1
|
Duan R, Liu Y, Tang D, Lin R, Huang J, Zhao M. IgG1 Is the Optimal Subtype for Treating Atherosclerosis by Inducing M2 Macrophage Differentiation, and Is Independent of the FcγRIIA Gene Polymorphism. Int J Mol Sci 2023; 24:ijms24065932. [PMID: 36983007 PMCID: PMC10053586 DOI: 10.3390/ijms24065932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, it has been established that atherosclerosis is an autoimmune disease. However, little is currently known about the role of FcγRIIA in atherosclerosis. Herein, we sought to investigate the relationship between FcγRIIA genotypes and the effectiveness of different IgG subclasses in treating atherosclerosis. We constructed and produced different subtypes of IgG and Fc-engineered antibodies. In vitro, we observed the effect of different subtypes of IgG and Fc-engineered antibodies on the differentiation of CD14+ monocytes from patients or healthy individuals. In vivo, Apoe-/- mice were fed a high-fat diet (HFD) for 20 weeks and administered injections of different CVI-IgG subclasses or Fc-engineered antibodies. Flow cytometry was used to assess the polarization of monocytes and macrophages. Although CVI-IgG4 reduced the release of MCP-1 compared to the other subtypes, IgG4 did not yield an anti-inflammatory effect by induction of human monocyte and macrophage differentiation in vitro. Furthermore, genetic polymorphisms of FcγRIIA were not associated with different CVI-IgG subclasses during the treatment of atherosclerosis. In vivo, CVI-IgG1 decreased Ly6Chigh monocyte differentiation and promoted M2 macrophage polarization. We also found that the secretion of IL-10 was upregulated in the CVI-IgG1-treated group, whereas V11 and GAALIE exerted no significant effect. These findings highlight that IgG1 is the optimal subtype for treating atherosclerosis, and CVI-IgG1 can induce monocyte/macrophage polarization. Overall, these results have important implications for the development of therapeutic antibodies.
Collapse
Affiliation(s)
- Rui Duan
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Liu
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dongmei Tang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Run Lin
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinrong Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Duan R, Liu Y, Tang D, Xiao S, Lin R, Zhao M. Single-cell RNA-Seq reveals CVI-mAb-induced Lyve1 + M2-like macrophages reduce atherosclerotic plaque area in Apoe -/- mice. Int Immunopharmacol 2023; 116:109794. [PMID: 36736225 DOI: 10.1016/j.intimp.2023.109794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Atherosclerosis is a lipid imbalance-induced autoimmune disease. Macrophages participate in the development and progression of atherosclerosis. Although numerous studies have utilized single-cell RNA sequencing to identify the role of various macrophage phenotypes in atherosclerosis, the macrophage subpopulations that have therapeutic benefits against atherosclerosis are not fully understood. METHODS In this study, a single-cell RNA sequencing analysis was performed on the F4/80+ macrophages of apolipoprotein E-deficient (Apoe-/-) mice on a normal diet (ND), a high-fat diet (HFD), and a high-fat diet (HFD) with collagen VI monoclonal antibodies (CVI-mAb) treatment. A population of M2-like macrophages expressing the hyaluronan receptor Lyve1 was almost exclusively detectable in Apoe-/- mice on an HFD with CVI-mAb treatment, compared with other groups. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns that distinguished this macrophage subset and uncovered its functions. RESULTS Lyve1+ M2 macrophages appear to have specialized functions in lipid metabolism. Lyve1+ M2-like macrophages were sorted via fluorescence- activated cell sorting (FACS) and adoptively transferred to Apoe-/- mice fed an HFD. CONCLUSION Our result showed that Lyve1+ M2 macrophages could reduce the plaque areas in Apoe-/- mice.
Collapse
Affiliation(s)
- Rui Duan
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Liu
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dongmei Tang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Run Lin
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Jing J, Zhu C, Gong R, Qi X, Zhang Y, Zhang Z. Research progress on the active ingredients of traditional Chinese medicine in the intervention of atherosclerosis: A promising natural immunotherapeutic adjuvant. Biomed Pharmacother 2023; 159:114201. [PMID: 36610225 DOI: 10.1016/j.biopha.2022.114201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease caused by disorders of lipid metabolism. Abnormal deposition of low-density lipoproteins in the arterial wall stimulates the activation of immune cells, including the adhesion and infiltration of monocytes, the proliferation and differentiation of macrophages and lymphocytes, and the activation of their functions. The complex interplay between immune cells coordinates the balance between pro- and anti-inflammation and plays a key role in the progression of AS. Therefore, targeting immune cell activity may lead to the development of more selective drugs with fewer side effects to treat AS without compromising host defense mechanisms. At present, an increasing number of studies have found that the active ingredients of traditional Chinese medicine (TCM) can regulate the function of immune cells in multiple ways to against AS, showing great potential for the treatment of AS and promising clinical applications. In this paper, we review the mechanisms of immune cell action in AS lesions and the potential targets and/or pathways for immune cell regulation by the active ingredients of TCM to promote the understanding of the immune system interactions of AS and provide a relevant basis for the use of active ingredients of TCM as natural adjuvants for AS immunotherapy.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chaojun Zhu
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Rui Gong
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xue Qi
- Department of General Surgery, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| | - Yue Zhang
- Peripheral Vascular Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhaohui Zhang
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
4
|
Meng Q, Liu H, Liu J, Pang Y, Liu Q. Advances in immunotherapy modalities for atherosclerosis. Front Pharmacol 2023; 13:1079185. [PMID: 36703734 PMCID: PMC9871313 DOI: 10.3389/fphar.2022.1079185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Atherosclerosis is the pathological basis of atherosclerotic cardiovascular disease (ASCVD). Atherosclerosis is now understood to be a long-term immune-mediated inflammatory condition brought on by a complicated chain of factors, including endothelial dysfunction, lipid deposits in the artery wall, and monocyte-derived macrophage infiltration, in which both innate immunity and adaptive immunity play an indispensable role. Recent studies have shown that atherosclerosis can be alleviated by inducing a protective immune response through certain auto-antigens or exogenous antigens. Some clinical trials have also demonstrated that atherosclerotic is associated with the presence of immune cells and immune factors in the body. Therefore, immunotherapy is expected to be a new preventive and curative measure for atherosclerosis. In this review, we provide a summary overview of recent progress in the research of immune mechanisms of atherosclerosis and targeted therapeutic pathways.
Collapse
Affiliation(s)
- Qingwen Meng
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China,Deparment of Cardiovascular, The First Affiliated Hospital of Hainan Medical University, Haikou, China,Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, Hainan Medical University, Haikou, China
| | - Huajiang Liu
- Deparment of Cardiovascular, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jinteng Liu
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Yangyang Pang
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China,School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China,*Correspondence: Qibing Liu,
| |
Collapse
|
5
|
Bellini R, Bonacina F, Norata GD. Crosstalk between dendritic cells and T lymphocytes during atherogenesis: Focus on antigen presentation and break of tolerance. Front Cardiovasc Med 2022; 9:934314. [PMID: 35966516 PMCID: PMC9365967 DOI: 10.3389/fcvm.2022.934314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic disease resulting from an impaired lipid and immune homeostasis, where the interaction between innate and adaptive immune cells leads to the promotion of atherosclerosis-associated immune-inflammatory response. Emerging evidence has suggested that this response presents similarities to the reactivity of effector immune cells toward self-epitopes, often as a consequence of a break of tolerance. In this context, dendritic cells, a heterogeneous population of antigen presenting cells, play a key role in instructing effector T cells to react against foreign antigens and T regulatory cells to maintain tolerance against self-antigens and/or to patrol for self-reactive effector T cells. Alterations in this delicate balance appears to contribute to atherogenesis. The aim of this review is to discuss different DC subsets, and their role in atherosclerosis as well as in T cell polarization. Moreover, we will discuss how loss of T cell tolerogenic phenotype participates to the immune-inflammatory response associated to atherosclerosis and how a better understanding of these mechanisms might result in designing immunomodulatory therapies targeting DC-T cell crosstalk for the treatment of atherosclerosis-related inflammation.
Collapse
Affiliation(s)
- Rossella Bellini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- *Correspondence: Fabrizia Bonacina,
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
- Giuseppe Danilo Norata,
| |
Collapse
|
6
|
Sonawane AR, Aikawa E, Aikawa M. Connections for Matters of the Heart: Network Medicine in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:873582. [PMID: 35665246 PMCID: PMC9160390 DOI: 10.3389/fcvm.2022.873582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/19/2022] [Indexed: 01/18/2023] Open
Abstract
Cardiovascular diseases (CVD) are diverse disorders affecting the heart and vasculature in millions of people worldwide. Like other fields, CVD research has benefitted from the deluge of multiomics biomedical data. Current CVD research focuses on disease etiologies and mechanisms, identifying disease biomarkers, developing appropriate therapies and drugs, and stratifying patients into correct disease endotypes. Systems biology offers an alternative to traditional reductionist approaches and provides impetus for a comprehensive outlook toward diseases. As a focus area, network medicine specifically aids the translational aspect of in silico research. This review discusses the approach of network medicine and its application to CVD research.
Collapse
Affiliation(s)
- Abhijeet Rajendra Sonawane
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Marchini T, Malchow S, Caceres L, El Rabih AAH, Hansen S, Mwinyella T, Spiga L, Piepenburg S, Horstmann H, Olawale T, Li X, Mitre LS, Gissler MC, Bugger H, Zirlik A, Heidt T, Hilgendorf I, Stachon P, von zur Muehlen C, Bode C, Wolf D. Circulating Autoantibodies Recognizing Immunodominant Epitopes From Human Apolipoprotein B Associate With Cardiometabolic Risk Factors, but Not With Atherosclerotic Disease. Front Cardiovasc Med 2022; 9:826729. [PMID: 35479271 PMCID: PMC9035541 DOI: 10.3389/fcvm.2022.826729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Rationale Atherosclerosis is a chronic inflammatory disease of large arteries that involves an autoimmune response with autoreactive T cells and auto-antibodies recognizing Apolipoprotein B (ApoB), the core protein of low-density lipoprotein (LDL). Here, we aimed to establish a clinical association between circulating human ApoB auto-antibodies with atherosclerosis and its clinical risk factors using a novel assay to detect auto-antibodies against a pool of highly immunogenic ApoB-peptides. Methods and Results To detect polyclonal IgM- and IgG-antibodies recognizing ApoB, we developed a chemiluminescent sandwich ELISA with 30 ApoB peptides selected by an in silico assay for a high binding affinity to MHC-II, which cover more than 80% of known MHC-II variants in a Caucasian population. This pre-selection of immunogenic self-peptides accounted for the high variability of human MHC-II, which is fundamental to allow T cell dependent generation of IgG antibodies. We quantified levels of ApoB-autoantibodies in a clinical cohort of 307 patients that underwent coronary angiography. Plasma anti-ApoB IgG and IgM concentrations showed no differences across healthy individuals (n = 67), patients with coronary artery disease (n = 179), and patients with an acute coronary syndrome (n = 61). However, plasma levels of anti-ApoB IgG, which are considered pro-inflammatory, were significantly increased in patients with obesity (p = 0.044) and arterial hypertension (p < 0.0001). In addition, patients diagnosed with the metabolic syndrome showed significantly elevated Anti-ApoB IgG (p = 0.002). Even when normalized for total plasma IgG, anti-ApoB IgG remained highly upregulated in hypertensive patients (p < 0.0001). We observed no association with triglycerides, total cholesterol, VLDL, or LDL plasma levels. However, total and normalized anti-ApoB IgG levels negatively correlated with HDL. In contrast, total and normalized anti-ApoB IgM, that have been suggested as anti-inflammatory, were significantly lower in diabetic patients (p = 0.012) and in patients with the metabolic syndrome (p = 0.005). Conclusion Using a novel ELISA method to detect auto-antibodies against ApoB in humans, we show that anti-ApoB IgG associate with cardiovascular risk factors but not with the clinical appearance of atherosclerosis, suggesting that humoral immune responses against ApoB are shaped by cardiovascular risk factors but not disease status itself. This novel tool will be helpful to develop immune-based risk stratification for clinical atherosclerosis in the future.
Collapse
Affiliation(s)
- Timoteo Marchini
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Facultad de Farmacia y Bioquímica, CONICET, Instituto de Bioquímica y Medicina Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sara Malchow
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lourdes Caceres
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Facultad de Farmacia y Bioquímica, CONICET, Instituto de Bioquímica y Medicina Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Abed Al Hadi El Rabih
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sophie Hansen
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Timothy Mwinyella
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lisa Spiga
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sven Piepenburg
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Hauke Horstmann
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Tijani Olawale
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Xiaowei Li
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lucia Sol Mitre
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Mark Colin Gissler
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Heiko Bugger
- Department of Cardiology, University Heart Center Graz, Medical University Graz, Graz, Austria
| | - Andreas Zirlik
- Department of Cardiology, University Heart Center Graz, Medical University Graz, Graz, Austria
| | - Timo Heidt
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ingo Hilgendorf
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter Stachon
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Constantin von zur Muehlen
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christoph Bode
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dennis Wolf
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- *Correspondence: Dennis Wolf,
| |
Collapse
|
8
|
Marchini T, Abogunloko T, Wolf D. Modulating Autoimmunity against LDL: Development of a Vaccine against Atherosclerosis. Hamostaseologie 2021; 41:447-457. [PMID: 34942658 PMCID: PMC8702296 DOI: 10.1055/a-1661-1908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractAtherosclerosis is a chronic inflammatory disease of the arterial wall that leads to the build-up of occluding atherosclerotic plaques. Its clinical sequelae, myocardial infarction and stroke, represent the most frequent causes of death worldwide. Atherosclerosis is a multifactorial pathology that involves traditional risk factors and chronic low-grade inflammation in the atherosclerotic plaque and systemically. This process is accompanied by a strong autoimmune response that involves autoreactive T cells in lymph nodes and atherosclerotic plaques, as well as autoantibodies that recognize low-density lipoprotein (LDL) and its main protein component apolipoprotein B (ApoB). In the past 60 years, numerous preclinical observations have suggested that immunomodulatory vaccination with LDL, ApoB, or its peptides has the potential to specifically dampen autoimmunity, enhance tolerance to atherosclerosis-specific antigens, and protect from experimental atherosclerosis in mouse models. Here, we summarize and discuss mechanisms, challenges, and therapeutic opportunities of immunomodulatory vaccination and other strategies to enhance protective immunity in atherosclerosis.
Collapse
Affiliation(s)
- Timoteo Marchini
- Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
| | - Tijani Abogunloko
- Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Marchini T, Hansen S, Wolf D. ApoB-Specific CD4 + T Cells in Mouse and Human Atherosclerosis. Cells 2021; 10:446. [PMID: 33669769 PMCID: PMC7922692 DOI: 10.3390/cells10020446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory condition of the arterial wall that leads to the formation of vessel-occluding plaques within the subintimal space of middle-sized and larger arteries. While traditionally understood as a myeloid-driven lipid-storage disease, growing evidence suggests that the accumulation of low-density lipoprotein cholesterol (LDL-C) ignites an autoimmune response with CD4+ T-helper (TH) cells that recognize self-peptides from Apolipoprotein B (ApoB), the core protein of LDL-C. These autoreactive CD4+ T cells home to the atherosclerotic plaque, clonally expand, instruct other cells in the plaque, and induce clinical plaque instability. Recent developments in detecting antigen-specific cells at the single cell level have demonstrated that ApoB-reactive CD4+ T cells exist in humans and mice. Their phenotypes and functions deviate from classical immunological concepts of distinct and terminally differentiated TH immunity. Instead, ApoB-specific CD4+ T cells have a highly plastic phenotype, can acquire several, partially opposing and mixed transcriptional programs simultaneously, and transit from one TH subset into another over time. In this review, we highlight adaptive immune mechanisms in atherosclerosis with a focus on CD4+ T cells, introduce novel technologies to detect ApoB-specific CD4+ T cells at the single cell level, and discuss the potential impact of ApoB-driven autoimmunity in atherosclerosis.
Collapse
Affiliation(s)
- Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetterstraße 55, 79106 Freiburg, Germany; (T.M.); (S.H.)
- Faculty of Medicine, University of Freiburg, Breisacherstraße 153, 79110 Freiburg, Germany
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Junín 954, C1113 AAD Buenos Aires, Argentina
| | - Sophie Hansen
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetterstraße 55, 79106 Freiburg, Germany; (T.M.); (S.H.)
- Faculty of Medicine, University of Freiburg, Breisacherstraße 153, 79110 Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetterstraße 55, 79106 Freiburg, Germany; (T.M.); (S.H.)
- Faculty of Medicine, University of Freiburg, Breisacherstraße 153, 79110 Freiburg, Germany
| |
Collapse
|
10
|
Wolf D, Gerhardt T, Winkels H, Michel NA, Pramod AB, Ghosheh Y, Brunel S, Buscher K, Miller J, McArdle S, Baas L, Kobiyama K, Vassallo M, Ehinger E, Dileepan T, Ali A, Schell M, Mikulski Z, Sidler D, Kimura T, Sheng X, Horstmann H, Hansen S, Mitre LS, Stachon P, Hilgendorf I, Gaddis DE, Hedrick C, Benedict CA, Peters B, Zirlik A, Sette A, Ley K. Pathogenic Autoimmunity in Atherosclerosis Evolves From Initially Protective Apolipoprotein B 100-Reactive CD4 + T-Regulatory Cells. Circulation 2020; 142:1279-1293. [PMID: 32703007 PMCID: PMC7515473 DOI: 10.1161/circulationaha.119.042863] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Throughout the inflammatory response that accompanies atherosclerosis, autoreactive CD4+ T-helper cells accumulate in the atherosclerotic plaque. Apolipoprotein B100 (apoB), the core protein of low-density lipoprotein, is an autoantigen that drives the generation of pathogenic T-helper type 1 (TH1) cells with proinflammatory cytokine secretion. Clinical data suggest the existence of apoB-specific CD4+ T cells with an atheroprotective, regulatory T cell (Treg) phenotype in healthy individuals. Yet, the function of apoB-reactive Tregs and their relationship with pathogenic TH1 cells remain unknown. METHODS To interrogate the function of autoreactive CD4+ T cells in atherosclerosis, we used a novel tetramer of major histocompatibility complex II to track T cells reactive to the mouse self-peptide apo B978-993 (apoB+) at the single-cell level. RESULTS We found that apoB+ T cells build an oligoclonal population in lymph nodes of healthy mice that exhibit a Treg-like transcriptome, although only 21% of all apoB+ T cells expressed the Treg transcription factor FoxP3 (Forkhead Box P3) protein as detected by flow cytometry. In single-cell RNA sequencing, apoB+ T cells formed several clusters with mixed TH signatures that suggested overlapping multilineage phenotypes with pro- and anti-inflammatory transcripts of TH1, T helper cell type 2 (TH2), and T helper cell type 17 (TH17), and of follicular-helper T cells. ApoB+ T cells were increased in mice and humans with atherosclerosis and progressively converted into pathogenic TH1/TH17-like cells with proinflammatory properties and only a residual Treg transcriptome. Plaque T cells that expanded during progression of atherosclerosis consistently showed a mixed TH1/TH17 phenotype in single-cell RNA sequencing. In addition, we observed a loss of FoxP3 in a fraction of apoB+ Tregs in lineage tracing of hyperlipidemic Apoe-/- mice. In adoptive transfer experiments, converting apoB+ Tregs failed to protect from atherosclerosis. CONCLUSIONS Our results demonstrate an unexpected mixed phenotype of apoB-reactive autoimmune T cells in atherosclerosis and suggest an initially protective autoimmune response against apoB with a progressive derangement in clinical disease. These findings identify apoB autoreactive Tregs as a novel cellular target in atherosclerosis.
Collapse
Affiliation(s)
- Dennis Wolf
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA.,Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Teresa Gerhardt
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA.,Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Department of Cardiology, Charité - University Medicine Berlin (Campus Benjamin Franklin), Germany (T.G.)
| | - Holger Winkels
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Nathaly Anto Michel
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Department of Cardiology, Medical University Graz, Austria (N.A.M., A.Z.)
| | - Akula Bala Pramod
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA.,Department of Psychiatry, University of California San Diego, La Jolla (A.B.P.)
| | - Yanal Ghosheh
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Simon Brunel
- Division of Immune Regulation (S.B., D.S., C.A.B.), La Jolla Institute for Immunology, CA
| | - Konrad Buscher
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Jacqueline Miller
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Sara McArdle
- Microscopy Core Facility (S.M.), La Jolla Institute for Immunology, CA
| | - Livia Baas
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Kouji Kobiyama
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Melanie Vassallo
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Erik Ehinger
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | | | - Amal Ali
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Maximilian Schell
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Zbigniew Mikulski
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Daniel Sidler
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Takayuki Kimura
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Xia Sheng
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Hauke Horstmann
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Sophie Hansen
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Lucia Sol Mitre
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Peter Stachon
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Ingo Hilgendorf
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Dalia E Gaddis
- Center for Autoimmunity and Inflammation (D.E.G., C.H., K.L.), La Jolla Institute for Immunology, CA
| | - Catherine Hedrick
- Center for Autoimmunity and Inflammation (D.E.G., C.H., K.L.), La Jolla Institute for Immunology, CA
| | - Chris A Benedict
- Division of Immune Regulation (S.B., D.S., C.A.B.), La Jolla Institute for Immunology, CA
| | - Bjoern Peters
- Division of Vaccine Discovery (B.P., A.S.), La Jolla Institute for Immunology, CA
| | - Andreas Zirlik
- Department of Cardiology, Medical University Graz, Austria (N.A.M., A.Z.)
| | - Alessandro Sette
- Division of Vaccine Discovery (B.P., A.S.), La Jolla Institute for Immunology, CA
| | - Klaus Ley
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA.,Center for Autoimmunity and Inflammation (D.E.G., C.H., K.L.), La Jolla Institute for Immunology, CA
| |
Collapse
|
11
|
Gu BH, Choi JC, Shen YH, Song LZ, Scheurer ME, Luong A, Rodriguez A, Woodruff P, Koth L, Corry DB, Kheradmand F, LeMaire SA. Elastin-Specific Autoimmunity in Smokers With Thoracic Aortic Aneurysm and Dissection is Independent of Chronic Obstructive Pulmonary Disease. J Am Heart Assoc 2020; 8:e011671. [PMID: 30957625 PMCID: PMC6507218 DOI: 10.1161/jaha.118.011671] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Thoracic aortic aneurysm ( TAA ) and dissection ( TAD ) are characterized by progressive disorganization of the aortic wall matrix, including elastin, a highly immunogenic molecule. Whether acquired autoimmune responses can be detected in TAA / TAD patients who are smokers is unknown. The objectives of this study were to determine whether TAA / TAD smokers have increased T-cell responses to human elastin fragments, and to determine whether autoimmune responses in TAA / TAD smokers are dependent on chronic obstructive pulmonary disease. Methods and Results In a cross-sectional study (N=86), we examined peripheral blood CD 4+ T cell responses to elastin fragments in never-, former-, or current-smokers with or without TAA / TAD . CD 4+ T cells were co-cultured with irradiated autologous peripheral blood CD 1a+/ CD 14+ antigen presenting cells pulsed with or without elastin fragments to measure cytokine production. Baseline plasma concentration of anti-elastin antibodies and elastin-degrading enzymes (eg, matrix metalloproteinase-9, and -12, and neutrophil elastase) were measured in the same cohort. elastin fragment-specific CD 4+ T cell expression of interferon-γ, and anti-elastin antibodies were dependent on history of smoking in TAA / TAD patients but were independent of chronic obstructive pulmonary disease. Matrix metalloproteinase-9, and -12, and neutrophil elastase plasma concentrations were also significantly elevated in ever-smokers with TAA / TAD . Conclusions Cigarette smoke is associated with loss of self-tolerance and induction of elastin-specific autoreactive T- and B-cell responses in patients with TAA / TAD . Development of peripheral blood biomarkers to track immunity to self-antigens could be used to identify and potentially prognosticate susceptibility to TAA / TAD in smokers.
Collapse
Affiliation(s)
- Bon-Hee Gu
- 1 Department of Medicine, Pulmonary and Critical Care Baylor College of Medicine Houston TX
| | - Justin C Choi
- 2 Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX
| | - Ying H Shen
- 2 Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,3 Cardiovascular Research Institute Baylor College of Medicine Houston TX.,7 Department of Cardiovascular Surgery Texas Heart Institute Houston TX
| | - Li-Zhen Song
- 1 Department of Medicine, Pulmonary and Critical Care Baylor College of Medicine Houston TX
| | - Michael E Scheurer
- 4 Section of Hematology-Oncology Department of Pediatrics Baylor College of Medicine Houston TX
| | - Amber Luong
- 8 Department of Otorhinolaryngology - Head and Neck Surgery McGovern Medical School University of Texas Health Science Center Houston TX
| | - Antony Rodriguez
- 1 Department of Medicine, Pulmonary and Critical Care Baylor College of Medicine Houston TX.,5 Departments of Pathology and Immunology Baylor College of Medicine Houston TX.,6 Biology of Inflammation Center Baylor College of Medicine Houston TX
| | | | - Laura Koth
- 9 University of California San Francisco San Francisco CA
| | - David B Corry
- 1 Department of Medicine, Pulmonary and Critical Care Baylor College of Medicine Houston TX.,5 Departments of Pathology and Immunology Baylor College of Medicine Houston TX.,6 Biology of Inflammation Center Baylor College of Medicine Houston TX.,10 Center for Translational Research in Inflammatory Diseases Michael E. DeBakey VA Houston TX
| | - Farrah Kheradmand
- 1 Department of Medicine, Pulmonary and Critical Care Baylor College of Medicine Houston TX.,3 Cardiovascular Research Institute Baylor College of Medicine Houston TX.,5 Departments of Pathology and Immunology Baylor College of Medicine Houston TX.,6 Biology of Inflammation Center Baylor College of Medicine Houston TX.,10 Center for Translational Research in Inflammatory Diseases Michael E. DeBakey VA Houston TX
| | - Scott A LeMaire
- 2 Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,7 Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,11 CHI St Luke's Health-Baylor St Luke's Medical Center Houston TX
| |
Collapse
|
12
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall and the primary underlying cause of cardiovascular disease. Data from in vivo imaging, cell-lineage tracing and knockout studies in mice, as well as clinical interventional studies and advanced mRNA sequencing techniques, have drawn attention to the role of T cells as critical drivers and modifiers of the pathogenesis of atherosclerosis. CD4+ T cells are commonly found in atherosclerotic plaques. A large body of evidence indicates that T helper 1 (TH1) cells have pro-atherogenic roles and regulatory T (Treg) cells have anti-atherogenic roles. However, Treg cells can become pro-atherogenic. The roles in atherosclerosis of other TH cell subsets such as TH2, TH9, TH17, TH22, follicular helper T cells and CD28null T cells, as well as other T cell subsets including CD8+ T cells and γδ T cells, are less well understood. Moreover, some T cells seem to have both pro-atherogenic and anti-atherogenic functions. In this Review, we summarize the knowledge on T cell subsets, their functions in atherosclerosis and the process of T cell homing to atherosclerotic plaques. Much of our understanding of the roles of T cells in atherosclerosis is based on findings from experimental models. Translating these findings into human disease is challenging but much needed. T cells and their specific cytokines are attractive targets for developing new preventive and therapeutic approaches including potential T cell-related therapies for atherosclerosis.
Collapse
Affiliation(s)
- Ryosuke Saigusa
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Amirfakhryan H. Vaccination against atherosclerosis: An overview. Hellenic J Cardiol 2020; 61:78-91. [DOI: 10.1016/j.hjc.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
|
14
|
Abstract
There is now overwhelming experimental and clinical evidence that atherosclerosis is a chronic inflammatory disease. Lessons from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice, and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb atherosclerosis. Here, we summarize and discuss the pathogenesis of atherosclerosis with a focus on adaptive immunity. We discuss some limitations of animal models and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment.
Collapse
Affiliation(s)
- Dennis Wolf
- From the Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (D.W.).,Faculty of Medicine, University of Freiburg, Germany (D.W.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (K.L.).,Department of Bioengineering, University of California San Diego, La Jolla (K.L.)
| |
Collapse
|
15
|
Affiliation(s)
- Kouji Kobiyama
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (K.K., K.L.)
| | - Klaus Ley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (K.K., K.L.).,Department of Bioengineering, University of California San Diego, La Jolla (K.L.)
| |
Collapse
|
16
|
Martínez-Hervás S, González-Navarro H. Terapias antiinflamatorias para la enfermedad cardiovascular: vías de señalización y mecanismos. Rev Esp Cardiol 2019. [DOI: 10.1016/j.recesp.2019.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Anti-inflammatory Therapies for Cardiovascular Disease: Signaling Pathways and Mechanisms. ACTA ACUST UNITED AC 2019; 72:767-773. [PMID: 31155366 DOI: 10.1016/j.rec.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases (CVD) are the clinical manifestation of atherosclerosis, a chronic inflammatory disease promoted by several risk factors such as dyslipidemia, type 2 diabetes mellitus, hypertension, and smoking. Acute CVD events are the result of an unresolved inflammatory chronic state that promotes the rupture of unstable plaque lesions. Of note, the existing intensive therapies modify risk factors but do not prevent life-threatening recurrent ischemic events in high-risk patients, who have a residual inflammatory risk displayed by increased C-reactive protein (CRP) levels. Better understanding of the role of innate and adaptive immunity in plaque development and rupture has led to intensive investigation of anti-inflammatory strategies for CVD. Some of them are being tested in specific clinical trials and use lower doses of existing medications originally developed for other inflammatory diseases such as rheumatoid arthritis and psoriasis, which have high CVD risk. Other investigations are retrospective and meta-analyses of existing clinical trials that evaluate the incidence of CVD in these inflammatory diseases. Others are based on preclinical testing such as vaccines. In this article, we summarize the main anti-inflammatory strategies and associated molecular mechanisms that are being evaluated in preclinical or clinical CVD studies.
Collapse
|
18
|
Abstract
There is now overwhelming experimental and clinical evidence that arteriosclerosis is a chronic inflammatory disease. Lessons learned from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice models and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb arteriosclerosis. This article summarizes and discusses the pathogenesis of arteriosclerosis with a focus on the role of the adaptive immune system. Some limitations of animal models are discussed and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment are emphasized.
Collapse
Affiliation(s)
- D Wolf
- Abteilung für Kardiologie und Angiologie I, Universitäts-Herzzentrum Freiburg, Freiburg, Deutschland
- Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - K Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, 92037, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Vaccination against atherosclerosis. Curr Opin Immunol 2019; 59:15-24. [PMID: 30928800 DOI: 10.1016/j.coi.2019.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that causes most heart attacks and strokes, making it the biggest killer in the world. Although cholesterol-lowering drugs have dramatically reduced these major adverse cardiovascular events, there remains a high residual risk called inflammatory risk. Atherosclerosis has an autoimmune component that can be manipulated by immunologic approaches including vaccination. Vaccination is attractive, because it is antigen-specific, does not impair host defense, and provides long-term protection. Several candidate antigens for atherosclerosis vaccine development have been identified and have been shown to reduce atherosclerosis in animal models. In this review, we focus on two different types of atherosclerosis vaccines: antibody-inducing and regulatory T cell-inducing.
Collapse
|
20
|
von Toerne C, Laimighofer M, Achenbach P, Beyerlein A, de Las Heras Gala T, Krumsiek J, Theis FJ, Ziegler AG, Hauck SM. Peptide serum markers in islet autoantibody-positive children. Diabetologia 2017; 60:287-295. [PMID: 27815605 DOI: 10.1007/s00125-016-4150-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/05/2016] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS We sought to identify minimal sets of serum peptide signatures as markers for islet autoimmunity and predictors of progression rates to clinical type 1 diabetes in a case-control study. METHODS A double cross-validation approach was applied to first prioritise peptides from a shotgun proteomic approach in 45 islet autoantibody-positive and -negative children from the BABYDIAB/BABYDIET birth cohorts. Targeted proteomics for 82 discriminating peptides were then applied to samples from another 140 children from these cohorts. RESULTS A total of 41 peptides (26 proteins) enriched for the functional category lipid metabolism were significantly different between islet autoantibody-positive and autoantibody-negative children. Two peptides (from apolipoprotein M and apolipoprotein C-IV) were sufficient to discriminate autoantibody-positive from autoantibody-negative children. Hepatocyte growth factor activator, complement factor H, ceruloplasmin and age predicted progression time to type 1 diabetes with a significant improvement compared with age alone. CONCLUSION/INTERPRETATION Distinct peptide signatures indicate islet autoimmunity prior to the clinical manifestation of type 1 diabetes and enable refined staging of the presymptomatic disease period.
Collapse
Affiliation(s)
- Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764, München, Germany
| | - Michael Laimighofer
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Garching, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764, München, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Forschergruppe Diabetes e.V., Neuherberg, Germany
| | - Andreas Beyerlein
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764, München, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Tonia de Las Heras Gala
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Garching, Germany
| | - Anette G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764, München, Germany.
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- Forschergruppe Diabetes e.V., Neuherberg, Germany.
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764, München, Germany.
| |
Collapse
|