1
|
Yuan J, Huang R, Nao J, Dong X. The role of semaphorin 3A in the pathogenesis and progression of Alzheimer's disease and other aging-related diseases: A comprehensive review. Pharmacol Res 2025; 215:107732. [PMID: 40222695 DOI: 10.1016/j.phrs.2025.107732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Aging serves as a pivotal factor in the etiology of numerous diseases, such as Alzheimer's disease (AD), Parkinson's disease, diabetes, osteoarthritis, atherosclerosis and aging-related macular degeneration. Notably, these diseases often interact with AD through various pathways, facilitating the onset or progression of one another. Semaphorin 3 A (Sema3A), a protein that is essential for axonal guidance during neural development, has recently been identified as a novel regulator in the pathogenesis and progression of multiple aging-related diseases. This article provides a comprehensive review of the expression patterns and mechanisms of action of Sema3A in these diseases. Specifically, Sema3A influences the occurrence and development of aging-related diseases by participating in oxidative stress, inflammatory responses, apoptosis, and synaptic plasticity. Therefore, therapeutic strategies targeting Sema3A present promising avenues for delaying the progression of aging-related diseases and offer novel insights and strategies for their treatment.
Collapse
Affiliation(s)
- Jiayu Yuan
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| |
Collapse
|
2
|
Gerhardt T, Huynh P, McAlpine CS. Neuroimmune circuits in the plaque and bone marrow regulate atherosclerosis. Cardiovasc Res 2025; 120:2395-2407. [PMID: 39086175 PMCID: PMC11976727 DOI: 10.1093/cvr/cvae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 08/02/2024] Open
Abstract
Atherosclerosis remains the leading cause of death globally. Although its focal pathology is atheroma that develops in arterial walls, atherosclerosis is a systemic disease involving contributions by many organs and tissues. It is now established that the immune system causally contributes to all phases of atherosclerosis. Recent and emerging evidence positions the nervous system as a key modulator of inflammatory processes that underlie atherosclerosis. This neuroimmune cross-talk, we are learning, is bidirectional, and immune-regulated afferent signalling is becoming increasingly recognized in atherosclerosis. Here, we summarize data and concepts that link the immune and nervous systems in atherosclerosis by focusing on two important sites, the arterial vessel and the bone marrow.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friede Springer Center for Cardiovascular Prevention at Charité, Berlin, Germany
| | - Pacific Huynh
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
3
|
Yuan X, Shen G, Xiao H, Wang Z, Ma Y, Qin X. Netrin-1 and RGMa: Novel Regulators of Atherosclerosis-Related Diseases. Cardiovasc Drugs Ther 2025; 39:211-219. [PMID: 37439909 DOI: 10.1007/s10557-023-07478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUNDS Neuronal guidance proteins (NGPs) have been demonstrated to guide the elongation of neuronal axonal growth cones in the developing central nervous system. Non-neuronal functions of NGPs have also been described, especially in relation to atherosclerosis. FINDINGS Netrin-1 and repulsive guidance molecule a (RGMa) are NGPs that have been shown to regulate endothelial cell adhesion and angiogenesis, macrophage migration and apoptosis, smooth muscle cells (SMCs) phenotypic dedifferentiation and mobility, chemokine activities, and inflammatory responses during atherosclerosis initiation and progression. PURPOSES However, mechanistic studies have generated controversy about the specific role of Netrin-1 in atherosclerosis due to the diversity of its structure, receptors and cell sources, and the actions of RGMa in atherosclerosis have not been reported in previous reviews. Therefore, the current work reviews the evidence for roles of Netrin-1 and RGMa in the initiation and progression of atherosclerosis and discusses potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiaofan Yuan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Chongqing, Yuzhong District, China
| | - Guanru Shen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Chongqing, Yuzhong District, China
| | - Hongmei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Chongqing, Yuzhong District, China
| | - Zijie Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Chongqing, Yuzhong District, China
| | - Yue Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Chongqing, Yuzhong District, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Chongqing, Yuzhong District, China.
| |
Collapse
|
4
|
Hou J, Zheng L, Li X, Sun Y. CircZNF609 sponges miR-135b to up-regulate SEMA3A expression to alleviate ox-LDL-induced atherosclerosis. Mol Cell Biochem 2025; 480:1105-1120. [PMID: 38819599 DOI: 10.1007/s11010-024-05031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
The initiation and progression of atherosclerotic plaque caused by abnormal lipid metabolism is one of the main causes of atherosclerosis (AS). Lipid droplet accumulation has become a novel research pointcut for AS treatment in recent years. In AS patients, miR-135b level was up-regulated relative to the normal cases, which showed negative correlations with the levels of Semaphorin 3A (SEMA3A) and circZNF609, separately. The U937-derived macrophages were cultured with ox-LDL to establish AS models in vitro. After that, the lipid accumulation, inflammation, mitochondrial dysfunction and cell death were evaluated by ORO, ELISA, RT-qPCR, western blot, JC-1 and FCM assays respectively. Transfection of the circZNF609 expression vector notably declined lipid accumulation, attenuated inflammation, reduced mitochondrial dysfunction and inhibited cell death in ox-LDL-stimulated cells. The direct binding of miR-135b to circZNF609 in vitro was confirmed using RIP assay, and SEMA3A expression was up-regulated by circZNF609 overexpression. After manipulating the endogenous expressions of circZNF609, miR-135b and SEMA3A, the above damages in ox-LDL-stimulated cells were rescued by inhibition of miR-135b expression and overexpression of circZNF609 or SEMA3A. Besides, the AS mice model was built to demonstrate the excessive lipid accumulation, increasing inflammation and cell death in AS pathogenesis according to the results of HE staining, ELISA and IHC assays, while these damages were reversed after overexpression of circZNF609 or SEMA3A. In AS models, overexpressed circZNF609 prevents the AS progression through depleting miR-135b expression and subsequent up-regulation of SEMA3A expression to overwhelm lipid accumulation, mitochondrial dysfunction and cell death.
Collapse
Affiliation(s)
- Jian Hou
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Street, Tai'an, 271021, Shandong, People's Republic of China
| | - Lingling Zheng
- Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying District, Dongying, 257000, Shandong, People's Republic of China
| | - Xiangyun Li
- Outpatient Department, Feicheng People's Hospital, Tai'an, 271600, Shandong, People's Republic of China
| | - Yao Sun
- Department of General Practice, Zibo Central Hospital, No.54, Gongqingtuan Road, Zhangdian District, Zibo, 255036, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Schlegel M, Cyr Y, Newman AAC, Schreyer K, Barcia Durán JG, Sharma M, Bozal FK, Gourvest M, La Forest M, Afonso MS, van Solingen C, Fisher EA, Moore KJ. Targeting Unc5b in macrophages drives atherosclerosis regression and pro-resolving immune cell function. Proc Natl Acad Sci U S A 2024; 121:e2412690121. [PMID: 39436659 PMCID: PMC11536151 DOI: 10.1073/pnas.2412690121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Atherosclerosis results from lipid-driven inflammation of the arterial wall that fails to resolve. Imbalances in macrophage accumulation and function, including diminished migratory capacity and defective efferocytosis, fuel maladaptive inflammation and plaque progression. The neuroimmune guidance cue netrin-1 has dichotomous roles in inflammation partly due to its multiple receptors; in atherosclerosis, netrin-1 promotes macrophage survival and retention via its receptor Unc5b. To minimize the pleiotropic effects of targeting netrin-1, we tested the therapeutic potential of deleting Unc5b in mice with advanced atherosclerosis. We generated Unc5bfl/flCx3cr1creERT2/WT mice, which allowed conditional deletion of Un5b (∆Unc5bMØ) in monocytes and macrophages by tamoxifen injection. After inducing advanced atherosclerosis by hepatic PCSK9 overexpression and western diet feeding for 20 wk, Unc5b was deleted and hypercholesterolemia was normalized to simulate clinical lipid management. Deletion of myeloid Unc5b led to a 40% decrease in atherosclerotic plaque burden and reduced plaque complexity compared to Unc5bfl/flCx3cr1WT/WT littermate controls (CtrlMØ). Consistently, plaque macrophage content was reduced by 50% in ∆Unc5bMØ mice due to reduced plaque Ly6Chi monocyte recruitment and macrophage retention. Compared to CtrlMØ mice, plaques in ∆Unc5bMØ mice had reduced necrotic area and fewer apoptotic cells, which correlated with improved efferocytotic capacity by Unc5b-deficient macrophages in vivo and in vitro. Beneficial changes in macrophage dynamics in the plaque upon Unc5b deletion were accompanied by an increase in atheroprotective T cell populations, including T-regulatory and Th2 cells. Our data identify Unc5b in advanced atherosclerosis as a therapeutic target to induce pro-resolving restructuring of the plaque immune cells and to promote atherosclerosis regression.
Collapse
Affiliation(s)
- Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, Klinikum rechts der Isar, Technical University of Munich (TUM) School of Medicine and Health, Munich81675, Germany
| | - Yannick Cyr
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Alexandra A. C. Newman
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Korbinian Schreyer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, Klinikum rechts der Isar, Technical University of Munich (TUM) School of Medicine and Health, Munich81675, Germany
| | - José Gabriel Barcia Durán
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Monika Sharma
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Fazli K. Bozal
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Morgane Gourvest
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Maxwell La Forest
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Milessa S. Afonso
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Coen van Solingen
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Edward A. Fisher
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University Langone Health, New York, NY10016
| | - Kathryn J. Moore
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University Langone Health, New York, NY10016
| |
Collapse
|
6
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
7
|
Cai M, Zheng Q, Chen Y, Liu S, Zhu H, Bai B. Insights from the neural guidance factor Netrin-1 into neurodegeneration and other diseases. Front Mol Neurosci 2024; 17:1379726. [PMID: 38638604 PMCID: PMC11024333 DOI: 10.3389/fnmol.2024.1379726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Netrin-1 was initially discovered as a neuronal growth cue for axonal guidance, and its functions have later been identified in inflammation, tumorigenesis, neurodegeneration, and other disorders. We have recently found its alterations in the brains with Alzheimer's disease, which might provide important clues to the mechanisms of some unique pathologies. To provide better understanding of this promising molecule, we here summarize research progresses in genetics, pathology, biochemistry, cell biology and other studies of Netrin-1 about its mechanistic roles and biomarker potentials with an emphasis on clinical neurodegenerative disorders in order to expand understanding of this promising molecular player in human diseases.
Collapse
Affiliation(s)
- Minqi Cai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Qian Zheng
- Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiqiang Chen
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Siyuan Liu
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huimin Zhu
- Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Ji S, Zhao B, Gao Y, Xie J, Han H, Wu Q, Yang D. Cinnamaldehyde attenuates streptozocin-induced diabetic osteoporosis in a rat model by modulating netrin-1/DCC-UNC5B signal transduction. Front Pharmacol 2024; 15:1367806. [PMID: 38628640 PMCID: PMC11019308 DOI: 10.3389/fphar.2024.1367806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Cinnamaldehyde (CMD) is a major functional component of Cinnamomum verum and has shown treatment effects against diverse bone diseases. This study aimed to assess the anti-diabetic osteoporosis (DOP) potential of diabetes mellitus (DM) and to explore the underlying mechanism driving the activity of CMD. Methods: A DOP model was induced via an intraperitoneal injection of streptozocin (STZ) into Sprague-Dawley rats, and then two different doses of CMD were administered to the rats. The effects of CMD on the strength, remodeling activity, and histological structure of the bones were assessed. Changes in the netrin-1 related pathways also were detected to elucidate the mechanism of the anti-DOP activity by CMD. Results: CMD had no significant effect on the body weight or blood glucose level of the model rats. However, the data showed that CMD improved the bone strength and bone remodeling activity as well as attenuating the bone structure destruction in the DOP rats in a dose-dependent manner. The expression of netrin-1, DCC, UNC5B, RANKL, and OPG was suppressed, while the expression of TGF-β1, cathepsin K, TRAP, and RANK was induced by the STZ injection. CMD administration restored the expression of all of these indicators at both the mRNA and protein levels, indicating that the osteoclast activity was inhibited by CMD. Conclusion: The current study demonstrated that CMD effectively attenuated bone impairments associated with DM in a STZ-induced DOP rat model, and the anti-DOP effects of CMD were associated with the modulation of netrin-1/DCC/UNC5B signal transduction.
Collapse
Affiliation(s)
- Songjie Ji
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Joint Surgery, Beijing Jishuitan Guizhou Hospital, Guiyang, China
| | - Bingjia Zhao
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Translational Medicine Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Gao
- Department of Joint Surgery, Beijing Jishuitan Guizhou Hospital, Guiyang, China
| | - Jun Xie
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Translational Medicine Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Huijun Han
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qunli Wu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Translational Medicine Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Yang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Translational Medicine Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Zakharova IS, Shevchenko AI, Arssan MA, Sleptcov AA, Nazarenko MS, Zarubin AA, Zheltysheva NV, Shevchenko VA, Tmoyan NA, Saaya SB, Ezhov MV, Kukharchuk VV, Parfyonova YV, Zakian SM. iPSC-Derived Endothelial Cells Reveal LDLR Dysfunction and Dysregulated Gene Expression Profiles in Familial Hypercholesterolemia. Int J Mol Sci 2024; 25:689. [PMID: 38255763 PMCID: PMC10815294 DOI: 10.3390/ijms25020689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Defects in the low-density lipoprotein receptor (LDLR) are associated with familial hypercholesterolemia (FH), manifested by atherosclerosis and cardiovascular disease. LDLR deficiency in hepatocytes leads to elevated blood cholesterol levels, which damage vascular cells, especially endothelial cells, through oxidative stress and inflammation. However, the distinctions between endothelial cells from individuals with normal and defective LDLR are not yet fully understood. In this study, we obtained and examined endothelial derivatives of induced pluripotent stem cells (iPSCs) generated previously from conditionally healthy donors and compound heterozygous FH patients carrying pathogenic LDLR alleles. In normal iPSC-derived endothelial cells (iPSC-ECs), we detected the LDLR protein predominantly in its mature form, whereas iPSC-ECs from FH patients have reduced levels of mature LDLR and show abolished low-density lipoprotein uptake. RNA-seq of mutant LDLR iPSC-ECs revealed a unique transcriptome profile with downregulated genes related to monocarboxylic acid transport, exocytosis, and cell adhesion, whereas upregulated signaling pathways were involved in cell secretion and leukocyte activation. Overall, these findings suggest that LDLR defects increase the susceptibility of endothelial cells to inflammation and oxidative stress. In combination with elevated extrinsic cholesterol levels, this may result in accelerated endothelial dysfunction, contributing to early progression of atherosclerosis and other cardiovascular pathologies associated with FH.
Collapse
Affiliation(s)
- Irina S. Zakharova
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Alexander I. Shevchenko
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Mhd Amin Arssan
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Aleksei A. Sleptcov
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Maria S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Aleksei A. Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Nina V. Zheltysheva
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Vlada A. Shevchenko
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Narek A. Tmoyan
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Shoraan B. Saaya
- E.N. Meshalkin National Medical Research Centre, Ministry of Health Care of the Russian Federation, 630055 Novosibirsk, Russia;
| | - Marat V. Ezhov
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Valery V. Kukharchuk
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Yelena V. Parfyonova
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Suren M. Zakian
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| |
Collapse
|
10
|
Wang Y, Liu Y, Li X, Yao L, Mbadhi M, Chen S, Lv Y, Bao X, Chen L, Chen S, Zhang J, Wu Y, Lv J, Shi L, Tang J. Vagus nerve stimulation-induced stromal cell-derived factor-l alpha participates in angiogenesis and repair of infarcted hearts. ESC Heart Fail 2023; 10:3311-3329. [PMID: 37641543 PMCID: PMC10682864 DOI: 10.1002/ehf2.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 08/31/2023] Open
Abstract
AIMS We aim to explore the role and mechanism of vagus nerve stimulation (VNS) in coronary endothelial cells and angiogenesis in infarcted hearts. METHODS AND RESULTS Seven days after rat myocardial infarction (MI) was prepared by ligation of the left anterior descending coronary artery, the left cervical vagus nerve was treated with electrical stimulation 1 h after intraperitoneal administration of the α7-nicotinic acetylcholine inhibitor mecamylamine or the mAChR inhibitor atropine or 3 days after local injection of Ad-shSDF-1α into the infarcted heart. Cardiac tissue acetylcholine (ACh) and serum ACh, tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6) levels were detected by ELISA to determine whether VNS was successful. An inflammatory injury model in human coronary artery endothelial cells (HCAECs) was established by lipopolysaccharide and identified by evaluating TNF-α, IL-1β and IL-6 levels and tube formation. Immunohistochemistry staining was performed to evaluate CD31-positive vessel density and stromal cell-derived factor-l alpha (SDF-1α) expression in the MI heart in vivo and the expression and distribution of SDF-1α, C-X-C motif chemokine receptor 4 and CXCR7 in HCAECs in vitro. Western blotting was used to detect the levels of SDF-1α, V-akt murine thymoma viral oncogene homolog (AKT), phosphorylated AKT (pAKT), specificity protein 1 (Sp1) and phosphorylation of Sp1 in HCAECs. Left ventricular performance, including left ventricular systolic pressure, left ventricular end-diastolic pressure and rate of the rise and fall of ventricular pressure, should be evaluated 28 days after VNS treatment. VNS was successfully established for MI therapy with decreases in serum TNF-α, IL-1β and IL-6 levels and increases in cardiac tissue and serum ACh levels, leading to increased SDF-1α expression in coronary endothelial cells of MI hearts, triggering angiogenesis of MI hearts with increased CD31-positive vessel density, which was abolished by the m/nAChR inhibitors mecamylamine and atropine or knockdown of SDF-1α by shRNA. ACh promoted SDF-1α expression and its distribution along with the branch of the formed tube in HCAECs, resulting in an increase in the number of tubes formed in HCAECs. ACh increased the levels of pAKT and phosphorylation of Sp1 in HCAECs, resulting in inducing SDF-1α expression, and the specific effects could be abolished by mecamylamine, atropine, the PI3K/AKT blocker wortmannin or the Sp1 blocker mithramycin. Functionally, VNS improved left ventricular performance, which could be abolished by Ad-shSDF-1α. CONCLUSIONS VNS promoted angiogenesis to repair the infarcted heart by inducing SDF-1α expression and redistribution along new branches during angiogenesis, which was associated with the m/nAChR-AKT-Sp1 signalling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Pathology, Renmin HospitalHubei University of MedicineShiyanPR China
| | - Yun Liu
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Xing‐yuan Li
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Lu‐yuan Yao
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - MagdaleenaNaemi Mbadhi
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Shao‐Juan Chen
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Stomatology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - Yan‐xia Lv
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Xin Bao
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Experimental Medical Center, Guoyao‐Dong Feng HospitalHubei University of MedicineShiyanPR China
| | - Long Chen
- Experimental Medical Center, Guoyao‐Dong Feng HospitalHubei University of MedicineShiyanPR China
| | - Shi‐You Chen
- Department of SurgeryUniversity of MissouriColumbiaMissouriUSA
| | - Jing‐xuan Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Yan Wu
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Jing Lv
- Department of Anesthesiology, Institute of Anesthesiology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - Liu‐liu Shi
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Jun‐ming Tang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| |
Collapse
|
11
|
Han X, Ma Y, Lu W, Yan J, Qin W, He J, Niu LN, Jiao K. Bioactive semaphorin 3A promotes sequential formation of sensory nerve and type H vessels during in situ osteogenesis. Front Bioeng Biotechnol 2023; 11:1138601. [PMID: 36949886 PMCID: PMC10025372 DOI: 10.3389/fbioe.2023.1138601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Sensory nerves and vessels are critical for skeletal development and regeneration, but crosstalk between neurovascular network and mineralization are not clear. The aim of this study was to explore neurovascular changes and identify bioactive regulators during in situ osteogenesis. Method: In situ osteogenesis model was performed in male rats following Achilles tenotomy. At 3, 6 and 9 weeks after surgery, mineralization, blood vessels, sensory innervation, and bioactive regulators expression were evaluated via micro-computed tomography, immunofluorescent staining, histology and reverse transcriptase-polymerase chain reaction analyses. Result: In the process of in situ osteogenesis, the mineral density increased with time, and the locations of minerals, nerves and blood vessels were highly correlated at each time point. The highest density of sensory nerve was observed in the experimental group at the 3rd week, and then gradually decreased with time, but still higher than that in the sham control group. Among many regulatory factors, semaphorin 3A (Sema3A) was highly expressed in experimental model and its expression was temporally sequential and spatially correlated sensory nerve. Conclusion: The present study showes that during in situ osteogenesis, innervation and angiogenesis are highly correlated, and Sema3A is associated with the position and expression of the sensory nerve.
Collapse
Affiliation(s)
- Xiaoxiao Han
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuxuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Weicheng Lu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jianfei Yan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenpin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jiaying He
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Kai Jiao,
| |
Collapse
|
12
|
Nedeva I, Gateva A, Assyov Y, Karamfilova V, Velikova T, Kamenov Z. Relationship between circulating netrin-1 levels, obesity, prediabetes and newly diagnosed type 2 diabetes. Arch Physiol Biochem 2022; 128:1533-1538. [PMID: 32654547 DOI: 10.1080/13813455.2020.1780453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Netrin-1 is presumed to have regenerative, angiogenic and anti-inflammatory properties, thus it could play a substantial role in the development of insulin resistance and T2DM. OBJECTIVE The aim of this study was to evaluate the relationship between serum netrin-1 levels and carbohydrate disturbances in patients with obesity. METHODS Sample size consisted of 163 patients, divided into four groups: obesity without carbohydrate disturbances prediabetes and diabetes and healthy controls Netrin-1 level was determined using ELISA method. RESULTS Circulating serum Netrin-1 was significantly lower in patients only with obesity, as well as with those with prediabetes and diabetes in comparison to the control group. Correlation analysis revealed that netrin-1 correlates negatively with BMI, waist, WSR, LDL and positive with sudomotor function. Netrin-1 ≤ 0.17 ng/ml has about 3 fold higher risk for carbohydrate disturbances (OR 3.06, 95% CI 1.48-6.34, p = .003). CONCLUSION Netrin-1 is associated with an increased risk for glycaemic disorders in patients with obesity.
Collapse
Affiliation(s)
- Iveta Nedeva
- Department of Internal Medicine, Medical University, Sofia, Bulgaria
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Sofia, Bulgaria
| | - Antoaneta Gateva
- Department of Internal Medicine, Medical University, Sofia, Bulgaria
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Sofia, Bulgaria
| | - Yavor Assyov
- Department of Internal Medicine, Medical University, Sofia, Bulgaria
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Sofia, Bulgaria
| | - Vera Karamfilova
- Department of Internal Medicine, Medical University, Sofia, Bulgaria
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Sofia, Bulgaria
| | - Tsvetelina Velikova
- Department of Internal Medicine, Medical University, Sofia, Bulgaria
- Department of Clinical Laboratory and Clinical Immunology, Laboratory of Clinical Immunology, University Hospital "St. Ivan Rilski", Sofia, Bulgaria
| | - Zdravko Kamenov
- Department of Internal Medicine, Medical University, Sofia, Bulgaria
- Department of Internal Medicine, Clinic of Endocrinology, University Hospital "Alexandrovska", Sofia, Bulgaria
| |
Collapse
|
13
|
Yin Z, Zhang J, Xu S, Liu J, Xu Y, Yu J, Zhao M, Pan W, Wang M, Wan J. The role of semaphorins in cardiovascular diseases: Potential therapeutic targets and novel biomarkers. FASEB J 2022; 36:e22509. [PMID: 36063107 DOI: 10.1096/fj.202200844r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 12/17/2022]
Abstract
Semaphorins (Semas), which belongs to the axonal guidance molecules, include 8 classes and could affect axon growth in the nervous system. Recently, semaphorins were found to regulate other pathophysiological processes, such as immune response, oncogenesis, tumor angiogenesis, and bone homeostasis, through binding with their plexin and neuropilin receptors. In this review, we summarized the detailed role of semaphorins and their receptors in the pathological progression of various cardiovascular diseases (CVDs), highlighting that semaphorins may be potential therapeutic targets and novel biomarkers for CVDs.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
14
|
Susser LI, Rayner KJ. Through the layers: how macrophages drive atherosclerosis across the vessel wall. J Clin Invest 2022; 132:157011. [PMID: 35499077 PMCID: PMC9057606 DOI: 10.1172/jci157011] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Leah I. Susser
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Katey J. Rayner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Abstract
The global prevalence of metabolic diseases, such as obesity, diabetes, and atherosclerosis, is rapidly increasing and has now reached epidemic proportions. Chronic tissue inflammation is a characteristic of these metabolic diseases, indicating that immune responses are closely involved in the pathogenesis of metabolic disorders. However, the regulatory mechanisms underlying immunometabolic crosstalk in these diseases are not completely understood. Recent studies have revealed the multifaceted functions of semaphorins, originally identified as axon guidance molecules, in regulating tissue inflammation and metabolic disorders, thereby highlighting the functional coupling between semaphorin signaling and immunometabolism. In this review, we explore how semaphorin signaling transcends beyond merely guiding axons to controlling immune responses and metabolic diseases.
Collapse
|
16
|
Netrin-1: An Emerging Player in Inflammatory Diseases. Cytokine Growth Factor Rev 2022; 64:46-56. [DOI: 10.1016/j.cytogfr.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
|
17
|
Ziegon L, Schlegel M. Netrin-1: A Modulator of Macrophage Driven Acute and Chronic Inflammation. Int J Mol Sci 2021; 23:275. [PMID: 35008701 PMCID: PMC8745333 DOI: 10.3390/ijms23010275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Netrins belong to the family of laminin-like secreted proteins, which guide axonal migration and neuronal growth in the developing central nervous system. Over the last 20 years, it has been established that netrin-1 acts as a chemoattractive or chemorepulsive cue in diverse biological processes far beyond neuronal development. Netrin-1 has been shown to play a central role in cell adhesion, cell migration, proliferation, and cell survival in neuronal and non-neuronal tissue. In this context, netrin-1 was found to orchestrate organogenesis, angiogenesis, tumorigenesis, and inflammation. In inflammation, as in neuronal development, netrin-1 plays a dichotomous role directing the migration of leukocytes, especially monocytes in the inflamed tissue. Monocyte-derived macrophages have long been known for a similar dual role in inflammation. In response to pathogen-induced acute injury, monocytes are rapidly recruited to damaged tissue as the first line of immune defense to phagocyte pathogens, present antigens to initiate the adaptive immune response, and promote wound healing in the resolution phase. On the other hand, dysregulated macrophages with impaired phagocytosis and egress capacity accumulate in chronic inflammation sites and foster the maintenance-and even the progression-of chronic inflammation. In this review article, we will highlight the dichotomous roles of netrin-1 and its impact on acute and chronic inflammation.
Collapse
Affiliation(s)
| | - Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany;
| |
Collapse
|
18
|
Hu Q, Chen Z, Yuan X, Li S, Zhang R, Qin X. Common Polymorphisms in the RGMa Promoter Are Associated With Cerebrovascular Atherosclerosis Burden in Chinese Han Patients With Acute Ischemic Cerebrovascular Accident. Front Cardiovasc Med 2021; 8:743868. [PMID: 34722675 PMCID: PMC8554026 DOI: 10.3389/fcvm.2021.743868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Repulsive guidance molecule a (RGMa) plays a vital role in the progression of numerous inflammatory diseases. However, whether it participates in atherosclerosis development is not known. Here, we explored the influence of RGMa in atherogenesis by investigating whether an association exists between functional polymorphisms in the RGMa promoter and cerebrovascular atherosclerosis burden (CAB) in Chinese Han patients diagnosed with acute ischemic cerebrovascular accident. To this end, we conducted a genetic association study on 201 patients with prior diagnoses of acute ischemic stroke or transient ischemic attack recruited from our hospital. After admission, we conducted three targeted single-nucleotide polymorphisms (SNPs) genotyping and evaluated CAB by computed tomography angiography. We used logistic regression modeling to analyze genetic associations. Functional polymorphism analysis indicated an independent association between the rs725458 T allele and increased CAB in patients with acute ischemic cerebrovascular accident [adjusted odds ratio (OR) = 1.66, 95% confidence interval (CI) = 1.01–2.74, P = 0.046]. In contrast, an association between the rs4778099 AA genotype and decreased CAB (adjusted OR = 0.10, 95% CI = 0.01–0.77, P = 0.027) was found. Our Gene Expression Omnibus analysis revealed lower RGMa levels in the atherosclerotic aortas and in the macrophages isolated from plaques than that in the normal aortas and macrophages from normal tissue, respectively. In conclusion, the relationship between RGMa and cerebrovascular atherosclerosis suggests that RGMa has a potential vasoprotective effect. The two identified functional SNPs (rs725458 and rs4778099) we identified in the RGMa promoter are associated with CAB in patients diagnosed with acute ischemic cerebrovascular accident. These findings offer a promising research direction for RGMa-related translational studies on atherosclerosis.
Collapse
Affiliation(s)
- Qingzhe Hu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhenlei Chen
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaofan Yuan
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shucheng Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Tilianin Ameliorates Cognitive Dysfunction and Neuronal Damage in Rats with Vascular Dementia via p-CaMKII/ERK/CREB and ox-CaMKII-Dependent MAPK/NF- κB Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6673967. [PMID: 34527176 PMCID: PMC8437593 DOI: 10.1155/2021/6673967] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022]
Abstract
Vascular dementia (VaD) is a common cause of cognitive decline and dementia of vascular origin, but the precise pathological mechanisms are unknown, and so effective clinical treatments have not been established. Tilianin, the principal active compound of total flavonoid extract from Dracocephalum moldavica L., is a candidate therapy for cardio-cerebrovascular diseases in China. However, its potential in the treatment of VaD is unclear. The present study is aimed at investigating the protective effects of tilianin on VaD and exploring the underlying mechanism of the action. A model of VaD was established by permanent 2-vessel occlusion (2VO) in rats. Human neurons (hNCs) differentiated from human-induced pluripotent stem cells were used to establish an oxygen-glucose deprivation (OGD) model. The therapeutic effects and potential mechanisms of tilianin were identified using behavioral tests, histochemistry, and multiple molecular biology techniques such as Western blot analysis and gene silencing. The results demonstrated that tilianin modified spatial cognitive impairment, neurodegeneration, oxidation, and apoptosis in rats with VaD and protected hNCs against OGD by increasing cell viability and decreasing apoptosis rates. A study of the mechanism indicated that tilianin restored p-CaMKII/ERK1/2/CREB signaling in the hippocampus, maintaining hippocampus-independent memory. In addition, tilianin inhibited an ox-CaMKII/p38 MAPK/JNK/NF-κB associated inflammatory response caused by cerebral oxidative stress imbalance in rats with VaD. Furthermore, specific CaMKIIα siRNA action revealed that tilianin-exerted neuroprotection involved increase of neuronal viability, inhibition of apoptosis, and suppression of inflammation, which was dependent on CaMKIIα. In conclusion, the results suggested the neuroprotective effect of tilianin in VaD and the potential mechanism associated with dysfunction in the regulation of p-CaMKII-mediated long-term memory and oxidation and inflammation involved with ox-CaMKII, which may lay the foundation for clinical trials of tilianin for the treatment of VaD in the future.
Collapse
|
20
|
Mumby S, Perros F, Hui C, Xu BL, Xu W, Elyasigomari V, Hautefort A, Manaud G, Humbert M, Chung KF, Wort SJ, Adcock IM. Extracellular matrix degradation pathways and fatty acid metabolism regulate distinct pulmonary vascular cell types in pulmonary arterial hypertension. Pulm Circ 2021; 11:2045894021996190. [PMID: 34408849 PMCID: PMC8366141 DOI: 10.1177/2045894021996190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension describes a group of diseases characterised by raised pulmonary vascular resistance, resulting from vascular remodelling in the pre-capillary resistance arterioles. Left untreated, patients die from right heart failure. Pulmonary vascular remodelling involves all cell types but to date the precise roles of the different cells is unknown. This study investigated differences in basal gene expression between pulmonary arterial hypertension and controls using both human pulmonary microvascular endothelial cells and human pulmonary artery smooth muscle cells. Human pulmonary microvascular endothelial cells and human pulmonary artery smooth muscle cells from pulmonary arterial hypertension patients and controls were cultured to confluence, harvested and RNA extracted. Whole genome sequencing was performed and after transcript quantification and normalisation, we examined differentially expressed genes and applied gene set enrichment analysis to the differentially expressed genes to identify putative activated pathways. Human pulmonary microvascular endothelial cells displayed 1008 significant (p ≤ 0.0001) differentially expressed genes in pulmonary arterial hypertension samples compared to controls. In human pulmonary artery smooth muscle cells, there were 229 significant (p ≤ 0.0001) differentially expressed genes between pulmonary arterial hypertension and controls. Pathway analysis revealed distinctive differences: human pulmonary microvascular endothelial cells display down-regulation of extracellular matrix organisation, collagen formation and biosynthesis, focal- and cell-adhesion molecules suggesting severe endothelial barrier dysfunction and vascular permeability in pulmonary arterial hypertension pathogenesis. In contrast, pathways in human pulmonary artery smooth muscle cells were mainly up-regulated, including those for fatty acid metabolism, biosynthesis of unsaturated fatty acids, cell–cell and adherens junction interactions suggesting a more energy-driven proliferative phenotype. This suggests that the two cell types play different mechanistic roles in pulmonary arterial hypertension pathogenesis and further studies are required to fully elucidate the role each plays and the interactions between these cell types in vascular remodelling in disease progression.
Collapse
Affiliation(s)
- Sharon Mumby
- Respiratory Science, NHLI, Imperial College London, London, UK
| | - F Perros
- UMRS 999, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, INSERM and Paris-Sud, Le Plessis Robinson, France.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada
| | - C Hui
- Centre for Respiratory & Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - B L Xu
- Centre for Respiratory & Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - W Xu
- Centre for Respiratory & Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - V Elyasigomari
- Department of Computing, Data Science Institute, Imperial College London, London, UK
| | - A Hautefort
- UMRS 999, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, INSERM and Paris-Sud, Le Plessis Robinson, France
| | - G Manaud
- UMRS 999, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, INSERM and Paris-Sud, Le Plessis Robinson, France
| | - M Humbert
- Département Hospitalo-Universitaire Thorax Innovation, Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - K F Chung
- Respiratory Science, NHLI, Imperial College London, London, UK
| | - S J Wort
- Respiratory Science, NHLI, Imperial College London, London, UK.,National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK
| | - I M Adcock
- Respiratory Science, NHLI, Imperial College London, London, UK
| |
Collapse
|
21
|
Schlegel M, Sharma M, Brown EJ, Newman AAC, Cyr Y, Afonso MS, Corr EM, Koelwyn GJ, van Solingen C, Guzman J, Farhat R, Nikain CA, Shanley LC, Peled D, Schmidt AM, Fisher EA, Moore KJ. Silencing Myeloid Netrin-1 Induces Inflammation Resolution and Plaque Regression. Circ Res 2021; 129:530-546. [PMID: 34289717 PMCID: PMC8529357 DOI: 10.1161/circresaha.121.319313] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rationale: Therapeutic efforts to decrease atherosclerotic cardiovascular disease risk have focused largely on reducing atherogenic lipoproteins, yet lipid-lowering therapies alone are insufficient to fully regress plaque burden. We postulate that arterial repair requires resolution of a maladaptive immune response and that targeting factors that hinder inflammation resolution will facilitate plaque regression. Objective: The guidance molecule Ntn1 (netrin-1) is secreted by macrophages in atherosclerotic plaques, where it sustains inflammation by enhancing macrophage survival and blocking macrophage emigration. We tested whether silencing Ntn1 in advanced atherosclerosis could resolve arterial inflammation and regress plaques. Methods and Results: To temporally silence Ntn1 in myeloid cells, we generated genetically modified mice in which Ntn1 could be selectively deleted in monocytes and macrophages using a tamoxifen-induced CX3CR1-driven cre recombinase (Ntn1fl/flCx3cr1creERT2+) and littermate control mice (Ntn1fl/flCx3cr1WT). Mice were fed Western diet in the setting of hepatic PCSK9 (proprotein convertase subtilisin/kexin type 9) overexpression to render them atherosclerotic and then treated with tamoxifen to initiate deletion of myeloid Ntn1 (MøΔNtn1) or not in controls (MøWT). Morphometric analyses performed 4 weeks later showed that myeloid Ntn1 silencing reduced plaque burden in the aorta (−50%) and plaque complexity in the aortic root. Monocyte-macrophage tracing experiments revealed lower monocyte recruitment, macrophage retention, and proliferation in MøΔNtn1 compared with MøWT plaques, indicating a restructuring of monocyte-macrophage dynamics in the artery wall upon Ntn1 silencing. Single-cell RNA sequencing of aortic immune cells before and after Ntn1 silencing revealed upregulation of gene pathways involved in macrophage phagocytosis and migration, including the Ccr7 chemokine receptor signaling pathway required for macrophage emigration from plaques and atherosclerosis regression. Additionally, plaques from MøΔNtn1 mice showed hallmarks of inflammation resolution, including higher levels of proresolving macrophages, IL (interleukin)-10, and efferocytosis, as compared to plaques from MøWT mice. Conclusion: Our data show that targeting Ntn1 in advanced atherosclerosis ameliorates atherosclerotic inflammation and promotes plaque regression.
Collapse
Affiliation(s)
- Martin Schlegel
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
- Department of Anesthesiology and Intensive Care, Technical University of Munich, School of Medicine, Germany (M. Schlegel)
| | - Monika Sharma
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Emily J Brown
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Alexandra A C Newman
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Yannick Cyr
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Milessa Silva Afonso
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Emma M Corr
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Graeme J Koelwyn
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Coen van Solingen
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Jonathan Guzman
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Rubab Farhat
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Cyrus A Nikain
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Lianne C Shanley
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Daniel Peled
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Ann Marie Schmidt
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University (A.M.S.). K.J. Moore, M. Schlegel, M. Sharma, A.M. Schmidt, and E.A. Fisher designed the study and performed data analysis and interpretation. M. Schlegel, M. Sharma, M.S. Afonso, E.J. Brown, E.M. Corr, C. van Solingen, G.J. Koelwyn, A.A.C. Newman, Y. Cyr, R. Farhat, J. Guzman, L.C. Shanley, and D. Peled conducted experiments, acquired data, and performed analyses. E.J. Brown analyzed the RNA-sequencing data. K.J. Moore and M. Schlegel wrote the article with input from all authors
| | - Edward A Fisher
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Kathryn J Moore
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| |
Collapse
|
22
|
Dyer LA, Rugonyi S. Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:90. [PMID: 34436232 PMCID: PMC8397097 DOI: 10.3390/jcdd8080090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
In congenital heart disease, the presence of structural defects affects blood flow in the heart and circulation. However, because the fetal circulation bypasses the lungs, fetuses with cyanotic heart defects can survive in utero but need prompt intervention to survive after birth. Tetralogy of Fallot and persistent truncus arteriosus are two of the most significant conotruncal heart defects. In both defects, blood access to the lungs is restricted or non-existent, and babies with these critical conditions need intervention right after birth. While there are known genetic mutations that lead to these critical heart defects, early perturbations in blood flow can independently lead to critical heart defects. In this paper, we start by comparing the fetal circulation with the neonatal and adult circulation, and reviewing how altered fetal blood flow can be used as a diagnostic tool to plan interventions. We then look at known factors that lead to tetralogy of Fallot and persistent truncus arteriosus: namely early perturbations in blood flow and mutations within VEGF-related pathways. The interplay between physical and genetic factors means that any one alteration can cause significant disruptions during development and underscore our need to better understand the effects of both blood flow and flow-responsive genes.
Collapse
Affiliation(s)
- Laura A. Dyer
- Department of Biology, University of Portland, Portland, OR 97203, USA;
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
23
|
The Entry and Egress of Monocytes in Atherosclerosis: A Biochemical and Biomechanical Driven Process. Cardiovasc Ther 2021; 2021:6642927. [PMID: 34345249 PMCID: PMC8282391 DOI: 10.1155/2021/6642927] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
In accordance with “the response to injury” theory, the entry of monocytes into the intima guided by inflammation signals, taking up cholesterol and transforming into foam cells, and egress from plaques determines the progression of atherosclerosis. Multiple cytokines and receptors have been reported to be involved in monocyte recruitment such as CCL2/CCR2, CCL5/CCR5, and CX3CL1/CX3CR1, and the egress of macrophages from the plaque like CCR7/CCL19/CCL21. Interestingly, some neural guidance molecules such as Netrin-1 and Semaphorin 3E have been demonstrated to show an inhibitory effect on monocyte migration. During the processes of monocytes recruitment and migration, factors affecting the biomechanical properties (e.g., the membrane fluidity, the deformability, and stiffness) of the monocytes, like cholesterol, amyloid-β peptide (Aβ), and lipopolysaccharides (LPS), as well as the biomechanical environment that the monocytes are exposed, like the extracellular matrix stiffness, mechanical stretch, blood flow, and hypertension, were discussed in the latter section. Till now, several small interfering RNAs (siRNAs), monoclonal antibodies, and antagonists for CCR2 have been designed and shown promising efficiency on atherosclerosis therapy. Seeking more possible biochemical factors that are chemotactic or can affect the biomechanical properties of monocytes, and uncovering the underlying mechanism, will be helpful in future studies.
Collapse
|
24
|
Okutucu M, Fındık H, Aslan MG, Arpa M. Increased serum concentration of netrin-1 after intravitreal bevacizumab injection: is it a compensatory mechanism to counteract drug side effects? BMC Ophthalmol 2021; 21:243. [PMID: 34058994 PMCID: PMC8167956 DOI: 10.1186/s12886-021-01989-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/10/2021] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND To evaluate alterations in the serum concentrations of vascular endothelial growth factor (VEGF) and netrin-1 after intravitreal bevacizumab (BCZ) injection for the treatment of diabetic macular edema (DME). METHODS This prospective case-control study included a total of 50 participants assigned to one of three groups, including 10 individuals with DME and non-proliferative diabetic retinopathy (NPDR), 13 with DME, and proliferative diabetic retinopathy (PDR), and 27 healthy individuals as a control group. Serum VEGF and netrin-1 concentrations were measured by enzyme-linked immunosorbent assays (ELISAs) immediately before, as well as 1 week and 1 month after, intravitreal BCZ injection. RESULTS The mean VEGF serum concentrations in the PDR and NPDR groups were 388.4 and 196.9 pg/mL at baseline, respectively. After 1 week, these concentrations changed to 193.41 and 150.23 pg/mL, respectively (P = 0.001 and P = 0.005, respectively); after 1 month, the concentrations were 97.89 and 76.46 pg/mL, respectively (P = 0.001 and P = 0.009, respectively). The mean netrin-1 serum concentrations in the PDR patients and NPDR groups were 318.2 and 252.7 pg/mL at baseline, respectively. After 1 week, these concentrations increased to 476.6 and 416.3 pg/mL, respectively (P = 0.033 and P = 0.005, respectively), and after 1 month, they were 676.6 and 747.5 pg/mL, respectively (P = 0.001 and P = 0.005, respectively). The correlation analysis revealed a significant inverse relationship between changes in serum VEGF and netrin-1 concentrations in both the PDR and NPDR groups (r = - 0.685, P = 0.029). CONCLUSIONS Intravitreal BCZ injections work systemically to significantly decrease serum VEGF levels, leading to a significant upregulation in the concentration of another angiogenic mediator, netrin-1.
Collapse
Affiliation(s)
- Murat Okutucu
- Recep Tayyip Erdoğan University, Zihni Derin Yerleşkesi - Fener Mahallesi, 53100, Merkez/Rize, Turkey.
| | - Hüseyin Fındık
- Recep Tayyip Erdoğan University, Zihni Derin Yerleşkesi - Fener Mahallesi, 53100, Merkez/Rize, Turkey
| | - Mehmet Gökhan Aslan
- Recep Tayyip Erdoğan University, Zihni Derin Yerleşkesi - Fener Mahallesi, 53100, Merkez/Rize, Turkey
| | - Medeni Arpa
- Recep Tayyip Erdoğan University, Zihni Derin Yerleşkesi - Fener Mahallesi, 53100, Merkez/Rize, Turkey
| |
Collapse
|
25
|
Vreeken D, Bruikman CS, Stam W, Cox SML, Nagy Z, Zhang H, Postma RJ, van Zonneveld AJ, Hovingh GK, van Gils JM. Downregulation of Endothelial Plexin A4 Under Inflammatory Conditions Impairs Vascular Integrity. Front Cardiovasc Med 2021; 8:633609. [PMID: 34017863 PMCID: PMC8129156 DOI: 10.3389/fcvm.2021.633609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: Besides hyperlipidemia, inflammation is an important determinant in the initiation and the progression of atherosclerosis. As Neuroimmune Guidance Cues (NGCs) are emerging as regulators of atherosclerosis, we set out to investigate the expression and function of inflammation-regulated NGCs. Methods and results: NGC expression in human monocytes and endothelial cells was assessed using a publicly available RNA dataset. Next, the mRNA levels of expressed NGCs were analyzed in primary human monocytes and endothelial cells after stimulation with IL1β or TNFα. Upon stimulation a total of 14 and 19 NGCs in monocytes and endothelial cells, respectively, were differentially expressed. Since plexin A4 (PLXNA4) was strongly downregulated in endothelial cells under inflammatory conditions, the role of PLXNA4 in endothelial function was investigated. Knockdown of PLXNA4 in endothelial cells markedly impaired the integrity of the monolayer leading to more elongated cells with an inflammatory phenotype. In addition, these cells showed an increase in actin stress fibers and decreased cell-cell junctions. Functional assays revealed decreased barrier function and capillary network formation of the endothelial cells, while vascular leakage and trans-endothelial migration of monocytes was increased. Conclusion: The current study demonstrates that pro-inflammatory conditions result in differential expression of NGCs in endothelial cells and monocytes, both culprit cell types in atherosclerosis. Specifically, endothelial PLXNA4 is reduced upon inflammation, while PLXNA4 maintains endothelial barrier function thereby preventing vascular leakage of fluids as well as cells. Taken together, PLXNA4 may well have a causal role in atherogenesis that deserves further investigation.
Collapse
Affiliation(s)
- Dianne Vreeken
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Caroline Suzanne Bruikman
- Amsterdam Cardiovascular Sciences, Department of Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Wendy Stam
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Stefan Martinus Leonardus Cox
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Zsófia Nagy
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Huayu Zhang
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Rudmer Johannes Postma
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Gerard Kornelis Hovingh
- Amsterdam Cardiovascular Sciences, Department of Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands.,Novo Nordisk A/S, Copenhagen, Denmark
| | - Janine Maria van Gils
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
26
|
Binder CJ, Borén J, Catapano A, Kronenberg F, Mallat Z, Negrini S, Öörni K, Raggi P, von Eckardstein A. The year 2020 in Atherosclerosis. Atherosclerosis 2021; 326:35-44. [PMID: 33958158 DOI: 10.1016/j.atherosclerosis.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alberico Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS Multimedica Hospital, Milan, Italy
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; University of Paris, PARCC, INSERM, Paris, France
| | - Simona Negrini
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada; Division of Cardiology, University of Alberta, Edmonton, AB, Canada
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
Zhang H, Vreeken D, Leuning DG, Bruikman CS, Junaid A, Stam W, de Bruin RG, Sol WMPJ, Rabelink TJ, van den Berg BM, van Zonneveld AJ, van Gils JM. Netrin-4 expression by human endothelial cells inhibits endothelial inflammation and senescence. Int J Biochem Cell Biol 2021; 134:105960. [PMID: 33636396 DOI: 10.1016/j.biocel.2021.105960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Netrin-4, recognized in neural and vascular development, is highly expressed by mature endothelial cells. The function of this netrin-4 in vascular biology after development has remained unclear. We found that the expression of netrin-4 is highly regulated in endothelial cells and is important for quiescent healthy endothelium. Netrin-4 expression is upregulated in endothelial cells cultured under laminar flow conditions, while endothelial cells stimulated with tumor necrosis factor alpha resulted in decreased netrin-4 expression. Targeted reduction of netrin-4 in endothelial cells resulted in increased expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. Besides, these endothelial cells were more prone to monocyte adhesion and showed impaired barrier function, measured with electric cell-substrate impedance sensing, as well as in an 'organ-on-a-chip' microfluidic system. Importantly, endothelial cells with reduced levels of netrin-4 showed increased expression of the senescence-associated markers cyclin-dependent kinase inhibitor-1 and -2A, an increased cell size and decreased ability to proliferate. Consistent with the gene expression profile, netrin-4 reduction was accompanied with more senescent associated β-galactosidase activity, which could be rescued by adding netrin-4 protein. Finally, using human decellularized kidney extracellular matrix scaffolds, we found that pre-treatment of the scaffolds with netrin-4 increased numbers of endothelial cells adhering to the matrix, showing a pro-survival effect of netrin-4. Taken together, netrin-4 acts as an anti-senescence and anti-inflammation factor in endothelial cell function and our results provide insights as to maintain endothelial homeostasis and supporting vascular health.
Collapse
Affiliation(s)
- Huayu Zhang
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Dianne Vreeken
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Danielle G Leuning
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Caroline S Bruikman
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Abidemi Junaid
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Wendy Stam
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ruben G de Bruin
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Wendy M P J Sol
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Janine M van Gils
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
28
|
Netrin-1 in Atherosclerosis: Relationship between Human Macrophage Intracellular Levels and In Vivo Plaque Morphology. Biomedicines 2021; 9:biomedicines9020168. [PMID: 33567662 PMCID: PMC7915296 DOI: 10.3390/biomedicines9020168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Netrin-1 is a laminin-like protein that plays a pivotal role in cell migration and, according to the site of its release, exerts both pro and anti-atherosclerotic functions. Macrophages, key cells in atherosclerosis, are heterogeneous in morphology and function and different subpopulations may support plaque progression, stabilization, and/or regression. Netrin-1 was evaluated in plasma and, together with its receptor UNC5b, in both spindle and round monocyte-derived macrophages (MDMs) morphotypes from coronary artery disease (CAD) patients and control subjects. In CAD patients, plaque features were detected in vivo by optical coherence tomography. CAD patients had lower plasma Netrin-1 levels and a higher MDMs expression of both protein and its receptor compared to controls. Specifically, a progressive increase in Netrin-1 and UNC5b was evidenced going from controls to stable angina (SA) and acute myocardial infarction (AMI) patients. Of note, spindle MDMs of AMI showed a marked increase of both Netrin-1 and its receptor compared to spindle MDMs of controls. UNC5b expression is always higher in spindle compared to round MDMs, regardless of the subgroup. Finally, CAD patients with higher intracellular Netrin-1 levels showed greater intraplaque macrophage accumulation in vivo. Our findings support the role of Netrin-1 and UNC5b in the atherosclerotic process.
Collapse
|
29
|
Zhang H, Prins J, Vreeken D, Florijn BW, de Bruin RG, van Hengel ORJ, van Essen MF, Duijs JMGJ, Van Esch H, van der Veer EP, van Zonneveld AJ, van Gils JM. Comprehensive analysis of neuronal guidance cue expression regulation during monocyte-to-macrophage differentiation reveals post-transcriptional regulation of semaphorin7A by the RNA-binding protein quaking. Innate Immun 2021; 27:118-132. [PMID: 33241976 PMCID: PMC7882812 DOI: 10.1177/1753425920966645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
In response to inflammatory cytokines and chemokines, monocytes differentiate into macrophages. Comprehensive analysis of gene expression regulation of neuronal guidance cue (NGC) ligands and receptors in the monocyte-to-macrophage differentiation process is not available yet. We performed transcriptome profiling in both human primary PBMCs/PBMC-derived macrophages and THP-1 cells/THP-1-macrophages using microarray or RNA sequencing methods. Pathway analysis showed that the axonal guidance pathway is significantly regulated upon monocyte differentiation. We confirmed NGC ligands and receptors which were consistently regulated, including SEMA4D, SEMA7A, NRP1, NRP2, PLXNA1 and PLXNA3. The involvement of RNA-binding protein quaking (QKI) in the regulation of NGC expression was investigated using monocytes and macrophages from a QKI haplo-insufficient patient and her healthy sibling. This revealed a positive correlation of SEMA7A expression with QKI expression. In silico analysis of 3'UTRs of NGCs proposed the competitive binding of QKI to proximal microRNA targeting sites as the mechanism of QKI-dependent regulation of SEMA7A. RNA immunoprecipitation confirmed an interaction of QKI with the 3'UTR of SEMA7A. Loss of SEMA7A resulted in monocyte differentiation towards a more anti-inflammatory macrophage. Taken together, the axonal guidance pathway is regulated during monocyte-to-macrophage differentiation, and the regulation is in line with the necessary functional adaption for the specialised role of macrophages.
Collapse
Affiliation(s)
- Huayu Zhang
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Centre, The Netherlands
| | - Jurriën Prins
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Centre, The Netherlands
| | - Dianne Vreeken
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Centre, The Netherlands
| | - Barend W Florijn
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Centre, The Netherlands
| | - Ruben G de Bruin
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Centre, The Netherlands
| | - Oscar RJ van Hengel
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Centre, The Netherlands
| | - Mieke F van Essen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Centre, The Netherlands
| | - Jacques MGJ Duijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Centre, The Netherlands
| | - Hilde Van Esch
- Department of Human Genetics, University Hospitals Leuven, Belgium
| | - Eric P van der Veer
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Centre, The Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Centre, The Netherlands
| | - Janine M van Gils
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Centre, The Netherlands
| |
Collapse
|
30
|
Abstract
Cardiovascular pathologies are often induced by inflammation. The associated changes in the inflammatory response influence vascular endothelial biology; they complicate the extent of ischaemia and reperfusion injury, direct the migration of immune competent cells and activate platelets. The initiation and progression of inflammation is regulated by the classical paradigm through the system of cytokines and chemokines. Therapeutic approaches have previously used this knowledge to control the extent of cardiovascular changes with varying degrees of success. Neuronal guidance proteins (NGPs) have emerged in recent years and have been shown to be significantly involved in the control of tissue inflammation and the mechanisms of immune cell activation. Therefore, proteins of this class might be used in the future as targets to control the extent of inflammation in the cardiovascular system. In this review, we describe the role of NGPs during cardiovascular inflammation and highlight potential therapeutic options that could be explored in the future.
Collapse
|
31
|
Zhou H, Simion V, Pierce JB, Haemmig S, Chen AF, Feinberg MW. LncRNA-MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and cis-modulation of MAP3K4. FASEB J 2020; 35:e21133. [PMID: 33184917 DOI: 10.1096/fj.202001654rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Chronic vascular inflammation plays a key role in the pathogenesis of atherosclerosis. Long non-coding RNAs (lncRNAs) have emerged as essential inflammation regulators. We identify a novel lncRNA termed lncRNA-MAP3K4 that is enriched in the vessel wall and regulates vascular inflammation. In the aortic intima, lncRNA-MAP3K4 expression was reduced by 50% during the progression of atherosclerosis (chronic inflammation) and 70% during endotoxemia (acute inflammation). lncRNA-MAP3K4 knockdown reduced the expression of key inflammatory factors (eg, ICAM-1, E-selectin, MCP-1) in endothelial cells or vascular smooth muscle cells and decreased monocytes adhesion to endothelium, as well as reducing TNF-α, IL-1β, COX2 expression in macrophages. Mechanistically, lncRNA-MAP3K4 regulates inflammation through the p38 MAPK signaling pathway. lncRNA-MAP3K4 shares a bidirectional promoter with MAP3K4, an upstream regulator of the MAPK signaling pathway, and regulates its transcription in cis. lncRNA-MAP3K4 and MAP3K4 show coordinated expression in response to inflammation in vivo and in vitro. Similar to lncRNA-MAP3K4, MAP3K4 knockdown reduced the expression of inflammatory factors in several different vascular cells. Furthermore, lncRNA-MAP3K4 and MAP3K4 knockdown showed cooperativity in reducing inflammation in endothelial cells. Collectively, these findings unveil the role of a novel lncRNA in vascular inflammation by cis-regulating MAP3K4 via a p38 MAPK pathway.
Collapse
Affiliation(s)
- Haoyang Zhou
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Viorel Simion
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob B Pierce
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alex F Chen
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Is Netrin-1 Deficiency Responsible for Inflammation and Systemic Diseases Related to Pseudoexfoliation? J Glaucoma 2020; 29:1077-1081. [DOI: 10.1097/ijg.0000000000001624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Vreeken D, Zhang H, van Zonneveld AJ, van Gils JM. Ephs and Ephrins in Adult Endothelial Biology. Int J Mol Sci 2020; 21:ijms21165623. [PMID: 32781521 PMCID: PMC7460586 DOI: 10.3390/ijms21165623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Eph receptors and their ephrin ligands are important guidance molecules during neurological and vascular development. In recent years, it has become clear that the Eph protein family remains functional in adult physiology. A subset of Ephs and ephrins is highly expressed by endothelial cells. As endothelial cells form the first barrier between the blood and surrounding tissues, maintenance of a healthy endothelium is crucial for tissue homeostasis. This review gives an overview of the current insights of the role of ephrin ligands and receptors in endothelial function and leukocyte recruitment in the (patho)physiology of adult vascular biology.
Collapse
|
34
|
The role of semaphorins in small vessels of the eye and brain. Pharmacol Res 2020; 160:105044. [PMID: 32590102 DOI: 10.1016/j.phrs.2020.105044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
Small vessel diseases, such as ischemic retinopathy and cerebral small vessel disease (CSVD), are increasingly recognized in patients with diabetes, dementia and cerebrovascular disease. The mechanisms of small vessel diseases are poorly understood, but the latest studies suggest a role for semaphorins. Initially identified as axon guidance cues, semaphorins are mainly studied in neuronal morphogenesis, neural circuit assembly, and synapse assembly and refinement. In recent years, semaphorins have been found to play important roles in regulating vascular growth and development and in many pathophysiological processes, including atherosclerosis, angiogenesis after stroke and retinopathy. Growing evidence indicates that semaphorins affect the occurrence, perfusion and regression of both the macrovasculature and microvasculature by regulating the proliferation, apoptosis, migration, barrier function and inflammatory response of endothelial cells, vascular smooth muscle cells (VSMCs) and pericytes. In this review, we concentrate on the regulatory effects of semaphorins on the cell components of the vessel wall and their potential roles in microvascular diseases, especially in the retina and cerebral small vessel. Finally, we discuss potential molecular approaches in targeting semaphorins as therapies for microvascular disorders in the eye and brain.
Collapse
|
35
|
Lee J, Choi JH. Deciphering Macrophage Phenotypes upon Lipid Uptake and Atherosclerosis. Immune Netw 2020; 20:e22. [PMID: 32655970 PMCID: PMC7327152 DOI: 10.4110/in.2020.20.e22] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/08/2023] Open
Abstract
In the progression of atherosclerosis, macrophages are the key immune cells for foam cell formation. During hyperlipidemic condition, phagocytic cells such as monocytes and macrophages uptake oxidized low-density lipoproteins (oxLDLs) accumulated in subintimal space, and lipid droplets are accumulated in their cytosols. In this review, we discussed the characteristics and phenotypic changes of macrophages in atherosclerosis and the effect of cytosolic lipid accumulation on macrophage phenotype. Due to macrophage plasticity, the inflammatory phenotypes triggered by oxLDL can be re-programmed by cytosolic lipid accumulation, showing downregulation of NF-κB activation followed by activation of anti-inflammatory genes, leading to tissue repair and homeostasis. We also discuss about various in vivo and in vitro models for atherosclerosis research and next generation sequencing technologies for foam cell gene expression profiling. Analysis of the phenotypic changes of macrophages during the progression of atherosclerosis with adequate approach may lead to exact understandings of the cellular mechanisms and hint therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jihye Lee
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
36
|
de Boer ECW, van Gils JM, van Gils MJ. Ephrin-Eph signaling usage by a variety of viruses. Pharmacol Res 2020; 159:105038. [PMID: 32565311 DOI: 10.1016/j.phrs.2020.105038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022]
Abstract
Ephrin-Eph signaling is a receptor tyrosine kinase signaling pathway involved in a variety of cellular mechanisms, of which many are related to the adhesion or migration of cells. Both the Eph receptor and ephrin ligand are abundantly present on a wide variety of cell types, and strongly evolutionary conserved. This review provides an overview of how 18 genetically diverse viruses utilize the Eph receptor (Eph), ephrin ligand (ephrin) or ephrin-Eph signaling to their advantage in their viral life cycle. Both Ephs and ephrins have been shown to serve as entry receptors for a variety of viruses, via both membrane fusion and endocytosis. Ephs and ephrins are also involved in viral transmission by vectors, associated with viral replication or persistence and lastly to neurological damage caused by viral infection. Although therapeutic opportunities targeting Ephs or ephrins do not seem feasible yet, the current research does propose two models for the viral usage of ephrin-Eph signaling. Firstly, the viral entry model, in which membrane molecules are used for viral entry, leading to cells being used for replication or as a transporter. Secondly, the advantageous expression ephrin-Eph signaling model, where viruses adapt the expression of Ephs or ephrins to change cell-cell interaction to their advantage. These models can guide future research questions on the usage of Ephs or ephrins by viruses and therapeutic opportunities.
Collapse
Affiliation(s)
- Esther C W de Boer
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Janine M van Gils
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
37
|
Schlegel M, Moore KJ. A heritable netrin-1 mutation increases atherogenic immune responses. Atherosclerosis 2020; 301:82-83. [PMID: 32317107 PMCID: PMC7769589 DOI: 10.1016/j.atherosclerosis.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
Atherosclerosis and its major clinical manifestations – myocardial infarction, ischemic stroke and peripheral artery disease – remain a leading cause of death worldwide1 . The onset of atherosclerosis is driven by the accumulation and expansion of macrophages in the artery wall in response to lipid deposition. Subsequently, the macrophage’s failure to resolve the inflammation and to exit the plaque are key processes in the progression of atherosclerosis2 . Understanding the underlying causes and pathological mechanisms of this chronic, low grade inflammation that sustains plaque progression has been a major focus of the field in the last decade3 . In this issue of Atherosclerosis , Bruikman et al identify a rare variant in the gene encoding the neuroimmune guidance molecule netrin-1 (NTN1 ), in a family with premature atherosclerosis, that alters netrin-1 functions and promotes proatherogenic immune responses4 .
Collapse
Affiliation(s)
- Martin Schlegel
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Anesthesiology and Intensive Care, Technical University of Munich School of Medicine, Munich, Germany
| | - Kathryn J Moore
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Vreeken D, Bruikman CS, Cox SML, Zhang H, Lalai R, Koudijs A, van Zonneveld AJ, Hovingh GK, van Gils JM. EPH receptor B2 stimulates human monocyte adhesion and migration independently of its EphrinB ligands. J Leukoc Biol 2020; 108:999-1011. [PMID: 32337793 PMCID: PMC7496365 DOI: 10.1002/jlb.2a0320-283rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
The molecular basis of atherosclerosis is not fully understood and mice studies have shown that Ephrins and EPH receptors play a role in the atherosclerotic process. We set out to assess the role for monocytic EPHB2 and its Ephrin ligands in human atherosclerosis and show a role for EPHB2 in monocyte functions independently of its EphrinB ligands. Immunohistochemical staining of human aortic sections at different stages of atherosclerosis showed that EPHB2 and its ligand EphrinB are expressed in atherosclerotic plaques and that expression proportionally increases with plaque severity. Functionally, stimulation with EPHB2 did not affect endothelial barrier function, nor did stimulation with EphrinB1 or EphrinB2 affect monocyte‐endothelial interactions. In contrast, reduced expression of EPHB2 in monocytes resulted in decreased monocyte adhesion to endothelial cells and a decrease in monocyte transmigration, mediated by an altered morphology and a decreased ability to phosphorylate FAK. Our results suggest that EPHB2 expression in monocytes results in monocyte accumulation by virtue of an increase of transendothelial migration, which can subsequently contribute to atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Dianne Vreeken
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline Suzanne Bruikman
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan Martinus Leonardus Cox
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Huayu Zhang
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Reshma Lalai
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Angela Koudijs
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard Kornelis Hovingh
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Janine Maria van Gils
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
39
|
Leocádio P, Menta P, Dias M, Fraga J, Goulart A, Santos I, Lotufo P, Bensenor I, Alvarez-Leite J. High Serum Netrin-1 and IL-1β in Elderly Females with ACS: Worse Prognosis in 2-years Follow-up. Arq Bras Cardiol 2020; 114:507-514. [PMID: 32267322 PMCID: PMC7792717 DOI: 10.36660/abc.20190035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/03/2019] [Indexed: 11/18/2022] Open
Abstract
Fundamento Vários marcadores têm sido avaliados quanto a um potencial impacto nas decisões clínicas ou na predição de mortalidade na síndrome coronariana aguda (SCA), incluindo Netrina-1 e IL-1β. Objetivo Examinamos o valor prognóstico de Netrina-1 e IL-1β em pacientes com SCA (2 anos de acompanhamento). Métodos Avaliamos Netrina-1, IL-1β e outros fatores de risco em amostras de soro de 803 pacientes. Curvas de Kaplan-Meier e regressão de Cox foram usadas para análise de óbito por todas as causas, óbito por doenças cardiovasculares (DCV) e desfecho combinado de infarto agudo do miocárdio (IAM) fatal ou novo IAM não fatal, considerando p < 0,05. Resultados Houve 115 óbitos por todas as causas, 78 óbitos por DCV e 67 eventos no desfecho combinado. Níveis de Netrina-1 acima da mediana (> 44,8 pg/mL) foram associados a pior prognóstico (óbito por todas as causas e por DCV) em mulheres idosas, mesmo após o ajuste do modelo (HR: 2,08, p = 0,038 e HR: 2,68, p = 0,036). Níveis de IL-1β acima da mediana (> 13,4 pg/mL) em mulheres idosas foram associados a risco aumentado para todos os desfechos após o ajuste (todas as causas - HR: 2,03, p = 0,031; DCV - HR: 3,01, p = 0,013; desfecho combinado - HR: 3,05, p = 0,029). Para homens, não foram observadas associações entre Netrina-1 ou IL-1β e os desfechos. Conclusão Níveis séricos elevados de Netrina-1 e IL-1β mostraram associação significativa com pior prognóstico em idosas do sexo feminino. Eles podem ser úteis como indicadores prognósticos em SCA. (Arq Bras Cardiol. 2020; 114(3):507-514)
Collapse
Affiliation(s)
- Paola Leocádio
- Departamento de Bioquímica e Imunologia - Universidade Federal de Minas Gerais, Belo Horizonte, MG - Brasil
| | - Penélope Menta
- Departamento de Bioquímica e Imunologia - Universidade Federal de Minas Gerais, Belo Horizonte, MG - Brasil
| | - Melissa Dias
- Departamento de Bioquímica e Imunologia - Universidade Federal de Minas Gerais, Belo Horizonte, MG - Brasil
| | - Júlia Fraga
- Departamento de Bioquímica e Imunologia - Universidade Federal de Minas Gerais, Belo Horizonte, MG - Brasil
| | - Alessandra Goulart
- Centro de Pesquisa Clínica e Epidemiológica do Hospital Universitário da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Itamar Santos
- Centro de Pesquisa Clínica e Epidemiológica do Hospital Universitário da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Paulo Lotufo
- Centro de Pesquisa Clínica e Epidemiológica do Hospital Universitário da Universidade de São Paulo, São Paulo, SP - Brasil.,Departamento de Clínica Médica da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Isabela Bensenor
- Centro de Pesquisa Clínica e Epidemiológica do Hospital Universitário da Universidade de São Paulo, São Paulo, SP - Brasil.,Departamento de Clínica Médica da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Jacqueline Alvarez-Leite
- Departamento de Bioquímica e Imunologia - Universidade Federal de Minas Gerais, Belo Horizonte, MG - Brasil
| |
Collapse
|
40
|
Bruikman CS, Vreeken D, Zhang H, van Gils MJ, Peter J, van Zonneveld AJ, Hovingh GK, van Gils JM. The identification and function of a Netrin-1 mutation in a pedigree with premature atherosclerosis. Atherosclerosis 2020; 301:84-92. [PMID: 32151395 DOI: 10.1016/j.atherosclerosis.2020.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/24/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Neuroimmune guidance cues have been shown to play a role in atherosclerosis, but their exact role in human pathophysiology is largely unknown. In the current study, we investigated the role of a c.1769G > T variant in Netrin-1 in (premature) atherosclerosis. METHODS To determine the effect of the genetic variation, purified Netrin-1, either wild type (wtNetrin-1) or the patient observed variation (mutNetrin-1), was used for migration, adhesion, endothelial barrier function and bindings assays. Expression of adhesion molecules and transcription proteins was analyzed by RT-PCR, Western blot or ELISA. To further delineate how mutNetrin-1 mediates its effect on cell migration, lenti-viral knockdown of UNC5B or DCC was used. RESULTS Bindings assays revealed a decreased binding capacity of mutNetrin-1 to the receptors UNC5B, DCC and β3-integrin and an increased binding capacity to neogenin, heparin and heparan sulfate compared to wtNetrin-1. Exposure of endothelial cells to mutNetrin-1 resulted in enhanced monocyte adhesion and expression of IL-6, CCL2 and ICAM-1 compared to wtNetrin-1. In addition, mutNetrin-1 lacks the inhibitory effect on the NF-κB pathway that is observed for wtNetrin-1. Moreover, the presence of mutNetrin-1 diminished migration of macrophages and smooth muscle cells. Importantly, UNC5B or DCC specific knockdown showed that mutNetrin-1 is unable to act through DCC resulting in enhanced inhibition of migration. CONCLUSIONS Our data demonstrates that mutNetrin-1 fails to exert anti-inflammatory effects on endothelial cells and more strongly blocks macrophage migration compared to wtNetrin-1, suggesting that the carriers of this genetic molecular variant may well be at risk for premature atherosclerosis.
Collapse
Affiliation(s)
- Caroline S Bruikman
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Dianne Vreeken
- Leiden University Medical Center, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands
| | - Huayu Zhang
- Leiden University Medical Center, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands
| | - Marit J van Gils
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jorge Peter
- Amsterdam UMC, University of Amsterdam, Department of Experimental Vascular Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Anton Jan van Zonneveld
- Leiden University Medical Center, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands
| | - G Kees Hovingh
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Janine M van Gils
- Leiden University Medical Center, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands.
| |
Collapse
|
41
|
Zhang H, Vreeken D, Junaid A, Wang G, Sol WMPJ, de Bruin RG, van Zonneveld AJ, van Gils JM. Endothelial Semaphorin 3F Maintains Endothelial Barrier Function and Inhibits Monocyte Migration. Int J Mol Sci 2020; 21:ijms21041471. [PMID: 32098168 PMCID: PMC7073048 DOI: 10.3390/ijms21041471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In normal physiology, endothelial cells (ECs) form a vital barrier between the blood and underlying tissue controlling leukocyte diapedesis and vascular inflammation. Emerging data suggest that neuronal guidance cues, typically expressed during development, have roles outside the nervous system in vascular biology and immune responses. In particular, Class III semaphorins have been reported to affect EC migration and angiogenesis. While ECs express high levels of semaphorin 3F (SEMA3F), little is known about its function in mature ECs. Here we show that SEMA3F expression is reduced by inflammatory stimuli and increased by laminar flow. Endothelial cells exposed to laminar flow secrete SEMA3F, which subsequently binds to heparan sulfates on the surface of ECs. However, under pro-inflammatory conditions, reduced levels of SEMA3F make ECs more prone to monocyte diapedesis and display impaired barrier function as measured with an electric cell-substrate impedance sensing system and a microfluidic system. In addition, we demonstrate that SEMA3F can directly inhibit the migration of activated monocytes. Taken together, our data suggest an important homeostatic function for EC-expressed SEMA3F, serving as a mediator of endothelial quiescence.
Collapse
|
42
|
Luo X, Seveau de Noray V, Aoun L, Biarnes-Pelicot M, Strale PO, Studer V, Valignat MP, Theodoly O. Lymphocyte perform reverse adhesive haptotaxis mediated by integrins LFA-1. J Cell Sci 2020; 133:jcs.242883. [DOI: 10.1242/jcs.242883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/13/2020] [Indexed: 01/10/2023] Open
Abstract
Cell Guidance by anchored molecules, or haptotaxis, is crucial in development, immunology and cancer. Adhesive haptotaxis, or guidance by adhesion molecules, is well established for mesenchymal cells like fibroblasts, whereas its existence remains unreported for amoeboid cells that require less or no adhesion to migrate. We show here in vitro that amoeboid human T lymphocytes develop adhesive haptotaxis versus densities of integrin ligands expressed by high endothelial venules. Moreover, lymphocytes orient towards increasing adhesion with VLA-4 integrins, like all mesenchymal cells, but towards decreasing adhesion with LFA-1 integrins, which has never been observed. This counterintuitive ‘reverse haptotaxis’ cannot be explained with the existing mesenchymal mechanisms of competition between cells’ pulling edges or of lamellipodia growth activated by integrins, which favor orientation towards increasing adhesion. Mechanisms and functions of amoeboid adhesive haptotaxis remain unclear, however multidirectional integrin-mediated haptotaxis may operate around transmigration ports on endothelium, stromal cells in lymph nodes, and inflamed tissue where integrin ligands are spatially modulated.
Collapse
Affiliation(s)
- Xuan Luo
- LAI, Aix Marseille Univ, CNRS, INSERM, Marseille, France
| | | | - Laurene Aoun
- LAI, Aix Marseille Univ, CNRS, INSERM, Marseille, France
| | | | | | - Vincent Studer
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, Bordeaux, France
- CNRS UMR 5297, F-33000 Bordeaux, France
| | | | | |
Collapse
|
43
|
Hesh CA, Qiu Y, Lam WA. Vascularized Microfluidics and the Blood-Endothelium Interface. MICROMACHINES 2019; 11:E18. [PMID: 31878018 PMCID: PMC7019435 DOI: 10.3390/mi11010018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
The microvasculature is the primary conduit through which the human body transmits oxygen, nutrients, and other biological information to its peripheral tissues. It does this through bidirectional communication between the blood, consisting of plasma and non-adherent cells, and the microvascular endothelium. Current understanding of this blood-endothelium interface has been predominantly derived from a combination of reductionist two-dimensional in vitro models and biologically complex in vivo animal models, both of which recapitulate the human microvasculature to varying but limited degrees. In an effort to address these limitations, vascularized microfluidics have become a platform of increasing importance as a consequence of their ability to isolate biologically complex phenomena while also recapitulating biochemical and biophysical behaviors known to be important to the function of the blood-endothelium interface. In this review, we discuss the basic principles of vascularized microfluidic fabrication, the contribution this platform has made to our understanding of the blood-endothelium interface in both homeostasis and disease, the limitations and challenges of these vascularized microfluidics for studying this interface, and how these inform future directions.
Collapse
Affiliation(s)
- Christopher A. Hesh
- Department of Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| |
Collapse
|
44
|
Bruikman CS, Vreeken D, Hoogeveen RM, Bom MJ, Danad I, Pinto-Sietsma SJ, van Zonneveld AJ, Knaapen P, Hovingh GK, Stroes ESG, van Gils JM. Netrin-1 and the Grade of Atherosclerosis Are Inversely Correlated in Humans. Arterioscler Thromb Vasc Biol 2019; 40:462-472. [PMID: 31801376 DOI: 10.1161/atvbaha.119.313624] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Netrin-1 has been shown to play a role in the initiation of atherosclerosis in mice models. However, little is known about the role of Netrin-1 in humans. We set out to study whether Netrin-1 is associated with different stages of atherosclerosis. Approach and Results: Plasma Netrin-1 levels were measured in different patient cohorts: (1) 22 patients with high cardiovascular risk who underwent arterial wall inflammation assessment using positron-emission tomography / computed tomography, (2) 168 patients with a positive family history of premature atherosclerosis in whom coronary artery calcium scores were obtained, and (3) 104 patients with chest pain who underwent coronary computed tomography angiography imaging to evaluate plaque vulnerability and burden. Netrin-1 plasma levels were negatively correlated with arterial wall inflammation (β, -0.01 [95% CI, 0.02 to -0.01] R2, 0.61; P<0.0001), and concentrations of Netrin-1 were significantly lower when atherosclerosis was present compared with individuals without atherosclerosis (28.01 versus 10.51 ng/mL, P<0.001). There was no difference in Netrin-1 plasma concentrations between patients with stable versus unstable plaques (11.17 versus 11.74 ng/mL, P=0.511). However, Netrin-1 plasma levels were negatively correlated to total plaque volume (β, -0.09 [95% CI, -0.11 to -0.08] R2, 0.57, P<0.0001), calcified plaque volumes (β, -0.10 [95% CI, -0.12 to -0.08] R2, 0.53; P<0.0001), and noncalcified plaque volumes (β, -0.08 [95% CI, -0.10 to -0.06] R2, 0.41; P<0.0001). Treatment of inflammatory stimulated endothelial cells with plasma with high Netrin-1 level resulted in reduced endothelial inflammation and consequently, less monocyte adhesion. CONCLUSIONS Netrin-1 plasma levels are lower in patients with subclinical atherosclerosis and in patients with arterial wall inflammation. Netrin-1 is not associated with plaque vulnerability; however, it is negatively correlated to plaque burden, suggesting that Netrin-1 is involved in some, but not all, stages of atherosclerosis.
Collapse
Affiliation(s)
- Caroline S Bruikman
- From the Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef, the Netherlands (C.S.B., R.M.H., S.J.P.-S., G.K.H., E.S.G.S.)
| | - Dianne Vreeken
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, the Netherlands (D.V., A.J.v.Z., J.M.v.G.)
| | - Renate M Hoogeveen
- From the Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef, the Netherlands (C.S.B., R.M.H., S.J.P.-S., G.K.H., E.S.G.S.)
| | - Michiel J Bom
- Department of Cardiology, Amsterdam UMC, VU University Medical Center, Boelelaan, the Netherlands (M.J.B., I.D., P.K.)
| | - Ibrahim Danad
- Department of Cardiology, Amsterdam UMC, VU University Medical Center, Boelelaan, the Netherlands (M.J.B., I.D., P.K.)
| | - Sara-Joan Pinto-Sietsma
- From the Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef, the Netherlands (C.S.B., R.M.H., S.J.P.-S., G.K.H., E.S.G.S.)
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, the Netherlands (D.V., A.J.v.Z., J.M.v.G.)
| | - Paul Knaapen
- Department of Cardiology, Amsterdam UMC, VU University Medical Center, Boelelaan, the Netherlands (M.J.B., I.D., P.K.)
| | - G Kees Hovingh
- From the Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef, the Netherlands (C.S.B., R.M.H., S.J.P.-S., G.K.H., E.S.G.S.)
| | - Erik S G Stroes
- From the Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef, the Netherlands (C.S.B., R.M.H., S.J.P.-S., G.K.H., E.S.G.S.)
| | - Janine M van Gils
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, the Netherlands (D.V., A.J.v.Z., J.M.v.G.)
| |
Collapse
|
45
|
Gaddis DE, Padgett LE, Wu R, Hedrick CC. Neuropilin-1 Expression on CD4 T Cells Is Atherogenic and Facilitates T Cell Migration to the Aorta in Atherosclerosis. THE JOURNAL OF IMMUNOLOGY 2019; 203:3237-3246. [PMID: 31740486 DOI: 10.4049/jimmunol.1900245] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
Abstract
Neuropilin 1 (Nrp1) is a type I transmembrane protein that plays important roles in axonal guidance, neuronal development, and angiogenesis. Nrp1 also helps migrate thymus-derived regulatory T cells to vascular endothelial growth factor (VEGF)-producing tumors. However, little is known about the role of Nrp1 on CD4 T cells in atherosclerosis. In ApoE-/- mice fed a Western diet for 15 wk, we found a 2-fold increase in Nrp1+Foxp3- CD4 T cells in their spleens, periaortic lymph nodes, and aortas, compared with chow-fed mice. Nrp1+Foxp3- CD4 T cells had higher proliferation potential, expressed higher levels of the memory marker CD44, and produced more IFN-γ when compared with Nrp1- CD4 T cells. Treatment of CD4 T cells with oxLDL increased Nrp1 expression. Furthermore, atherosclerosis-susceptible mice selectively deficient for Nrp1 expression on T cells developed less atherosclerosis than their Nrp1-sufficient counterparts. Mechanistically, we found that CD4 T cells that express Nrp1 have an increased capacity to migrate to the aorta and periaortic lymph nodes compared to Nrp1- T cells, suggesting that the expression of Nrp1 facilitates the recruitment of CD4 T cells into the aorta where they can be pathogenic. Thus, we have identified a novel role of Nrp1 on CD4 T cells in atherosclerosis. These results suggest that manipulation of Nrp1 expression on T cells can affect the outcome of atherosclerosis and lower disease incidence.
Collapse
Affiliation(s)
- Dalia E Gaddis
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Lindsey E Padgett
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| |
Collapse
|
46
|
Moore KJ, Koplev S, Fisher EA, Tabas I, Björkegren JLM, Doran AC, Kovacic JC. Macrophage Trafficking, Inflammatory Resolution, and Genomics in Atherosclerosis: JACC Macrophage in CVD Series (Part 2). J Am Coll Cardiol 2019; 72:2181-2197. [PMID: 30360827 DOI: 10.1016/j.jacc.2018.08.2147] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is characterized by the retention of modified lipoproteins in the arterial wall. These modified lipoproteins activate resident macrophages and the recruitment of monocyte-derived cells, which differentiate into mononuclear phagocytes that ingest the deposited lipoproteins to become "foam cells": a hallmark of this disease. In this Part 2 of a 4-part review series covering the macrophage in cardiovascular disease, we critically review the contributions and relevant pathobiology of monocytes, macrophages, and foam cells as relevant to atherosclerosis. We also review evidence that via various pathways, a failure of the resolution of inflammation is an additional key aspect of this disease process. Finally, we consider the likely role played by genomics and biological networks in controlling the macrophage phenotype in atherosclerosis. Collectively, these data provide substantial insights on the atherosclerotic process, while concurrently offering numerous molecular and genomic candidates that appear to hold great promise for selective targeting as clinical therapies.
Collapse
Affiliation(s)
- Kathryn J Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, New York
| | - Simon Koplev
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, New York
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York; Department of Pathology and Cell Biology, Columbia University, New York, New York; Department of Physiology, Columbia University, New York, New York
| | - Johan L M Björkegren
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Amanda C Doran
- Department of Medicine, Columbia University, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
47
|
Bruikman CS, van Gils JM. Netrin-1 in coronary artery disease (CAD): mechanism of action and potential as a therapeutic target. Expert Opin Ther Targets 2019; 23:729-731. [PMID: 31385556 DOI: 10.1080/14728222.2019.1653280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Caroline S Bruikman
- Department of Vascular Medicine, University of Amsterdam , Amsterdam , The Netherlands
| | - Janine M van Gils
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center , Leiden , The Netherlands
| |
Collapse
|
48
|
Schnitzler JG, Dallinga-Thie GM, Kroon J. The Role of (Modified) Lipoproteins in Vascular Function: A Duet Between Monocytes and the Endothelium. Curr Med Chem 2019; 26:1594-1609. [PMID: 29546830 DOI: 10.2174/0929867325666180316121015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/24/2022]
Abstract
Over the last century, many studies have demonstrated that low-density lipoprotein (LDL) is a key risk factor of cardiovascular diseases (CVD) related to atherosclerosis. Thus, for these CVD patients, LDL lowering agents are commonly used in the clinic to reduce the risk for CVD. LDL, upon modification, will develop distinct inflammatory and proatherogenic potential, leading to impaired endothelial integrity, influx of immune cells and subsequent increased foam cell formation. LDL can also directly affect peripheral monocyte composition, rendering them in a more favorable position to migrate and accumulate in the subendothelial space. It has become apparent that other lipoprotein particles, such as triglyceride- rich lipoproteins or remnants (TRL) and lipoprotein(a) [Lp(a)] may also impact on atherogenic pathways. Evidence is accumulating that Lp(a) can promote peripheral monocyte activation, eventually leading to increased transmigration through the endothelium. Similarly, remnant cholesterol has been identified to play a key role in endothelial dysfunction and monocyte behavior. In this review, we will discuss recent developments in understanding the role of different lipoproteins in the context of inflammation at both the level of the monocyte and the endothelium.
Collapse
Affiliation(s)
- Johan G Schnitzler
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Geesje M Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Netrin Family: Role for Protein Isoforms in Cancer. J Nucleic Acids 2019; 2019:3947123. [PMID: 30923634 PMCID: PMC6408995 DOI: 10.1155/2019/3947123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 12/27/2022] Open
Abstract
Netrins form a family of secreted and membrane-associated proteins. Netrins are involved in processes for axonal guidance, morphogenesis, and angiogenesis by regulating cell migration and survival. These processes are of special interest in tumor biology. From the netrin genes various isoforms are translated and regulated by alternative splicing. We review here the diversity of isoforms of the netrin family members and their known and potential roles in cancer.
Collapse
|
50
|
You T, Zhu Z, Zheng X, Zeng N, Hu S, Liu Y, Ren L, Lu Q, Tang C, Ruan C, Zhang Y, Zhu L. Serum semaphorin 7A is associated with the risk of acute atherothrombotic stroke. J Cell Mol Med 2019; 23:2901-2906. [PMID: 30729666 PMCID: PMC6433662 DOI: 10.1111/jcmm.14186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/26/2022] Open
Abstract
Semaphorin 7A (Sema7A), a neural guidance cue, was recently identified to regulate atherosclerosis in mice. However, the clinical relevance of Sema7A with atherosclerotic diseases remains unknown. The aim of this study was to investigate the association between serum Sema7A and the risk of acute atherothrombotic stroke (AAS). We measured serum concentrations of Sema7A in 105 newly onset AAS cases and 105 age‐ and sex‐matched controls, showing that median Sema7A level in AAS cases was over three times of that in controls (5.86 vs 1.66 ng/mL). Adjusted for hypertension, body mass index, fasting blood glucose, total cholesterol, triglyceride, high‐density lipoprotein (HDL)‐cholesterol, low‐density lipoprotein (LDL)‐cholesterol, current smoking and alcohol consumption, multivariate logistic regression showed that higher Sema7A was independently associated with the odds of AAS (OR = 6.40, 95% CI: 2.88‐14.25). Each 1‐standard deviation increase in Sema7A was associated with a threefold higher odds of AAS (OR = 3.42, 95% CI: 1.84‐6.35). Importantly, adding Sema7A to a multivariate logistic model containing conventional cardiovascular risk factors improved the area under receiver operating characteristic curves from 0.831 to 0.891 for the association with AAS. In conclusion, elevated serum Sema7A is independently associated with the risk of AAS, suggesting that it may play a potential role in AAS.
Collapse
Affiliation(s)
- Tao You
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xiaowei Zheng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Nimei Zeng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Shuhong Hu
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Yifei Liu
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Lijie Ren
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Qiongyu Lu
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Chaojun Tang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Changgeng Ruan
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Li Zhu
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|