1
|
Akiyoshi T, Matsuhisa F, Shiomi M, Morimoto M, Kitajima S. Superovulation treatment of immature female rabbits increases the number of ovulated oocytes that can in vitro develop into blastocytes. Anim Reprod Sci 2025; 274:107765. [PMID: 39836988 DOI: 10.1016/j.anireprosci.2025.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
To clarify the efficiency of superovulation in immature female rabbits, immature female rabbits were superovulated with equine chorionic gonadotropin, and the number of recovered oocytes, their maturity, and their ability to develop into blastocysts under in vitro fertilization and culture were examined in this study. More than 80 oocytes were recovered from 12-14-week-old immature female rabbits. In particular, an average of more than 100 oocytes were recovered from 13-week-old immature female rabbits. The number of oocytes in immature female rabbits was significantly-approximately 4 times-higher than in mature female rabbits. To compare oocyte maturity, oocytes from immature and mature female rabbits were compared by brilliant cresyl blue staining and mitochondrial distribution analysis. The proportion of mature oocytes detected by brilliant cresyl blue staining was higher in oocytes from mature female rabbits than in oocytes from immature female rabbits, but there were no significant differences in active mitochondrial distribution, fertilization rate, or blastocyst development rate. These results indicate that superovulation with immature female rabbits may be a useful technique for the collection of many oocytes.
Collapse
Affiliation(s)
- Toshiaki Akiyoshi
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - Fumikazu Matsuhisa
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Masashi Shiomi
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 650-0017, Japan
| | - Masatoshi Morimoto
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; Fukuoka Jo Gakuin Nursing University, 1-1-7 Chidori, Koga, Fukuoka 811-3113, Japan
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| |
Collapse
|
2
|
Niimi M, Chen Y, Zhao H, Tang X, Matsuhisa F, Zhou H, Yan H, Chen L, Kitajima S, Sato A, Fan J. Enhanced atherosclerosis in apolipoprotein E knockout rabbits: role of apoB48-rich remnant lipoproteins. Front Cardiovasc Med 2024; 11:1424064. [PMID: 39087075 PMCID: PMC11288958 DOI: 10.3389/fcvm.2024.1424064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Apolipoprotein E (apoE) acts as a binding molecule for both the low-density lipoprotein receptor and the lipoprotein receptor-related protein and this function is essential for facilitating the hepatocyte uptake of lipoproteins containing apoB. The absence of apoE leads to increased atherogenicity in both humans and mice, although the precise molecular mechanisms remain incompletely understood. Objectives This study aimed to investigate the susceptibility of apoE knockout (KO) rabbits, in comparison with wild-type (WT) rabbits, to diet-induced hyperlipidemia and atherosclerosis. Methods ApoE KO rabbits and WT rabbits were fed a diet containing 0.3% cholesterol for 16 weeks. Plasma lipid levels, lipoproteins, and apolipoproteins were analyzed. Atherosclerosis was evaluated at the endpoint of experiments. In addition, we evaluated the oxidizability of those lipoproteins containing apoB to investigate the possible mechanisms of atherosclerosis. Results Male apoE KO rabbits showed significantly elevated levels of total cholesterol and triglycerides compared to WT rabbits, while female apoE KO rabbits displayed similar high total cholesterol levels, albeit with significantly higher triglycerides levels than WT controls. Notably, both male (2.1-fold increase) and female (1.6-fold increase) apoE KO rabbits exhibited a significantly augmented aortic lesion area compared to WT controls. Pathological examination showed that the increased intimal lesions in apoE KO rabbits were featured by heightened infiltration of macrophages (2.7-fold increase) and smooth muscle cells (2.5-fold increase). Furthermore, coronary atherosclerotic lesions were also increased by 1.3-fold in apoE KO rabbits. Lipoprotein analysis revealed that apoB48-rich beta-very-low-density lipoproteins were notably abundant in apoE KO rabbits, suggesting that these remnant lipoproteins of intestinal origin serve as the primary atherogenic lipoproteins. Moreover, apoB48-rich remnant lipoproteins isolated from apoE KO rabbits exhibited heightened susceptibility to copper-induced oxidation. Conclusions The findings indicate that apoB48-rich remnant lipoproteins, resulting from apoE deficiency, possess greater atherogenic potential than apoB100-rich remnant lipoproteins, regardless of plasma TC levels.
Collapse
Affiliation(s)
- Manabu Niimi
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Yajie Chen
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Huanyu Zhao
- Department of Pathology, College of Basic Medical Sciences and The First Hospital, China Medical University, Shenyang, China
| | - Xiangming Tang
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Fumikazu Matsuhisa
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Huanjin Zhou
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haizhao Yan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lu Chen
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Akira Sato
- Department of Cardiology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Jianglin Fan
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
3
|
Li Q, Cao H, Xu X, Chen Y, Zhang Y, Mi Y, Zhu X, Shi Y, Liu J, Wang B, Xu CB, Wang C. Resveratrol attenuates cyclosporin A-induced upregulation of the thromboxane A 2 receptor and hypertension via the AMPK/SIRT1 and MAPK/NF-κB pathways in the rat mesenteric artery. Eur J Pharmacol 2024; 972:176543. [PMID: 38582274 DOI: 10.1016/j.ejphar.2024.176543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Cyclosporin A, an immunosuppressive agent, is extensively utilized for the prevention of transplant rejection and treat autoimmune disease in the clinic, despite its association with a high risk of hypertension development among patients. Resveratrol is a kind of non-flavonoid phenolic compound that widely exists in many plants. The aim of the present study was to investigate the mechanism by which resveratrol ameliorates cyclosporin A-induced hypertension. The arterial rings of the mesentery were incubated with cyclosporin A and resveratrol in vitro. Rats were administered cyclosporin A and/or resveratrol for 3 weeks in vivo. Blood pressure was measured via the tail arteries. Vasoconstriction curves were recorded using a sensitive myograph. The protein expression was evaluated through Western blotting. This study demonstrated that resveratrol mitigated the cyclosporin A-induced increase in blood pressure in rats. Furthermore, resveratrol markedly inhibited the cyclosporin A-induced upregulation of thromboxane A2 receptor-mediated vasoconstriction in the rat mesenteric artery both in vitro and in vivo. Moreover, resveratrol activated AMPK/SIRT1 and inhibited the MAPK/NF-κB signaling pathway. In conclusion, resveratrol restored the cyclosporin A-induced upregulation of the thromboxane A2 receptor and hypertension via the AMPK/SIRT1 and MAPK/NF-κB pathways in rats.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hanjing Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinya Xu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yumeng Chen
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yufang Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanni Mi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Xingmei Zhu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yongheng Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China
| | - Cang-Bao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Chuan Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China.
| |
Collapse
|
4
|
Knapp M, Łukaszuk B, Lisowska A, Hirnle T, Górski J, Chabowski A, Mikłosz A. Multivessel Coronary Artery Disease Complicated by Diabetes Mellitus Has a Relatively Small Effect on Endothelial and Lipoprotein Lipases Expression in the Human Atrial Myocardium and Coronary Perivascular Adipose Tissue. Int J Mol Sci 2023; 24:13552. [PMID: 37686357 PMCID: PMC10487606 DOI: 10.3390/ijms241713552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Endothelial (EL) and lipoprotein (LPL) lipases are enzymes involved in lipoproteins metabolism and formation of atherosclerosis, a pathological feature of coronary artery disease (CAD). This paper examines the role of the lipases in the right atrial appendage (RAA) and coronary perivascular adipose tissue (PVAT) of patients with CAD alone or with accompanying diabetes. Additionally, correlation analysis for plasma concentration of the lipases, apolipoproteins (ApoA-ApoJ) and blood lipids (Chol, HDL-C, LDL-C, TAG) was performed. We observed that CAD had little effect on the lipases gene/protein levels in the RAA, while their transcript content was elevated in the PVAT of diabetic CAD patients. Interestingly, the RAA was characterized by higher expression of EL/LPL (EL: +1-fold for mRNA, +5-fold for protein; LPL: +2.8-fold for mRNA, +12-fold for protein) compared to PVAT. Furthermore, ApoA1 plasma concentration was decreased, whereas ApoC1 and ApoH were increased in the patients with CAD and/or diabetes. The concentrations of ApoC3 and ApoD were strongly positively correlated with TAG content in the blood, and the same was true for ApoB with respect to LDL-C and total cholesterol. Although plasma concentrations of EL/LPL were elevated in the patients with diabetes, CAD alone had little effect on blood, myocardial and perivascular fat expression of the lipases.
Collapse
Affiliation(s)
- Małgorzata Knapp
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.K.); (A.L.); (T.H.)
| | - Bartłomiej Łukaszuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (B.L.); (A.C.)
| | - Anna Lisowska
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.K.); (A.L.); (T.H.)
| | - Tomasz Hirnle
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (M.K.); (A.L.); (T.H.)
| | - Jan Górski
- Faculty of Health Sciences, University of Lomza, 18-400 Lomza, Poland;
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (B.L.); (A.C.)
| | - Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (B.L.); (A.C.)
| |
Collapse
|
5
|
An DB, Ann SJ, Seok S, Kang Y, Lee SH. Hepatic Cdkal1 deletion regulates HDL catabolism and promotes reverse cholesterol transport. Atherosclerosis 2023; 375:21-29. [PMID: 37245423 DOI: 10.1016/j.atherosclerosis.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Associations between CDKAL1 variants and cholesterol efflux capacity (CEC) have been reported. This study aimed to investigate the effects of Cdkal1 deficiency on high-density lipoprotein (HDL) metabolism, atherosclerosis, and related pathways. METHODS Lipid and glucose metabolic profiles, CEC, and in vivo reverse cholesterol transport (RCT) were compared in liver-specific Alb-Cre:Cdkal1fl/fl and Cdkal1fl/fl mice. Aortic atherosclerosis was compared in Apoe-/-Alb-Cre:Cdkal1fl/fl and Apoe-/- mice fed high-fat diets. HDL subclasses and mediators of HDL metabolism from Alb-Cre:Cdkal1fl/fl mice were examined. RESULTS HDL-cholesterol level tended to be higher in the Alb-Cre:Cdkal1fl/fl mice (p = 0.050). Glucose and other lipid profiles were similar in the two groups of mice, irrespective of diet. The mean CEC was 27% higher (p = 0.007) in the Alb-Cre:Cdkal1fl/fl mice, as were the radioactivities of bile acids (mean difference 17%; p = 0.035) and cholesterol (mean difference 42%; p = 0.036) from faeces. The radioactivity tendency was largely similar in mice fed a high-fat diet. Atherosclerotic lesion area tended to be smaller in the Apoe-/-Alb-Cre:Cdkal1fl/fl mice than in the Apoe-/- mice (p = 0.067). Cholesterol concentrations in large HDLs were higher in the Alb-Cre:Cdkal1fl/fl mice (p = 0.024), whereas in small HDLs, they were lower (p = 0.024). Endothelial lipase (mean difference 39%; p = 0.002) and hepatic lipase expression levels (mean difference 34%; p < 0.001) were reduced in the Alb-Cre:Cdkal1fl/fl mice, whereas SR-B1 expression was elevated (mean difference 35%; p = 0.007). CONCLUSIONS The promotion of CEC and RCT in Alb-Cre:Cdkal1fl/fl mice verified the effect of CDKAL1 seen in human genetic data. These phenotypes were related to regulation of HDL catabolism. This study suggests that CDKAL1 and associated molecules could be targets for improving RCT and vascular pathology.
Collapse
Affiliation(s)
- Dan Bi An
- Yonsei University Graduate School, Seoul, South Korea
| | - Soo-Jin Ann
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seungmin Seok
- Yonsei University Graduate School, Seoul, South Korea
| | - Yura Kang
- Department of Biostatistics and Computing, Yonsei University Graduate School, Seoul, South Korea
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
| |
Collapse
|
6
|
Wang Y, Zhang P, Wang T, Yao D, Shi Y, Liu J, Wang B, Wei H, Liu W, Xu CB, Wang C. DMSO-soluble smoking particles up-regulates the vascular endothelin receptors through AMPK-SIRT1 and MAPK pathways. Chem Biol Interact 2022; 368:110203. [DOI: 10.1016/j.cbi.2022.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
7
|
Thomas SR, Zhang Y, Rye KA. The pleiotropic effects of high-density lipoproteins and apolipoprotein A-I. Best Pract Res Clin Endocrinol Metab 2022; 37:101689. [PMID: 36008277 DOI: 10.1016/j.beem.2022.101689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The high density lipoprotein (HDL) fraction of human plasma consists of multiple subpopulations of spherical particles that are structurally uniform, but heterogeneous in terms of size, composition and function. Numerous epidemiological studies have established that an elevated high density lipoprotein cholesterol (HDL-C) level is associated with decreased cardiovascular risk. However, with several recent randomised clinical trials of HDL-C raising agents failing to reduce cardiovascular events, contemporary research is transitioning towards clinical development of the cardioprotective functions of HDLs and the identification of functions that can be exploited for treatment of other diseases. This review describes the origins of HDLs and the causes of their compositional and functional heterogeneity. It then summarises current knowledge of how cardioprotective and other functions of HDLs are regulated. The final section of the review summarises recent advances in the clinical development of HDL-targeted therapies.
Collapse
Affiliation(s)
- Shane R Thomas
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Yunjia Zhang
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Kerry-Anne Rye
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Wang C, Han L, Wang T, Wang Y, Liu J, Wang B, Xu CB. Cyclosporin A up-regulated thromboxane A 2 receptor through activation of MAPK and NF-κB pathways in rat mesenteric artery. Eur J Pharmacol 2022; 926:175034. [PMID: 35588871 DOI: 10.1016/j.ejphar.2022.175034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/03/2023]
Abstract
Cyclosporin A (CsA) is an immunosuppressant used in transplantation patients and inflammatory diseases. CsA-induced local vasoconstriction can lead to serious side effects including nephrotoxicity and hypertension. However, the underlying mechanisms are not fully understood. Mesenteric artery rings of rats were cultured with CsA and specific inhibitors for mitogen-activating protein kinases (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. A sensitive myograph recorded thromboxane (TP) receptor-mediated vasoconstriction. Protein levels of key signaling molecules were assessed by Western blotting. The results show that CsA up-regulated the TP receptor expression with the enhanced vasoconstriction in a dose- and time-dependent manner. Furthermore, the blockage of MAPKs or NF-κB activation markedly attenuated CsA-enhanced vasoconstriction and the TP receptor protein expression. Rats subcutaneously injected with CsA for three weeks showed increased blood pressure in vivo and increased contractile responses to a TP agonist ex vivo. CsA also enhanced TP receptor, as well as p-ERK1/2, p-p38, p- IκBα, p-NF-κB P65 protein levels and decreased IκBα protein expression, demonstrating that CsA induced TP receptor enhanced-vasoconstriction via activation of MAPK and NF-κB pathways. In conclusion, CsA up-regulated the expression of TP receptors via activation of MAPK and NF-κB pathways. The results may provide novel options for prevention of CsA-associated hypertension.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China.
| | - Lihua Han
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ting Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuying Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Cang-Bao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
9
|
Hou Y, Zhang X, Sun X, Qin Q, Chen D, Jia M, Chen Y. Genetically modified rabbit models for cardiovascular medicine. Eur J Pharmacol 2022; 922:174890. [PMID: 35300995 DOI: 10.1016/j.ejphar.2022.174890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Genetically modified (GM) rabbits are outstanding animal models for studying human genetic and acquired diseases. As such, GM rabbits that express human genes have been extensively used as models of cardiovascular disease. Rabbits are genetically modified via prokaryotic microinjection. Through this process, genes are randomly integrated into the rabbit genome. Moreover, gene targeting in embryonic stem (ES) cells is a powerful tool for understanding gene function. However, rabbits lack stable ES cell lines. Therefore, ES-dependent gene targeting is not possible in rabbits. Nevertheless, the RNA interference technique is rapidly becoming a useful experimental tool that enables researchers to knock down specific gene expression, which leads to the genetic modification of rabbits. Recently, with the emergence of new genetic technology, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated protein 9 (CRISPR/Cas9), major breakthroughs have been made in rabbit gene targeting. Using these novel genetic techniques, researchers have successfully modified knockout (KO) rabbit models. In this paper, we aimed to review the recent advances in GM technology in rabbits and highlight their application as models for cardiovascular medicine.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
10
|
Ong KL, Cochran BBiotech BJ, Manandhar B, Thomas S, Rye KA. HDL maturation and remodelling. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159119. [PMID: 35121104 DOI: 10.1016/j.bbalip.2022.159119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
Cholesterol in the circulation is mostly transported in an esterified form as a component of lipoproteins. The majority of these cholesteryl esters are produced in nascent, discoidal high density lipoproteins (HDLs) by the enzyme, lecithin:cholesterol acyltransferase (LCAT). Discoidal HDLs are discrete populations of particles that consist of a phospholipid bilayer, the hydrophobic acyl chains of which are shielded from the aqueous environment by apolipoproteins that also confer water solubility on the particles. The progressive LCAT-mediated accumulation of cholesteryl esters in discoidal HDLs generates the spherical HDLs that predominate in normal human plasma. Spherical HDLs contain a core of water insoluble, neutral lipids (cholesteryl esters and triglycerides) that is surrounded by a surface monolayer of phospholipids with which apolipoproteins associate. Although spherical HDLs all have the same basic structure, they are extremely diverse in size, composition, and function. This review is concerned with how the biogenesis of discoidal and spherical HDLs is regulated and the mechanistic basis of their size and compositional heterogeneity. Current understanding of the impact of this heterogeneity on the therapeutic potential of HDLs of varying size and composition is also addressed in the context of several disease states.
Collapse
Affiliation(s)
- Kwok-Leung Ong
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Blake J Cochran BBiotech
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Bikash Manandhar
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Shane Thomas
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia.
| |
Collapse
|
11
|
Abstract
Rabbits are a useful animal model for examining human hyperlipidemia and atherosclerosis because they have unique features of lipoprotein metabolism that are similar to those in humans. Feeding rabbits a cholesterol-rich diet is a simple means to induce experimental atherosclerosis. Indeed, cholesterol-fed rabbits were first applied to address the relationship between dietary cholesterol and atherosclerosis more than 100 years ago. However, the methods for investigating atherosclerosis using cholesterol-fed rabbits have not been well formulated. In this chapter, we attempt to provide readers with the essential methods to use cholesterol-fed rabbits in the examination of atherosclerosis from cholesterol diet preparation to lesion analysis. These protocols are compiled for both experienced and young researchers who intend to use rabbits for the investigation of lipoprotein metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan.
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.
| | - Manabu Niimi
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | | | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| |
Collapse
|
12
|
Zhang Y, Fatima M, Hou S, Bai L, Zhao S, Liu E. Research methods for animal models of atherosclerosis (Review). Mol Med Rep 2021; 24:871. [PMID: 34713295 PMCID: PMC8569513 DOI: 10.3892/mmr.2021.12511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that threatens human health and lives by causing vascular stenosis and plaque rupture. Various animal models have been employed for elucidating the pathogenesis, drug development and treatment validation studies for atherosclerosis. To the best of our knowledge, the species used for atherosclerosis research include mice, rats, hamsters, rabbits, pigs, dogs, non-human primates and birds, among which the most commonly used ones are mice and rabbits. Notably, apolipoprotein E knockout (KO) or low-density lipoprotein receptor KO mice have been the most widely used animal models for atherosclerosis research since the late 20th century. Although the aforementioned animal models can form atherosclerotic lesions, they cannot completely simulate those in humans with respect to lesion location, lesion composition, lipoprotein composition and physiological structure. Hence, an appropriate animal model needs to be selected according to the research purpose. Additionally, it is necessary for atherosclerosis research to include quantitative analysis results of atherosclerotic lesion size and plaque composition. Laboratory animals can provide not only experimental tissues for in vivo studies but also cells needed for in vitro experiments. The present review first summarizes the common animal models and their practical applications, followed by focus on mouse and rabbit models and elucidating the methods to quantify atherosclerotic lesions. Finally, the methods of culturing endothelial cells, macrophages and smooth muscle cells were elucidated in detail and the experiments involved in atherosclerosis research were discussed.
Collapse
Affiliation(s)
- Yali Zhang
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Mahreen Fatima
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Siyuan Hou
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Liang Bai
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Sihai Zhao
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
13
|
Khetarpal SA, Vitali C, Levin MG, Klarin D, Park J, Pampana A, Millar JS, Kuwano T, Sugasini D, Subbaiah PV, Billheimer JT, Natarajan P, Rader DJ. Endothelial lipase mediates efficient lipolysis of triglyceride-rich lipoproteins. PLoS Genet 2021; 17:e1009802. [PMID: 34543263 PMCID: PMC8483387 DOI: 10.1371/journal.pgen.1009802] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/30/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Triglyceride-rich lipoproteins (TRLs) are circulating reservoirs of fatty acids used as vital energy sources for peripheral tissues. Lipoprotein lipase (LPL) is a predominant enzyme mediating triglyceride (TG) lipolysis and TRL clearance to provide fatty acids to tissues in animals. Physiological and human genetic evidence support a primary role for LPL in hydrolyzing TRL TGs. We hypothesized that endothelial lipase (EL), another extracellular lipase that primarily hydrolyzes lipoprotein phospholipids may also contribute to TRL metabolism. To explore this, we studied the impact of genetic EL loss-of-function on TRL metabolism in humans and mice. Humans carrying a loss-of-function missense variant in LIPG, p.Asn396Ser (rs77960347), demonstrated elevated plasma TGs and elevated phospholipids in TRLs, among other lipoprotein classes. Mice with germline EL deficiency challenged with excess dietary TG through refeeding or a high-fat diet exhibited elevated TGs, delayed dietary TRL clearance, and impaired TRL TG lipolysis in vivo that was rescued by EL reconstitution in the liver. Lipidomic analyses of postprandial plasma from high-fat fed Lipg-/- mice demonstrated accumulation of phospholipids and TGs harboring long-chain polyunsaturated fatty acids (PUFAs), known substrates for EL lipolysis. In vitro and in vivo, EL and LPL together promoted greater TG lipolysis than either extracellular lipase alone. Our data positions EL as a key collaborator of LPL to mediate efficient lipolysis of TRLs in humans and mice.
Collapse
Affiliation(s)
- Sumeet A. Khetarpal
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Cecilia Vitali
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael G. Levin
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Derek Klarin
- Boston VA Healthcare System, Boston, Massachusetts, United States of America,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Joseph Park
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Akhil Pampana
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America,Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John S. Millar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Takashi Kuwano
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dhavamani Sugasini
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago; Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Papasani V. Subbaiah
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago; Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Jeffrey T. Billheimer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America,Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel J. Rader
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,* E-mail:
| |
Collapse
|
14
|
Le Lay JE, Du Q, Mehta MB, Bhagroo N, Hummer BT, Falloon J, Carlson G, Rosenbaum AI, Jin C, Kimko H, Tsai LF, Novick S, Cook B, Han D, Han CY, Vaisar T, Chait A, Karathanasis SK, Rhodes CJ, Hirshberg B, Damschroder MM, Hsia J, Grimsby JS. Blocking endothelial lipase with monoclonal antibody MEDI5884 durably increases high density lipoprotein in nonhuman primates and in a phase 1 trial. Sci Transl Med 2021; 13:13/590/eabb0602. [PMID: 33883272 DOI: 10.1126/scitranslmed.abb0602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is the leading global cause of death, and treatments that further reduce CV risk remain an unmet medical need. Epidemiological studies have consistently identified low high-density lipoprotein cholesterol (HDL-C) as an independent risk factor for CVD, making HDL elevation a potential clinical target for improved CVD resolution. Endothelial lipase (EL) is a circulating enzyme that regulates HDL turnover by hydrolyzing HDL phospholipids and driving HDL particle clearance. Using MEDI5884, a first-in-class, EL-neutralizing, monoclonal antibody, we tested the hypothesis that pharmacological inhibition of EL would increase HDL-C by enhancing HDL stability. In nonhuman primates, MEDI5884 treatment resulted in lasting, dose-dependent elevations in HDL-C and circulating phospholipids, confirming the mechanism of EL action. We then showed that a favorable lipoprotein profile of elevated HDL-C and reduced low-density lipoprotein cholesterol (LDL-C) could be achieved by combining MEDI5884 with a PCSK9 inhibitor. Last, when tested in healthy human volunteers, MEDI5884 not only raised HDL-C but also increased HDL particle numbers and average HDL size while enhancing HDL functionality, reinforcing EL neutralization as a viable clinical approach aimed at reducing CV risk.
Collapse
Affiliation(s)
- John E Le Lay
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Qun Du
- Biologic Therapeutics, Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Minal B Mehta
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Nicholas Bhagroo
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - B Timothy Hummer
- CVRM Safety, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Judith Falloon
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Glenn Carlson
- Clinical CV, Late Stage Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - ChaoYu Jin
- Clinical Immunology and Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Holly Kimko
- Clinical Pharmacology and DMPK, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Lan-Feng Tsai
- CVRM Biometrics, Data Sciences and AI, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Steven Novick
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Bill Cook
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - David Han
- Parexel International, Glendale, CA 91206, USA
| | - Chang Yeop Han
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98915, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98915, USA
| | - Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98915, USA
| | - Sotirios K Karathanasis
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Boaz Hirshberg
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Melissa M Damschroder
- Biologic Therapeutics, Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Judith Hsia
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Joseph S Grimsby
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
| |
Collapse
|
15
|
ANGPLT3 in cardio-metabolic disorders. Mol Biol Rep 2021; 48:2729-2739. [PMID: 33677817 DOI: 10.1007/s11033-021-06248-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023]
Abstract
Dyslipidemia is associated with numerous health problems that include the combination of insulin resistance, hypertension and obesity, which is always grouped together asmetabolic syndrome. Given that metabolic syndrome leads to a high mortality and poses serious risks to human health worldwide, it is vital to explore the mechanisms whereby dyslipidemia modulates the risk and the severity of cardio-metabolic disorders. Recently, a specific secretory protein family, named angiopoietin-like protein (ANGPTL), is considered as one of the significant biomarkers which facilitate the development of angiogenesis. Among the eight proteins of ANGPTL family, ANGPTL3 has been demonstrated as an essential modulator of lipid catabolism within circulation by inhibiting the activity of lipoprotein lipase (LPL) and endothelial lipase (EL). Consistent with these notions, mice with ANGPTL3 gene-deficiency presented reduced circulating levels of low density lipoprotein cholesterol (LDL-C) and lower risk of atherosclerosis. On the other hand, participants carrying homozygous loss-of function (LOF) mutation in ANGPTL3 gene also displayed lower circulating LDL-C levels and atherosclerotic risk. In the current review, we summarized the recent understanding of ANGPTL3 in controlling the risk and the development of dyslipidemia and its related cardio-metabolic disorders. Moreover, we also provided the perspectives which potentially suggested that ANGPTL3 could be considered as a promising target in treating metabolic syndrome.
Collapse
|
16
|
Fan J, Wang Y, Chen YE. Genetically Modified Rabbits for Cardiovascular Research. Front Genet 2021; 12:614379. [PMID: 33603774 PMCID: PMC7885269 DOI: 10.3389/fgene.2021.614379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Rabbits are one of the most used experimental animals for investigating the mechanisms of human cardiovascular disease and lipid metabolism because they are phylogenetically closer to human than rodents (mice and rats). Cholesterol-fed wild-type rabbits were first used to study human atherosclerosis more than 100 years ago and are still playing an important role in cardiovascular research. Furthermore, transgenic rabbits generated by pronuclear microinjection provided another means to investigate many gene functions associated with human disease. Because of the lack of both rabbit embryonic stem cells and the genome information, for a long time, it has been a dream for scientists to obtain knockout rabbits generated by homologous recombination-based genomic manipulation as in mice. This obstacle has greatly hampered using genetically modified rabbits to disclose the molecular mechanisms of many human diseases. The advent of genome editing technologies has dramatically extended the applications of experimental animals including rabbits. In this review, we will update genetically modified rabbits, including transgenic, knock-out, and knock-in rabbits during the past decades regarding their use in cardiovascular research and point out the perspectives in future.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Pathology, Xi'an Medical University, Xi'an, China.,Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Schilcher I, Stadler JT, Lechleitner M, Hrzenjak A, Berghold A, Pregartner G, Lhomme M, Holzer M, Korbelius M, Reichmann F, Springer A, Wadsack C, Madl T, Kratky D, Kontush A, Marsche G, Frank S. Endothelial Lipase Modulates Paraoxonase 1 Content and Arylesterase Activity of HDL. Int J Mol Sci 2021; 22:E719. [PMID: 33450841 PMCID: PMC7828365 DOI: 10.3390/ijms22020719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/26/2023] Open
Abstract
Endothelial lipase (EL) is a strong modulator of the high-density lipoprotein (HDL) structure, composition, and function. Here, we examined the impact of EL on HDL paraoxonase 1 (PON1) content and arylesterase (AE) activity in vitro and in vivo. The incubation of HDL with EL-overexpressing HepG2 cells decreased HDL size, PON1 content, and AE activity. The EL modification of HDL did not diminish the capacity of HDL to associate with PON1 when EL-modified HDL was incubated with PON1-overexpressing cells. The overexpression of EL in mice significantly decreased HDL serum levels but unexpectedly increased HDL PON1 content and HDL AE activity. Enzymatically inactive EL had no effect on the PON1 content of HDL in mice. In healthy subjects, EL serum levels were not significantly correlated with HDL levels. However, HDL PON1 content was positively associated with EL serum levels. The EL-induced changes in the HDL-lipid composition were not linked to the HDL PON1 content. We conclude that primarily, the interaction of enzymatically active EL with HDL, rather than EL-induced alterations in HDL size and composition, causes PON1 displacement from HDL in vitro. In vivo, the EL-mediated reduction of HDL serum levels and the consequently increased PON1-to-HDL ratio in serum increase HDL PON1 content and AE activity in mice. In humans, additional mechanisms appear to underlie the association of EL serum levels and HDL PON1 content.
Collapse
Affiliation(s)
- Irene Schilcher
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Julia T. Stadler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Margarete Lechleitner
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 16, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (A.B.); (G.P.)
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (A.B.); (G.P.)
| | - Marie Lhomme
- ICANalytics Lipidomics, Institute of Cardiometabolism and Nutrition, 75013 Paris, France;
| | - Michael Holzer
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Melanie Korbelius
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Florian Reichmann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Anna Springer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Anatol Kontush
- INSERM Research Unit 1166—ICAN, Sorbonne University, 75013 Paris, France;
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
18
|
Abstract
Transgenic rabbits have contributed to the progress of biomedical science as human disease models because of their unique features, such as the lipid metabolism system similar to humans and medium body size that facilitates handling and experimental manipulation. In fact, many useful transgenic rabbits have been generated and used in research fields such as lipid metabolism and atherosclerosis, cardiac failure, immunology, and oncogenesis. However, there have been long-term problems, namely that the transgenic efficiency when using pronuclear microinjection is low compared with transgenic mice and production of knockout rabbits is impossible owing to the lack of embryonic stem cells for gene targeting in rabbits. Despite these limitations, the emergence of novel genome editing technology has changed the production of genetically modified animals including the rabbit. We are finally able to produce both transgenic and knockout rabbit models to analyze gain- and loss-of-functions of specific genes. It is expected that the use of genetically modified rabbits will extend to various research fields. In this review, we describe the unique features of rabbits as laboratory animals, the current status of their development and use, and future perspectives of transgenic rabbit models for human diseases.
Collapse
|
19
|
Yan H, Niimi M, Matsuhisa F, Zhou H, Kitajima S, Chen Y, Wang C, Yang X, Yao J, Yang D, Zhang J, Murakami M, Nakajima K, Wang Y, Liu E, Liang J, Chen YE, Fan J. Apolipoprotein CIII Deficiency Protects Against Atherosclerosis in Knockout Rabbits. Arterioscler Thromb Vasc Biol 2020; 40:2095-2107. [PMID: 32757647 DOI: 10.1161/atvbaha.120.314368] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Apo (apolipoprotein) CIII mediates the metabolism of triglyceride (TG)-rich lipoproteins. High levels of plasma apoCIII are positively correlated with the plasma TG levels and increase the cardiovascular risk. However, whether apoCIII is directly involved in the development of atherosclerosis has not been fully elucidated. Approach and Results: To examine the possible roles of apoCIII in lipoprotein metabolism and atherosclerosis, we generated apoCIII KO (knockout) rabbits using ZFN (zinc finger nuclease) technique. On a normal standard diet, apoCIII KO rabbits exhibited significantly lower plasma levels of TG than those of WT (wild type) rabbits while total cholesterol and HDL (high-density lipoprotein) cholesterol levels were unchanged. Analysis of lipoproteins isolated by sequential ultracentrifugation revealed that reduced plasma TG levels in KO rabbits were accompanied by prominent reduction of VLDLs (very-low-density lipoproteins) and IDLs (intermediate-density lipoproteins). In addition, KO rabbits showed faster TG clearance rate after intravenous fat load than WT rabbits. On a cholesterol-rich diet, KO rabbits exhibited constantly and significantly lower levels of plasma total cholesterol and TG than WT rabbits, which was caused by a remarkable reduction of β-VLDLs-the major atherogenic lipoproteins. β-VLDLs of KO rabbits showed higher uptake by cultured hepatocytes and were cleared faster from the circulation than β-VLDLs isolated from WT rabbits. Both aortic and coronary atherosclerosis was significantly reduced in KO rabbits compared with WT rabbits. CONCLUSIONS These results indicate that apoCIII deficiency facilitates TG-rich lipoprotein catabolism, and therapeutic inhibition of apoCIII expression may become a novel means not only for the treatment of hyperlipidemia but also for atherosclerosis.
Collapse
Affiliation(s)
- Haizhao Yan
- From the Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan (H.Y., M.N., H.Z., Y.C., C.W., J.F.).,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, China (H.Y.)
| | - Manabu Niimi
- From the Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan (H.Y., M.N., H.Z., Y.C., C.W., J.F.)
| | - Fumikazu Matsuhisa
- Division of Biological Science and Development, Analytical Research Center for Experimental Sciences, Saga University, Japan (F.M., S.K.)
| | - Huanjin Zhou
- From the Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan (H.Y., M.N., H.Z., Y.C., C.W., J.F.)
| | - Shuji Kitajima
- Division of Biological Science and Development, Analytical Research Center for Experimental Sciences, Saga University, Japan (F.M., S.K.)
| | - Yajie Chen
- From the Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan (H.Y., M.N., H.Z., Y.C., C.W., J.F.)
| | - Chuan Wang
- From the Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan (H.Y., M.N., H.Z., Y.C., C.W., J.F.)
| | - Xiawen Yang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan (X.Y., J.Y.)
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan (X.Y., J.Y.)
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor (D.Y., J.Z., Y.E.C.)
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor (D.Y., J.Z., Y.E.C.)
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan (M.M., K.N.)
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan (M.M., K.N.)
| | - Yao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China (Y.W., J.F.)
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, China (E.L.)
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, China (J.L.)
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor (D.Y., J.Z., Y.E.C.)
| | - Jianglin Fan
- From the Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan (H.Y., M.N., H.Z., Y.C., C.W., J.F.).,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China (Y.W., J.F.)
| |
Collapse
|
20
|
Hong C, Deng R, Wang P, Lu X, Zhao X, Wang X, Cai R, Lin J. LIPG: an inflammation and cancer modulator. Cancer Gene Ther 2020; 28:27-32. [PMID: 32572177 DOI: 10.1038/s41417-020-0188-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Endothelial lipase (LIPG/EL) performs fundamental and vital roles in the human body, including cell composition, cytokine expression, and energy provision. Since LIPG predominantly functions as a phospholipase as well as presents low levels of triglyceride lipase activity, it plays an essential role in lipoprotein metabolism, and involves in the metabolic syndromes such as inflammatory response and atherosclerosis. Cytokines significantly affect LIPG expression in endothelial cells in many diseases. Recently, it is suggested that LIPG contributes to cancer initiation and progression, and LIPG attached increasing importance to its potential for future targeted therapy.
Collapse
Affiliation(s)
- Chang Hong
- The First Clinical Medical School (Nanfang Hospital), Southern Medical University, Guangzhou, 510515, PR China
| | - Ruxia Deng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Ping Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiansheng Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xin Zhao
- The First Clinical Medical School (Nanfang Hospital), Southern Medical University, Guangzhou, 510515, PR China
| | - Xiaoyu Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Rui Cai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jie Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
21
|
Yan H, Niimi M, Wang C, Chen Y, Zhou H, Matsuhisa F, Nishijima K, Kitajima S, Zhang B, Yokomichi H, Nakajima K, Murakami M, Zhang J, Chen YE, Fan J. Endothelial Lipase Exerts its Anti-Atherogenic Effect through Increased Catabolism of β-VLDLs. J Atheroscler Thromb 2020; 28:157-168. [PMID: 32448826 PMCID: PMC7957034 DOI: 10.5551/jat.55244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: Endothelial lipase (EL) plays an important role in lipoprotein metabolism. Our recent study showed that increased hepatic expression of EL attenuates diet-induced hypercholesterolemia, thus subsequently reducing atherosclerosis in transgenic (Tg) rabbits. However, it is yet to be determined whether increased EL activity itself per se is anti-atherogenic or whether the anti-atherogenic effect of EL is exclusively dependent on its lipid-lowering effect. Methods: To determine the mechanisms underlying EL-mediated anti-atherogenic effect, we fed Tg and non-Tg rabbits diets containing different amounts of cholesterol to make their plasma cholesterol levels similarly high. Sixteen weeks later, we examined their lipoprotein profiles and compared their susceptibility to atherosclerosis. Results: With Tg and non-Tg rabbits having hypercholesterolemia, the plasma lipids and lipoprotein profiles were observed to be similar, while pathological examinations revealed that lesion areas of both aortic and coronary atherosclerosis of Tg rabbits were not significantly different from non-Tg rabbits. Moreover, Tg rabbits exhibited faster clearance of DiI-labeled β-VLDLs than non-Tg rabbits. Conclusion: The results of our study suggest that the enhancement of β-VLDL catabolism is the major mechanism for atheroprotective effects of EL in Tg rabbits.
Collapse
Affiliation(s)
- Haizhao Yan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi
| | - Manabu Niimi
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi
| | - Chuan Wang
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi.,Department of Pharmacology, College of Pharmacy, Shaanxi University of Chinese Medicine
| | - Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi.,School of Biotechnology and Health Sciences, Wuyi University
| | - Huanjin Zhou
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi
| | | | - Kazutoshi Nishijima
- Animal Research Laboratory, Bioscience Education-Research Support Center, Akita University
| | - Shuji Kitajima
- Analytical Research Center for Experimental Sciences, Saga University
| | - Bo Zhang
- Department of Biochemistry, Fukuoka University School of Medicine
| | | | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Gunma University
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Gunma University
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi.,School of Biotechnology and Health Sciences, Wuyi University
| |
Collapse
|
22
|
Chen Y, Waqar AB, Nishijima K, Ning B, Kitajima S, Matsuhisa F, Chen L, Liu E, Koike T, Yu Y, Zhang J, Chen YE, Sun H, Liang J, Fan J. Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. J Cell Mol Med 2020; 24:4261-4274. [PMID: 32126159 PMCID: PMC7171347 DOI: 10.1111/jcmm.15087] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/01/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase‐9 (MMP‐9), or gelatinase B, has been hypothesized to be involved in the progression of atherosclerosis. In the arterial wall, accumulated macrophages secrete considerable amounts of MMP‐9 but its pathophysiological functions in atherosclerosis have not been fully elucidated. To examine the hypothesis that macrophage‐derived MMP‐9 may affect atherosclerosis, we created MMP‐9 transgenic (Tg) rabbits to overexpress the rabbit MMP‐9 gene under the control of the scavenger receptor A enhancer/promoter and examined their susceptibility to cholesterol diet‐induced atherosclerosis. Tg rabbits along with non‐Tg rabbits were fed a cholesterol diet for 16 and 28 weeks, and their aortic and coronary atherosclerosis was compared. Gross aortic lesion areas were significantly increased in female Tg rabbits at 28 weeks; however, pathological examination revealed that all the lesions of Tg rabbits fed a cholesterol diet for either 16 or 28 weeks were characterized by increased monocyte/macrophage accumulation and prominent lipid core formation compared with those of non‐Tg rabbits. Macrophages isolated from Tg rabbits exhibited higher infiltrative activity towards a chemoattractant, MCP‐1 in vitro and augmented capability of hydrolysing extracellular matrix in granulomatous tissue. Surprisingly, the lesions of Tg rabbits showed more advanced lesions with remarkable calcification in both aortas and coronary arteries. In conclusion, macrophage‐derived MMP‐9 facilitates the infiltration of monocyte/macrophages into the lesions thereby enhancing the progression of atherosclerosis. Increased accumulation of lesional macrophages may promote vascular calcification.
Collapse
Affiliation(s)
- Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Ahmed Bilal Waqar
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Kazutoshi Nishijima
- Bioscience Education-Research Support Center, Akita University, Akita, Japan
| | - Bo Ning
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Shuji Kitajima
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Fumikazu Matsuhisa
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Lu Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Tomonari Koike
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Ying Yu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yuqing Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Huijun Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jingyan Liang
- Research Center for Vascular Biology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
23
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
24
|
Wang C, Niimi M, Kitajima S, Matsuhisa F, Yan H, Dong S, Liang J, Fan J. Sex hormones affect endothelial lipase-mediated lipid metabolism and atherosclerosis. Lipids Health Dis 2019; 18:226. [PMID: 31870448 PMCID: PMC6929444 DOI: 10.1186/s12944-019-1175-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/16/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Endothelial lipase (EL) plays an important role in lipoprotein metabolism and atherosclerosis. To study the functional roles of EL, we recently generated transgenic (Tg) rabbits and reported that increased hepatic expression of EL in male Tg rabbits significantly reduced diet-induced hypercholesterolemia compared with non-Tg controls. This gender difference suggests that sex hormones may mediate EL functions thereby influencing lipoprotein metabolism. To examine this hypothesis, we compared the effects of orchiectomy and ovariectomy on plasma lipids and diet-induced atherosclerosis in both Tg and non-Tg rabbits. METHODS Male rabbits were under orchiectomy whereas female rabbits were under ovariectomy. We compared plasma lipids, lipoproteins, and apolipoproteins of rabbits before and after surgery in each group fed either a chow diet or cholesterol-rich diet. RESULTS On a chow diet, both male and female Tg rabbits showed lower plasma lipids than non-Tg counterparts and this lipid-lowering effect of EL was not affected by either orchiectomy in male or ovariectomy in female Tg rabbits. On a cholesterol diet; however, male Tg rabbits but not female Tg rabbits showed significant resistance to diet-induced hypercholesterolemia and atherosclerosis. The EL-mediated atheroprotective effect was eliminated after orchiectomy in male Tg rabbits. Female Tg rabbits showed similar levels of total cholesterol and lesion size of atherosclerosis compared with non-Tg rabbits and ovariectomy did not affect diet-induced hypercholesterolemia or atherosclerosis. CONCLUSION These results suggest that increased EL protects against diet-induced hypercholesterolemia and atherosclerosis. The beneficial effect of EL was dependent upon the presence of androgenic hormones.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Yamanashi, 409-3898, Japan
| | - Manabu Niimi
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Yamanashi, 409-3898, Japan
| | - Shuji Kitajima
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Fumikazu Matsuhisa
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Haizhao Yan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Yamanashi, 409-3898, Japan
| | - Sijun Dong
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jingyan Liang
- Research Center for Vascular Biology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Yamanashi, 409-3898, Japan. .,School of Biotechnology and Health Sciences, Wuyi University, Dongcheng Cun No. 22, Jiangmen, 529020, China.
| |
Collapse
|
25
|
Nagao M, Miyashita K, Mori K, Irino Y, Toh R, Hara T, Hirata KI, Shinohara M, Nakajima K, Ishida T. Serum concentration of full-length- and carboxy-terminal fragments of endothelial lipase predicts future cardiovascular risks in patients with coronary artery disease. J Clin Lipidol 2019; 13:839-846. [PMID: 31473149 DOI: 10.1016/j.jacl.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/18/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Endothelial lipase (EL), a regulator of plasma high-density lipoprotein cholesterol (HDL-C), is secreted as a 68-kDa mature glycoprotein, and then cleaved by proprotein convertases. However, the clinical significance of the circulating EL fragments remains unclear. OBJECTIVE The objective of this study was to analyze the impact of serum EL fragments on HDL-C levels and major adverse cardiovascular events (MACE). METHODS Using novel monoclonal antibodies (RC3A6) against carboxy-terminal EL protein, we have established a new enzyme-linked immunosorbent assay (ELISA) system, which can detect both full-length EL protein (full EL) and carboxy-terminal truncated fragments (total EL) in serum. The previous sandwich ELISA detected only full EL. The full and total EL mass were measured in 556 patients with coronary artery disease. Among them, 272 patients who underwent coronary intervention were monitored for 2 years for MACE. RESULTS There was a significant correlation between serum full and total EL mass (R = 0.45, P < .0001). However, the total EL mass showed a stronger inverse correlation with serum HDL-cholesterol concentration than the full EL mass (R = -0.17 vs -0.02). Kaplan-Meier analysis documented an association of serum total EL mass and MACE (log-rank P = .037). When an optimal cutoff value was set at 96.23 ng/mL, total EL mass was an independent prognostic factor for MACE in the Cox proportional hazard model (HR; 1.75, 95% CI; 1.10-2.79, P = .018). CONCLUSION Serum total EL mass could be a predictor for MACE in patients with coronary artery disease. This novel ELISA will be useful for further clarifying the impact of EL on HDL metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Manabu Nagao
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Kenta Mori
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Irino
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Tetsuya Hara
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Katsuyuki Nakajima
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
26
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
27
|
Wang R, Liu R, Li L, Liu B, Bai L, Wang W, Zhao S, Liu E. Fasting is not required for measuring plasma lipid levels in rabbits. Lab Anim 2019; 54:272-280. [PMID: 31216952 DOI: 10.1177/0023677219855102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plasma lipid and glucose levels are important parameters for evaluating the onset and development of metabolic and cardiovascular diseases. In clinical and experimental studies of humans or mice, fasting is often required before testing plasma lipid and glucose levels. The rabbit is a valuable animal model for cardiovascular disease research. However, whether fasting is necessary for measuring plasma lipid and glucose levels in rabbits remains unclear. In the current study, 12 healthy Japanese white rabbits (males weighing 2.5-3.0 kg) were randomly divided into a chow diet group (n = 6) and a high cholesterol diet group (n = 6). They were fed either a standard chow diet or a chow diet supplemented with 0.5% cholesterol and 3% corn oil for 12 weeks. After 12 weeks, the plasma levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and glucose were measured before and after various fasting durations (8, 12, 16, 20 and 24 h). The results showed that there were no significant differences in lipid levels between the fasting and non-fasting samples, whereas glucose levels were lower after 8 h of fasting than in the absence of fasting. Moreover, the glucose levels were restored to normal after 8 h of refeeding. These results indicate that fasting does not affect plasma lipid values in rabbits but that fasting is important for determining the glucose level in rabbits. These findings may be helpful for future rabbit experiments and beneficial for animal welfare.
Collapse
Affiliation(s)
- Rong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ruihan Liu
- Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Li
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Baoning Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
28
|
Chen Y, Waqar AB, Yan H, Wang Y, Liang J, Fan J. Renovascular Hypertension Aggravates Atherosclerosis in Cholesterol-Fed Rabbits. J Vasc Res 2019; 56:28-38. [PMID: 30947215 DOI: 10.1159/000498897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hypertension is a major risk factor for atherosclerotic disease. However, it is still not clear whether mechanical stress caused by hypertension directly affects the atherosclerotic development in the aorta and coronary arteries. OBJECTIVES AND METHODS We generated a hypertensive (HTN) rabbit model by surgical removal of the left kidney and partial ligation of the right renal artery. After a 16-week cholesterol diet, we compared aortic and coronary atherosclerosis of HTN rabbits with those of normotensive rabbits. RESULTS Hypertension did not affect lipid and apolipoprotein levels in plasma but led to a 3.0-fold increase in aortic atherosclerosis and a 1.7-fold increase in coronary atherosclerosis compared with control rabbits. Enhanced atherosclerosis in HTN rabbits was caused by significant increases in macrophages and smooth muscle cells in the lesions. Furthermore, oxidized LDL contents in the lesions were significantly increased in HTN rabbits. In addition, HTN rabbits exhibited prominent hyaline arteriolosclerosis in coronary arterioles. CONCLUSIONS These results indicate that hyper tension not only enhances atherosclerosis in large arteries including the aorta and coronary arteries but also affects hyaline arteriolosclerosis in small arteries.
Collapse
Affiliation(s)
- Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Ahmed Bilal Waqar
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Haizhao Yan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Jingyan Liang
- Research Center for Vascular Biology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan, .,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,
| |
Collapse
|
29
|
Matsuura Y, Kanter JE, Bornfeldt KE. Highlighting Residual Atherosclerotic Cardiovascular Disease Risk. Arterioscler Thromb Vasc Biol 2019; 39:e1-e9. [PMID: 30586334 PMCID: PMC6310032 DOI: 10.1161/atvbaha.118.311999] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yunosuke Matsuura
- From the Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (Y.M., J.E.K., K.E.B.)
| | - Jenny E Kanter
- From the Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (Y.M., J.E.K., K.E.B.)
| | - Karin E Bornfeldt
- From the Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (Y.M., J.E.K., K.E.B.)
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (K.E.B.)
| |
Collapse
|
30
|
Affiliation(s)
- Jacqueline S Dron
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Julieta Lazarte
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
31
|
Ning B, Chen Y, Waqar AB, Yan H, Shiomi M, Zhang J, Chen YE, Wang Y, Itabe H, Liang J, Fan J. Hypertension Enhances Advanced Atherosclerosis and Induces Cardiac Death in Watanabe Heritable Hyperlipidemic Rabbits. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2936-2947. [PMID: 30248339 DOI: 10.1016/j.ajpath.2018.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 01/29/2023]
Abstract
Hypertension is a major risk factor for the development of atherosclerosis. Cardiovascular risk has been reported to be significantly increased in hyperlipidemic patients with hypertension. However, it is not clear whether hypertension can directly destabilize plaques, thereby enhancing cardiovascular events. To examine whether hypertension enhances the development of atherosclerosis and increases plaque vulnerability, we generated hypertensive Watanabe heritable hyperlipidemic (WHHL) rabbits by surgical removal of one kidney and partial ligation of the other renal artery and compared the nature of aortic and coronary atherosclerosis in hypertensive WHHL rabbits with normotensive WHHL rabbits. All hypertensive WHHL rabbits died from 34 to 56 weeks after surgery, whereas no normotensive WHHL rabbits died. Pathologic examinations revealed that hypertensive WHHL rabbits showed different degrees of myocardial infarction caused by severe coronary stenosis along with myocardial hypertrophy. Furthermore, aortic lesions in hypertensive WHHL rabbits exhibited a higher frequency of intraplaque hemorrhage and vulnerable plaques than those in normotensive WHHL rabbits. These results indicate that hypertension induced by the surgical removal of one kidney and partial ligation of the other renal artery method in WHHL rabbits may not only enhance the development of atherosclerosis but also destabilize the plaques, increasing cardiac death.
Collapse
Affiliation(s)
- Bo Ning
- College of Clinical Medicine and Department of Pathology, Xi'an Medical University, Xi'an, China; Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Ahmed Bilal Waqar
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Haizhao Yan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Masashi Shiomi
- Institute for Experimental Animals, Kobe University School of Medicine, Kobe, Japan
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Yanli Wang
- College of Clinical Medicine and Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Hiroyuki Itabe
- Division of Biological Chemistry, Department of Molecular Biology, Showa University, School of Pharmacy, Tokyo, Japan
| | - Jingyan Liang
- Research Center for Vascular Biology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Jianglin Fan
- College of Clinical Medicine and Department of Pathology, Xi'an Medical University, Xi'an, China; Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
32
|
Fan J, Chen Y, Yan H, Niimi M, Wang Y, Liang J. Principles and Applications of Rabbit Models for Atherosclerosis Research. J Atheroscler Thromb 2018; 25:213-220. [PMID: 29046488 PMCID: PMC5868506 DOI: 10.5551/jat.rv17018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 02/02/2023] Open
Abstract
Rabbits are one of the most used experimental animals for biomedical research, particularly as a bioreactor for the production of antibodies. However, many unique features of the rabbit have also made it as an excellent species for examining a number of aspects of human diseases such as atherosclerosis. Rabbits are phylogenetically closer to humans than rodents, in addition to their relatively proper size, tame disposition, and ease of use and maintenance in the laboratory facility. Due to their short life spans, short gestation periods, high numbers of progeny, low cost (compared with other large animals) and availability of genomics and proteomics, rabbits usually serve to bridge the gap between smaller rodents (mice and rats) and larger animals, such as dogs, pigs and monkeys, and play an important role in many translational research activities such as pre-clinical testing of drugs and diagnostic methods for patients. The principle of using rabbits rather than other animals as an experimental model is very simple: rabbits should be used for research, such as translational research, that is difficult to accomplish with other species. Recently, rabbit genome sequencing and transcriptomic profiling of atherosclerosis have been successfully completed, which has paved a new way for researchers to use this model in the future. In this review, we provide an overview of the recent progress using rabbits with specific reference to their usefulness for studying human atherosclerosis.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Haizhao Yan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Manabu Niimi
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Jingyan Liang
- Research Center for Vascular Biology, Yangzhou University School of Medicine, Yangzhou, China
| |
Collapse
|
33
|
Vitali C, Khetarpal SA, Rader DJ. HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics. Curr Cardiol Rep 2017; 19:132. [PMID: 29103089 DOI: 10.1007/s11886-017-0940-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Elevated high-density lipoprotein cholesterol levels in the blood (HDL-C) represent one of the strongest epidemiological surrogates for protection against coronary heart disease (CHD), but recent human genetic and pharmacological intervention studies have raised controversy about the causality of this relationship. Here, we review recent discoveries from human genome studies using new analytic tools as well as relevant animal studies that have both addressed, and in some cases, fueled this controversy. RECENT FINDINGS Methodologic developments in genotyping and sequencing, such as genome-wide association studies (GWAS), exome sequencing, and exome array genotyping, have been applied to the study of HDL-C and risk of CHD in large, multi-ethnic populations. Some of these efforts focused on population-wide variation in common variants have uncovered new polymorphisms at novel loci associated with HDL-C and, in some cases, CHD risk. Other efforts have discovered loss-of-function variants for the first time in genes previously implicated in HDL metabolism through common variant studies or animal models. These studies have allowed the genetic relationship between these pathways, HDL-C and CHD to be explored in humans for the first time through analysis tools such as Mendelian randomization. We explore these discoveries for selected key HDL-C genes CETP, LCAT, LIPG, SCARB1, and novel loci implicated from GWAS including GALNT2, KLF14, and TTC39B. Recent human genetics findings have identified new nodes regulating HDL metabolism while reshaping our current understanding of known candidate genes to HDL and CHD risk through the study of critical variants across model systems. Despite their effect on HDL-C, variants in many of the reviewed genes were found to lack any association with CHD. These data collectively indicate that HDL-C concentration, which represents a static picture of a very dynamic and heterogeneous metabolic milieu, is unlikely to be itself causally protective against CHD. In this context, human genetics represent an extremely valuable tool to further explore the biological mechanisms regulating HDL metabolism and investigate what role, if any, HDL plays in the pathogenesis of CHD.
Collapse
Affiliation(s)
- Cecilia Vitali
- Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Sumeet A Khetarpal
- Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Daniel J Rader
- Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA. .,Departments of Genetics and Medicine, Cardiovascular Institute, and Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|