1
|
Tiezzi M, Vieceli Dalla Sega F, Gentileschi P, Campanelli M, Benavoli D, Tremoli E. Effects of Weight Loss on Endothelium and Vascular Homeostasis: Impact on Cardiovascular Risk. Biomedicines 2025; 13:381. [PMID: 40002792 PMCID: PMC11853214 DOI: 10.3390/biomedicines13020381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Available knowledge shows that obesity is associated with an impaired endothelial function and an increase in cardiovascular risk, but the mechanisms of this association are not yet fully understood. Adipose tissue dysfunction, adipocytokines production, along with systemic inflammation and associated comorbidities (e.g., diabetes and hypertension), are regarded as the primary physiological and pathological factors. Various strategies are now available for the control of excess body weight. Dietary regimens alone, or in association with bariatric surgery when indicated, are now widely used. Of particular interest is the understanding of the effect of these interventions on endothelial homeostasis in relation to cardiovascular health. Substantial weight loss resulting from both diet and bariatric surgery decreases circulating biomarkers and improves endothelial function. Extensive clinical trials and meta-analyses show that bariatric surgery (particularly gastric bypass) has more substantial and long-lasting effect on weight loss and glucose regulation, as well as on distinct circulating biomarkers of cardiovascular risk. This review summarizes the current understanding of the distinct effects of diet-induced and surgery-induced weight loss on endothelial function, focusing on the key mechanisms involved in these effects.
Collapse
Affiliation(s)
- Margherita Tiezzi
- Dipartimento Cardiovascolare, Maria Cecilia Hospital GVM Care and Research, 48033 Cotignola, Italy;
| | | | - Paolo Gentileschi
- Dipartimento di Chirurgia Bariatrica e Metabolica, Maria Cecilia Hospital GVM Care and Research, 48033 Cotignola, Italy; (P.G.); (M.C.); (D.B.)
- Dipartimento di Scienze Chirurgiche, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Michela Campanelli
- Dipartimento di Chirurgia Bariatrica e Metabolica, Maria Cecilia Hospital GVM Care and Research, 48033 Cotignola, Italy; (P.G.); (M.C.); (D.B.)
| | - Domenico Benavoli
- Dipartimento di Chirurgia Bariatrica e Metabolica, Maria Cecilia Hospital GVM Care and Research, 48033 Cotignola, Italy; (P.G.); (M.C.); (D.B.)
| | - Elena Tremoli
- Dipartimento Cardiovascolare, Maria Cecilia Hospital GVM Care and Research, 48033 Cotignola, Italy;
| |
Collapse
|
2
|
Bartkowiak K, Bartkowiak M, Jankowska-Steifer E, Ratajska A, Czarnowska E, Kujawa M, Aniołek O, Niderla-Bielińska J. Expression of mRNA for molecules that regulate angiogenesis, endothelial cell survival, and vascular permeability is altered in endothelial cells isolated from db/db mouse hearts. Histochem Cell Biol 2024; 162:523-539. [PMID: 39317805 PMCID: PMC11455669 DOI: 10.1007/s00418-024-02327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Metabolic syndrome (MetS) is a condition that includes symptoms, such as obesity, hyperglycemia, and hypertension, which elevate cardiovascular risk. An impaired angiogenic response of endothelial cells (ECs) in heart and peripheral organs has been proposed in MetS, but the mechanisms of this phenomenon have not been thoroughly explored. Results obtained from evaluating the whole myocardium are inconsistent, since different types of cells react differently to MetS environment and a variety of molecular pathways are involved in the angiogenic response. Therefore, the aim of this paper was to study one selected pathway-the VEGF/VEGFR pathway, which regulates the angiogenic response and microvascular permeability in ECs isolated from db/db mouse hearts. The expression of mRNAs for VEGF/VEGFR axis proteins was assessed with RT-PCR in ECs isolated from control and db/db mouse myocardium. The density of CD31-, VEGFR2-, and VE-cadherin-positive cells was examined with confocal microscopy, and the ultrastructure of ECs was analyzed with transmission electron microscopy. The aortic ring assay was used to assess the capacity of ECs to respond to angiogenic stimuli. Our results showed a decreased number of microvessels, diminished expression of VE-cadherin and VEGFR2 and widened gaps between the ECs of microcapillaries. The aortic ring assay showed a diminished number of sprouts in db/db mice. These results may indicate that ECs in MetS enhance the production of mRNA for VEGF/VRGFR axis proteins, yet sprout formation and vascular barrier maintenance are limited. These novel data may provide a foundation for further studies on ECs dysfunction in MetS.
Collapse
Affiliation(s)
- Krzysztof Bartkowiak
- Histology and Embryology Department, Medical University of Warsaw, Chalubinskiego 5 Str, 02-004, Warsaw, Poland
| | - Mateusz Bartkowiak
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jankowska-Steifer
- Histology and Embryology Department, Medical University of Warsaw, Chalubinskiego 5 Str, 02-004, Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Kujawa
- Department of Histology and Embryology, Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Olga Aniołek
- Department of Histology and Embryology, Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Justyna Niderla-Bielińska
- Histology and Embryology Department, Medical University of Warsaw, Chalubinskiego 5 Str, 02-004, Warsaw, Poland.
| |
Collapse
|
3
|
Zhang J, Katada K, Mosleh E, Yuhas A, Peng G, Golson ML. The leptin receptor has no role in delta-cell control of beta-cell function in the mouse. Front Endocrinol (Lausanne) 2023; 14:1257671. [PMID: 37850099 PMCID: PMC10577419 DOI: 10.3389/fendo.2023.1257671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Leptin inhibits insulin secretion from isolated islets from multiple species, but the cell type that mediates this process remains elusive. Several mouse models have been used to explore this question. Ablation of the leptin receptor (Lepr) throughout the pancreatic epithelium results in altered glucose homeostasis and ex vivo insulin secretion and Ca2+ dynamics. However, Lepr removal from neither alpha nor beta cells mimics this result. Moreover, scRNAseq data has revealed an enrichment of LEPR in human islet delta cells. Methods We confirmed LEPR upregulation in human delta cells by performing RNAseq on fixed, sorted beta and delta cells. We then used a mouse model to test whether delta cells mediate the diminished glucose-stimulated insulin secretion in response to leptin. Results Ablation of Lepr within mouse delta cells did not change glucose homeostasis or insulin secretion, whether mice were fed a chow or high-fat diet. We further show, using a publicly available scRNAseq dataset, that islet cells expressing Lepr lie within endothelial cell clusters. Conclusions In mice, leptin does not influence beta-cell function through delta cells.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Genetics, University of Pennsylvania, Philadephia, PA, United States
| | - Kay Katada
- School of Medicine, University of Pennsylvania, Philadephia, PA, United States
| | - Elham Mosleh
- Department of Genetics, University of Pennsylvania, Philadephia, PA, United States
- School of Medicine, University of Pennsylvania, Philadephia, PA, United States
| | - Andrew Yuhas
- Department of Genetics, University of Pennsylvania, Philadephia, PA, United States
- School of Medicine, University of Pennsylvania, Philadephia, PA, United States
| | - Guihong Peng
- Department of Medicine, Divison of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, MD, United States
| | - Maria L. Golson
- Department of Genetics, University of Pennsylvania, Philadephia, PA, United States
- School of Medicine, University of Pennsylvania, Philadephia, PA, United States
- Department of Medicine, Divison of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
4
|
Vasamsetti SB, Natarajan N, Sadaf S, Florentin J, Dutta P. Regulation of cardiovascular health and disease by visceral adipose tissue-derived metabolic hormones. J Physiol 2023; 601:2099-2120. [PMID: 35661362 PMCID: PMC9722993 DOI: 10.1113/jp282728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Visceral adipose tissue (VAT) is a metabolic organ known to regulate fat mass, and glucose and nutrient homeostasis. VAT is an active endocrine gland that synthesizes and secretes numerous bioactive mediators called 'adipocytokines/adipokines' into systemic circulation. These adipocytokines act on organs of metabolic importance like the liver and skeletal muscle. Multiple preclinical and in vitro studies showed strong evidence of the roles of adipocytokines in the regulation of metabolic disorders like diabetes, obesity and insulin resistance. Adipocytokines, such as adiponectin and omentin, are anti-inflammatory and have been shown to prevent atherogenesis by increasing nitric oxide (NO) production by the endothelium, suppressing endothelium-derived inflammation and decreasing foam cell formation. By inhibiting differentiation of vascular smooth muscle cells (VSMC) into osteoblasts, adiponectin and omentin prevent vascular calcification. On the other hand, adipocytokines like leptin and resistin induce inflammation and endothelial dysfunction that leads to vasoconstriction. By promoting VSMC migration and proliferation, extracellular matrix degradation and inflammatory polarization of macrophages, leptin and resistin increase the risk of atherosclerotic plaque vulnerability and rupture. Additionally, the plasma concentrations of these adipocytokines alter in ageing, rendering older humans vulnerable to cardiovascular disease. The disturbances in the normal physiological concentrations of these adipocytokines secreted by VAT under pathological conditions impede the normal functions of various organs and affect cardiovascular health. These adipokines could be used for both diagnostic and therapeutic purposes in cardiovascular disease.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Niranjana Natarajan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Samreen Sadaf
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Gogiraju R, Witzler C, Shahneh F, Hubert A, Renner L, Bochenek ML, Zifkos K, Becker C, Thati M, Schäfer K. Deletion of endothelial leptin receptors in mice promotes diet-induced obesity. Sci Rep 2023; 13:8276. [PMID: 37217565 DOI: 10.1038/s41598-023-35281-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Obesity promotes endothelial dysfunction. Endothelial cells not only respond, but possibly actively promote the development of obesity and metabolic dysfunction. Our aim was to characterize the role of endothelial leptin receptors (LepR) for endothelial and whole body metabolism and diet-induced obesity. Mice with tamoxifen-inducible, Tie2.Cre-ERT2-mediated deletion of LepR in endothelial cells (End.LepR knockout, KO) were fed high-fat diet (HFD) for 16 weeks. Body weight gain, serum leptin levels, visceral adiposity and adipose tissue inflammation were more pronounced in obese End.LepR-KO mice, whereas fasting serum glucose and insulin levels or the extent of hepatic steatosis did not differ. Reduced brain endothelial transcytosis of exogenous leptin, increased food intake and total energy balance were observed in End.LepR-KO mice and accompanied by brain perivascular macrophage accumulation, whereas physical activity, energy expenditure and respiratory exchange rates did not differ. Metabolic flux analysis revealed no changes in the bioenergetic profile of endothelial cells from brain or visceral adipose tissue, but higher glycolysis and mitochondrial respiration rates in those isolated from lungs. Our findings support a role for endothelial LepRs in the transport of leptin into the brain and neuronal control of food intake, and also suggest organ-specific changes in endothelial cell, but not whole-body metabolism.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudius Witzler
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Fatemeh Shahneh
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Astrid Hubert
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luisa Renner
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Konstantinos Zifkos
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Christian Becker
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Clinic of Dermatology, University Clinic Münster, Münster, Germany
| | - Madhusudhan Thati
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Endothelial dysfunction is a major risk factor for many cardiovascular diseases, notably hypertension. Obesity increases the risk of endothelial dysfunction in association with increasing production of the adipokine leptin. Preclinical studies have begun to unravel the mechanisms whereby leptin leads to the development of endothelial dysfunction, which are sex-specific. This review will summarize recent findings of mechanisms of leptin-induced endothelial impairment in both male and females and in pregnancy. RECENT FINDINGS Leptin receptors are found in high concentrations in the central nervous system (CNS), via which leptin promotes appetite suppression and upregulates sympathetic nervous system activation. However, leptin receptors are expressed in many other tissues, including the vascular endothelial cells and smooth muscle cells. Recent studies in mice with vascular endothelial or smooth muscle-specific knockdown demonstrate that endothelial leptin receptor activation plays a protective role against endothelial dysfunction in male animals, but not necessarily in females. Clinical studies indicate that women may be more sensitive to obesity-associated vascular endothelial dysfunction. Emerging preclinical data indicates that leptin and progesterone increase aldosterone production and endothelial mineralocorticoid receptor activation, respectively. Furthermore, decades of clinical studies indicate that leptin levels increase in the hypertensive pregnancy disorder preeclampsia, which is characterized by systemic endothelial dysfunction. Leptin infusion in mice induces the clinical characteristics of preeclampsia, including endothelial dysfunction. SUMMARY Novel preclinical data indicate that the mechanisms whereby leptin promotes endothelial dysfunction are sex-specific. Leptin-induced endothelial dysfunction may also play a role in hypertensive pregnancy as well.
Collapse
Affiliation(s)
- Elisabeth Mellott
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
- Department of OBGYN, Medical College of Georgia at Augusta University, Augusta, GA
| |
Collapse
|
7
|
Gogiraju R, Renner L, Bochenek ML, Zifkos K, Molitor M, Danckwardt S, Wenzel P, Münzel T, Konstantinides S, Schäfer K. Arginase-1 Deletion in Erythrocytes Promotes Vascular Calcification via Enhanced GSNOR (S-Nitrosoglutathione Reductase) Expression and NO Signaling in Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2022; 42:e291-e310. [PMID: 36252109 DOI: 10.1161/atvbaha.122.318338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Erythrocytes (red blood cells) participate in the control of vascular NO bioavailability. The purpose of this study was to determine whether and how genetic deletion of ARG1 (arginase-1) affects vascular smooth muscle cell NO signaling, osteoblastic differentiation, and atherosclerotic lesion calcification. METHODS Atherosclerosis-prone mice with conditional, erythrocyte-restricted deletion of ARG1 (apoE-/- red blood cell.ARG1 knockout) were generated and vascular calcification studied using molecular imaging of the osteogenic activity agent OsteoSense, Alizarin staining or immunohistochemistry, qPCR of osteogenic markers and ex vivo assays. RESULTS Atherosclerotic lesion size at the aortic root did not differ, but calcification was significantly more pronounced in apoE-/- mice lacking erythrocyte ARG1. Incubation of murine and human VSMCs with lysed erythrocyte membranes from apoE-/- red blood cell. ARG1-knockout mice accelerated their osteogenic differentiation, and mRNA transcripts of osteogenic markers decreased following NO scavenging. In addition to NO signaling via sGC (soluble guanylyl cyclase), overexpression of GSNOR (S-nitrosoglutathione reductase) enhanced degradation of S-nitrosoglutathione to glutathione and reduced protein S-nitrosation of HSP (heat shock protein)-70 were identified as potential mechanisms of vascular smooth muscle cell calcification in mice lacking ARG1 in erythrocytes, and calcium phosphate deposition was enhanced by heat shock and prevented by GSNOR inhibition. Messenger RNA levels of enzymes metabolizing the arginase products L-ornithine and L-proline also were elevated in VSMCs, paralleled by increased proliferation, myofibroblast marker and collagen type 1 expression. CONCLUSIONS Our findings support an important role of erythrocyte ARG1 for NO bioavailability and L-arginine metabolism in VSMCs, which controls atherosclerotic lesion composition and calcification.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Luisa Renner
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Konstantinos Zifkos
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Michael Molitor
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Sven Danckwardt
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany.,Institute for Clinical Chemistry (S.D.), University Medical Center Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Stavros Konstantinides
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| |
Collapse
|
8
|
Galley JC, Singh S, Awata WMC, Alves JV, Bruder-Nascimento T. Adipokines: Deciphering the cardiovascular signature of adipose tissue. Biochem Pharmacol 2022; 206:115324. [PMID: 36309078 PMCID: PMC10509780 DOI: 10.1016/j.bcp.2022.115324] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
Abstract
Obesity and hypertension are intimately linked due to the various ways that the important cell types such as vascular smooth muscle cells (VSMC), endothelial cells (EC), immune cells, and adipocytes, communicate with one another to contribute to these two pathologies. Adipose tissue is a very dynamic organ comprised primarily of adipocytes, which are well known for their role in energy storage. More recently adipose tissue has been recognized as the largest endocrine organ because of its ability to produce a vast number of signaling molecules called adipokines. These signaling molecules stimulate specific types of cells or tissues with many adipokines acting as indicators of adipocyte healthy function, such as adiponectin, omentin, and FGF21, which show anti-inflammatory or cardioprotective effects, acting as regulators of healthy physiological function. Others, like visfatin, chemerin, resistin, and leptin are often altered during pathophysiological circumstances like obesity and lipodystrophy, demonstrating negative cardiovascular outcomes when produced in excess. This review aims to explore the role of adipocytes and their derived products as well as the impacts of these adipokines on blood pressure regulation and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Joseph C. Galley
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Wanessa M. C. Awata
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliano V. Alves
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Leptin treatment has vasculo-protective effects in lipodystrophic mice. Proc Natl Acad Sci U S A 2022; 119:e2110374119. [PMID: 36161905 PMCID: PMC9546548 DOI: 10.1073/pnas.2110374119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lipodystrophy syndromes are characterized by loss of adipose tissue, metabolic complications, and accelerated atherosclerosis. Adipose tissue deficiency results in reduced levels of the adipokine leptin. We investigated the effects of leptin on the functional properties of endothelial cells and atherogenesis in lipodystrophy. Leptin reduced endothelial to mesenchymal transition-induced expression of mesenchymal genes and prevented impairment of endothelial barrier function. Leptin administration in a lipodystrophy and atherosclerosis mouse model reduced plaque protrusion and endothelial cells with mesenchymal gene expression in vascular plaques. The effects were mediated by the growth/differentiation factor 15. The data identify an important role for leptin in controlling endothelial cell function in lipodystrophy syndromes. Lipodystrophy syndromes (LDs) are characterized by loss of adipose tissue, metabolic complications such as dyslipidemia, insulin resistance, and fatty liver disease, as well as accelerated atherosclerosis. As a result of adipose tissue deficiency, the systemic concentration of the adipokine leptin is reduced. A current promising therapeutic option for patients with LD is treatment with recombinant leptin (metreleptin), resulting in reduced risk of mortality. Here, we investigate the effects of leptin on endothelial to mesenchymal transition (EndMT), which impair the functional properties of endothelial cells and promotes atherogenesis in LD. Leptin treatment reduced inflammation and TGF-β2–induced expression of mesenchymal genes and prevented impairment of endothelial barrier function. Treatment of lipodystrophic- and atherosclerosis-prone animals (Ldlr−/−; aP2-nSrebp1c-Tg) with leptin reduced macrophage accumulation in atherosclerotic lesions, vascular plaque protrusion, and the number of endothelial cells with mesenchymal gene expression, confirming a reduction in EndMT in LD after leptin treatment. Treatment with leptin inhibited LD-mediated induction of the proatherosclerotic cytokine growth/differentiation factor 15 (GDF15). Inhibition of GDF15 reduced EndMT induction triggered by plasma from patients with LD. Our study reveals that in addition to the effects on adipose tissue function, leptin treatment exerts beneficial effects protecting endothelial function and identity in LD by reducing GDF15.
Collapse
|
10
|
Gogiraju R, Gachkar S, Velmeden D, Bochenek ML, Zifkos K, Hubert A, Münzel T, Offermanns S, Schäfer K. Protein Tyrosine Phosphatase 1B Deficiency in Vascular Smooth Muscle Cells Promotes Perivascular Fibrosis following Arterial Injury. Thromb Haemost 2022; 122:1814-1826. [PMID: 36075234 PMCID: PMC9512587 DOI: 10.1055/s-0042-1755329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background
Smooth muscle cell (SMC) phenotype switching plays a central role during vascular remodeling. Growth factor receptors are negatively regulated by protein tyrosine phosphatases (PTPs), including its prototype PTP1B. Here, we examine how reduction of PTP1B in SMCs affects the vascular remodeling response to injury.
Methods
Mice with inducible PTP1B deletion in SMCs (SMC.PTP1B-KO) were generated by crossing mice expressing Cre.ER
T2
recombinase under the
Myh11
promoter with PTP1B
flox/flox
mice and subjected to FeCl
3
carotid artery injury.
Results
Genetic deletion of PTP1B in SMCs resulted in adventitia enlargement, perivascular SMA
+
and PDGFRβ
+
myofibroblast expansion, and collagen accumulation following vascular injury. Lineage tracing confirmed the appearance of
Myh11
-Cre reporter cells in the remodeling adventitia, and SCA1
+
CD45
-
vascular progenitor cells increased. Elevated mRNA expression of transforming growth factor β (TGFβ) signaling components or enzymes involved in extracellular matrix remodeling and TGFβ liberation was seen in injured SMC.PTP1B-KO mouse carotid arteries, and mRNA transcript levels of contractile SMC marker genes were reduced already at baseline. Mechanistically, Cre recombinase (mice) or siRNA (cells)-mediated downregulation of PTP1B or inhibition of ERK1/2 signaling in SMCs resulted in nuclear accumulation of KLF4, a central transcriptional repressor of SMC differentiation, whereas phosphorylation and nuclear translocation of SMAD2 and SMAD3 were reduced. SMAD2 siRNA transfection increased protein levels of PDGFRβ and MYH10 while reducing ERK1/2 phosphorylation, thus phenocopying genetic PTP1B deletion.
Conclusion
Chronic reduction of PTP1B in SMCs promotes dedifferentiation, perivascular fibrosis, and adverse remodeling following vascular injury by mechanisms involving an ERK1/2 phosphorylation-driven shift from SMAD2 to KLF4-regulated gene transcription.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Sogol Gachkar
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - David Velmeden
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Konstantinos Zifkos
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Astrid Hubert
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main Site, Mainz, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.,Cardiopulmonary Institute (CPI), Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Rhine-Main Site, Frankfurt and Bad Nauheim, Germany
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main Site, Mainz, Germany
| |
Collapse
|
11
|
Bochenek ML, Gogiraju R, Großmann S, Krug J, Orth J, Reyda S, Georgiadis GS, Spronk H, Konstantinides S, Münzel T, Griffin JH, Wild PS, Espinola-Klein C, Ruf W, Schäfer K. EPCR-PAR1 biased signaling regulates perfusion recovery and neovascularization in peripheral ischemia. JCI Insight 2022; 7:157701. [PMID: 35700057 PMCID: PMC9431695 DOI: 10.1172/jci.insight.157701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Blood clot formation initiates ischemic events, but coagulation roles during postischemic tissue repair are poorly understood. The endothelial protein C receptor (EPCR) regulates coagulation, as well as immune and vascular signaling, by protease activated receptors (PARs). Here, we show that endothelial EPCR-PAR1 signaling supports reperfusion and neovascularization in hindlimb ischemia in mice. Whereas deletion of PAR2 or PAR4 did not impair angiogenesis, EPCR and PAR1 deficiency or PAR1 resistance to cleavage by activated protein C caused markedly reduced postischemic reperfusion in vivo and angiogenesis in vitro. These findings were corroborated by biased PAR1 agonism in isolated primary endothelial cells. Loss of EPCR-PAR1 signaling upregulated hemoglobin expression and reduced endothelial nitric oxide (NO) bioavailability. Defective angiogenic sprouting was rescued by the NO donor DETA-NO, whereas NO scavenging increased hemoglobin and mesenchymal marker expression in human and mouse endothelial cells. Vascular specimens from patients with ischemic peripheral artery disease exhibited increased hemoglobin expression, and soluble EPCR and NO levels were reduced in plasma. Our data implicate endothelial EPCR-PAR1 signaling in the hypoxic response of endothelial cells and identify suppression of hemoglobin expression as an unexpected link between coagulation signaling, preservation of endothelial cell NO bioavailability, support of neovascularization, and prevention of fibrosis.
Collapse
Affiliation(s)
- Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | | | - Stefanie Großmann
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Janina Krug
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Jennifer Orth
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - George S Georgiadis
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Henri Spronk
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, Netherlands
| | | | - Thomas Münzel
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States of America
| | - Philipp S Wild
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | | | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Katrin Schäfer
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
12
|
Emont MP, Jacobs C, Essene AL, Pant D, Tenen D, Colleluori G, Di Vincenzo A, Jørgensen AM, Dashti H, Stefek A, McGonagle E, Strobel S, Laber S, Agrawal S, Westcott GP, Kar A, Veregge ML, Gulko A, Srinivasan H, Kramer Z, De Filippis E, Merkel E, Ducie J, Boyd CG, Gourash W, Courcoulas A, Lin SJ, Lee BT, Morris D, Tobias A, Khera AV, Claussnitzer M, Pers TH, Giordano A, Ashenberg O, Regev A, Tsai LT, Rosen ED. A single-cell atlas of human and mouse white adipose tissue. Nature 2022; 603:926-933. [PMID: 35296864 PMCID: PMC9504827 DOI: 10.1038/s41586-022-04518-2] [Citation(s) in RCA: 412] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
White adipose tissue, once regarded as morphologically and functionally bland, is now recognized to be dynamic, plastic and heterogenous, and is involved in a wide array of biological processes including energy homeostasis, glucose and lipid handling, blood pressure control and host defence1. High-fat feeding and other metabolic stressors cause marked changes in adipose morphology, physiology and cellular composition1, and alterations in adiposity are associated with insulin resistance, dyslipidemia and type 2 diabetes2. Here we provide detailed cellular atlases of human and mouse subcutaneous and visceral white fat at single-cell resolution across a range of body weight. We identify subpopulations of adipocytes, adipose stem and progenitor cells, vascular and immune cells and demonstrate commonalities and differences across species and dietary conditions. We link specific cell types to increased risk of metabolic disease and provide an initial blueprint for a comprehensive set of interactions between individual cell types in the adipose niche in leanness and obesity. These data comprise an extensive resource for the exploration of genes, traits and cell types in the function of white adipose tissue across species, depots and nutritional conditions.
Collapse
Affiliation(s)
- Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam L Essene
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepti Pant
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Danielle Tenen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Angelica Di Vincenzo
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Anja M Jørgensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Hesam Dashti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam Stefek
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Saaket Agrawal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory P Westcott
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amrita Kar
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Molly L Veregge
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Harini Srinivasan
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary Kramer
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eleanna De Filippis
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic Scottsdale, AZ, USA
| | - Erin Merkel
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jennifer Ducie
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christopher G Boyd
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - William Gourash
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anita Courcoulas
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Samuel J Lin
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bernard T Lee
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Donald Morris
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Adam Tobias
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amit V Khera
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Abstract
Adipose tissue, once thought to be an inert receptacle for energy storage, is now recognized as a complex tissue with multiple resident cell populations that actively collaborate in response to diverse local and systemic metabolic, thermal, and inflammatory signals. A key participant in adipose tissue homeostasis that has only recently captured broad scientific attention is the lymphatic vasculature. The lymphatic system's role in lipid trafficking and mediating inflammation makes it a natural partner in regulating adipose tissue, and evidence supporting a bidirectional relationship between lymphatics and adipose tissue has accumulated in recent years. Obesity is now understood to impair lymphatic function, whereas altered lymphatic function results in aberrant adipose tissue deposition, though the molecular mechanisms governing these phenomena have yet to be fully elucidated. We will review our current understanding of the relationship between adipose tissue and the lymphatic system here, focusing on known mechanisms of lymphatic-adipose crosstalk.
Collapse
Affiliation(s)
- Gregory P Westcott
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Joslin Diabetes Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
- Correspondence: Evan D. Rosen, MD, PhD, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
14
|
Santos D, Carvalho E. Adipose-related microRNAs as modulators of the cardiovascular system: the role of epicardial adipose tissue. J Physiol 2021; 600:1171-1187. [PMID: 34455587 DOI: 10.1113/jp280917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/08/2022] Open
Abstract
Adipose tissue expansion and subsequent metabolic dysfunction has been considered one of the major risk factors for development of cardiometabolic disease. Epicardial adipose tissue (EAT) in particular is a unique subtype of visceral adipose tissue located on the surface of the heart, around the coronary arteries. Due to its proximity, EAT can modulate the local metabolic and immune function of cardiomyocytes and coronary arteries. Several microRNAs have been described as key players in both cardiac and vascular function that when dysregulated will contribute to dysfunction. Here we review the influence of obesity in the crosstalk between specific adipose tissue types, in particular the EAT-secreted microRNAs, as key modulators of cardiac disease progression, not only as early biomarkers but also as therapeutic targets for cardiometabolic disease.
Collapse
Affiliation(s)
- Diana Santos
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.,Portuguese Diabetes Association (APDP), Lisbon, Portugal
| |
Collapse
|
15
|
miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers. Mol Metab 2021; 53:101306. [PMID: 34298200 PMCID: PMC8363881 DOI: 10.1016/j.molmet.2021.101306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives Restenosis after vessel angioplasty due to dedifferentiation of the vascular smooth muscle cells (VSMCs) limits the success of surgical treatment of vascular occlusions. Type 2 diabetes (T2DM) has a major impact on restenosis, with patients exhibiting more aggressive forms of vascular disease and poorer outcomes after surgery. Kv1.3 channels are critical players in VSMC proliferation. Kv1.3 blockers inhibit VSMCs MEK/ERK signalling and prevent vessel restenosis. We hypothesize that dysregulation of microRNAs (miR) play critical roles in adverse remodelling, contributing to Kv1.3 blockers efficacy in T2DM VSMCs. Methods and results We used clinically relevant in vivo models of vascular risk factors (VRF) and vessels and VSMCs from T2DM patients. Resukts Human T2DM vessels showed increased remodelling, and changes persisted in culture, with augmented VSMCs migration and proliferation. Moreover, there were downregulation of PI3K/AKT/mTOR and upregulation of MEK/ERK pathways, with increased miR-126 expression. The inhibitory effects of Kv1.3 blockers on remodelling were significantly enhanced in T2DM VSMCs and in VRF model. Finally, miR-126 overexpression confered “diabetic” phenotype to non-T2DM VSMCs by downregulating PI3K/AKT axis. Conclusions miR-126 plays crucial roles in T2DM VSMC metabolic memory through activation of MEK/ERK pathway, enhancing the efficacy of Kv1.3 blockers in the prevention of restenosis in T2DM patients. Type 2 diabetes (T2DM) vessels show exacerbated remodeling in organ culture and increased Kv1.3 expression. The inhibition of vessel remodeling with Kv1.3 blockers is increased in T2DM vessels. VSMCs from T2DM patients retain epigenetic changes in primary cultures. Upregulation of miR-126 contributes to the metabolic memory of T2DM VSMCs. Upregulation of miR-126 potentiates Kv1.3-dependent mechanisms in T2DM VSMCs.
Collapse
|
16
|
Leptin in Atherosclerosis: Focus on Macrophages, Endothelial and Smooth Muscle Cells. Int J Mol Sci 2021; 22:ijms22115446. [PMID: 34064112 PMCID: PMC8196747 DOI: 10.3390/ijms22115446] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing adipose tissue mass in obesity directly correlates with elevated circulating leptin levels. Leptin is an adipokine known to play a role in numerous biological processes including regulation of energy homeostasis, inflammation, vascular function and angiogenesis. While physiological concentrations of leptin may exhibit multiple beneficial effects, chronically elevated pathophysiological levels or hyperleptinemia, characteristic of obesity and diabetes, is a major risk factor for development of atherosclerosis. Hyperleptinemia results in a state of selective leptin resistance such that while beneficial metabolic effects of leptin are dampened, deleterious vascular effects of leptin are conserved attributing to vascular dysfunction. Leptin exerts potent proatherogenic effects on multiple vascular cell types including macrophages, endothelial cells and smooth muscle cells; these effects are mediated via an interaction of leptin with the long form of leptin receptor, abundantly expressed in atherosclerotic plaques. This review provides a summary of recent in vivo and in vitro studies that highlight a role of leptin in the pathogenesis of atherosclerotic complications associated with obesity and diabetes.
Collapse
|
17
|
Zierold S, Buschmann K, Gachkar S, Bochenek ML, Velmeden D, Hobohm L, Vahl CF, Schäfer K. Brain-Derived Neurotrophic Factor Expression and Signaling in Different Perivascular Adipose Tissue Depots of Patients With Coronary Artery Disease. J Am Heart Assoc 2021; 10:e018322. [PMID: 33666096 PMCID: PMC8174206 DOI: 10.1161/jaha.120.018322] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Brain‐derived neurotrophic factor (BDNF) is expressed in neuronal and nonneuronal cells and may affect vascular functions via its receptor, tropomyosin‐related kinase B (TrkB). In this study, we determined the expression of BDNF in different perivascular adipose tissue (PVAT) depots of patients with established coronary atherosclerosis. Methods and Results Serum, vascular tissue, and PVAT surrounding the proximal aorta (C‐PVAT) or internal mammary artery (IMA‐PVAT) was obtained from 24 patients (79% men; mean age, 71.7±9.7 years; median body mass index, 27.4±4.8 kg/m2) with coronary atherosclerosis undergoing elective coronary artery bypass surgery. BDNF protein levels were significantly higher in C‐PVAT compared with IMA‐PVAT, independent of obesity, metabolic syndrome, or systemic biomarkers of inflammation. mRNA transcripts of TrkB, the BDNF receptor, were significantly reduced in aorta compared with IMA. Vessel wall TrkB immunosignals colocalized with cells expressing smooth muscle cell markers, and confocal microscopy and flow cytometry confirmed BDNF receptor expression in human aortic smooth muscle cells. Significantly elevated levels of protein tyrosine phosphatase 1B, a negative regulator of TrkB signaling in the brain, were also observed in C‐PVAT. In vitro, inhibition of protein tyrosine phosphatase 1B blunted the effects of BDNF on smooth muscle cell proliferation, migration, differentiation, and collagen production, possibly by upregulation of low‐affinity p75 neurotrophin receptors. Expression of nerve growth factor or its receptor tropomyosin‐related kinase A did not differ between C‐PVAT and IMA‐PVAT. Conclusions Elevated expression of BDNF in parallel with local upregulation of negative regulators of neurotrophin signaling in perivascular fat and lower TrkB expression suggest that vascular BDNF signaling is reduced or lost in patients with coronary atherosclerosis.
Collapse
Affiliation(s)
- Sarah Zierold
- Department of Cardiology Cardiology I University Medical Center Mainz Mainz Germany
| | - Katja Buschmann
- Department of Cardiothoracic and Vascular Surgery University Medical Center Mainz Mainz Germany
| | - Sogol Gachkar
- Department of Cardiology Cardiology I University Medical Center Mainz Mainz Germany
| | - Magdalena L Bochenek
- Department of Cardiology Cardiology I University Medical Center Mainz Mainz Germany.,Center for Thrombosis and Hemostasis University Medical Center Mainz Mainz Germany
| | - David Velmeden
- Department of Cardiology Cardiology I University Medical Center Mainz Mainz Germany
| | - Lukas Hobohm
- Department of Cardiology Cardiology I University Medical Center Mainz Mainz Germany.,Center for Thrombosis and Hemostasis University Medical Center Mainz Mainz Germany
| | | | - Katrin Schäfer
- Department of Cardiology Cardiology I University Medical Center Mainz Mainz Germany
| |
Collapse
|
18
|
Balasubramanian P, Kiss T, Tarantini S, Nyúl-Tóth Á, Ahire C, Yabluchanskiy A, Csipo T, Lipecz A, Tabak A, Institoris A, Csiszar A, Ungvari Z. Obesity-induced cognitive impairment in older adults: a microvascular perspective. Am J Physiol Heart Circ Physiol 2021; 320:H740-H761. [PMID: 33337961 PMCID: PMC8091942 DOI: 10.1152/ajpheart.00736.2020] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Tabak
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
19
|
Li J, Chen Y, Gao J, Chen Y, Zhou C, Lin X, Liu C, Zhao M, Xu Y, Ji L, Jiang Z, Pan B, Zheng L. Eva1a ameliorates atherosclerosis by promoting re-endothelialization of injured arteries via Rac1/Cdc42/Arpc1b. Cardiovasc Res 2021; 117:450-461. [PMID: 31977009 DOI: 10.1093/cvr/cvaa011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/23/2019] [Accepted: 01/17/2020] [Indexed: 02/03/2023] Open
Abstract
AIMS Eva-1 homologue 1 (Eva1a) is a novel protein involved in the regulation of cardiac remodelling and plaque stability, but little is known about its role in re-endothelialization and the development of atherosclerosis (AS). Thus, in the present study, we aimed to elucidate the function of Eva1a in re-endothelialization and AS. METHODS AND RESULTS Wire injuries of carotid and femoral arteries were established in Eva1a-/- mice. Eva1a-deficient mice were crossed with apolipoprotein E-/- (ApoE-/-) mice to evaluate AS development and re-endothelialization of carotid artery injuries. Denudation of the carotid artery at 3, 5, and 7 days was significantly aggravated in Eva1a-/- mice. The neointima of the femoral artery at 14 and 28 days was consequently exacerbated in Eva1a-/- mice. The area of atherosclerotic lesions was increased in Eva1a-/-ApoE-/- mice. To explore the underlying mechanisms, we performed transwell, scratch migration, cell counting kit-8, and bromodeoxyuridine assays using cultured human aorta endothelial cells (HAECs), which demonstrated that EVA1A promoted HAEC migration and proliferation. Proteomics revealed that the level of actin-related protein 2/3 complex subunit 1B (Arpc1b) was decreased, while Eva1a expression was absent. Arpc1b was found to be a downstream molecule of EVA1A by small interfering RNA transfection assay. Activation of Rac1 and Cdc42 GTPases was also regulated by EVA1A. CONCLUSION This study provides insights into anti-atherogenesis effects of Eva1a by promoting endothelium repair. Thus, Eva1a is a promising therapeutic target for AS.
Collapse
Affiliation(s)
- Jingxuan Li
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Science, Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Xueyuan Road 38, Beijing 100191, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Yue Chen
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Changping Zhou
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Xin Lin
- Department of Immunology, Peking University School of Basic Medical Science, Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Xueyuan Road 38, Beijing 100191, China
| | - Changjie Liu
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, No.119 South Fourth Ring West Road, Beijing 100050, China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, No.119 South Fourth Ring West Road, Beijing 100050, China
| | - Zongzhe Jiang
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Taiping Road 25, Luzhou, Sichuan, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Xueyuan Road 38, Beijing 100191, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, No.119 South Fourth Ring West Road, Beijing 100050, China
| |
Collapse
|
20
|
Targeting perivascular and epicardial adipose tissue inflammation: therapeutic opportunities for cardiovascular disease. Clin Sci (Lond) 2020; 134:827-851. [PMID: 32271386 DOI: 10.1042/cs20190227] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Major shifts in human lifestyle and dietary habits toward sedentary behavior and refined food intake triggered steep increase in the incidence of metabolic disorders including obesity and Type 2 diabetes. Patients with metabolic disease are at a high risk of cardiovascular complications ranging from microvascular dysfunction to cardiometabolic syndromes including heart failure. Despite significant advances in the standards of care for obese and diabetic patients, current therapeutic approaches are not always successful in averting the accompanying cardiovascular deterioration. There is a strong relationship between adipose inflammation seen in metabolic disorders and detrimental changes in cardiovascular structure and function. The particular importance of epicardial and perivascular adipose pools emerged as main modulators of the physiology or pathology of heart and blood vessels. Here, we review the peculiarities of these two fat depots in terms of their origin, function, and pathological changes during metabolic deterioration. We highlight the rationale for pharmacological targeting of the perivascular and epicardial adipose tissue or associated signaling pathways as potential disease modifying approaches in cardiometabolic syndromes.
Collapse
|
21
|
Cai BB, Lu YN, Xu M. Acid sphingomyelinase downregulation alleviates vascular endothelial leptin resistance in rats. Acta Pharmacol Sin 2020; 41:650-660. [PMID: 31848475 PMCID: PMC7471453 DOI: 10.1038/s41401-019-0328-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/31/2019] [Indexed: 11/10/2022]
Abstract
Leptin resistance in endothelial cells leads to vascular endothelial dysfunction, which is the beginning and crucial link of atherosclerosis. However, the mechanism of leptin resistance remains obscure. Acid sphingomyelinase (ASM) catalyzes the hydrolysis of sphingomyelin to produce ceramide, which plays an important role in the progression of metabolic and cardiovascular diseases. In this study, we investigated whether ASM could regulate leptin resistance in vascular endothelial cells. We induced endothelial leptin resistance in rat aortic endothelial cells through treatment with palmitic acid (0.3 mM) or knockdown of leptin receptor (Ob-Rb), which resulted in the increase of suppressor of cytokine signaling 3 expression, the decrease of Ob-Rb expression, and signal transducer and activator of transcription 3 (STAT3) phosphorylation at Tyr705. We found that these indicators of leptin resistance were reversed by knockdown of ASM or by the selective ASM inhibitors amitriptyline (AMI) and imipramine (IMI). Supplementation of ceramide inhibited Ob-Rb expression and STAT3 phosphorylation by inhibiting extracellular signal-regulated kinase 1/2 activation. Furthermore, we found that knockdown of ASM enhanced endothelial nitric oxide (NO) synthase activity and NO production, as well as the Akt phosphorylation at ser473, which was regulated by STAT3. High-fat diet (HFD) feeding-induced leptin resistance in rats in vivo; administration of AMI and IMI (10 mg· kg−1 per day, intraperitoneally, for 2 weeks) increased the release of endothelial NO to relieve the vasodilatory response and improved the endothelial leptin resistance in the aorta of HFD-fed rats. These results suggest that ASM downregulation reverses endothelial leptin resistance, and consequently improves vascular endothelial dysfunction. This study highlighted ASM as a potential therapeutic target for endothelial leptin resistance.
Collapse
|
22
|
Abstract
Accumulating knowledge on the biology and function of the adipose tissue has led to a major shift in our understanding of its role in health and disease. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, including adipocytokines, microvesicles and gaseous messengers, with a wide range of endocrine and paracrine effects on the cardiovascular system. The adipose tissue function and secretome are tightly controlled by complex homeostatic mechanisms and local cell-cell interactions, which can become dysregulated in obesity. Systemic or local inflammation and insulin resistance lead to a shift in the adipose tissue secretome from anti-inflammatory and anti-atherogenic towards a pro-inflammatory and pro-atherogenic profile. Moreover, the interplay between the adipose tissue and the cardiovascular system is bidirectional, with vascular-derived and heart-derived signals directly affecting adipose tissue biology. In this Review, we summarize the current knowledge of the biology and regional variability of adipose tissue in humans, deciphering the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation. In addition, we highlight the latest developments in adipose tissue imaging for cardiovascular risk stratification and discuss how therapeutic targeting of the adipose tissue can improve prevention and treatment of cardiovascular disease.
Collapse
|
23
|
Age-Dependent and -Independent Effects of Perivascular Adipose Tissue and Its Paracrine Activities during Neointima Formation. Int J Mol Sci 2019; 21:ijms21010282. [PMID: 31906225 PMCID: PMC6981748 DOI: 10.3390/ijms21010282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/15/2019] [Accepted: 12/29/2019] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular risk factors may act by modulating the composition and function of the adventitia. Here we examine how age affects perivascular adipose tissue (PVAT) and its paracrine activities during neointima formation. Aortic tissue and PVAT or primary aortic smooth muscle cells from male C57BL/6JRj mice aged 52 weeks (“middle-aged”) were compared to tissue or cells from mice aged 16 weeks (“adult”). Vascular injury was induced at the carotid artery using 10% ferric chloride. Carotid arteries from the middle-aged mice exhibited smooth muscle de-differentiation and elevated senescence marker expression, and vascular injury further aggravated media and adventitia thickening. Perivascular transplantation of PVAT had no effect on these parameters, but age-independently reduced neointima formation and lumen stenosis. Quantitative PCR analysis revealed a blunted increase in senescence-associated proinflammatory changes in perivascular tissue compared to visceral adipose tissue and higher expression of mediators attenuating neointima formation. Elevated levels of protein inhibitor of activated STAT1 (PIAS1) and lower expression of STAT1- or NFκB-regulated genes involved in adipocyte differentiation, inflammation, and apoptosis/senescence were present in mouse PVAT, whereas PIAS1 was reduced in the PVAT of patients with atherosclerotic vessel disease. Our findings suggest that age affects adipose tissue and its paracrine vascular activities in a depot-specific manner. PIAS1 may mediate the age-independent vasculoprotective effects of perivascular fat.
Collapse
|
24
|
Gogiraju R, Hubert A, Fahrer J, Straub BK, Brandt M, Wenzel P, Münzel T, Konstantinides S, Hasenfuss G, Schäfer K. Endothelial Leptin Receptor Deletion Promotes Cardiac Autophagy and Angiogenesis Following Pressure Overload by Suppressing Akt/mTOR Signaling. Circ Heart Fail 2019; 12:e005622. [PMID: 30621510 DOI: 10.1161/circheartfailure.118.005622] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cardiac remodeling is modulated by overnutrition or starvation. The adipokine leptin mediates energy balance between adipose tissue and brain. Leptin and its receptors are expressed in the heart. METHODS AND RESULTS To examine the importance of endothelial leptin signaling in cardiac hypertrophy, transverse aortic constriction was used in mice with inducible endothelium-specific deletion of leptin receptors (End.LepR-KO) or littermate controls (End.LepR-WT). End.LepR-KO was associated with improved left ventricular function (fractional shortening, 28.4% versus 18.8%; P=0.0114), reduced left ventricular dilation (end-systolic inner left ventricular diameter, 3.59 versus 4.08 mm; P=0.0188) and lower heart weight (133 versus 173 mg; P<0.0001) 20 weeks after transverse aortic constriction. Histology and quantitative polymerase chain reaction analysis confirmed reduced cardiomyocyte hypertrophy. STAT3 (signal transducer and activator of transcription) activation was reduced, and Akt (protein kinase B) and mTOR (mammalian target of rapamycin) phosphorylation after transverse aortic constriction were blunted in End.LepR-KO hearts. Elevated LC3 (microtubule associated protein 1 light chain 3)-I/-II conversion ( P=0.0041) and increased (LC3II-positive) endothelial cells ( P=0.0042) in banded hearts of End.LepR-KO mice suggested improved cardiac angiogenesis because of activated autophagy. Microscopy confirmed autophagosome accumulation after genetic or small interfering RNA-mediated LepR downregulation. Enhanced sprouting angiogenesis was observed in endothelial cells ( P<0.0001) and aortic rings ( P=0.0060) from End.LepR-KO mice, and murine and human endothelial sprouting angiogenesis was reduced after mTOR inhibition using rapamycin or autophagy inhibition using 3-methyladenine. Banded End.LepR-KO mouse hearts exhibited less apoptosis ( P=0.0218), inflammation ( P=0.0251), and fibrosis ( P=0.0256). Reduced endothelial autophagy was also observed in myocardial biopsies of heart failure patients with cardiac fibrosis. CONCLUSIONS Our findings suggest that endothelial leptin signaling contributes to cardiac fibrosis and functional deterioration by suppressing endothelial autophagy and promoting endothelial dysfunction in a chronic pressure overload model.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Center of Cardiology, Cardiology I (R.G., A.H., M.B., P.W., T.M., K.S.), University Medical Center, Mainz, Germany
| | - Astrid Hubert
- Center of Cardiology, Cardiology I (R.G., A.H., M.B., P.W., T.M., K.S.), University Medical Center, Mainz, Germany
| | - Jörg Fahrer
- Institute of Toxicology (J.F.), University Medical Center, Mainz, Germany
| | - Beate K Straub
- Institute of Pathology (B.K.S.), University Medical Center, Mainz, Germany
| | - Moritz Brandt
- Center of Cardiology, Cardiology I (R.G., A.H., M.B., P.W., T.M., K.S.), University Medical Center, Mainz, Germany
| | - Philip Wenzel
- Center of Cardiology, Cardiology I (R.G., A.H., M.B., P.W., T.M., K.S.), University Medical Center, Mainz, Germany.,Center for Thrombosis and Hemostasis (P.W., S.K.), University Medical Center, Mainz, Germany
| | - Thomas Münzel
- Center of Cardiology, Cardiology I (R.G., A.H., M.B., P.W., T.M., K.S.), University Medical Center, Mainz, Germany
| | - Stavros Konstantinides
- Center for Thrombosis and Hemostasis (P.W., S.K.), University Medical Center, Mainz, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Germany (G.H., K.S.)
| | - Katrin Schäfer
- Center of Cardiology, Cardiology I (R.G., A.H., M.B., P.W., T.M., K.S.), University Medical Center, Mainz, Germany.,Department of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Germany (G.H., K.S.)
| |
Collapse
|
25
|
Bruder-Nascimento T, Faulkner JL, Haigh S, Kennard S, Antonova G, Patel VS, Fulton DJR, Chen W, Belin de Chantemèle EJ. Leptin Restores Endothelial Function via Endothelial PPARγ-Nox1-Mediated Mechanisms in a Mouse Model of Congenital Generalized Lipodystrophy. Hypertension 2019; 74:1399-1408. [PMID: 31656096 DOI: 10.1161/hypertensionaha.119.13398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leptin is the current treatment for metabolic disorders associated with acquired and congenital generalized lipodystrophy (CGL). Although excess leptin levels have been associated with vascular inflammation and cardiovascular disease in the context of obesity, the effects of chronic leptin treatment on vascular function remain unknown in CGL. Here, we hypothesized that leptin treatment will improve endothelial function via direct vascular mechanisms. We investigated the cardiovascular consequences of leptin deficiency and supplementation in male gBscl2-/- (Berardinelli-Seip 2 gene-deficient) mice-a mouse model of CGL. CGL mice exhibited reduced adipose mass and leptin levels, as well as impaired endothelium-dependent relaxation. Blood vessels from CGL mice had increased NADPH Oxidase 1 (Nox1) expression and reactive oxygen species production, and selective Nox1 inhibition restored endothelial function. Remarkably, chronic and acute leptin supplementation restored endothelial function via a PPARγ-dependent mechanism that decreased Nox1 expression and reactive oxygen species production. Selective ablation of leptin receptors in endothelial cells promoted endothelial dysfunction, which was restored by Nox1 inhibition. Lastly, we confirmed in aortic tissue from older patients undergoing cardiac bypass surgery that acute leptin can promote signaling in human blood vessels. In conclusion, in gBscl2-/- mice, leptin restores endothelial function via peroxisome proliferator activated receptor gamma-dependent decreases in Nox1. Furthermore, we provide the first evidence that vessels from aged patients remain leptin sensitive. These data reveal a new direct role of leptin receptors in the control of vascular homeostasis and present leptin as a potential therapy for the treatment of vascular disease associated with low leptin levels.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University.,Department of Pediatrics, Division of Endocrinology, University of Pittsburgh, PA (T.B.-N.)
| | - Jessica L Faulkner
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Stephen Haigh
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Simone Kennard
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Galina Antonova
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Vijay S Patel
- Section of Cardiothoracic Surgery, Department of Surgery (V.S.P.), Medical College of Georgia, Augusta University
| | - David J R Fulton
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University
| | - Weiqin Chen
- Department of Physiology (W.C.), Medical College of Georgia, Augusta University
| | - Eric J Belin de Chantemèle
- From the Vascular Biology Center (T.B.-N., J.L.F., S.H., S.K., G.A., D.J.R.F., E.J.B.), Medical College of Georgia, Augusta University.,Department of Medicine, Division of Cardiology (E.J.B.), Medical College of Georgia, Augusta University
| |
Collapse
|
26
|
Bruder-Nascimento T, Kress TC, Belin de Chantemele EJ. Recent advances in understanding lipodystrophy: a focus on lipodystrophy-associated cardiovascular disease and potential effects of leptin therapy on cardiovascular function. F1000Res 2019; 8:F1000 Faculty Rev-1756. [PMID: 31656583 PMCID: PMC6798323 DOI: 10.12688/f1000research.20150.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 01/09/2023] Open
Abstract
Lipodystrophy is a disease characterized by a partial or total absence of adipose tissue leading to severe metabolic derangements including marked insulin resistance, type 2 diabetes, hypertriglyceridemia, and steatohepatitis. Lipodystrophy is also a source of major cardiovascular disorders which, in addition to hepatic failure and infection, contribute to a significant reduction in life expectancy. Metreleptin, the synthetic analog of the adipocyte-derived hormone leptin and current therapy of choice for patients with lipodystrophy, successfully improves metabolic function. However, while leptin has been associated with hypertension, vascular diseases, and inflammation in the context of obesity, it remains unknown whether its daily administration could further impair cardiovascular function in patients with lipodystrophy. The goal of this short review is to describe the cardiovascular phenotype of patients with lipodystrophy, speculate on the etiology of the disorders, and discuss how the use of murine models of lipodystrophy could be beneficial to address the question of the contribution of leptin to lipodystrophy-associated cardiovascular disease.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Pediatrics, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Taylor C. Kress
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric J. Belin de Chantemele
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Medicine, Section of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
27
|
Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 2019; 15:507-524. [PMID: 31296970 DOI: 10.1038/s41574-019-0230-6] [Citation(s) in RCA: 397] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
In addition to their role in glucose and lipid metabolism, adipocytes respond differentially to physiological cues or metabolic stress by releasing endocrine factors that regulate diverse processes, such as energy expenditure, appetite control, glucose homeostasis, insulin sensitivity, inflammation and tissue repair. Both energy-storing white adipocytes and thermogenic brown and beige adipocytes secrete hormones, which can be peptides (adipokines), lipids (lipokines) and exosomal microRNAs. Some of these factors have defined targets; for example, adiponectin and leptin signal through their respective receptors that are expressed in multiple organs. For other adipocyte hormones, receptors are more promiscuous or remain to be identified. Furthermore, many of these hormones are also produced by other organs and tissues, which makes defining the endocrine contribution of adipose tissues a challenge. In this Review, we discuss the functional role of adipose tissue-derived endocrine hormones for metabolic adaptations to the environment and we highlight how these factors contribute to the development of cardiometabolic diseases. We also cover how this knowledge can be translated into human therapies. In addition, we discuss recent findings that emphasize the endocrine role of white versus thermogenic adipocytes in conditions of health and disease.
Collapse
Affiliation(s)
- Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
28
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
29
|
Affiliation(s)
- Elizabeth E Ha
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Robert C Bauer
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
30
|
Wang M, Hao H, Leeper NJ, Zhu L. Thrombotic Regulation From the Endothelial Cell Perspectives. Arterioscler Thromb Vasc Biol 2019; 38:e90-e95. [PMID: 29793992 DOI: 10.1161/atvbaha.118.310367] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (M.W., H.H., L.Z.) .,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Huifeng Hao
- From the State Key Laboratory of Cardiovascular Disease (M.W., H.H., L.Z.)
| | | | - Liyuan Zhu
- From the State Key Laboratory of Cardiovascular Disease (M.W., H.H., L.Z.)
| | | |
Collapse
|
31
|
Ruiz HH, Díez RL, Arivazahagan L, Ramasamy R, Schmidt AM. Metabolism, Obesity, and Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2019; 39:e166-e174. [PMID: 31242034 PMCID: PMC6693645 DOI: 10.1161/atvbaha.119.312005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity and diabetes remain leading causes of reduced health span and life span throughout the world. Hence, it is not surprising that these areas are at the center of highly active areas of research. The identification of novel mechanisms underlying these metabolic disorders sets the stage for uncovering new potential therapeutic strategies. In this issue of Highlights in Arteriosclerosis, Thrombosis and Vascular Biology, we review recently published papers in the journal that add to our understanding of causes and consequences of obesity and diabetes and how these disorders impact metabolic function. Collectively, these studies in cultured cells to in vivo animal models to human subjects add to the growing body of evidence that both cell-intrinsic and cell-cell communication mechanisms collaborate in metabolic disorders to cause obesity, insulin resistance and diabetes and its complications.
Collapse
Affiliation(s)
- Henry H. Ruiz
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, N.Y. 10016
| | - Raquel López Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, N.Y. 10016
| | - Lakshmi Arivazahagan
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, N.Y. 10016
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, N.Y. 10016
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, N.Y. 10016
| |
Collapse
|
32
|
The endothelial tumor suppressor p53 is essential for venous thrombus formation in aged mice. Blood Adv 2019; 2:1300-1314. [PMID: 29891592 DOI: 10.1182/bloodadvances.2017014050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/11/2018] [Indexed: 12/24/2022] Open
Abstract
Venous thromboembolism (VTE) is a leading cause of morbidity and mortality in elderly people. Increased expression of tumor suppressor protein 53 (p53) has been implicated in vascular senescence. Here, we examined the importance of endothelial p53 for venous thrombosis and whether endothelial senescence and p53 overexpression are involved in the exponential increase of VTE with age. Mice with conditional, endothelial-specific deletion of p53 (End.p53-KO) and their wild-type littermates (End.p53-WT) underwent subtotal inferior vena cava (IVC) ligation to induce venous thrombosis. IVC ligation in aged (12-month-old) End.p53-WT mice resulted in higher rates of thrombus formation and greater mean thrombus size vs adult (12-week-old) End.p53-WT mice, whereas aged End.p53-KO mice were protected from vein thrombosis. Analysis of primary endothelial cells from aged mice or human vein endothelial cells after induction of replicative senescence revealed significantly increased early growth response gene-1 (Egr1) and heparanase expression, and plasma factor Xa levels were elevated in aged End.p53-WT, but not in End.p53-KO mice. Increased endothelial Egr1 and heparanase expression also was observed after doxorubicin-induced p53 overexpression, whereas p53 inhibition using pifithrin-α reduced tissue factor (TF) expression. Importantly, inhibition of heparanase activity using TF pathway inhibitor-2 (TFPI2) peptides prevented the enhanced venous thrombus formation in aged mice and restored it to the thrombotic phenotype of adult mice. Our findings suggest that p53 accumulation and heparanase overexpression in senescent endothelial cells are critically involved in mediating the increased risk of venous thrombosis with age and that heparanase antagonization may be explored as strategy to ameliorate the prothrombotic endothelial phenotype with age.
Collapse
|
33
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|