OR = 0.968, 95%CI: 0.734-1.276, P = 0.815); Pro/Ala vs. Pro/Pro (OR = 0.930, 95 % CI: 0.701-1.233, P = 0.612); Ala/Ala vs. Pro/Pro (OR = 1.220, 95 % CI: 0.668-2.230, P = 0.518); recessive model (OR = 0.907, 95 % CI: 0.516-1.596, P = 0.736)]. Moreover, stratification by ethnicity also revealed that no matter it is in Caucasian populations or in Asian populations, NAFLD has no association with the PPAR-γ Pro12Ala polymorphism. CONCLUSIONS According to the meta-analysis, both in Asians and Caucasian populations, the PPAR-γ Pro12Ala polymorphism can't be demonstrated to have any link with susceptibility to NAFLD.
Collapse
Affiliation(s)
- Rong Xie
- The Gastroenterology Department of the First Hospital of Nanning, Nanning, Guangxi Province 530022, PR China
| | - Shaobo Tang
- The Gastroenterology Department of the First Hospital of Nanning, Nanning, Guangxi Province 530022, PR China.
| | - Yanna Yang
- The Ultrasonography of Maternal and Children Health Hospital of Guangxi, Guangxi Province 530022, PR China
| |
Collapse
|
11
|
Guixé‐Muntet S, Biquard L, Szabo G, Dufour J, Tacke F, Francque S, Rautou P, Gracia‐Sancho J. Review article: vascular effects of PPARs in the context of NASH. Aliment Pharmacol Ther 2022; 56:209-223. [PMID: 35661191 PMCID: PMC9328268 DOI: 10.1111/apt.17046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 05/08/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors known to regulate glucose and fatty acid metabolism, inflammation, endothelial function and fibrosis. PPAR isoforms have been extensively studied in metabolic diseases, including type 2 diabetes and cardiovascular diseases. Recent data extend the key role of PPARs to liver diseases coursing with vascular dysfunction, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). AIM This review summarises and discusses the pathobiological role of PPARs in cardiovascular diseases with a special focus on their impact and therapeutic potential in NAFLD and NASH. RESULTS AND CONCLUSIONS PPARs may be attractive for the treatment of NASH due to their liver-specific effects but also because of their efficacy in improving cardiovascular outcomes, which may later impact liver disease. Assessment of cardiovascular disease in the context of NASH trials is, therefore, of the utmost importance, both from a safety and efficacy perspective.
Collapse
Affiliation(s)
- Sergi Guixé‐Muntet
- Liver Vascular Biology Research GroupIDIBAPS Biomedical Research Institute & CIBEREHDBarcelonaSpain
| | - Louise Biquard
- Université de Paris, Inserm, CNRSCentre de recherche sur l'InflammationUMR1149ParisFrance
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Jean‐François Dufour
- Department of Visceral Surgery and Medicine & Department for Biomedical ResearchInselspital, University of BernBernSwitzerland
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCharité Universitätsmedizin Berlin, Campus Virchow‐Klinikum (CVK) and Campus Charité Mitte (CCM)BerlinGermany
| | - Sven Francque
- Department of Gastroenterology and HepatologyAntwerp University HospitalAntwerpBelgium,Translational Sciences in Inflammation and ImmunologyInflaMed Centre of Excellence, Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of AntwerpAntwerpBelgium
| | - Pierre‐Emmanuel Rautou
- Université de Paris, AP‐HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGESTCentre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE‐LIVER, Centre de recherche sur l'inflammationParisFrance
| | - Jordi Gracia‐Sancho
- Liver Vascular Biology Research GroupIDIBAPS Biomedical Research Institute & CIBEREHDBarcelonaSpain,Department of Visceral Surgery and Medicine & Department for Biomedical ResearchInselspital, University of BernBernSwitzerland
| |
Collapse
|
12
|
Hu W, Jiang C, Kim M, Xiao Y, Richter HJ, Guan D, Zhu K, Krusen BM, Roberts AN, Miller J, Steger DJ, Lazar MA. Isoform-specific functions of PPARγ in gene regulation and metabolism. Genes Dev 2022; 36:300-312. [PMID: 35273075 PMCID: PMC8973844 DOI: 10.1101/gad.349232.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
In this study, Hu et al. investigated the specific functions of the two main PPARγ isoforms by generating mouse lines in which endogenous PPARγ1 and PPARγ2 were epitope-tagged to interrogate isoform-specific genomic binding, and mice deficient in either PPARγ1 or PPARγ2 to assess isoform-specific gene regulation. They show that PPARγ isoforms have specific and separable metabolic functions that may be targeted to improve therapy for insulin resistance and diabetes. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that is a vital regulator of adipogenesis, insulin sensitivity, and lipid metabolism. Activation of PPARγ by antidiabetic thiazolidinediones (TZD) reverses insulin resistance but also leads to weight gain that limits the use of these drugs. There are two main PPARγ isoforms, but the specific functions of each are not established. Here we generated mouse lines in which endogenous PPARγ1 and PPARγ2 were epitope-tagged to interrogate isoform-specific genomic binding, and mice deficient in either PPARγ1 or PPARγ2 to assess isoform-specific gene regulation. Strikingly, although PPARγ1 and PPARγ2 contain identical DNA binding domains, we uncovered isoform-specific genomic binding sites in addition to shared sites. Moreover, PPARγ1 and PPARγ2 regulated a different set of genes in adipose tissue depots, suggesting distinct roles in adipocyte biology. Indeed, mice with selective deficiency of PPARγ1 maintained body temperature better than wild-type or PPARγ2-deficient mice. Most remarkably, although TZD treatment improved glucose tolerance in mice lacking either PPARγ1 or PPARγ2, the PPARγ1-deficient mice were protected from TZD-induced body weight gain compared with PPARγ2-deficient mice. Thus, PPARγ isoforms have specific and separable metabolic functions that may be targeted to improve therapy for insulin resistance and diabetes.
Collapse
Affiliation(s)
- Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hannah J Richter
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dongyin Guan
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brianna M Krusen
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arielle N Roberts
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania 19131, USA
| | - Jessica Miller
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David J Steger
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
13
|
Curran CS, Kopp JB. Aryl Hydrocarbon Receptor Mechanisms Affecting Chronic Kidney Disease. Front Pharmacol 2022; 13:782199. [PMID: 35237156 PMCID: PMC8882872 DOI: 10.3389/fphar.2022.782199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor that binds diverse endogenous and xenobiotic ligands, which regulate AHR stability, transcriptional activity, and cell signaling. AHR activity is strongly implicated throughout the course of chronic kidney disease (CKD). Many diverse organic molecules bind and activate AHR and these ligands are reported to either promote glomerular and tubular damage or protect against kidney injury. AHR crosstalk with estrogen, peroxisome proliferator-activated receptor-γ, and NF-κB pathways may contribute to the diversity of AHR responses during the various forms and stages of CKD. The roles of AHR in kidney fibrosis, metabolism and the renin angiotensin system are described to offer insight into CKD pathogenesis and therapies.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, United States
| |
Collapse
|
14
|
Fernández-Pombo A, Sánchez-Iglesias S, Cobelo-Gómez S, Hermida-Ameijeiras Á, Araújo-Vilar D. Familial partial lipodystrophy syndromes. Presse Med 2021; 50:104071. [PMID: 34610417 DOI: 10.1016/j.lpm.2021.104071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Lipodystrophies are a heterogeneous group of rare conditions characterised by the loss of adipose tissue. The most common forms are the familial partial lipodystrophy (FPLD) syndromes, which include a set of disorders, usually autosomal dominant, due to different pathogenetic mechanisms leading to improper fat distribution (loss of fat in the limbs and gluteal region and variable regional fat accumulation). Affected patients are prone to suffering serious morbidity via the development of metabolic complications associated to insulin resistance and an inability to properly store lipids. Although no well-defined diagnostic criteria have been established for lipodystrophy, there are certain clues related to medical history, physical examination and body composition evaluation that may suggest FPLD prior to confirmatory genetic analysis. Its treatment must be fundamentally oriented towards the control of the metabolic abnormalities. In this sense, metreleptin therapy, the newer classes of hypoglycaemic agents and other investigational drugs are showing promising results. This review aims to summarise the current knowledge of FPLD syndromes and to describe their clinical and molecular picture, diagnostic approaches and recent treatment modalities.
Collapse
Affiliation(s)
- Antía Fernández-Pombo
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Álvaro Hermida-Ameijeiras
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Division of Internal Medicine, University Clinical Hospital of Santiago de Compostela, 15706, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Spain.
| |
Collapse
|
15
|
Reduced Endothelial Leptin Signaling Increases Vascular Adrenergic Reactivity in a Mouse Model of Congenital Generalized Lipodystrophy. Int J Mol Sci 2021; 22:ijms221910596. [PMID: 34638939 PMCID: PMC8508873 DOI: 10.3390/ijms221910596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
The adipokine leptin, which is best-known for its role in the control of metabolic function, is also a master regulator of cardiovascular function. While leptin has been approved for the treatment of metabolic disorders in patients with congenital generalized lipodystrophy (CGL), the effects of chronic leptin deficiency and the treatment on vascular contractility remain unknown. Herein, we investigated the effects of leptin deficiency and treatment (0.3 mg/day/7 days) on aortic contractility in male Berardinelli-Seip 2 gene deficient mice (gBscl2-/-, model of CGL) and their wild-type control (gBscl2+/+), as well as in mice with selective deficiency in endothelial leptin receptor (LepREC-/-). Lipodystrophy selectively increased vascular adrenergic contractility via NO-independent mechanisms and induced hypertrophic vascular remodeling. Leptin treatment and Nox1 inhibition blunted adrenergic hypercontractility in gBscl2-/- mice, however, leptin failed to rescue vascular media thickness. Selective deficiency in endothelial leptin receptor did not alter baseline adrenergic contractility but abolished leptin-mediated reduction in adrenergic contractility, supporting the contribution of endothelium-dependent mechanisms. These data reveal a new direct role for endothelial leptin receptors in the control of vascular contractility and homeostasis, and present leptin as a safe therapy for the treatment of vascular disease in CGL.
Collapse
|
16
|
Konger RL, Derr-Yellin E, Zimmers TA, Katona T, Xuei X, Liu Y, Zhou HM, Simpson ER, Turner MJ. Epidermal PPARγ Is a Key Homeostatic Regulator of Cutaneous Inflammation and Barrier Function in Mouse Skin. Int J Mol Sci 2021; 22:ijms22168634. [PMID: 34445339 PMCID: PMC8395473 DOI: 10.3390/ijms22168634] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Both agonist studies and loss-of-function models indicate that PPARγ plays an important role in cutaneous biology. Since PPARγ has a high level of basal activity, we hypothesized that epidermal PPARγ would regulate normal homeostatic processes within the epidermis. In this current study, we performed mRNA sequencing and differential expression analysis of epidermal scrapings from knockout mice and wildtype littermates. Pparg-/-epi mice exhibited a 1.5-fold or greater change in the expression of 11.8% of 14,482 identified transcripts. Up-regulated transcripts included those for a large number of cytokines/chemokines and their receptors, as well as genes associated with inflammasome activation and keratinization. Several of the most dramatically up-regulated pro-inflammatory genes in Pparg-/-epi mouse skin included Igfl3, 2610528A11Rik, and Il1f6. RT-PCR was performed from RNA obtained from non-lesional full-thickness skin and verified a marked increase in these transcripts, as well as transcripts for Igflr1, which encodes the receptor for Igfl3, and the 2610528A11Rik receptor (Gpr15). Transcripts for Il4 were detected in Pparg-/-epi mouse skin, but transcripts for Il17 and Il22 were not detected. Down-regulated transcripts included sebaceous gland markers and a number of genes associated with lipid barrier formation. The change in these transcripts correlates with an asebia phenotype, increased transepidermal water loss, alopecia, dandruff, and the appearance of spontaneous inflammatory skin lesions. Histologically, non-lesional skin showed hyperkeratosis, while inflammatory lesions were characterized by dermal inflammation and epidermal acanthosis, spongiosis, and parakeratosis. In conclusion, loss of epidermal Pparg alters a substantial set of genes that are associated with cutaneous inflammation, keratinization, and sebaceous gland function. The data indicate that epidermal PPARγ plays an important role in homeostatic epidermal function, particularly epidermal differentiation, barrier function, sebaceous gland development and function, and inflammatory signaling.
Collapse
Affiliation(s)
- Raymond L. Konger
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Correspondence: ; Tel.: +1-317-274-4154
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa A. Zimmers
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Terrence Katona
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
| | - Xiaoling Xuei
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Yunlong Liu
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
| | - Ed Ronald Simpson
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew J. Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
- Department of Dermatology, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Fang S, Livergood MC, Nakagawa P, Wu J, Sigmund CD. Role of the Peroxisome Proliferator Activated Receptors in Hypertension. Circ Res 2021; 128:1021-1039. [PMID: 33793338 DOI: 10.1161/circresaha.120.318062] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors represent a large family of ligand-activated transcription factors which sense the physiological environment and make long-term adaptations by mediating changes in gene expression. In this review, we will first discuss the fundamental mechanisms by which nuclear receptors mediate their transcriptional responses. We will focus on the PPAR (peroxisome proliferator-activated receptor) family of adopted orphan receptors paying special attention to PPARγ, the isoform with the most compelling evidence as an important regulator of arterial blood pressure. We will review genetic data showing that rare mutations in PPARγ cause severe hypertension and clinical trial data which show that PPARγ activators have beneficial effects on blood pressure. We will detail the tissue- and cell-specific molecular mechanisms by which PPARs in the brain, kidney, vasculature, and immune system modulate blood pressure and related phenotypes, such as endothelial function. Finally, we will discuss the role of placental PPARs in preeclampsia, a life threatening form of hypertension during pregnancy. We will close with a viewpoint on future research directions and implications for developing novel therapies.
Collapse
Affiliation(s)
- Shi Fang
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee.,Department of Neuroscience and Pharmacology, University of Iowa (S.F.)
| | - M Christine Livergood
- Department of Obstetrics and Gynecology (M.C.L.), Medical College of Wisconsin, Milwaukee
| | - Pablo Nakagawa
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Jing Wu
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
18
|
Araújo de Melo Campos JT, Dantas de Medeiros JL, Cardoso de Melo ME, Alvares da Silva M, Oliveira de Sena M, Sales Craveiro Sarmento A, Fassarella Agnez Lima L, de Freitas Fregonezi GA, Gomes Lima J. Endoplasmic reticulum stress and muscle dysfunction in congenital lipodystrophies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166120. [PMID: 33713793 DOI: 10.1016/j.bbadis.2021.166120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/17/2023]
Abstract
Lipodystrophy syndromes are a group of rare diseases related to the pathological impairment of adipose tissue and metabolic comorbidities, including dyslipidemia, diabetes, insulin resistance, hypoleptinemia, and hypoadiponectinemia. They can be categorized as partial or generalized according to the degree of fat loss, and inherited or acquired disorders, if they are associated with genetic mutations or are related to autoimmunity, respectively. Some types of lipodystrophies have been associated with changes in both redox and endoplasmic reticulum (ER) homeostasis as well as muscle dysfunction (MD). Although ER stress (ERS) has been related to muscle dysfunction (MD) in many diseases, there is no data concerning its role in lipodystrophies' muscle physiopathology. Here we focused on congenital lipodystrophies associated with ERS and MD. We also described recent advances in our understanding of the relationships among ERS, MD, and genetic lipodystrophies, highlighting the adiponectin-protective roles.
Collapse
Affiliation(s)
- Julliane Tamara Araújo de Melo Campos
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Jorge Luiz Dantas de Medeiros
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Maria Eduarda Cardoso de Melo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Monique Alvares da Silva
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Matheus Oliveira de Sena
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Aquiles Sales Craveiro Sarmento
- Unidade de Laboratório de Análises Clínicas e Anatomia Patológica, Hospital Universitário de Lagarto (HUL)/UFS, Lagarto, SE, Brazil
| | - Lucymara Fassarella Agnez Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Guilherme Augusto de Freitas Fregonezi
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Laboratório de Inovação Tecnológica em Reabilitação, Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Josivan Gomes Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes (HUOL)/UFRN, Natal, RN, Brazil
| |
Collapse
|
19
|
Zammouri J, Vatier C, Capel E, Auclair M, Storey-London C, Bismuth E, Mosbah H, Donadille B, Janmaat S, Fève B, Jéru I, Vigouroux C. Molecular and Cellular Bases of Lipodystrophy Syndromes. Front Endocrinol (Lausanne) 2021; 12:803189. [PMID: 35046902 PMCID: PMC8763341 DOI: 10.3389/fendo.2021.803189] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Lipodystrophy syndromes are rare diseases originating from a generalized or partial loss of adipose tissue. Adipose tissue dysfunction results from heterogeneous genetic or acquired causes, but leads to similar metabolic complications with insulin resistance, diabetes, hypertriglyceridemia, nonalcoholic fatty liver disease, dysfunctions of the gonadotropic axis and endocrine defects of adipose tissue with leptin and adiponectin deficiency. Diagnosis, based on clinical and metabolic investigations, and on genetic analyses, is of major importance to adapt medical care and genetic counseling. Molecular and cellular bases of these syndromes involve, among others, altered adipocyte differentiation, structure and/or regulation of the adipocyte lipid droplet, and/or premature cellular senescence. Lipodystrophy syndromes frequently present as systemic diseases with multi-tissue involvement. After an update on the main molecular bases and clinical forms of lipodystrophy, we will focus on topics that have recently emerged in the field. We will discuss the links between lipodystrophy and premature ageing and/or immuno-inflammatory aggressions of adipose tissue, as well as the relationships between lipomatosis and lipodystrophy. Finally, the indications of substitutive therapy with metreleptin, an analog of leptin, which is approved in Europe and USA, will be discussed.
Collapse
Affiliation(s)
- Jamila Zammouri
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Camille Vatier
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Emilie Capel
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Martine Auclair
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Caroline Storey-London
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Pediatric Endocrinology Department, National Competence Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Elise Bismuth
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Pediatric Endocrinology Department, National Competence Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Héléna Mosbah
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Bruno Donadille
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Sonja Janmaat
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Bruno Fève
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Isabelle Jéru
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Genetics Department, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Paris, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Genetics Department, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
20
|
Wada Y, Maekawa M, Ohnishi T, Balan S, Matsuoka S, Iwamoto K, Iwayama Y, Ohba H, Watanabe A, Hisano Y, Nozaki Y, Toyota T, Shimogori T, Itokawa M, Kobayashi T, Yoshikawa T. Peroxisome proliferator-activated receptor α as a novel therapeutic target for schizophrenia. EBioMedicine 2020; 62:103130. [PMID: 33279456 PMCID: PMC7728824 DOI: 10.1016/j.ebiom.2020.103130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The pathophysiology of schizophrenia, a major psychiatric disorder, remains elusive. In this study, the role of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor (RXR) families, belonging to the ligand-activated nuclear receptor superfamily, in schizophrenia, was analyzed. METHODS The PPAR/RXR family genes were screened by exploiting molecular inversion probe (MIP)-based targeted next-generation sequencing (NGS) using the samples of 1,200 Japanese patients with schizophrenia. The results were compared with the whole-genome sequencing databases of the Japanese cohort (ToMMo) and the gnomAD. To reveal the relationship between PPAR/RXR dysfunction and schizophrenia, Ppara KO mice and fenofibrate (a clinically used PPARα agonist)-administered mice were assessed by performing behavioral, histological, and RNA-seq analyses. FINDINGS Our findings indicate that c.209-2delA, His117Gln, Arg141Cys, and Arg226Trp of the PPARA gene are risk variants for schizophrenia. The c.209-2delA variant generated a premature termination codon. The three missense variants significantly decreased the activity of PPARα as a transcription factor in vitro. The Ppara KO mice exhibited schizophrenia-relevant phenotypes, including behavioral deficits and impaired synaptogenesis in the cerebral cortex. Oral administration of fenofibrate alleviated spine pathology induced by phencyclidine, an N-methyl-d-aspartate (NMDA) receptor antagonist. Furthermore, pre-treatment with fenofibrate suppressed the sensitivity of mice to another NMDA receptor antagonist, MK-801. RNA-seq analysis revealed that PPARα regulates the expression of synaptogenesis signaling pathway-related genes. INTERPRETATION The findings of this study indicate that the mechanisms underlying schizophrenia pathogenesis involve PPARα-regulated transcriptional machinery and modulation of synapse physiology. Hence, PPARα can serve as a novel therapeutic target for schizophrenia.
Collapse
Affiliation(s)
- Yuina Wada
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan; Department of Biological Science, Graduate School of Humanities and Science, Ochanomizu University, Tokyo 112-8610, Japan; Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan; Department of Biological Science, Graduate School of Humanities and Science, Ochanomizu University, Tokyo 112-8610, Japan.
| | - Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan; Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan; Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | | | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Hisako Ohba
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Yasuko Hisano
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Yayoi Nozaki
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Masanari Itokawa
- Center for Medical Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tetsuyuki Kobayashi
- Department of Biological Science, Graduate School of Humanities and Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan; Department of Biological Science, Graduate School of Humanities and Science, Ochanomizu University, Tokyo 112-8610, Japan.
| |
Collapse
|
21
|
Protracted rosiglitazone treatment exacerbates inflammation in white adipose tissues of adipocyte-specific Nfe2l1 knockout mice. Food Chem Toxicol 2020; 146:111836. [DOI: 10.1016/j.fct.2020.111836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/24/2020] [Indexed: 12/22/2022]
|
22
|
Abstract
PURPOSE OF REVIEW This review provides an up-to-date understanding of how peroxisome proliferator activated receptor γ (PPARγ) exerts its cardioprotective effect in the vasculature through its activation of novel PPARγ target genes in endothelium and vascular smooth muscle. RECENT FINDINGS In vascular endothelial cells, PPARγ plays a protective role by increasing nitric oxide bioavailability and preventing oxidative stress. RBP7 is a PPARγ target gene enriched in vascular endothelial cells, which is likely to form a positive feedback loop with PPARγ. In vascular smooth muscle cells, PPARγ antagonizes the renin-angiotensin system, maintains vascular integrity, suppresses vasoconstriction, and promotes vasodilation through distinct pathways. Rho-related BTB domain containing protein 1 (RhoBTB1) is a novel PPARγ gene target in vascular smooth muscle cells that mediates the protective effect of PPARγ by serving as a substrate adaptor between the Cullin-3 RING ubiquitin ligase and phosphodiesterase 5, thus restraining its activity through ubiquitination and proteasomal degradation. SUMMARY In the vasculature, PPARγ exerts its cardioprotective effect through its transcriptional activity in endothelium and vascular smooth muscle. From the understanding of PPARγ's transcription targets in those pathways, novel hypertension therapy target(s) will emerge.
Collapse
|
23
|
Shoaito H, Chauveau S, Gosseaume C, Bourguet W, Vigouroux C, Vatier C, Pienkowski C, Fournier T, Degrelle SA. Peroxisome proliferator-activated receptor gamma-ligand-binding domain mutations associated with familial partial lipodystrophy type 3 disrupt human trophoblast fusion and fibroblast migration. J Cell Mol Med 2020; 24:7660-7669. [PMID: 32519441 PMCID: PMC7339198 DOI: 10.1111/jcmm.15401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
The transcription factor peroxisome proliferator‐activated receptor gamma (PPARG) is essential for placental development, and alterations in its expression and/or activity are associated with human placental pathologies such as pre‐eclampsia or IUGR. However, the molecular regulation of PPARG in cytotrophoblast differentiation and in the underlying mesenchyme remains poorly understood. Our main goal was to study the impact of mutations in the ligand‐binding domain (LBD) of the PPARG gene on cytotrophoblast fusion (PPARGE352Q) and on fibroblast cell migration (PPARGR262G/PPARGL319X). Our results showed that, compared to cells with reconstituted PPARGWT, transfection with PPARGE352Q led to significantly lower PPARG activity and lower restoration of trophoblast fusion. Likewise, compared to PPARGWT fibroblasts, PPARGR262G/PPARGL319X fibroblasts demonstrated significantly inhibited cell migration. In conclusion, we report that single missense or nonsense mutations in the LBD of PPARG significantly inhibit cell fusion and migration processes.
Collapse
Affiliation(s)
- Hussein Shoaito
- INSERM, UMR-S1139 (3PHM), Université de Paris, Paris, France
| | - Sabine Chauveau
- INSERM, UMR-S1139 (3PHM), Université de Paris, Paris, France.,Laboratoire ICARE, Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Camille Gosseaume
- Inserm UMR-S938, Department of Endocrinology, Diabetology and Reproductive Endocrinology, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition (ICAN), AP-HP, Saint-Antoine Hospital, National Reference Centre of Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Sorbonne Université, Paris, France
| | - William Bourguet
- INSERM, CNRS, Centre de Biochimie Structurale (CBS), Université de Montpellier, Montpellier, France
| | - Corinne Vigouroux
- Inserm UMR-S938, Department of Endocrinology, Diabetology and Reproductive Endocrinology, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition (ICAN), AP-HP, Saint-Antoine Hospital, National Reference Centre of Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Sorbonne Université, Paris, France.,Department of Molecular Biology and Genetics, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Camille Vatier
- Inserm UMR-S938, Department of Endocrinology, Diabetology and Reproductive Endocrinology, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition (ICAN), AP-HP, Saint-Antoine Hospital, National Reference Centre of Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Sorbonne Université, Paris, France
| | - Catherine Pienkowski
- Endocrinology Unit, Reference Centre for Rare Gynecologic Diseases, Toulouse, France
| | - Thierry Fournier
- INSERM, UMR-S1139 (3PHM), Université de Paris, Paris, France.,PremUp Foundation, Paris, France
| | - Séverine A Degrelle
- INSERM, UMR-S1139 (3PHM), Université de Paris, Paris, France.,PremUp Foundation, Paris, France.,Inovarion, Paris, France
| |
Collapse
|
24
|
Bruder-Nascimento T, Kress TC, Belin de Chantemele EJ. Recent advances in understanding lipodystrophy: a focus on lipodystrophy-associated cardiovascular disease and potential effects of leptin therapy on cardiovascular function. F1000Res 2019; 8:F1000 Faculty Rev-1756. [PMID: 31656583 PMCID: PMC6798323 DOI: 10.12688/f1000research.20150.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 01/09/2023] Open
Abstract
Lipodystrophy is a disease characterized by a partial or total absence of adipose tissue leading to severe metabolic derangements including marked insulin resistance, type 2 diabetes, hypertriglyceridemia, and steatohepatitis. Lipodystrophy is also a source of major cardiovascular disorders which, in addition to hepatic failure and infection, contribute to a significant reduction in life expectancy. Metreleptin, the synthetic analog of the adipocyte-derived hormone leptin and current therapy of choice for patients with lipodystrophy, successfully improves metabolic function. However, while leptin has been associated with hypertension, vascular diseases, and inflammation in the context of obesity, it remains unknown whether its daily administration could further impair cardiovascular function in patients with lipodystrophy. The goal of this short review is to describe the cardiovascular phenotype of patients with lipodystrophy, speculate on the etiology of the disorders, and discuss how the use of murine models of lipodystrophy could be beneficial to address the question of the contribution of leptin to lipodystrophy-associated cardiovascular disease.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Pediatrics, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Taylor C. Kress
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric J. Belin de Chantemele
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Medicine, Section of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
25
|
Mukohda M. [Role of PPARγ, a transcription factor in cardiovascular disease]. Nihon Yakurigaku Zasshi 2019; 154:56-60. [PMID: 31406043 DOI: 10.1254/fpj.154.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand activated transcription factor known to regulate fatty acid metabolism. Thiazolidinediones (TZDs), PPARγ synthetic agonists, currently used to treat patients with type 2 diabetes, have been shown to lower the blood pressure and protect against vascular diseases such as atherosclerosis. In line with these findings, it has been reported that individuals with loss-of-function mutations of PPARγ developed sever early-onset hypertension in addition to metabolic abnormalities. Accumulating evidences suggest PPARγ in the vasculature has protective effects on cardiovascular disease despite unclear mechanism. Because of ubiquitous expression of PPARγ, TZDs are well-known to be associated with serious side effects such as weight gain, fluid retention, and bone fractures. Thus identification of mechanisms on tissue-specific PPARγ activity may lead to the development of targeted treatment which is characterized by no deleterious effects. This review discusses role of PPARγ in cardiovascular disease.
Collapse
Affiliation(s)
- Masashi Mukohda
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science
| |
Collapse
|
26
|
Nair AR, Agbor LN, Mukohda M, Liu X, Hu C, Wu J, Sigmund CD. Interference With Endothelial PPAR (Peroxisome Proliferator-Activated Receptor)-γ Causes Accelerated Cerebral Vascular Dysfunction in Response to Endogenous Renin-Angiotensin System Activation. Hypertension 2019; 72:1227-1235. [PMID: 30354810 DOI: 10.1161/hypertensionaha.118.11857] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Low-salt diet is beneficial in salt-sensitive hypertension but may provoke cardiovascular risk in patients with heart failure, diabetes mellitus, or other cardiovascular abnormalities because of endogenous renin-angiotensin system activation. PPAR (peroxisome proliferator-activated receptor)-γ is a transcription factor which promotes an antioxidant pathway in the endothelium. We studied transgenic mice expressing a dominant-negative mutation in PPAR-γ selectively in the endothelium (E-V290M) to test the hypothesis that endothelial PPAR-γ plays a protective role in response to low salt-mediated renin-angiotensin system activation. Plasma renin and Ang II (angiotensin II) were significantly and equally increased in all mice fed low salt for 6 weeks. Vasorelaxation to acetylcholine was not affected in basilar artery from E-V290M at baseline but was significantly and selectively impaired in E-V290M after low salt. Unlike basilar artery, low salt was not sufficient to induce vascular dysfunction in carotid artery or aorta. Endothelial dysfunction in the basilar artery from E-V290M mice fed low salt was attenuated by scavengers of superoxide, inhibitors of NADPH oxidase, or blockade of the Ang II AT1 (angiotensin type-1) receptor. Simultaneous AT1 and AT2 receptor blockade revealed that the restoration of endothelial function after AT1 receptor blockade was not a consequence of AT2 receptor activation. We conclude that interference with PPAR-γ in the endothelium produces endothelial dysfunction in the cerebral circulation in response to low salt-mediated activation of the endogenous renin-angiotensin system, mediated at least in part, through AT1 receptor activation and perturbed redox homeostasis. Moreover, our data suggest that the cerebral circulation may be particularly sensitive to inhibition of PPAR-γ activity and renin-angiotensin system activation.
Collapse
Affiliation(s)
- Anand R Nair
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Larry N Agbor
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Masashi Mukohda
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Xuebo Liu
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Chunyan Hu
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Jing Wu
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Curt D Sigmund
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| |
Collapse
|
27
|
Broekema M, Savage D, Monajemi H, Kalkhoven E. Gene-gene and gene-environment interactions in lipodystrophy: Lessons learned from natural PPARγ mutants. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:715-732. [PMID: 30742913 DOI: 10.1016/j.bbalip.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/13/2019] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
|
28
|
Mukohda M, Fang S, Wu J, Agbor LN, Nair AR, Ibeawuchi SRC, Hu C, Liu X, Lu KT, Guo DF, Davis DR, Keen HL, Quelle FW, Sigmund CD. RhoBTB1 protects against hypertension and arterial stiffness by restraining phosphodiesterase 5 activity. J Clin Invest 2019; 129:2318-2332. [PMID: 30896450 DOI: 10.1172/jci123462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mice selectively expressing PPARγ dominant negative mutation in vascular smooth muscle exhibit RhoBTB1-deficiency and hypertension. Our rationale was to employ genetic complementation to uncover the mechanism of action of RhoBTB1 in vascular smooth muscle. Inducible smooth muscle-specific restoration of RhoBTB1 fully corrected the hypertension and arterial stiffness by improving vasodilator function. Notably, the cardiovascular protection occurred despite preservation of increased agonist-mediated contraction and RhoA/Rho kinase activity, suggesting RhoBTB1 selectively controls vasodilation. RhoBTB1 augmented the cGMP response to nitric oxide by restraining the activity of phosphodiesterase 5 (PDE5) by acting as a substrate adaptor delivering PDE5 to the Cullin-3 E3 Ring ubiquitin ligase complex for ubiquitination inhibiting PDE5. Angiotensin-II infusion also caused RhoBTB1-deficiency and hypertension which was prevented by smooth muscle specific RhoBTB1 restoration. We conclude that RhoBTB1 protected from hypertension, vascular smooth muscle dysfunction, and arterial stiffness in at least two models of hypertension.
Collapse
Affiliation(s)
- Masashi Mukohda
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shi Fang
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jing Wu
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Larry N Agbor
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Anand R Nair
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stella-Rita C Ibeawuchi
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chunyan Hu
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Xuebo Liu
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ko-Ting Lu
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Deng-Fu Guo
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Deborah R Davis
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Henry L Keen
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Frederick W Quelle
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Curt D Sigmund
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
29
|
Zhu P, Lu H, Jing Y, Zhou H, Ding Y, Wang J, Guo D, Guo Z, Dong C. Interaction Between AGTR1 and PPARγ Gene Polymorphisms on the Risk of Nonalcoholic Fatty Liver Disease. Genet Test Mol Biomarkers 2019; 23:166-175. [PMID: 30793973 DOI: 10.1089/gtmb.2018.0203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS Nonalcoholic fatty liver disease (NAFLD) is an important public health issue worldwide. Several recent studies have reported that peroxisome proliferator-activated receptor-γ (PPARγ) and angiotensin II type 1 receptor (AGTR1) variants are associated with NAFLD occurrence, but the results have been inconsistent. The aim of this study was to analyze the interactions between PPARγ and AGTR1 polymorphisms and their associations with NAFLD in Chinese adults. METHODS Seven single nucleotide polymorphisms (SNPs) of the PPARγ gene and 5 SNPs of the AGTR1 gene were selected and genotyped in 1591 unrelated Chinese adults. The SNPAssoc package of R was used to examine the relationships between the selected SNPs and NAFLD. RESULTS After adjusting the covariance, the results from the overdominant model showed that participants carrying the T/C genotype of rs2638360 in AGTR1 have a decreased risk of NAFLD compared with those with T/T-C/C genotypes (odds ratio: 0.70, 95% confidence interval: 0.49-1.00). However, our results showed that none of the selected PPARγ variants were significantly associated with the risk of NAFLD after applying a false discovery rate correction. Among the 12 selected SNPs from PPARγ and AGTR1, model-based multifactor dimensionality reduction (MB-MDR) analyses for gene-gene interactions revealed that all the models were significantly associated with the increased risk of NAFLD (p < 0.05) except the 2-, 10-, 11-, and 12-locus models. Further, among the 10 SNPs negatively associated with NAFLD, the four-locus model (rs13431696 and rs3856806 in PPARγ, and rs5182, rs1492100 in ATGR1) and the five-locus model (rs9817428, rs1175543, rs13433696, and rs2920502 in PPARγ, and rs1492100 in ATGR1) were closely related with NAFLD susceptibility (p = 0.019 and p = 0.048, respectively). CONCLUSION Our present study suggests that interactions among multiple AGTR1 and PPARγ polymorphisms are associated with the risk of NAFLD in the Chinese population.
Collapse
Affiliation(s)
- Peifu Zhu
- 1 Zhangjiagang First People's Hospital, Suzhou, China
| | | | - Yang Jing
- 3 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, China
| | - Hui Zhou
- 4 Suzhou Industrial Park Centers for Disease Control and Prevention, Suzhou, China
| | - Yi Ding
- 4 Suzhou Industrial Park Centers for Disease Control and Prevention, Suzhou, China
| | - Jie Wang
- 3 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- 3 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, China
| | - Zhirong Guo
- 3 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, China
| | - Chen Dong
- 3 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Corrales P, Izquierdo-Lahuerta A, Medina-Gómez G. Maintenance of Kidney Metabolic Homeostasis by PPAR Gamma. Int J Mol Sci 2018; 19:ijms19072063. [PMID: 30012954 PMCID: PMC6073436 DOI: 10.3390/ijms19072063] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 01/12/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that control the transcription of specific genes by binding to regulatory DNA sequences. Among the three subtypes of PPARs, PPARγ modulates a broad range of physiopathological processes, including lipid metabolism, insulin sensitization, cellular differentiation, and cancer. Although predominantly expressed in adipose tissue, PPARγ expression is also found in different regions of the kidney and, upon activation, can redirect metabolism. Recent studies have highlighted important roles for PPARγ in kidney metabolism, such as lipid and glucose metabolism and renal mineral control. PPARγ is also implicated in the renin-angiotensin-aldosterone system and, consequently, in the control of systemic blood pressure. Accordingly, synthetic agonists of PPARγ have reno-protective effects both in diabetic and nondiabetic patients. This review focuses on the role of PPARγ in renal metabolism as a likely key factor in the maintenance of systemic homeostasis.
Collapse
Affiliation(s)
- Patricia Corrales
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos. Avda. de Atenas s/n. Alcorcón, 28922 Madrid, Spain.
| | - Adriana Izquierdo-Lahuerta
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos. Avda. de Atenas s/n. Alcorcón, 28922 Madrid, Spain.
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos. Avda. de Atenas s/n. Alcorcón, 28922 Madrid, Spain.
- MEMORISM Research Unit of University Rey Juan Carlos-Institute of Biomedical Research "Alberto Sols" (CSIC), 28029 Madrid, Spain.
| |
Collapse
|
31
|
Guillín-Amarelle C, Fernández-Pombo A, Sánchez-Iglesias S, Araújo-Vilar D. Lipodystrophic laminopathies: Diagnostic clues. Nucleus 2018; 9:249-260. [PMID: 29557732 PMCID: PMC5973260 DOI: 10.1080/19491034.2018.1454167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/02/2017] [Accepted: 03/15/2018] [Indexed: 01/19/2023] Open
Abstract
The nuclear lamina is a complex reticular structure that covers the inner face of the nucleus membrane in metazoan cells. It is mainly formed by intermediate filaments called lamins, and exerts essential functions to maintain the cellular viability. Lamin A/C provides mechanical steadiness to the nucleus and regulates genetic machinery. Laminopathies are tissue-specific or systemic disorders caused by variants in LMNA gene (primary laminopathies) or in other genes encoding proteins which are playing some role in prelamin A maturation or in lamin A/C function (secondary laminopathies). Those disorders in which adipose tissue is affected are called laminopathic lipodystrophies and include type 2 familial partial lipodystrophy and certain premature aging syndromes. This work summarizes the main clinical features of these syndromes, their associated comorbidities and the clues for the differential diagnosis with other lipodystrophic disorders.
Collapse
Affiliation(s)
- Cristina Guillín-Amarelle
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| |
Collapse
|
32
|
Qian X, Guo D, Zhou H, Qiu J, Wang J, Shen C, Guo Z, Xu Y, Dong C. Interactions Between PPARG and AGTR1 Gene Polymorphisms on the Risk of Hypertension in Chinese Han Population. Genet Test Mol Biomarkers 2017; 22:90-97. [PMID: 29266977 DOI: 10.1089/gtmb.2017.0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To explore the interactions between PPARG and AGTR1 polymorphisms and their associations with hypertension in the Chinese Han population. METHODS Seven single nucleotide polymorphisms (SNPs) of the PPARG gene and five SNPs of the AGTR1 gene were selected and genotyped in 1591 unrelated Chinese Han adults. The SNPAssoc package of R was used to analyze the associations between the selected SNPs and hypertension. The potential gene-gene interactions between PPARG and AGTR1 genes were tested by model-based multifactor dimensionality reduction (MB-MDR). RESULTS The frequencies of the C allele of rs3856806 and the G allele of rs13433696 in the PPARG gene were significantly lower in hypertensive subjects, whereas the A allele of rs9817428 in the PPARG gene was much higher in hypertensives. In addition, individuals with T allele of rs2933249 in the AGTR1 gene displayed a significantly decreased risk of hypertension. MB-MDR analyses suggested that the two-locus model (rs9817428 and rs2933249) and the three-locus model (rs9817428, rs3856806, and rs2933249) were significantly associated with a decreased risk of hypertension. Moreover, among the eight SNPs not individually associated with hypertension (rs12631819, rs2920502, rs1175543, and rs2972164 in the PPARG gene, and rs2638360, rs1492100, rs5182, and rs275646 in the AGTR1 gene), the two-locus model involving rs12631819 and rs5182 demonstrated increased susceptibility to hypertension, and the five-locus model involving rs12631819, rs2920502, rs2972164, rs5182, and rs2638360 demonstrated a significantly decreased risk of hypertension. CONCLUSION Polymorphisms in both the PPARG and AGTR1 genes were found to be significantly associated with hypertension. Moreover, there were significant gene-gene interactions identified between the PPARG and AGTR1 genes in relation to hypertension susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Xiaoyan Qian
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| | - Daoxia Guo
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| | - Hui Zhou
- 2 Suzhou Industrial Park Centers for Disease Control and Prevention , Suzhou, China
| | - Jing Qiu
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| | - Jie Wang
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| | - Chong Shen
- 3 Department of Epidemiology and Statistics, School of Public Health, Nanjing Medical University , Nanjing, China
| | - Zhirong Guo
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| | - Yong Xu
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| | - Chen Dong
- 1 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou, China
| |
Collapse
|
33
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
34
|
Woll AW, Quelle FW, Sigmund CD. PPARγ and retinol binding protein 7 form a regulatory hub promoting antioxidant properties of the endothelium. Physiol Genomics 2017; 49:653-658. [PMID: 28916634 DOI: 10.1152/physiolgenomics.00055.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of conserved ligand-activated nuclear receptor transcription factors heterogeneously expressed in mammalian tissues. PPARγ is recognized as a master regulator of adipogenesis, fatty acid metabolism, and glucose homeostasis, but genetic evidence also supports the concept that PPARγ regulates the cardiovascular system, particularly vascular function and blood pressure. There is now compelling evidence that the beneficial blood pressure-lowering effects of PPARγ activation are due to its activity in vascular smooth muscle and endothelium, through its modulation of nitric oxide-dependent vasomotor function. Endothelial PPARγ regulates the production and bioavailability of nitric oxide, while PPARγ in the smooth muscle regulates the vasomotor response to nitric oxide. We recently identified retinol binding protein 7 (RBP7) as a PPARγ target gene that is specifically and selectively expressed in the endothelium. In this review, we will discuss the evidence that RBP7 is required to mediate the antioxidant effects of PPARγ and mediate PPARγ target gene selectivity in the endothelium.
Collapse
Affiliation(s)
- Addison W Woll
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Interdisciplinary Program in Molecular Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Frederick W Quelle
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; .,UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
35
|
De Silva TM, Hu C, Kinzenbaw DA, Modrick ML, Sigmund CD, Faraci FM. Genetic Interference With Endothelial PPAR-γ (Peroxisome Proliferator-Activated Receptor-γ) Augments Effects of Angiotensin II While Impairing Responses to Angiotensin 1-7. Hypertension 2017; 70:559-565. [PMID: 28674038 DOI: 10.1161/hypertensionaha.117.09358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 12/25/2022]
Abstract
Pharmacological activation of PPAR-γ (peroxisome proliferator-activated receptor-γ) protects the vasculature. Much less is known on the cell-specific impact of PPAR-γ when driven by endogenous ligands. Recently, we found that endothelial PPAR-γ protects against angiotensin II-induced endothelial dysfunction. Here, we explored that concept further examining whether effects were sex dependent along with underlying mechanisms. We studied mice expressing a human dominant-negative mutation in PPAR-γ driven by the endothelial-specific vascular cadherin promoter (E-V290M), using nontransgenic littermates as controls. Acetylcholine (an endothelium-dependent agonist) produced similar relaxation of carotid arteries from nontransgenic and E-V290M mice. Incubation of isolated arteries with angiotensin II (1 nmol/L) overnight had no effect in nontransgenic, but reduced responses to acetylcholine by about 50% in male and female E-V290M mice (P<0.05). Endothelial function in E-V290M mice was restored to normal by inhibitors of superoxide (tempol), NADPH oxidase (VAS-2870), Rho kinase (Y-27632), ROCK2 (SLX-2119), NF-κB (nuclear factor-kappa B essential modulator-binding domain peptide), or interleukin-6 (neutralizing antibody). In addition, we hypothesized that PPAR-γ may influence the angiotensin 1-7 arm of the renin-angiotensin system. In the basilar artery, dilation to angiotensin 1-7 was selectively reduced in E-V290M mice by >50% (P<0.05), an effect reversed by Y-27632. Thus, effects of angiotensin II are augmented by interference with endothelial PPAR-γ through sex-independent mechanisms, involving oxidant-inflammatory signaling and ROCK2 (Rho kinase). The study also provides the first evidence that endothelial PPAR-γ interacts with angiotensin 1-7 responses. These critical roles for endothelial PPAR-γ have implications for pathophysiology and therapeutic approaches for vascular disease.
Collapse
Affiliation(s)
- T Michael De Silva
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Chunyan Hu
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Dale A Kinzenbaw
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Mary L Modrick
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Curt D Sigmund
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Frank M Faraci
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., F.M.F.) and Pharmacology (C.H., C.D.S., F.M.F.), Center for Hypertension Research, Carver College of Medicine, The University of Iowa; and Iowa City Veterans Affairs Healthcare System (F.M.F.).
| |
Collapse
|
36
|
Mukohda M, Lu KT, Guo DF, Wu J, Keen HL, Liu X, Ketsawatsomkron P, Stump M, Rahmouni K, Quelle FW, Sigmund CD. Hypertension-Causing Mutation in Peroxisome Proliferator-Activated Receptor γ Impairs Nuclear Export of Nuclear Factor-κB p65 in Vascular Smooth Muscle. Hypertension 2017; 70:174-182. [PMID: 28507170 DOI: 10.1161/hypertensionaha.117.09276] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/08/2017] [Accepted: 04/08/2017] [Indexed: 12/31/2022]
Abstract
Selective expression of dominant negative (DN) peroxisome proliferator-activated receptor γ (PPARγ) in vascular smooth muscle cells (SMC) results in hypertension, atherosclerosis, and increased nuclear factor-κB (NF-κB) target gene expression. Mesenteric SMC were cultured from mice designed to conditionally express wild-type (WT) or DN-PPARγ in response to Cre recombinase to determine how SMC PPARγ regulates expression of NF-κB target inflammatory genes. SMC-specific overexpression of WT-PPARγ or agonist-induced activation of endogenous PPARγ blunted tumor necrosis factor α (TNF-α)-induced NF-κB target gene expression and activity of an NF-κB-responsive promoter. TNF-α-induced gene expression responses were enhanced by DN-PPARγ in SMC. Although expression of NF-κB p65 was unchanged, nuclear export of p65 was accelerated by WT-PPARγ and prevented by DN-PPARγ in SMC. Leptomycin B, a nuclear export inhibitor, blocked p65 nuclear export and inhibited the anti-inflammatory action of PPARγ. Consistent with a role in facilitating p65 nuclear export, WT-PPARγ coimmunoprecipitated with p65, and WT-PPARγ was also exported from the nucleus after TNF-α treatment. Conversely, DN-PPARγ does not bind to p65 and was retained in the nucleus after TNF-α treatment. Transgenic mice expressing WT-PPARγ or DN-PPARγ specifically in SMC (S-WT or S-DN) were bred with mice expressing luciferase controlled by an NF-κB-responsive promoter to assess effects on NF-κB activity in whole tissue. TNF-α-induced NF-κB activity was decreased in aorta and carotid artery from S-WT but was increased in vessels from S-DN mice. We conclude that SMC PPARγ blunts expression of proinflammatory genes by inhibition of NF-κB activity through a mechanism promoting nuclear export of p65, which is abolished by DN mutation in PPARγ.
Collapse
Affiliation(s)
- Masashi Mukohda
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Ko-Ting Lu
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Deng-Fu Guo
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Jing Wu
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Henry L Keen
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Xuebo Liu
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Pimonrat Ketsawatsomkron
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Madeliene Stump
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Kamal Rahmouni
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Frederick W Quelle
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Curt D Sigmund
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa.
| |
Collapse
|
37
|
Is the Mouse a Good Model of Human PPARγ-Related Metabolic Diseases? Int J Mol Sci 2016; 17:ijms17081236. [PMID: 27483259 PMCID: PMC5000634 DOI: 10.3390/ijms17081236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
With the increasing number of patients affected with metabolic diseases such as type 2 diabetes, obesity, atherosclerosis and insulin resistance, academic researchers and pharmaceutical companies are eager to better understand metabolic syndrome and develop new drugs for its treatment. Many studies have focused on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), which plays a crucial role in adipogenesis and lipid metabolism. These studies have been able to connect this transcription factor to several human metabolic diseases. Due to obvious limitations concerning experimentation in humans, animal models—mainly mouse models—have been generated to investigate the role of PPARγ in different tissues. This review focuses on the metabolic features of human and mouse PPARγ-related diseases and the utility of the mouse as a model.
Collapse
|
38
|
Wang S, Dougherty EJ, Danner RL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res 2016; 111:76-85. [PMID: 27268145 DOI: 10.1016/j.phrs.2016.02.028] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/23/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor that regulates glucose and lipid metabolism, endothelial function and inflammation. Rosiglitazone (RGZ) and other thiazolidinedione (TZD) synthetic ligands of PPARγ are insulin sensitizers that have been used for the treatment of type 2 diabetes. However, undesirable side effects including weight gain, fluid retention, bone loss, congestive heart failure, and a possible increased risk of myocardial infarction and bladder cancer, have limited the use of TZDs. Therefore, there is a need to better understand PPARγ signaling and to develop safer and more effective PPARγ-directed therapeutics. In addition to PPARγ itself, many PPARγ ligands including TZDs bind to and activate G protein-coupled receptor 40 (GPR40), also known as free fatty acid receptor 1. GPR40 signaling activates stress kinase pathways that ultimately regulate downstream PPARγ responses. Recent studies in human endothelial cells have demonstrated that RGZ activation of GPR40 is essential to the optimal propagation of PPARγ genomic signaling. RGZ/GPR40/p38 MAPK signaling induces and activates PPARγ co-activator-1α, and recruits E1A binding protein p300 to the promoters of target genes, markedly enhancing PPARγ-dependent transcription. Therefore in endothelium, GPR40 and PPARγ function as an integrated signaling pathway. However, GPR40 can also activate ERK1/2, a proinflammatory kinase that directly phosphorylates and inactivates PPARγ. Thus the role of GPR40 in PPARγ signaling may have important implications for drug development. Ligands that strongly activate PPARγ, but do not bind to or activate GPR40 may be safer than currently approved PPARγ agonists. Alternatively, biased GPR40 agonists might be sought that activate both p38 MAPK and PPARγ, but not ERK1/2, avoiding its harmful effects on PPARγ signaling, insulin resistance and inflammation. Such next generation drugs might be useful in treating not only type 2 diabetes, but also diverse chronic and acute forms of vascular inflammation such as atherosclerosis and septic shock.
Collapse
Affiliation(s)
- Shuibang Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Edward J Dougherty
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert L Danner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Current Advances in the Biochemical and Physiological Aspects of the Treatment of Type 2 Diabetes Mellitus with Thiazolidinediones. PPAR Res 2016; 2016:7614270. [PMID: 27313601 PMCID: PMC4893583 DOI: 10.1155/2016/7614270] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/24/2016] [Indexed: 12/19/2022] Open
Abstract
The present review summarizes the current advances in the biochemical and physiological aspects in the treatment of type 2 diabetes mellitus (DM2) with thiazolidinediones (TZDs). DM2 is a metabolic disorder characterized by hyperglycemia, triggering the abnormal activation of physiological pathways such as glucose autooxidation, polyol's pathway, formation of advance glycation end (AGE) products, and glycolysis, leading to the overproduction of reactive oxygen species (ROS) and proinflammatory cytokines, which are responsible for the micro- and macrovascular complications of the disease. The treatment of DM2 has been directed toward the reduction of hyperglycemia using different drugs such as insulin sensitizers, as the case of TZDs, which are able to lower blood glucose levels and circulating triglycerides by binding to the nuclear peroxisome proliferator-activated receptor gamma (PPARγ) as full agonists. When TZDs interact with PPARγ, the receptor regulates the transcription of different genes involved in glucose homeostasis, insulin resistance, and adipogenesis. However, TZDs exhibit some adverse effects such as fluid retention, weight gain, hepatotoxicity, plasma-volume expansion, hemodilution, edema, bone fractures, and congestive heart failure, which limits their use in DM2 patients.
Collapse
|
40
|
Abstract
Dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) activity leads to significant alterations in cardiovascular and metabolic regulation. This is most keenly observed by the metabolic syndrome-like phenotypes exhibited by patients carrying mutations in PPARγ. We will summarize recent findings regarding mechanisms of PPARγ regulation in the cardiovascular and nervous systems focusing largely on PPARγ in the smooth muscle, endothelium, and brain. Canonically, PPARγ exerts its effects by regulating the expression of target genes in these cells, and we will discuss mechanisms by which PPARγ targets in the vasculature regulate cardiovascular function. We will also discuss emerging evidence that PPARγ in the brain is a mediator of appetite and obesity. Finally, we will briefly review how novel PPARγ activators control posttranslational modifications of PPARγ and their prospects to offer new therapeutic options for treatment of metabolic diseases without the adverse side effects of thiazolidinediones which strongly activate transcriptional activity of PPARγ.
Collapse
Affiliation(s)
- Madeliene Stump
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
- Graduate Program in Neuroscience, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Masashi Mukohda
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Chunyan Hu
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Curt D Sigmund
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- Graduate Program in Neuroscience, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
| |
Collapse
|
41
|
Miehle K, Porrmann J, Mitter D, Stumvoll M, Glaser C, Fasshauer M, Hoffmann K. Novel peroxisome proliferator-activated receptor gamma mutation in a family with familial partial lipodystrophy type 3. Clin Endocrinol (Oxf) 2016; 84:141-8. [PMID: 26119484 DOI: 10.1111/cen.12837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/20/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Familial partial lipodystrophy type 3 (FPLD3) is an autosomal dominant disorder with loss of subcutaneous adipose tissue at the extremities and metabolic complications such as insulin resistance, hypertriglyceridaemia and hypertension. The aim of this study was to characterize the molecular basis of a family of 5 affected members with FPLD3. METHODS A 61-year-old female index patient and her relatives were assessed by detailed clinical and biochemical examinations. Sequence analysis of the LMNA and PPARG gene was performed. Structure analysis of the identified mutation was carried out using published X-ray crystal structures. RESULTS A novel heterozygous PPARG mutation c.1040A>C was identified in all 5 patients of the family but not in unaffected controls. The resulting amino acid substitution p.Lys347Thr is located at the ligand-binding domain (LBD) of the protein and is predicted to disrupt critical molecular interactions to the helix 12 of the LBD. CONCLUSIONS A novel PPARG mutation leading to FPLD3 is described. The results emphasize the importance of the clinical diagnosis and of further molecular genetic analyses in patients with clinical signs of FPLD but unremarkable LMNA findings.
Collapse
Affiliation(s)
- Konstanze Miehle
- Department of Internal Medicine (Endocrinology and Nephrology), University of Leipzig, Leipzig, Germany
| | - Joseph Porrmann
- Department of Human Genetics, University of Halle, Halle, Germany
| | - Diana Mitter
- Department of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Department of Internal Medicine (Endocrinology and Nephrology), University of Leipzig, Leipzig, Germany
| | | | - Mathias Fasshauer
- Department of Internal Medicine (Endocrinology and Nephrology), University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB AdiposityDiseases, Leipzig, Germany
| | - Katrin Hoffmann
- Department of Human Genetics, University of Halle, Halle, Germany
| |
Collapse
|
42
|
Ketsawatsomkron P, Keen HL, Davis DR, Lu KT, Stump M, De Silva TM, Hilzendeger AM, Grobe JL, Faraci FM, Sigmund CD. Protective Role for Tissue Inhibitor of Metalloproteinase-4, a Novel Peroxisome Proliferator-Activated Receptor-γ Target Gene, in Smooth Muscle in Deoxycorticosterone Acetate-Salt Hypertension. Hypertension 2016; 67:214-22. [PMID: 26597823 PMCID: PMC4679422 DOI: 10.1161/hypertensionaha.115.06391] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/18/2015] [Indexed: 11/16/2022]
Abstract
Loss of peroxisome proliferator-activated receptor-γ (PPARγ) function causes hypertension, whereas its activation lowers blood pressure. Evidence suggests that these effects may be attributable to PPARγ activity in the vasculature. However, the specific transcriptional targets of PPARγ in vessels remain largely unidentified. In this study, we examined the role of smooth muscle PPARγ during salt-sensitive hypertension and investigated its transcriptional targets and functional effect. Transgenic mice expressing dominant-negative PPARγ (S-P467L) in smooth muscle cells were more prone to deoxycorticosterone acetate-salt-induced hypertension and mesenteric arterial dysfunction compared with nontransgenic controls. Despite similar morphometry at baseline, vascular remodeling in conduit and small arteries was enhanced in S-P467L after deoxycorticosterone acetate-salt treatment. Gene expression profiling in aorta and mesenteric arteries revealed significantly decreased expression of tissue inhibitor of metalloproteinase-4 (TIMP-4) in S-P467L. Expression of TIMP-4 was increased by deoxycorticosterone acetate-salt treatment, but this increase was ablated in S-P467L. Interference with PPARγ activity either by treatment with a PPARγ inhibitor, GW9662, or by expressing P467L PPARγ markedly suppressed TIMP-4 in primary smooth muscle cells. PPARγ binds to a PPAR response element (PPRE) in chromatin close to the TIMP-4 gene in smooth muscle cells, suggesting that TIMP-4 is a novel target of PPARγ. The interference with PPARγ and decrease in TIMP-4 were accompanied by an increase in total matrix metalloproteinase activity. PPARγ-mediated loss of TIMP-4 increased, whereas overexpression of TIMP-4 decreased smooth muscle cell migration in a scratch assay. Our findings highlight a protective mechanism induced by PPARγ in deoxycorticosterone acetate-salt treatment, establishing a novel mechanistic link between PPARγ and TIMP-4.
Collapse
Affiliation(s)
- Pimonrat Ketsawatsomkron
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Henry L Keen
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Deborah R Davis
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Ko-Ting Lu
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Madeliene Stump
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - T Michael De Silva
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Aline M Hilzendeger
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Justin L Grobe
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Frank M Faraci
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA
| | - Curt D Sigmund
- From the Department of Pharmacology, Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Iowa City Veterans Affairs Healthcare System, IA.
| |
Collapse
|
43
|
Mukohda M, Stump M, Ketsawatsomkron P, Hu C, Quelle FW, Sigmund CD. Endothelial PPAR-γ provides vascular protection from IL-1β-induced oxidative stress. Am J Physiol Heart Circ Physiol 2015; 310:H39-48. [PMID: 26566726 DOI: 10.1152/ajpheart.00490.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022]
Abstract
Loss of peroxisome proliferator-activated receptor (PPAR)-γ function in the vascular endothelium enhances atherosclerosis and NF-κB target gene expression in high-fat diet-fed apolipoprotein E-deficient mice. The mechanisms by which endothelial PPAR-γ regulates inflammatory responses and protects against atherosclerosis remain unclear. To assess functional interactions between PPAR-γ and inflammation, we used a model of IL-1β-induced aortic dysfunction in transgenic mice with endothelium-specific overexpression of either wild-type (E-WT) or dominant negative PPAR-γ (E-V290M). IL-1β dose dependently decreased IκB-α, increased phospho-p65, and increased luciferase activity in the aorta of NF-κB-LUC transgenic mice. IL-1β also dose dependently reduced endothelial-dependent relaxation by ACh. The loss of ACh responsiveness was partially improved by pretreatment of the vessels with the PPAR-γ agonist rosiglitazone or in E-WT. Conversely, IL-1β-induced endothelial dysfunction was worsened in the aorta from E-V290M mice. Although IL-1β increased the expression of NF-κB target genes, NF-κB p65 inhibitor did not alleviate endothelial dysfunction induced by IL-1β. Tempol, a SOD mimetic, partially restored ACh responsiveness in the IL-1β-treated aorta. Notably, tempol only modestly improved protection in the E-WT aorta but had an increased protective effect in the E-V290M aorta compared with the aorta from nontransgenic mice, suggesting that PPAR-γ-mediated protection involves antioxidant effects. IL-1β increased ROS and decreased the phospho-endothelial nitric oxide synthase (Ser(1177))-to-endothelial nitric oxide synthase ratio in the nontransgenic aorta. These effects were completely abolished in the aorta with endothelial overexpression of WT PPAR-γ but were worsened in the aorta with E-V290M even in the absence of IL-1β. We conclude that PPAR-γ protects against IL-1β-mediated endothelial dysfunction through a reduction of oxidative stress responses but not by blunting IL-1β-mediated NF-κB activity.
Collapse
Affiliation(s)
- Masashi Mukohda
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Madeliene Stump
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Pimonrat Ketsawatsomkron
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Chunyan Hu
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Frederick W Quelle
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
44
|
Molecular mechanisms regulating vascular tone by peroxisome proliferator activated receptor gamma. Curr Opin Nephrol Hypertens 2015; 24:123-30. [PMID: 25587903 DOI: 10.1097/mnh.0000000000000103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent findings on the regulation of vascular tone by the nuclear receptor transcription factor, peroxisome proliferator activated receptor (PPAR) γ. Much of the recent work utilizes genetic tools to interrogate the significance of PPARγ in endothelial and smooth muscle cells and novel PPARγ target genes have been identified. RECENT FINDINGS Endothelial PPARγ prevents inflammation and oxidative stress, while promoting vasodilation by controlling the regulation of NADPH oxidase, catalase and superoxide dismutase gene expression. Moreover, the protective functions of endothelial PPARγ appear more prominent during disease conditions. Novel findings also suggest a role for endothelial PPARγ as a mediator of whole body metabolism. In smooth muscle cells, PPARγ regulates vascular tone by targeting genes involved with contraction and relaxation signaling cascades, some of which is via transcriptional activation, and some through novel mechanisms regulating protein turnover. Furthermore, aberrant changes in renin-angiotensin system components and exacerbated responses to angiotensin II induced vascular dysfunction are observed when PPARγ function is lost in smooth muscle cells. SUMMARY With these recent advances based partially on lessons from patients with PPARγ mutants, we conclude that vascular PPARγ is protective and plays an important role in the regulation of vascular tone.
Collapse
|
45
|
Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol 2015; 71:40-56. [PMID: 25869516 DOI: 10.1016/j.vph.2015.03.005] [Citation(s) in RCA: 616] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/28/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022]
Abstract
The concept of mild chronic vascular inflammation as part of the pathophysiology of cardiovascular disease, most importantly hypertension and atherosclerosis, has been well accepted. Indeed there are links between vascular inflammation, endothelial dysfunction and oxidative stress. However, there are still gaps in our understanding regarding this matter that might be the cause behind disappointing results of antioxidant therapy for cardiovascular risk factors in large-scale long-term randomised controlled trials. Apart from the limitations of our knowledge, limitations in methodology and assessment of the body's endogenous and exogenous oxidant-antioxidant status are a serious handicap. The pleiotropic effects of antioxidant and anti-inflammation that are shown by some well-established antihypertensive agents and statins partly support the idea of using antioxidants in vascular diseases as still relevant. This review aims to provide an overview of the links between oxidative stress, vascular inflammation, endothelial dysfunction and cardiovascular risk factors, importantly focusing on blood pressure regulation and atherosclerosis. In view of the potential benefits of antioxidants, this review will also examine the proposed role of vitamin C, vitamin E and polyphenols in cardiovascular diseases as well as the success or failure of antioxidant therapy for cardiovascular diseases in clinical trials.
Collapse
Affiliation(s)
- Hawa N Siti
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Department of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Y Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - J Kamsiah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
46
|
De Silva TM, Ketsawatsomkron P, Pelham C, Sigmund CD, Faraci FM. Genetic interference with peroxisome proliferator-activated receptor γ in smooth muscle enhances myogenic tone in the cerebrovasculature via A Rho kinase-dependent mechanism. Hypertension 2014; 65:345-51. [PMID: 25385762 DOI: 10.1161/hypertensionaha.114.04541] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myogenic responses by resistance vessels are a key component of autoregulation in brain, thus playing a crucial role in regulating cerebral blood flow and protecting the blood-brain barrier against potentially detrimental elevations in blood pressure. Although cerebrovascular disease is often accompanied by alterations in myogenic responses, mechanisms that control these changes are poorly understood. Peroxisome proliferator-activated receptor γ has emerged as a regulator of vascular tone. We hypothesized that interference with peroxisome proliferator-activated receptor γ in smooth muscle would augment myogenic responses in cerebral arteries. We studied transgenic mice expressing a dominant-negative mutation in peroxisome proliferator-activated receptor γ selectively in smooth muscle (S-P467L) and nontransgenic littermates. Myogenic tone in middle cerebral arteries from S-P467L was elevated 3-fold when compared with nontransgenic littermates. Rho kinase is thought to play a major role in cerebrovascular disease. The Rho kinase inhibitor, Y-27632, abolished augmented myogenic tone in middle cerebral arteries from S-P467L mice. CN-03, which modifies RhoA making it constitutively active, elevated myogenic tone to ≈60% in both strains, via a Y-27632-dependent mechanism. Large conductance Ca(2+)-activated K(+) channels (BKCa) modulate myogenic tone. Inhibitors of BKCa caused greater constriction in middle cerebral arteries from nontransgenic littermates when compared with S-P467L. Expression of RhoA or Rho kinase-I/II protein was similar in cerebral arteries from S-P467L mice. Overall, the data suggest that peroxisome proliferator-activated receptor γ in smooth muscle normally inhibits Rho kinase and promotes BKCa function, thus influencing myogenic tone in resistance arteries in brain. These findings have implications for mechanisms that underlie large- and small-vessel disease in brain, as well as regulation of cerebral blood flow.
Collapse
Affiliation(s)
- T Michael De Silva
- From the Departments of Internal Medicine (T.M.D.S., C.D.S, F.M.F.) and Pharmacology (P.K., C.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; and Veterans Affairs Healthcare System, Iowa City, IA (F.M.F.)
| | - Pimonrat Ketsawatsomkron
- From the Departments of Internal Medicine (T.M.D.S., C.D.S, F.M.F.) and Pharmacology (P.K., C.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; and Veterans Affairs Healthcare System, Iowa City, IA (F.M.F.)
| | - Christopher Pelham
- From the Departments of Internal Medicine (T.M.D.S., C.D.S, F.M.F.) and Pharmacology (P.K., C.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; and Veterans Affairs Healthcare System, Iowa City, IA (F.M.F.)
| | - Curt D Sigmund
- From the Departments of Internal Medicine (T.M.D.S., C.D.S, F.M.F.) and Pharmacology (P.K., C.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; and Veterans Affairs Healthcare System, Iowa City, IA (F.M.F.)
| | - Frank M Faraci
- From the Departments of Internal Medicine (T.M.D.S., C.D.S, F.M.F.) and Pharmacology (P.K., C.P., C.D.S., F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; and Veterans Affairs Healthcare System, Iowa City, IA (F.M.F.).
| |
Collapse
|
47
|
Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc Natl Acad Sci U S A 2014; 111:13127-32. [PMID: 25157153 DOI: 10.1073/pnas.1410428111] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARG) is a master transcriptional regulator of adipocyte differentiation and a canonical target of antidiabetic thiazolidinedione medications. In rare families, loss-of-function (LOF) mutations in PPARG are known to cosegregate with lipodystrophy and insulin resistance; in the general population, the common P12A variant is associated with a decreased risk of type 2 diabetes (T2D). Whether and how rare variants in PPARG and defects in adipocyte differentiation influence risk of T2D in the general population remains undetermined. By sequencing PPARG in 19,752 T2D cases and controls drawn from multiple studies and ethnic groups, we identified 49 previously unidentified, nonsynonymous PPARG variants (MAF < 0.5%). Considered in aggregate (with or without computational prediction of functional consequence), these rare variants showed no association with T2D (OR = 1.35; P = 0.17). The function of the 49 variants was experimentally tested in a novel high-throughput human adipocyte differentiation assay, and nine were found to have reduced activity in the assay. Carrying any of these nine LOF variants was associated with a substantial increase in risk of T2D (OR = 7.22; P = 0.005). The combination of large-scale DNA sequencing and functional testing in the laboratory reveals that approximately 1 in 1,000 individuals carries a variant in PPARG that reduces function in a human adipocyte differentiation assay and is associated with a substantial risk of T2D.
Collapse
|
48
|
Carrillo-Sepulveda MA, Keen HL, Davis DR, Grobe JL, Sigmund CD. Role of vascular smooth muscle PPARγ in regulating AT1 receptor signaling and angiotensin II-dependent hypertension. PLoS One 2014; 9:e103786. [PMID: 25122005 PMCID: PMC4133177 DOI: 10.1371/journal.pone.0103786] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/04/2014] [Indexed: 12/04/2022] Open
Abstract
Peroxisome proliferator activated receptor γ (PPARγ) has been reported to play a protective role in the vasculature; however, the underlying mechanisms involved are not entirely known. We previously showed that vascular smooth muscle-specific overexpression of a dominant negative human PPARγ mutation in mice (S-P467L) leads to enhanced myogenic tone and increased angiotensin-II-dependent vasoconstriction. S-P467L mice also exhibit increased arterial blood pressure. Here we tested the hypotheses that a) mesenteric smooth muscle cells isolated from S-P467L mice exhibit enhanced angiotensin-II AT1 receptor signaling, and b) the increased arterial pressure of S-P467L mice is angiotensin-II AT1 receptor dependent. Phosphorylation of mitogen-activated protein/extracellular signal-regulated kinase (ERK1/2) was robustly increased in mesenteric artery smooth muscle cell cultures from S-P467L in response to angiotensin-II. The increase in ERK1/2 activation by angiotensin-II was blocked by losartan, a blocker of AT1 receptors. Angiotensin-II-induced ERK1/2 activation was also blocked by Tempol, a scavenger of reactive oxygen species, and correlated with increased Nox4 protein expression. To investigate whether endogenous renin-angiotensin system activity contributes to the elevated arterial pressure in S-P467L, non-transgenic and S-P467L mice were treated with the AT1 receptor blocker, losartan (30 mg/kg per day), for 14-days and arterial pressure was assessed by radiotelemetry. At baseline S-P467L mice showed a significant increase of systolic arterial pressure (142.0±10.2 vs 129.1±3.0 mmHg, p<0.05). Treatment with losartan lowered systolic arterial pressure in S-P467L (132.2±6.9 mmHg) to a level similar to untreated non-transgenic mice. Losartan also lowered arterial pressure in non-transgenic (113.0±3.9 mmHg) mice, such that there was no difference in the losartan-induced depressor response between groups (−13.53±1.39 in S-P467L vs −16.16±3.14 mmHg in non-transgenic). Our results suggest that interference with PPARγ in smooth muscle: a) causes enhanced angiotensin-II AT1 receptor-mediated ERK1/2 activation in resistance vessels, b) and may elevate arterial pressure through both angiotensin-II AT1 receptor-dependent and -independent mechanisms.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Arterial Pressure/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- Hypertension/drug therapy
- Hypertension/metabolism
- Losartan/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- PPAR gamma/metabolism
- Reactive Oxygen Species/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Renin-Angiotensin System/drug effects
- Signal Transduction/drug effects
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Maria Alicia Carrillo-Sepulveda
- Department of Pharmacology and Roy J. and A. Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Henry L. Keen
- Department of Pharmacology and Roy J. and A. Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Deborah R. Davis
- Department of Pharmacology and Roy J. and A. Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Justin L. Grobe
- Department of Pharmacology and Roy J. and A. Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Curt D. Sigmund
- Department of Pharmacology and Roy J. and A. Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
49
|
Iwanishi M, Ebihara K, Kusakabe T, Washiyama M, Ito-Kobayashi J, Nakamura F, Togawa T, Ozamoto Y, Hagiwara A, Nakao K. Primary intestinal follicular lymphoma and premature atherosclerosis in a Japanese diabetic patient with atypical familial partial lipodystrophy. Intern Med 2014; 53:851-8. [PMID: 24739605 DOI: 10.2169/internalmedicine.53.1713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We experienced a case of primary intestinal follicular lymphoma and premature atherosclerosis in a diabetic patient with familial partial lipodystrophy (FPL) that was detected when the patient was evaluated for laparoscopic sleeve gastrectomy (LSG). As FPL is generally considered to be rare, FPL is often underdiagnosed, especially in obese patients. Therefore, the prevalence of FPL is higher than previous estimates. Our case illustrates that clinicians should perform screening for atherosclerosis and malignancy at the preoperative evaluation and may need to perform metabolic surgery earlier to prevent the development of excess truncal fat, complicated diabetes and atherosclerosis in patients with FPL.
Collapse
Affiliation(s)
- Masanori Iwanishi
- Department of Diabetes and Endocrinology, Kusatsu General Hospital, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vatier C, Bidault G, Briand N, Guénantin AC, Teyssières L, Lascols O, Capeau J, Vigouroux C. What the genetics of lipodystrophy can teach us about insulin resistance and diabetes. Curr Diab Rep 2013; 13:757-67. [PMID: 24026869 DOI: 10.1007/s11892-013-0431-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic lipodystrophic syndromes are rare diseases characterized by generalized or partial fat atrophy (lipoatrophy) associated with severe metabolic complications such as insulin resistance (IR), diabetes, dyslipidemia, nonalcoholic fatty liver disease, and ovarian hyperandrogenism. During the last 15 years, mutations in several genes have been shown to be responsible for monogenic forms of lipodystrophic syndromes, of autosomal dominant or recessive transmission. Although the molecular basis of lipodystrophies is heterogeneous, most mutated genes lead to impaired adipogenesis, adipocyte lipid storage, and/or formation or maintenance of the adipocyte lipid droplet (LD), showing that primary alterations of adipose tissue (AT) can result in severe systemic metabolic and endocrine consequences. The reduced expandability of AT alters its ability to buffer excess caloric intake, leading to ectopic lipid storage that impairs insulin signaling and other cellular functions ("lipotoxicity"). Genetic studies have also pointed out the close relationships between ageing, inflammatory processes, lipodystrophy, and IR.
Collapse
Affiliation(s)
- Camille Vatier
- INSERM UMR_S938, Centre de Recherche Saint-Antoine, 75012, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|