1
|
Ye W, Yang P, Jin M, Zou J, Zheng Z, Li Y, Zhang D, Ye W, Huang Z, Wang J, Liu Z. Dihydromyricetin mitigates abdominal aortic aneurysm via transcriptional and post-transcriptional regulation of heme oxygenase-1 in vascular smooth muscle cells. Acta Pharm Sin B 2025; 15:1514-1534. [PMID: 40370559 PMCID: PMC12069254 DOI: 10.1016/j.apsb.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/15/2024] [Accepted: 11/26/2024] [Indexed: 05/16/2025] Open
Abstract
Abdominal aortic aneurysm (AAA) is a deadly condition of the aorta, carrying a significant risk of death upon rupture. Currently, there is a dearth of efficacious pharmaceutical interventions to impede the advancement of AAA and avert it from rupturing. Here, we investigated dihydromyricetin (DHM), one of the predominant bioactive flavonoids in Ampelopsis grossedentata (A. grossedentata), as a potential agent for inhibiting AAA. DHM effectively blocked the formation of AAA in angiotensin II-infused apolipoprotein E-deficient (ApoE-/-) mice. A combination of network pharmacology and whole transcriptome sequencing analysis revealed that DHM's anti-AAA action is linked to heme oxygenase (HO)-1 (Hmox-1 for the rodent gene) and hypoxia-inducible factor (HIF)-1α in vascular smooth muscle cells (VSMCs). Remarkably, DHM caused a robust rise (∼10-fold) of HO-1 protein expression in VSMCs, thereby suppressing VSMC inflammation and oxidative stress and preserving the VSMC contractile phenotype. Intriguingly, the therapeutic effect of DHM on AAA was largely abrogated by VSMC-specific Hmox1 knockdown in mice. Mechanistically, on one hand, DHM increased the transcription of Hmox-1 by triggering the nuclear translocation and activation of HIF-1α, but not nuclear factor erythroid 2-related factor 2 (NRF2). On the other hand, molecular docking, combined with cellular thermal shift assay (CETSA), isothermal titration calorimetry (ITC), drug affinity responsive target stability (DARTS), co-immunoprecipitation (Co-IP), and site mutant experiments revealed that DHM bonded to HO-1 at Lys243 and prevented its degradation, thereby resulting in considerable HO-1 buildup. In summary, our findings suggest that naturally derived DHM has the capacity to markedly enhance HO-1 expression in VSMCs, which may hold promise as a therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Weile Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Pinglian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Mei Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Jiami Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Zhihua Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yuanyuan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jiaojiao Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| |
Collapse
|
2
|
Li S, Fu W, Wang L. Role of macrophages in aortic dissection pathogenesis: insights from preclinical studies to translational prospective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2354-2367. [PMID: 39358669 DOI: 10.1007/s11427-024-2693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024]
Abstract
Aortic dissection is a critical vascular disease that is characterized by a high mortality rate and inflammation significantly influences its onset and progression. Recent studies highlight the integral role of macrophages, key players in the immune system, in the pathological landscape of aortic dissection. These cells are involved in crucial processes, such as the remodeling of the extracellular matrix, immunocyte infiltration, and phenotypic switching of smooth muscle cells, which are essential for the structural integrity and functional dynamics of the aortic wall. Despite these insights, the specific contributions of macrophages to the development and progression of aortic dissection remains unclear. This review explores the pathogenesis of aortic dissection with a focus on macrophages and describes their origins, phenotypic variations, and potential roles based on the most recent research findings. Furthermore, we discuss key molecules related to macrophages during aortic dissection, their interactions with other cellular components within the aorta, and the implications of these interactions for future therapeutic strategies. This comprehensive analysis aimed to improve our understanding of macrophages in aortic dissection and promote the development of targeted interventions.
Collapse
Affiliation(s)
- Shiyi Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Vascular Surgery Institute of Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Vascular Surgery Institute of Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Key Laboratory of Panvascular Disease Precision Medicine, Zhongshan Hospital Xiamen, Fudan University, Xiamen, 361015, China
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Vascular Surgery Institute of Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Key Laboratory of Panvascular Disease Precision Medicine, Zhongshan Hospital Xiamen, Fudan University, Xiamen, 361015, China.
- Fudan Zhangjiang Institute, Shanghai, 201203, China.
| |
Collapse
|
3
|
Sharma N, Khalyfa A, Cai D, Morales-Quinones M, Soares RN, Higashi Y, Chen S, Gozal D, Padilla J, Manrique-Acevedo C, Chandrasekar B, Martinez-Lemus LA. Chronic intermittent hypoxia facilitates the development of angiotensin II-induced abdominal aortic aneurysm in male mice. J Appl Physiol (1985) 2024; 137:527-539. [PMID: 38867666 PMCID: PMC11424178 DOI: 10.1152/japplphysiol.00842.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/11/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Obstructive sleep apnea (OSA), characterized by episodes of intermittent hypoxia (IH), is highly prevalent in patients with abdominal aortic aneurysm (AAA). However, whether IH serves as an independent risk factor for AAA development remains to be investigated. Here, we determined the effects of chronic (6 mo) IH on angiotensin (Ang II)-induced AAA development in C57BL/6J male mice and investigated the underlying mechanisms of IH in cultured vascular smooth muscle cells (SMCs). IH increased the susceptibility of mice to develop AAA in response to Ang II infusion by facilitating the augmentation of the abdominal aorta's diameter as assessed by transabdominal ultrasound imaging. Importantly, IH with Ang II augmented aortic elastin degradation and the expression of matrix metalloproteinases (MMPs), mainly MMP8, MMP12, and a disintegrin and metalloproteinase-17 (ADAM17) as measured by histology and immunohistochemistry. Mechanistically, IH increased the activities of MMP2, MMP8, MMP9, MMP12, and ADAM17, while reducing the expression of the MMP regulator reversion-inducing cysteine-rich protein with Kazal motifs (RECK) in cultured SMCs. Aortic samples from human AAA were associated with decreased RECK and increased expression of ADAM17 and MMPs. These data suggest that IH facilitates AAA development when additional stressors are superimposed and that this occurs in association with an increased presence of aortic MMPs and ADAM17, potentially due to IH-induced modulation of RECK expression. These findings support a plausible synergistic link between OSA and AAA and provide a better understanding of the molecular mechanisms underlying the pathogenesis of AAA.NEW & NOTEWORTHY IH facilitates Ang II-induced abdominal aortic diameter expansion and AAA development in C57BL/6J male mice. IH upregulates the expression of specific MMPs such as MMP8, MMP12, and ADAM17. IH directly suppresses RECK expression and increases MMPs activity in SMCs. Human AAA tissues exhibit a downregulation of RECK and an upregulation of ADAM17 and MMPs.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Animals
- Male
- Angiotensin II
- Mice, Inbred C57BL
- Hypoxia/metabolism
- Hypoxia/complications
- Mice
- ADAM17 Protein/metabolism
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Myocytes, Smooth Muscle/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Humans
- Matrix Metalloproteinases/metabolism
- Matrix Metalloproteinase 12/metabolism
- Sleep Apnea, Obstructive/metabolism
- Sleep Apnea, Obstructive/physiopathology
- Sleep Apnea, Obstructive/complications
Collapse
Affiliation(s)
- Neekun Sharma
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Abdelnaby Khalyfa
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Dunpeng Cai
- Department of Surgery, University of Missouri, Columbia, Missouri, United States
| | | | - Rogerio N Soares
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Yusuke Higashi
- John W. Deming Department of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Shiyou Chen
- Department of Surgery, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| | - Bysani Chandrasekar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Division of Cadiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
4
|
Bruhn PJ, Jessen ML, Eiberg J, Ghulam Q. Hypoxia inducible factor 1-alpha in the pathogenesis of abdominal aortic aneurysms in vivo: A narrative review. JVS Vasc Sci 2023; 5:100189. [PMID: 38379781 PMCID: PMC10877407 DOI: 10.1016/j.jvssci.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/21/2023] [Indexed: 02/22/2024] Open
Abstract
Abdominal aortic aneurysms (AAAs) are relatively common, primarily among older men, and, in the case of rupture, are associated with high mortality. Although procedure-related morbidity and mortality have improved with the advent of endovascular repair, noninvasive treatment and improved assessment of AAA rupture risk should still be sought. Several cellular pathways seem contributory to the histopathologic changes that drive AAA growth and rupture. Hypoxia inducible factor 1-alpha (HIF-1α) is an oxygen-sensitive protein that accumulates in the cytoplasm under hypoxic conditions and regulates a wide array of downstream effectors to hypoxia. Examining the potential role of HIF-1α in the pathogenesis of AAAs is alluring, because local hypoxia is known to be present in the AAA vessel wall. A systematic scoping review was performed to review the current evidence regarding the role of HIF-1α in AAA disease in vivo. After screening, 17 studies were included in the analysis. Experimental animal studies and human studies show increased HIF-1α activity in AAA tissue compared with healthy aorta and a correlation of HIF-1α activity with key histopathologic features of AAA disease. In vivo HIF-1α inhibition in animals protects against AAA development and growth. One study reveals a positive correlation between HIF-1α-activating genetic polymorphisms and the risk of AAA disease in humans. The main findings suggest a causal role of HIF-1α in the pathogenesis of AAAs in vivo. Further research into the HIF-1α pathway in AAA disease might reveal clinically applicable pharmacologic targets or biomarkers relevant in the treatment and monitoring of AAA disease.
Collapse
Affiliation(s)
| | | | - Jonas Eiberg
- Department of Vascular Surgery, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Academy of Medical Education and Simulation, University of Copenhagen, Copenhagen, Denmark
| | - Qasam Ghulam
- Department of Vascular Surgery, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Imanishi M, Inoue T, Fukushima K, Yamashita R, Nakayama R, Nojima M, Kondo K, Gomi Y, Tsunematsu H, Goto K, Miyamoto L, Funamoto M, Denda M, Ishizawa K, Otaka A, Fujino H, Ikeda Y, Tsuchiya K. CA9 and PRELID2; hypoxia-responsive potential therapeutic targets for pancreatic ductal adenocarcinoma as per bioinformatics analyses. J Pharmacol Sci 2023; 153:232-242. [PMID: 37973221 DOI: 10.1016/j.jphs.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
A strong hypoxic environment has been observed in pancreatic ductal adenocarcinoma (PDAC) cells, which contributes to drug resistance, tumor progression, and metastasis. Therefore, we performed bioinformatics analyses to investigate potential targets for the treatment of PDAC. To identify potential genes as effective PDAC treatment targets, we selected all genes whose expression level was related to worse overall survival (OS) in The Cancer Genome Atlas (TCGA) database and selected only the genes that matched with the genes upregulated due to hypoxia in pancreatic cancer cells in the dataset obtained from the Gene Expression Omnibus (GEO) database. Although the extracted 107 hypoxia-responsive genes included the genes that were slightly enriched in angiogenic factors, TCGA data analysis revealed that the expression level of endothelial cell (EC) markers did not affect OS. Finally, we selected CA9 and PRELID2 as potential targets for PDAC treatment and elucidated that a CA9 inhibitor, U-104, suppressed pancreatic cancer cell growth more effectively than 5-fluorouracil (5-FU) and PRELID2 siRNA treatment suppressed the cell growth stronger than CA9 siRNA treatment. Thus, we elucidated that specific inhibition of PRELID2 as well as CA9, extracted via exhaustive bioinformatic analyses of clinical datasets, could be a more effective strategy for PDAC treatment.
Collapse
Affiliation(s)
- Masaki Imanishi
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan.
| | - Takahisa Inoue
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan; Department of Pharmacy, Tokushima University Hospital, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Japan.
| | - Ryosuke Yamashita
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Ryo Nakayama
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Masataka Nojima
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Kosuke Kondo
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Yoshiki Gomi
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Honoka Tsunematsu
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Kohei Goto
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Licht Miyamoto
- Laboratory of Pharmacology and Food Science, Department of Nutrition and Life Science, Faculty of Health and Medical Sciences, Kanagawa Institute of Technology, Japan
| | - Masafumi Funamoto
- Department of Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Masaya Denda
- Department of Bioorganic Synthetic Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Japan; Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical Sciences, Tokushima University, Japan; Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Japan
| | - Akira Otaka
- Department of Bioorganic Synthetic Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| |
Collapse
|
6
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
8
|
Zhang RM, Tiedemann K, Muthu ML, Dinesh NEH, Komarova S, Ramkhelawon B, Reinhardt DP. Fibrillin-1-regulated miR-122 has a critical role in thoracic aortic aneurysm formation. Cell Mol Life Sci 2022; 79:314. [PMID: 35606547 PMCID: PMC11072253 DOI: 10.1007/s00018-022-04337-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Thoracic aortic aneurysms (TAA) in Marfan syndrome, caused by fibrillin-1 mutations, are characterized by elevated cytokines and fragmentated elastic laminae in the aortic wall. This study explored whether and how specific fibrillin-1-regulated miRNAs mediate inflammatory cytokine expression and elastic laminae degradation in TAA. miRNA expression profiling at early and late TAA stages using a severe Marfan mouse model (Fbn1mgR/mgR) revealed a spectrum of differentially regulated miRNAs. Bioinformatic analyses predicted the involvement of these miRNAs in inflammatory and extracellular matrix-related pathways. We demonstrate that upregulation of pro-inflammatory cytokines and matrix metalloproteinases is a common characteristic of mouse and human TAA tissues. miR-122, the most downregulated miRNA in the aortae of 10-week-old Fbn1mgR/mgR mice, post-transcriptionally upregulated CCL2, IL-1β and MMP12. Similar data were obtained at 70 weeks of age using Fbn1C1041G/+ mice. Deficient fibrillin-1-smooth muscle cell interaction suppressed miR-122 levels. The marker for tissue hypoxia HIF-1α was upregulated in the aortic wall of Fbn1mgR/mgR mice, and miR-122 was reduced under hypoxic conditions in cell and organ cultures. Reduced miR-122 was partially rescued by HIF-1α inhibitors, digoxin and 2-methoxyestradiol in aortic smooth muscle cells. Digoxin-treated Fbn1mgR/mgR mice demonstrated elevated miR-122 and suppressed CCL2 and MMP12 levels in the ascending aortae, with reduced elastin fragmentation and aortic dilation. In summary, this study demonstrates that miR-122 in the aortic wall inhibits inflammatory responses and matrix remodeling, which is suppressed by deficient fibrillin-1-cell interaction and hypoxia in TAA.
Collapse
Affiliation(s)
- Rong-Mo Zhang
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Kerstin Tiedemann
- Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Muthu L Muthu
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Neha E H Dinesh
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Svetlana Komarova
- Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Bhama Ramkhelawon
- Department of Surgery, New York University School of Medicine, New York, USA
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
9
|
Yu B, Wang X, Song Y, Xie G, Jiao S, Shi L, Cao X, Han X, Qu A. The role of hypoxia-inducible factors in cardiovascular diseases. Pharmacol Ther 2022; 238:108186. [PMID: 35413308 DOI: 10.1016/j.pharmthera.2022.108186] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. During the development of cardiovascular diseases, hypoxia plays a crucial role. Hypoxia-inducible factors (HIFs) are the key transcription factors for adaptive hypoxic responses, which orchestrate the transcription of numerous genes involved in angiogenesis, erythropoiesis, glycolytic metabolism, inflammation, and so on. Recent studies have dissected the precise role of cell-specific HIFs in the pathogenesis of hypertension, atherosclerosis, aortic aneurysms, pulmonary arterial hypertension, and heart failure using tissue-specific HIF-knockout or -overexpressing animal models. More importantly, several compounds developed as HIF inhibitors or activators have been in clinical trials for the treatment of renal cancer or anemia; however, little is known on the therapeutic potential of these inhibitors for cardiovascular diseases. The purpose of this review is to summarize the recent advances on HIFs in the pathogenesis and pathophysiology of cardiovascular diseases and to provide evidence of potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China; Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Li Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xuejie Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xinyao Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China.
| |
Collapse
|
10
|
Imaging Techniques for Aortic Aneurysms and Dissections in Mice: Comparisons of Ex Vivo, In Situ, and Ultrasound Approaches. Biomolecules 2022; 12:biom12020339. [PMID: 35204838 PMCID: PMC8869425 DOI: 10.3390/biom12020339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/04/2023] Open
Abstract
Aortic aneurysms and dissections are life-threatening conditions that have a high risk for lethal bleeding and organ malperfusion. Many studies have investigated the molecular basis of these diseases using mouse models. In mice, ex vivo, in situ, and ultrasound imaging are major approaches to evaluate aortic diameters, a common parameter to determine the severity of aortic aneurysms. However, accurate evaluations of aortic dimensions by these imaging approaches could be challenging due to pathological features of aortic aneurysms. Currently, there is no standardized mode to assess aortic dissections in mice. It is important to understand the characteristics of each approach for reliable evaluation of aortic dilatations. In this review, we summarize imaging techniques used for aortic visualization in recent mouse studies and discuss their pros and cons. We also provide suggestions to facilitate the visualization of mouse aortas.
Collapse
|
11
|
Liang Z, Liang Q, Zhang W, Zheng L, Shen X, Zhang Y. Promotional effects of HIF1α and KDM3A interaction on vascular smooth muscle cells in thoracic aortic dissection. Epigenomics 2022; 14:227-241. [PMID: 35172598 DOI: 10.2217/epi-2021-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The current study was performed to define the role of KDM3A in thoracic aortic dissection (TAD). Methods: The binding of HIF1α and KDM3A in HES1 was detected by ChIP and dual-luciferase reporter gene assay. Loss and gain-of function assays of HIF1α, KDM3A and HES1 were further performed in Ang-II-induced mouse aortic smooth muscle cell line (MOVAS) cells. Lastly, in vivo TAD models were established. Results: HIF1α was highly expressed in TAD. KDM3A promoted the transcription activation of HES1. HIF1α enhanced the proliferation and migration of Ang-II-induced MOVAS cells, in addition to increasing thoracic aorta dilation to induce TAD formation in vivo. Silencing of HES1 reversed the effects of HIF1α in vivo and in vitro. Conclusion: The findings indicated that interaction between HIF1α and KDM3A enhances the proliferation and migration of MOVAS cells to induce TAD.
Collapse
Affiliation(s)
- Zheyong Liang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Qi Liang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wei Zhang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Road, Xi'an, 710004, Shaanxi, China
| | - Lei Zheng
- School of Pharmaceutical Sciences, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Xuji Shen
- School of Pharmaceutical Sciences, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Yongjian Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.,Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
12
|
Cooper HA, Cicalese S, Preston KJ, Kawai T, Okuno K, Choi ET, Kasahara S, Uchida HA, Otaka N, Scalia R, Rizzo V, Eguchi S. Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm. Cardiovasc Res 2021; 117:971-982. [PMID: 32384150 PMCID: PMC7898955 DOI: 10.1093/cvr/cvaa133] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 11/12/2022] Open
Abstract
AIMS Angiotensin II (AngII) is a potential contributor to the development of abdominal aortic aneurysm (AAA). In aortic vascular smooth muscle cells (VSMCs), exposure to AngII induces mitochondrial fission via dynamin-related protein 1 (Drp1). However, pathophysiological relevance of mitochondrial morphology in AngII-associated AAA remains unexplored. Here, we tested the hypothesis that mitochondrial fission is involved in the development of AAA. METHODS AND RESULTS Immunohistochemistry was performed on human AAA samples and revealed enhanced expression of Drp1. In C57BL6 mice treated with AngII plus β-aminopropionitrile, AAA tissue also showed an increase in Drp1 expression. A mitochondrial fission inhibitor, mdivi1, attenuated AAA size, associated aortic pathology, Drp1 protein induction, and mitochondrial fission but not hypertension in these mice. Moreover, western-blot analysis showed that induction of matrix metalloproteinase-2, which precedes the development of AAA, was blocked by mdivi1. Mdivi1 also reduced the development of AAA in apolipoprotein E-deficient mice infused with AngII. As with mdivi1, Drp1+/- mice treated with AngII plus β-aminopropionitrile showed a decrease in AAA compared to control Drp1+/+ mice. In abdominal aortic VSMCs, AngII induced phosphorylation of Drp1 and mitochondrial fission, the latter of which was attenuated with Drp1 silencing as well as mdivi1. AngII also induced vascular cell adhesion molecule-1 expression and enhanced leucocyte adhesion and mitochondrial oxygen consumption in smooth muscle cells, which were attenuated with mdivi1. CONCLUSION These data indicate that Drp1 and mitochondrial fission play salient roles in AAA development, which likely involves mitochondrial dysfunction and inflammatory activation of VSMCs.
Collapse
MESH Headings
- Aminopropionitrile
- Angiotensin II
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Case-Control Studies
- Cell Adhesion/drug effects
- Cells, Cultured
- Disease Models, Animal
- Dynamins/genetics
- Dynamins/metabolism
- Humans
- Leukocytes/drug effects
- Leukocytes/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Mitochondrial Dynamics/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxygen Consumption/drug effects
- Phosphorylation
- Quinazolinones/pharmacology
- Mice
Collapse
Affiliation(s)
- Hannah A Cooper
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Stephanie Cicalese
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kyle J Preston
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Keisuke Okuno
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Eric T Choi
- Department of Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Haruhito A Uchida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nozomu Otaka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
13
|
Lavin B, Lacerda S, Andia ME, Lorrio S, Bakewell R, Smith A, Rashid I, Botnar RM, Phinikaridou A. Tropoelastin: an in vivo imaging marker of dysfunctional matrix turnover during abdominal aortic dilation. Cardiovasc Res 2020; 116:995-1005. [PMID: 31282949 PMCID: PMC7104357 DOI: 10.1093/cvr/cvz178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aims Dysfunctional matrix turnover is present at sites of abdominal aortic aneurysm (AAA) and leads to the accumulation of monomeric tropoelastin rather than cross-linked elastin. We used a gadolinium-based tropoelastin-specific magnetic resonance contrast agent (Gd-TESMA) to test whether quantifying regional tropoelastin turnover correlates with aortic expansion in a murine model. The binding of Gd-TESMA to excised human AAA was also assessed. Methods and results We utilized the angiotensin II (Ang II)-infused apolipoprotein E gene knockout (ApoE-/-) murine model of aortic dilation and performed in vivo imaging of tropoelastin by administering Gd-TESMA followed by late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) and T1 mapping at 3 T, with subsequent ex vivo validation. In a cross-sectional study (n = 66; control = 11, infused = 55) we found that Gd-TESMA enhanced MRI was elevated and confined to dilated aortic segments (control: LGE=0.13 ± 0.04 mm2, control R1= 1.1 ± 0.05 s-1 vs. dilated LGE=1.0 ± 0.4 mm2, dilated R1 =2.4 ± 0.9 s-1) and was greater in segments with medium (8.0 ± 3.8 mm3) and large (10.4 ± 4.1 mm3) compared to small (3.6 ± 2.1 mm3) vessel volume. Furthermore, a proof-of-principle longitudinal study (n = 19) using Gd-TESMA enhanced MRI demonstrated a greater proportion of tropoelastin: elastin expression in dilating compared to non-dilating aortas, which correlated with the rate of aortic expansion. Treatment with pravastatin and aspirin (n = 10) did not reduce tropoelastin turnover (0.87 ± 0.3 mm2 vs. 1.0 ± 0.44 mm2) or aortic dilation (4.86 ± 2.44 mm3 vs. 4.0 ± 3.6 mm3). Importantly, Gd-TESMA-enhanced MRI identified accumulation of tropoelastin in excised human aneurysmal tissue (n = 4), which was confirmed histologically. Conclusion Tropoelastin MRI identifies dysfunctional matrix remodelling that is specifically expressed in regions of aortic aneurysm or dissection and correlates with the development and rate of aortic expansion. Thus, it may provide an additive imaging marker to the serial assessment of luminal diameter for surveillance of patients at risk of or with established aortopathy.
Collapse
Affiliation(s)
- Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| | - Sara Lacerda
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK.,Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - Marcelo E Andia
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvia Lorrio
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| | - Robert Bakewell
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Alberto Smith
- Cardiovascular Division, Academic Department of Vascular Surgery, King's College London, London, UK
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK.,Wellcome Trust and EPSRC Medical Engineering Center, King's College London, London, UK.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.,Cardiovascular Division, BHF Centre of Excellence, King's College London, London, UK
| |
Collapse
|
14
|
Gurung R, Choong AM, Woo CC, Foo R, Sorokin V. Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. Int J Mol Sci 2020; 21:ijms21176334. [PMID: 32878347 PMCID: PMC7504666 DOI: 10.3390/ijms21176334] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.
Collapse
Affiliation(s)
- Rijan Gurung
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Andrew Mark Choong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
15
|
Zheng HQ, Rong JB, Ye FM, Xu YC, Lu HS, Wang JA. Induction of thoracic aortic dissection: a mini-review of β-aminopropionitrile-related mouse models. J Zhejiang Univ Sci B 2020; 21:603-610. [PMID: 32748576 PMCID: PMC7445087 DOI: 10.1631/jzus.b2000022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Thoracic aortic dissection (TAD) is one of the most lethal aortic diseases due to its acute onset, rapid progress, and high rate of aortic rupture. The pathogenesis of TAD is not completely understood. In this mini-review, we introduce three emerging experimental mouse TAD models using β-aminopropionitrile (BAPN) alone, BAPN for a prolonged duration (four weeks) and then with added infusion of angiotensin II (AngII), or co-administration of BAPN and AngII chronically. We aim to provide insights into appropriate application of these three mouse models, thereby enhancing the understanding of the molecular mechanisms of TAD.
Collapse
Affiliation(s)
- Hai-qiong Zheng
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Jia-bing Rong
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Fei-ming Ye
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Yin-chuan Xu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jian-an Wang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
16
|
Imanishi M, Yamakawa Y, Fukushima K, Ikuto R, Maegawa A, Izawa-Ishizawa Y, Horinouchi Y, Kondo M, Kishuku M, Goda M, Zamami Y, Takechi K, Chuma M, Ikeda Y, Tsuchiya K, Fujino H, Tsuneyama K, Ishizawa K. Fibroblast-specific ERK5 deficiency changes tumor vasculature and exacerbates tumor progression in a mouse model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1239-1250. [PMID: 32307577 DOI: 10.1007/s00210-020-01859-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 01/12/2023]
Abstract
The roles of cancer-associated fibroblasts (CAFs) have been studied in the tumor progression, and CAFs are expected to become the new targets for cancer pharmacotherapies. CAFs contribute to tumor cell survival and proliferation, tumor angiogenesis, immune suppression, tumor inflammation, tumor cell invasion and metastasis, and extracellular matrix remodeling. However, detailed mechanisms of how CAFs function in the living system remain unclear. CAFs include α-smooth muscle actin, expressing activated fibroblasts similar to myofibroblasts, and are highly capable of producing collagen. Several reports have demonstrated the contributions of extracellular-signal-regulated kinase 5 (ERK5) in fibroblasts to the fibrotic processes; however, the roles of CAF-derived ERK5 remain unclear. To investigate the roles of CAF-derived ERK5 in the tumor progression, we created mice lacking the ERK5 gene specifically in fibroblasts. Colon-26 mouse colon cancer cells were implanted into the mice subcutaneously, and the histological analyses of the tumor tissue were performed after 2 weeks. Immunofluorescence analyses showed that recipient-derived fibroblasts existed within the tumor tissue. The present study demonstrated that fibroblast-specific ERK5 deficiency exacerbated tumor progression and it was accompanied with thicker tumor vessel formation and the increase in the number of activated fibroblasts. We combined the results of The Cancer Genome Atlas (TCGA) database analysis with our animal studies, and indicated that regulating ERK5 activity in CAFs or CAF invasion into the tumor tissue can be important strategies for the development of new targets in cancer pharmacotherapies.
Collapse
Affiliation(s)
- Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Yusuke Yamakawa
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Raiki Ikuto
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akiko Maegawa
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | | | - Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masateru Kondo
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masatoshi Kishuku
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Masayuki Chuma
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, 2-50-1, Kuramoto-cho, Tokushima, 770-8503, Japan
- AWA Support Center, Tokushima University, Tokushima, Japan
| |
Collapse
|
17
|
Alique M, Sánchez-López E, Bodega G, Giannarelli C, Carracedo J, Ramírez R. Hypoxia-Inducible Factor-1α: The Master Regulator of Endothelial Cell Senescence in Vascular Aging. Cells 2020; 9:cells9010195. [PMID: 31941032 PMCID: PMC7016968 DOI: 10.3390/cells9010195] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is one of the hottest topics in biomedical research. Advances in research and medicine have helped to preserve human health, leading to an extension of life expectancy. However, the extension of life is an irreversible process that is accompanied by the development of aging-related conditions such as weakness, slower metabolism, and stiffness of vessels. It also debated that aging can be considered an actual disease with aging-derived comorbidities, including cancer or cardiovascular disease. Currently, cardiovascular disorders, including atherosclerosis, are considered as premature aging and represent the first causes of death in developed countries, accounting for 31% of annual deaths globally. Emerging evidence has identified hypoxia-inducible factor-1α as a critical transcription factor with an essential role in aging-related pathology, in particular, regulating cellular senescence associated with cardiovascular aging. In this review, we will focus on the regulation of senescence mediated by hypoxia-inducible factor-1α in age-related pathologies, with particular emphasis on the crosstalk between endothelial and vascular cells in age-associated atherosclerotic lesions. More specifically, we will focus on the characteristics and mechanisms by which cells within the vascular wall, including endothelial and vascular cells, achieve a senescent phenotype.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
- Correspondence: (M.A.); (J.C.); Tel.: +34-91-885-6436 (M.A.); +34-91-394-5005 (J.C.)
| | - Elsa Sánchez-López
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA 92037, USA;
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
| | - Chiara Giannarelli
- Cardiovascular Research Center, Institute for Genomics and Multiscale Biology, New York, NY 10029, USA;
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
- Correspondence: (M.A.); (J.C.); Tel.: +34-91-885-6436 (M.A.); +34-91-394-5005 (J.C.)
| | - Rafael Ramírez
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
| |
Collapse
|
18
|
Kelly MJ, Igari K, Yamanouchi D. Osteoclast-Like Cells in Aneurysmal Disease Exhibit an Enhanced Proteolytic Phenotype. Int J Mol Sci 2019; 20:ijms20194689. [PMID: 31546645 PMCID: PMC6801460 DOI: 10.3390/ijms20194689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is among the top 20 causes of death in the United States. Surgical repair is the gold standard for AAA treatment, therefore, there is a need for non-invasive therapeutic interventions. Aneurysms are more closely associated with the osteoclast-like catabolic degradation of the artery, rather than the osteoblast-like anabolic processes of arterial calcification. We have reported the presence of osteoclast-like cells (OLCs) in human and mouse aneurysmal tissues. The aim of this study was to examine OLCs from aneurysmal tissues as a source of degenerative proteases. Aneurysmal and control tissues from humans, and from the mouse CaPO4 and angiotensin II (AngII) disease models, were analyzed via flow cytometry and immunofluorescence for the expression of osteoclast markers. We found higher expression of the osteoclast markers tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase-9 (MMP-9), and cathepsin K, and the signaling molecule, hypoxia-inducible factor-1α (HIF-1α), in aneurysmal tissue compared to controls. Aneurysmal tissues also contained more OLCs than controls. Additionally, more OLCs from aneurysms express HIF-1α, and produce more MMP-9 and cathepsin K, than myeloid cells from the same tissue. These data indicate that OLCs are a significant source of proteases known to be involved in aortic degradation, in which the HIF-1α signaling pathway may play an important role. Our findings suggest that OLCs may be an attractive target for non-surgical suppression of aneurysm formation due to their expression of degradative proteases.
Collapse
Affiliation(s)
- Matthew J Kelly
- Division of Vascular Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Kimihiro Igari
- Division of Vascular Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Division of Vascular and Endovascular Surgery, Department of Surgery, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan.
| | - Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
19
|
Xu H, Chen S, Zhang H, Zou Y, Zhao J, Yu J, Le S, Cui J, Jiang L, Wu J, Xia J. Network-based analysis reveals novel gene signatures in the peripheral blood of patients with sporadic nonsyndromic thoracic aortic aneurysm. J Cell Physiol 2019; 235:2478-2491. [PMID: 31489966 DOI: 10.1002/jcp.29152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
Thoracic aortic aneurysm (TAA), a serious cardiovascular disease that causes morbidity and mortality worldwide. At present, few biomarkers can accurately diagnose the appearance of TAA before dissection or rupture. Our research has the intention to investigate the developing applicable biomarkers for TAA promising clinically diagnostic biomarkers or probable regulatory targets for TAA. In our research, we built correlation networks utilizing the expression profile of peripheral blood mononuclear cell obtained from a public microarray data set (GSE9106). Furthermore, we chose the turquoise module, which has the strongest significance with TAA and was further analyzed. Fourteen genes that overlapped with differentially expressed proteins in the medial aortic layer were obtained. Subsequently, we verified the results applying quantitative polymerase chain reaction (Q-PCR) to our clinical specimen. In general, the Q-PCR results coincide with the majority of the expression profile. Fascinatingly, a notable change occurred in CLU, DES, MYH10, and FBLN5. In summary, using weighted gene coexpression analysis, our study indicates that CLU, DES, MYH10, and FBLN5 were identified and validated to be related to TAA and might be candidate biomarkers or therapeutic targets for TAA.
Collapse
Affiliation(s)
- Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
21
|
Kim HW, Weintraub NL. Aortic Aneurysm: In Defense of the Vascular Smooth Muscle Cell. Arterioscler Thromb Vasc Biol 2018; 36:2138-2140. [PMID: 27784700 DOI: 10.1161/atvbaha.116.308356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ha Won Kim
- From the Division of Cardiology, Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University
| | - Neal L Weintraub
- From the Division of Cardiology, Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University.
| |
Collapse
|
22
|
Wu CH, Mohammadmoradi S, Chen JZ, Sawada H, Daugherty A, Lu HS. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler Thromb Vasc Biol 2018; 38:e108-e116. [PMID: 29950386 PMCID: PMC6039412 DOI: 10.1161/atvbaha.118.311282] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chia-Hua Wu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Shayan Mohammadmoradi
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Jeff Z Chen
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hisashi Sawada
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
23
|
Borton AH, Benson BL, Neilson LE, Saunders A, Alaiti MA, Huang AY, Jain MK, Proweller A, Ramirez-Bergeron DL. Aryl Hydrocarbon Receptor Nuclear Translocator in Vascular Smooth Muscle Cells Is Required for Optimal Peripheral Perfusion Recovery. J Am Heart Assoc 2018; 7:e009205. [PMID: 29858371 PMCID: PMC6015385 DOI: 10.1161/jaha.118.009205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. METHODS AND RESULTS We used ArntSMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1β), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. ArntSMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of ArntSMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. ArntSMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. CONCLUSIONS Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in ArntSMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Receptor Nuclear Translocator/biosynthesis
- Aryl Hydrocarbon Receptor Nuclear Translocator/genetics
- Blotting, Western
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation
- Immunohistochemistry
- Ischemia/genetics
- Ischemia/metabolism
- Ischemia/pathology
- Lower Extremity/blood supply
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Peripheral Vascular Diseases/genetics
- Peripheral Vascular Diseases/metabolism
- Peripheral Vascular Diseases/pathology
- RNA/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Anna Henry Borton
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Bryan L Benson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Lee E Neilson
- Neurological Institute, University Hospitals, Cleveland, OH
| | - Ashley Saunders
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - M Amer Alaiti
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Alex Y Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
- Angie Fowler Adolescent and Young Adult Cancer Institute and University Hospitals Rainbow Babies and Children's Hospital University Hospitals, Cleveland, OH
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Aaron Proweller
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Diana L Ramirez-Bergeron
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| |
Collapse
|
24
|
Jain T, Nikolopoulou EA, Xu Q, Qu A. Hypoxia inducible factor as a therapeutic target for atherosclerosis. Pharmacol Ther 2018; 183:22-33. [DOI: 10.1016/j.pharmthera.2017.09.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Wang W, Xu B, Xuan H, Ge Y, Wang Y, Wang L, Huang J, Fu W, Michie SA, Dalman RL. Hypoxia-inducible factor 1 in clinical and experimental aortic aneurysm disease. J Vasc Surg 2017; 68:1538-1550.e2. [PMID: 29242064 DOI: 10.1016/j.jvs.2017.09.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/17/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Mural angiogenesis and macrophage accumulation are two pathologic hallmarks of abdominal aortic aneurysm (AAA) disease. The heterodimeric transcription factor hypoxia-inducible factor 1 (HIF-1) is an essential regulator of angiogenesis and macrophage function. In this study, we investigated HIF-1 expression and activity in clinical and experimental AAA disease. METHODS Human aortic samples were obtained from 24 AAA patients and six organ donors during open abdominal surgery. Experimental AAAs were created in 10-week-old male C57BL/6J mice by transient intra-aortic infusion of porcine pancreatic elastase (PPE). Expression of HIF-1α and its target gene messenger RNA (mRNA) levels were assessed in aneurysmal and control aortae. The HIF-1α inhibitors 2-methoxyestradiol and digoxin, the prolyl hydroxylase domain-containing protein (PHD) inhibitors cobalt chloride and JNJ-42041935, and the vehicle alone as control were administered daily to mice at varying time points beginning before or after PPE infusion. Influences on experimental AAA formation and progression were assessed by serial transabdominal ultrasound measurements of aortic diameter and histopathologic analysis at sacrifice. RESULTS The mRNA levels for HIF-1α, vascular endothelial growth factor A, glucose transporter 1, and matrix metalloproteinase 2 were significantly increased in both human and experimental aneurysm tissue. Tissue immunostaining detected more HIF-1α protein in both human and experimental aneurysmal aortae compared with respective control aortae. Treatment with either HIF-1α inhibitor, beginning before or after PPE infusion, prevented enlargement of experimental aneurysms. Both HIF-1α inhibition regimens attenuated medial elastin degradation, smooth muscle cell depletion, and mural angiogenesis and the accumulation of macrophages, T cells, and B cells. Whereas mRNA levels for PHD1 and PHD2 were elevated in experimental aneurysmal aortae, pharmacologic inhibition of PHDs had limited effect on experimental aneurysm progression. CONCLUSIONS Expression of HIF-1α and its target genes is increased in human and experimental AAAs. Treatment with HIF-1α inhibitors limits experimental AAA progression, with histologic evidence of attenuated mural leukocyte infiltration and angiogenesis. These findings underscore the potential significance of HIF-1α in aneurysm pathogenesis and as a target for pharmacologic suppression of AAA disease.
Collapse
Affiliation(s)
- Wei Wang
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif; Department of Vascular Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Haojun Xuan
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Calif
| | - Lixin Wang
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, Shanghai, China
| | - Jianhua Huang
- Department of Vascular Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Weiguo Fu
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, Shanghai, China
| | - Sara A Michie
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Ronald L Dalman
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
26
|
Kawai T, Takayanagi T, Forrester SJ, Preston KJ, Obama T, Tsuji T, Kobayashi T, Boyer MJ, Cooper HA, Kwok HF, Hashimoto T, Scalia R, Rizzo V, Eguchi S. Vascular ADAM17 (a Disintegrin and Metalloproteinase Domain 17) Is Required for Angiotensin II/β-Aminopropionitrile-Induced Abdominal Aortic Aneurysm. Hypertension 2017; 70:959-963. [PMID: 28947615 DOI: 10.1161/hypertensionaha.117.09822] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/22/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023]
Abstract
Angiotensin II (AngII)-activated epidermal growth factor receptor has been implicated in abdominal aortic aneurysm (AAA) development. In vascular smooth muscle cells (VSMCs), AngII activates epidermal growth factor receptor via a metalloproteinase, ADAM17 (a disintegrin and metalloproteinase domain 17). We hypothesized that AngII-dependent AAA development would be prevented in mice lacking ADAM17 in VSMCs. To test this concept, control and VSMC ADAM17-deficient mice were cotreated with AngII and a lysyl oxidase inhibitor, β-aminopropionitrile, to induce AAA. We found that 52.4% of control mice did not survive because of aortic rupture. All other surviving control mice developed AAA and demonstrated enhanced expression of ADAM17 in the AAA lesions. In contrast, all AngII and β-aminopropionitrile-treated VSMC ADAM17-deficient mice survived and showed reduction in external/internal diameters (51%/28%, respectively). VSMC ADAM17 deficiency was associated with lack of epidermal growth factor receptor activation, interleukin-6 induction, endoplasmic reticulum/oxidative stress, and matrix deposition in the abdominal aorta of treated mice. However, both VSMC ADAM17-deficient and control mice treated with AngII and β-aminopropionitrile developed comparable levels of hypertension. Treatment of C57Bl/6 mice with an ADAM17 inhibitory antibody but not with control IgG also prevented AAA development. In conclusion, VSMC ADAM17 silencing or systemic ADAM17 inhibition seems to protect mice from AAA formation. The mechanism seems to involve suppression of epidermal growth factor receptor activation.
Collapse
Affiliation(s)
- Tatsuo Kawai
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Takehiko Takayanagi
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Steven J Forrester
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Kyle J Preston
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Takashi Obama
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Toshiyuki Tsuji
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Tomonori Kobayashi
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Michael J Boyer
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Hannah A Cooper
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Hang Fai Kwok
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Tomoki Hashimoto
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Rosario Scalia
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.)
| | - Victor Rizzo
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.).
| | - Satoru Eguchi
- From the Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (T. Kawai, T. Takayanagi, S.J.F., K.J.P., T.O., T. Tsuji, T. Kobayashi, M.J.B., H.A.C., R.S., V.R., S.E.); Faculty of Health Sciences, Macau Special Administrative Region, University of Macau, Taipa (H.F.K.); and Department of Anesthesia and Perioperative Care, University of California, San Francisco (T.H.).
| |
Collapse
|
27
|
HIF1α in aortic aneurysms and beyond. Clin Sci (Lond) 2017; 131:621-623. [PMID: 28302917 DOI: 10.1042/cs20160956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a permanent expansion of the vessel wall with a high prevalence in those 65 years of age and older. Aneurysms are prone to dissection and rupture that carry a mortality rate of over 85%. Currently, surgical repair is the only option to treat this disease. The need to intervene prior to these events has set off a flurry of basic studies in an effort to understand the cellular and molecular mechanisms that govern AAA formation, progression and rupture. In the present study, the role of myeloid cells in contributing to AAA development has been confirmed. More specifically, the transcription factor, hypoxia-inducible factor-1α (HIF1α), was demonstrated to be a necessary component for regulating the expression of extracellular matrix modifying enzymes and their endogenous inhibitors in these cells. This new discovery may lead to therapeutic targets to prohibit the degradation and weakening of the vessel wall with the hope of limiting AAA formation and/or growth.
Collapse
|
28
|
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/physiopathology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Aneurysm, Abdominal/epidemiology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/physiopathology
- Aortic Aneurysm, Thoracic/epidemiology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Disease Models, Animal
- Humans
- Risk Factors
- Signal Transduction
- Vascular Remodeling
Collapse
Affiliation(s)
- Hong Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington.
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington
| |
Collapse
|
29
|
Deletion of hypoxia-inducible factor-1α in myeloid lineage exaggerates angiotensin II-induced formation of abdominal aortic aneurysm. Clin Sci (Lond) 2017; 131:609-620. [PMID: 28196857 DOI: 10.1042/cs20160865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 11/17/2022]
Abstract
Hypoxia-inducible factor (HIF)-1α is a transcription factor that regulates various genes responding to hypoxic conditions. We previously reported that myeloid-specific activation of HIF-1α had protective effects on hypertensive cardiovascular remodelling in mice. However the role of myeloid lineage HIF-1α in the development of abdominal aortic aneurysm (AAA) has not been determined. Myeloid-specific HIF-1α knockout (HIF-1KO) mice were created using a Cre-lox recombination system in the background of apolipoprotein E-deficient (ApoE-/-) mice. HIF-1KO and control mice were fed high-fat diet (HFD) and infused with angiotensin II (Ang II, 1800 ng/kg/min) by an osmotic mini pump for 4 weeks to induce AAA formation. Deletion of HIF-1α increased aortic external diameter (2.47±0.21 mm versus 1.80±0.28 mm in control, P=0.035). AAA formation rate (94.4% in HIF-1KO versus 81.8% in control) was not statistically significant. Elastic lamina degradation grade determined by Elastica van Gieson (EVG) staining was deteriorated in HIF-1KO mice (3.91±0.08 versus 3.25±0.31 in control, P=0.013). The number of infiltrated macrophages into the abdominal aorta was increased in HIF-1KO mice. Expression of tissue inhibitors of metalloproteinases (TIMPs) was suppressed in the aorta and peritoneal macrophages (PMs) from HIF-1KO mice compared with control mice. HIF-1α in myeloid lineage cells may have a protective role against AAA formation induced by Ang II and HFD in ApoE-/- mice.
Collapse
|
30
|
Inhibition of Receptor-Interacting Protein Kinase 1 with Necrostatin-1s ameliorates disease progression in elastase-induced mouse abdominal aortic aneurysm model. Sci Rep 2017; 7:42159. [PMID: 28186202 PMCID: PMC5301478 DOI: 10.1038/srep42159] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 01/09/2017] [Indexed: 01/30/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common aortic disease with a progressive nature. There is no approved pharmacological treatment to effectively slow aneurysm growth or prevent rupture. Necroptosis is a form of programmed necrosis that is regulated by receptor-interacting protein kinases (RIPs). We have recently demonstrated that the lack of RIP3 in mice prevented aneurysm formation. The goal of the current study is to test whether perturbing necroptosis affects progression of existing aneurysm using the RIP1 inhibitors Necrostatin-1 (Nec-1) and an optimized form of Nec-1, 7-Cl-O-Nec-1 (Nec-1s). Seven days after aneurysm induction by elastase perfusion, mice were randomly administered DMSO, Nec-1 (3.2 mg/kg/day) and Nec-1s (1.6 mg/kg/day) via intraperitoneal injection. Upon sacrifice on day 14 postaneurysm induction, the aortic expansion in the Nec-1s group (64.12 ± 4.80%) was significantly smaller than that of the DMSO group (172.80 ± 13.68%) (P < 0.05). The mean aortic diameter of Nec-1 treated mice appeared to be smaller (121.60 ± 10.40%) than the DMSO group, though the difference was not statistically significant (P = 0.1). Histologically, the aortic structure of Nec-1s-treated mice appeared normal, with continuous and organized elastin laminae and abundant αActin-expressing SMCs. Moreover, Nect-1s treatment diminished macrophage infiltration and MMP9 accumulation and increased aortic levels of tropoelastin and lysyl oxidase. Together, our data suggest that pharmacological inhibition of necroptosis with Nec-1s stabilizes pre-existing aneurysms by diminishing inflammation and promoting connective tissue repair.
Collapse
|