1
|
Yelamanchili D, Gillard BK, Gotto AM, Achirica MC, Nasir K, Remaley AT, Rosales C, Pownall HJ. HDL-free cholesterol influx into macrophages and transfer to LDL correlate with HDL-free cholesterol content. J Lipid Res 2025; 66:100707. [PMID: 39566848 PMCID: PMC11696839 DOI: 10.1016/j.jlr.2024.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024] Open
Abstract
High-density lipoprotein (HDL)-free cholesterol (FC) transfers to other lipoproteins and cells, the former by a spontaneous mechanism and the latter by both spontaneous and receptor-mediated mechanisms. Macrophages are an important cell type in all stages of atherosclerotic cardiovascular disease (ASCVD), and the magnitude of FC efflux from macrophages to HDL, a metric of HDL function, inversely associated with several metrics of ASCVD. Very high plasma HDL concentrations are associated with increased all-cause and ASCVD mortality, suggesting that the reverse process, FC influx from HDL into macrophages, is atherogenic. We hypothesize that HDL-FC is a metric of dysfunctional HDL, and when combined with HDL particle number (HDL-P), is an ASCVD risk factor. The magnitude of FC influx from HDL to macrophages is expected to be a function of HDL-P and HDL-FC content. Here we show that plasma HDL-FC content varies 2-fold among normolipidemic human subjects and linearly correlates with low-density lipoprotein (LDL)-FC content. The influx of HDL-FC into macrophages and transfer to LDL increase linearly with HDL-FC. As expected, the influx of HDL-FC into macrophages and the transfer to LDL are positively correlated. These data support the hypothesis that high HDL FC content is a marker for dysfunctional HDL, resulting in greater influx into macrophages and greater HDL-FC transfer to LDL. HDL-FC transfer to LDL is a valid surrogate for influx into macrophages. This study of HDL composition and function of normolipidemic subjects provides the basis for further investigation and establishment of HDL-FC content as an ASCVD risk factor.
Collapse
Affiliation(s)
| | - Baiba K Gillard
- Department of Medicine, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Antonio M Gotto
- Department of Medicine, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Khurram Nasir
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Cardiology and Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist, Houston, TX, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Corina Rosales
- Department of Medicine, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Henry J Pownall
- Department of Medicine, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Al Zein M, Khazzeka A, El Khoury A, Al Zein J, Zoghaib D, Eid AH. Revisiting high-density lipoprotein cholesterol in cardiovascular disease: Is too much of a good thing always a good thing? Prog Cardiovasc Dis 2024; 87:50-59. [PMID: 39442601 DOI: 10.1016/j.pcad.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular disease (CVD) continues to be a leading cause of global mortality and morbidity. Various established risk factors are linked to CVD, and modifying these risk factors is fundamental in CVD management. Clinical studies underscore the association between dyslipidemia and CVD, and therapeutic interventions that target low-density lipoprotein cholesterol elicit clear benefits. Despite the correlation between low high-density lipoprotein cholesterol (HDLC) and heightened CVD risk, HDL-raising therapies have yet to showcase significant clinical benefits. Furthermore, evidence from epidemiological and genetic studies reveals that not only low HDL-C levels, but also very high levels of HDL-C are linked to increased risk of CVD. In this review, we focus on HDL metabolism and delve into the relationship between HDL and CVD, exploring HDL functions and the observed alterations in its roles in disease. Altogether, the results discussed herein support the conventional wisdom that "too much of a good thing is not always a good thing". Thus, our recommendation is that a careful reconsideration of the impact of high HDL-C levels is warranted, and shall be revisited in future research.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Alicia Khazzeka
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Jana Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Dima Zoghaib
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Borràs C, Canyelles M, Girona J, Ibarretxe D, Santos D, Revilla G, Llorente-Cortes V, Rotllan N, Kovanen PT, Jauhiainen M, Lee-Rueckert M, Masana L, Arrieta F, Martínez-Botas J, Gómez-Coronado D, Ribalta J, Tondo M, Blanco-Vaca F, Escolà-Gil JC. PCSK9 Antibodies Treatment Specifically Enhances the Macrophage-specific Reverse Cholesterol Transport Pathway in Heterozygous Familial Hypercholesterolemia. JACC Basic Transl Sci 2024; 9:1195-1210. [PMID: 39534644 PMCID: PMC11551875 DOI: 10.1016/j.jacbts.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 11/16/2024]
Abstract
We investigated the potential of proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies to restore macrophage cholesterol efflux in subjects with heterozygous familial hypercholesterolemia (FH) and to enhance the macrophage-specific reverse cholesterol transport pathway in mice. Analyses of macrophage-derived cholesterol distribution of plasma from FH patients revealed that low-density lipoprotein (LDL) particles contained less, and high-density lipoprotein particles contained more radiolabeled cholesterol after treatment with either PCSK9 inhibitor. PCSK9 antibodies facilitated the transfer of macrophage-derived cholesterol and LDL-derived cholesterol to feces exclusively in heterozygous LDL receptor-deficient mice expressing human APOB100. PCSK9 inhibitors act as positive regulators of the macrophage-specific reverse cholesterol transport pathway in individuals with heterozygous FH.
Collapse
Affiliation(s)
- Carla Borràs
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Marina Canyelles
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Josefa Girona
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain
| | - Daiana Ibarretxe
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain
| | - David Santos
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Giovanna Revilla
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenta Llorente-Cortes
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Noemí Rotllan
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | | | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research and Finnish Institute for Health and Welfare, Department of Public Health and Welfare, Biomedicum, Helsinki, Finland
| | | | - Luis Masana
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain
| | - Francisco Arrieta
- Servicio de Endocrinología y Nutrición, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Josep Ribalta
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain
| | - Mireia Tondo
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Francisco Blanco-Vaca
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Joan Carles Escolà-Gil
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| |
Collapse
|
4
|
Gillard BK, Rosales C, Gotto AM, Pownall HJ. The pathophysiology of excess plasma-free cholesterol. Curr Opin Lipidol 2023; 34:278-286. [PMID: 37732779 PMCID: PMC10624414 DOI: 10.1097/mol.0000000000000899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW Several large studies have shown increased mortality due to all-causes and to atherosclerotic cardiovascular disease. In most clinical settings, plasma HDL-cholesterol is determined as a sum of free cholesterol and cholesteryl ester, two molecules with vastly different metabolic itineraries. We examine the evidence supporting the concept that the pathological effects of elevations of plasma HDL-cholesterol are due to high levels of the free cholesterol component of HDL-C. RECENT FINDINGS In a small population of humans, a high plasma HDL-cholesterol is associated with increased mortality. Similar observations in the HDL-receptor deficient mouse (Scarb1 -/- ), a preclinical model of elevated HDL-C, suggests that the pathological component of HDL in these patients is an elevated plasma HDL-FC. SUMMARY Collective consideration of the human and mouse data suggests that clinical trials, especially in the setting of high plasma HDL, should measure free cholesterol and cholesteryl esters and not just total cholesterol.
Collapse
Affiliation(s)
- Baiba K. Gillard
- Center for Bioenergetics, Houston Methodist, Houston, Texas
- Weill Cornell Medicine, New York, New York, USA
| | - Corina Rosales
- Center for Bioenergetics, Houston Methodist, Houston, Texas
- Weill Cornell Medicine, New York, New York, USA
| | - Antonio M. Gotto
- Center for Bioenergetics, Houston Methodist, Houston, Texas
- Weill Cornell Medicine, New York, New York, USA
| | - Henry J. Pownall
- Center for Bioenergetics, Houston Methodist, Houston, Texas
- Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
5
|
Wang Z, Yelamanchili D, Liu J, Gotto AM, Rosales C, Gillard BK, Pownall HJ. Serum opacity factor normalizes erythrocyte morphology in Scarb1 -/- mice in an HDL-free cholesterol-dependent way. J Lipid Res 2023; 64:100456. [PMID: 37821077 PMCID: PMC10641538 DOI: 10.1016/j.jlr.2023.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023] Open
Abstract
Compared with WT mice, HDL receptor-deficient (Scarb1-/-) mice have higher plasma levels of free cholesterol (FC)-rich HDL and exhibit multiple pathologies associated with a high mol% FC in ovaries, platelets, and erythrocytes, which are reversed by lowering HDL. Bacterial serum opacity factor (SOF) catalyzes the opacification of plasma by targeting and quantitatively converting HDL to neo HDL (HDL remnant), a cholesterol ester-rich microemulsion, and lipid-free APOA1. SOF delivery with an adeno-associated virus (AAVSOF) constitutively lowers plasma HDL-FC and reverses female infertility in Scarb1-/- mice in an HDL-dependent way. We tested whether AAVSOF delivery to Scarb1-/- mice will normalize erythrocyte morphology in an HDL-FC-dependent way. We determined erythrocyte morphology and FC content (mol%) in three groups-WT, untreated Scarb1-/- (control), and Scarb1-/- mice receiving AAVSOF-and correlated these with their respective HDL-mol% FC. Plasma-, HDL-, and tissue-lipid compositions were also determined. Plasma- and HDL-mol% FC positively correlated across all groups. Among Scarb1-/- mice, AAVSOF treatment normalized reticulocyte number, erythrocyte morphology, and erythrocyte-mol% FC. Erythrocyte-mol% FC positively correlated with HDL-mol% FC and with both the number of reticulocytes and abnormal erythrocytes. AAVSOF treatment also reduced FC of extravascular tissues to a lesser extent. HDL-FC spontaneously transfers from plasma HDL to cell membranes. AAVSOF treatment lowers erythrocyte-FC and normalizes erythrocyte morphology and lipid composition by reducing HDL-mol% FC.
Collapse
Affiliation(s)
- Ziyi Wang
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Departments of Endocrinology and Xiangya Hospital, Central South University, Changsha, China
| | | | - Jing Liu
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Departments of Endocrinology and Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Antonio M Gotto
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Corina Rosales
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Baiba K Gillard
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Henry J Pownall
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
León-Reyes G, Argoty-Pantoja AD, Rivera-Paredez B, Hidalgo-Bravo A, Flores YN, Salmerón J, Velázquez-Cruz R. Interaction between SIDT2 and ABCA1 Variants with Nutrients on HDL-c Levels in Mexican Adults. Nutrients 2023; 15:370. [PMID: 36678241 PMCID: PMC9861312 DOI: 10.3390/nu15020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 01/13/2023] Open
Abstract
Previous studies have reported that the SIDT2 and ABCA1 genes are involved in lipid metabolism. We aimed to analyze the association-the gene x gene interaction between rs17120425 and rs1784042 on SIDT2 and rs9282541 on ABCA1 and their diet interaction on the HDL-c serum levels-in a cohort of 1982 Mexican adults from the Health Workers Cohort Study. Demographic and clinical data were collected through a structured questionnaire and standardized procedures. Genotyping was performed using a predesigned TaqMan assay. The associations and interactions of interest were estimated using linear and logistic regression. Carriers of the rs17120425-A and rs1784042-A alleles had slightly higher blood HDL-c levels compared to the non-carriers. In contrast, rs9282541-A was associated with low blood HDL-c levels (OR = 1.34, p = 0.013). The rs1784042 x rs9282541 interaction was associated with high blood HDL-c levels (p = 3.4 × 10-4). Premenopausal women who carried at least one rs17120425-A allele and consumed high dietary fat, protein, monounsaturated, or polyunsaturated fatty acids levels had higher HDL-c levels than the non-carriers. These results support the association between the genetic variants on SIDT2 and ABCA1 with HDL-c levels and suggest gene-gene and gene-diet interactions over HDL-c concentrations in Mexican adults. Our findings could be a platform for developing clinical and dietary strategies for improving the health of the Mexican population.
Collapse
Affiliation(s)
- Guadalupe León-Reyes
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Morelos, Mexico
| | - Anna D. Argoty-Pantoja
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Morelos, Mexico
| | - Berenice Rivera-Paredez
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Morelos, Mexico
| | - Alberto Hidalgo-Bravo
- Department of Genetics, National Institute of Rehabilitation (INR), Mexico City 014389, Morelos, Mexico
| | - Yvonne N. Flores
- Epidemiological and Health Services Research Unit, Morelos, Mexican Institute of Social Security, Cuernavaca 62000, Morelos, Mexico
- Department of Health Policy and Management and Kaiser Permanente Center for Health Equity, Fielding School of Public Health, Los Angeles, University of California, Los Angeles, CA 90095, USA
- Cancer Prevention and Control Research Center, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Jorge Salmerón
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Morelos, Mexico
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Morelos, Mexico
| |
Collapse
|
7
|
Different Pathways of Cellular Cholesterol Efflux. Cell Biochem Biophys 2022; 80:471-481. [PMID: 35737216 DOI: 10.1007/s12013-022-01081-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022]
Abstract
Cholesterol efflux is the first and rate-limiting step of reverse cholesterol transport (RCT) from peripheric cells to the liver. The involvement of high-density lipoprotein (HDL) in RCT determines the atheroprotective properties of HDL. Cholesterol efflux from different membrane pools includes both passive and energy-dependent processes. The first type of route consists of cholesterol desorption from the cell membrane into the unstirred layer adjacent to the cell surface and diffusion in the water phase. Moreover, the selective uptake and facilitated diffusion of cholesterol and cholesteryl ester molecules through the hydrophobic tunnel in the scavenger receptor BI molecule does not require energy consumption. The second type of route includes active cholesterol export by the ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1). Several cholesterol acceptors specifically bind cholesterol and phospholipid molecules, and cholesterol binding to the albumin molecule, which acts as a shuttle, significantly increases cholesterol movement between acceptors and red blood cells, thus functioning as a sink for cholesterol. Cholesterol and phospholipid molecules effluxed from macrophages by ABCA1 are accepted exclusively by the lipid-free apolipoprotein apoA-I, which is the major protein moiety of HDL, whereas those effluxed by ABCG1 are accepted by HDL. ABCA1- and ABCG1-mediated cholesterol transport, together with cholesterol diffusion, largely determine cholesterol turnover at the physiological level of intracellular cholesterol. However, at cholesterol overload, ABCA1-mediated efflux prevails over other routes. The exchange of apoA-I between lipid-free and lipid-associated states and the synergism of nascent and mature HDL contribute to cholesterol efflux efficiency. Moreover, extracellular cholesterol deposits and microvesicles may be involved in RCT.
Collapse
|
8
|
HDL and Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:49-61. [DOI: 10.1007/978-981-19-1592-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Darabi M, Kontush A. High-density lipoproteins (HDL): Novel function and therapeutic applications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159058. [PMID: 34624514 DOI: 10.1016/j.bbalip.2021.159058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
The failure of high-density lipoprotein (HDL)-raising agents to reduce cardiovascular disease (CVD) together with recent findings of increased cardiovascular mortality in subjects with extremely high HDL-cholesterol levels provide new opportunities to revisit our view of HDL. The concept of HDL function developed to explain these contradictory findings has recently been expanded by a role played by HDL in the lipolysis of triglyceride-rich lipoproteins (TGRLs) by lipoprotein lipase. According to the reverse remnant-cholesterol transport (RRT) hypothesis, HDL critically contributes to TGRL lipolysis via acquirement of surface lipids, including free cholesterol, released from TGRL. Ensuing cholesterol transport to the liver with excretion into the bile may reduce cholesterol influx in the arterial wall by accelerating removal from circulation of atherogenic, cholesterol-rich TGRL remnants. Such novel function of HDL opens wide therapeutic applications to reduce CVD in statin-treated patients, which primarily involve activation of cholesterol flux upon lipolysis.
Collapse
Affiliation(s)
- Maryam Darabi
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France.
| |
Collapse
|
10
|
Kardassis D, Thymiakou E, Chroni A. Genetics and regulation of HDL metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159060. [PMID: 34624513 DOI: 10.1016/j.bbalip.2021.159060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The inverse association between plasma HDL cholesterol (HDL-C) levels and risk for cardiovascular disease (CVD) has been demonstrated by numerous epidemiological studies. However, efforts to reduce CVD risk by pharmaceutically manipulating HDL-C levels failed and refused the HDL hypothesis. HDL-C levels in the general population are highly heterogeneous and are determined by a combination of genetic and environmental factors. Insights into the causes of HDL-C heterogeneity came from the study of monogenic HDL deficiency syndromes but also from genome wide association and Μendelian randomization studies which revealed the contribution of a large number of loci to low or high HDL-C cases in the general or in restricted ethnic populations. Furthermore, HDL-C levels in the plasma are under the control of transcription factor families acting primarily in the liver including members of the hormone nuclear receptors (PPARs, LXRs, HNF-4) and forkhead box proteins (FOXO1-4) and activating transcription factors (ATFs). The effects of certain lipid lowering drugs used today are based on the modulation of the activity of specific members of these transcription factors. During the past decade, the roles of small or long non-coding RNAs acting post-transcriptionally on the expression of HDL genes have emerged and provided novel insights into HDL regulation and new opportunities for therapeutic interventions. In the present review we summarize recent progress made in the genetics and the regulation (transcriptional and post-transcriptional) of HDL metabolism.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
11
|
Abstract
Plasma HDL-cholesterol concentrations correlate negatively with the risk of atherosclerotic cardiovascular disease (ASCVD). According to a widely cited model, HDL elicits its atheroprotective effect through its role in reverse cholesterol transport, which comprises the efflux of cholesterol from macrophages to early forms of HDL, followed by the conversion of free cholesterol (FCh) contained in HDL into cholesteryl esters, which are hepatically extracted from the plasma by HDL receptors and transferred to the bile for intestinal excretion. Given that increasing plasma HDL-cholesterol levels by genetic approaches does not reduce the risk of ASCVD, the focus of research has shifted to HDL function, especially in the context of macrophage cholesterol efflux. In support of the reverse cholesterol transport model, several large studies have revealed an inverse correlation between macrophage cholesterol efflux to plasma HDL and ASCVD. However, other studies have cast doubt on the underlying reverse cholesterol transport mechanism: in mice and humans, the FCh contained in HDL is rapidly cleared from the plasma (within minutes), independently of esterification and HDL holoparticle uptake by the liver. Moreover, the reversibility of FCh transfer between macrophages and HDL has implicated the reverse process - that is, the transfer of FCh from HDL to macrophages - in the aetiology of increased ASCVD under conditions of very high plasma HDL-FCh concentrations.
Collapse
|
12
|
Liu J, Gillard BK, Yelamanchili D, Gotto AM, Rosales C, Pownall HJ. High Free Cholesterol Bioavailability Drives the Tissue Pathologies in Scarb1 -/- Mice. Arterioscler Thromb Vasc Biol 2021; 41:e453-e467. [PMID: 34380332 PMCID: PMC8458258 DOI: 10.1161/atvbaha.121.316535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: Overall and atherosclerosis-associated mortality is elevated in humans with very high HDL (high-density lipoprotein) cholesterol concentrations. Mice with a deficiency of the HDL receptor, Scarb1 (scavenger receptor class B type 1), are a robust model of this phenotype and exhibit several additional pathologies. We hypothesized that the previously reported high plasma concentration of free cholesterol (FC)-rich HDL in Scarb1-/- mice produces a state of high HDL-FC bioavailability that increases whole-body FC and dysfunction in multiple tissue sites. Approach and Results: The higher mol% FC in Scarb1-/- versus WT (wild type) HDL (41.1 versus 16.0 mol%) affords greater FC bioavailability for transfer to multiple sites. Plasma clearance of autologous HDL-FC mass was faster in WT versus Scarb1-/- mice. FC influx from Scarb1-/- HDL to LDL (low-density lipoprotein) and J774 macrophages was greater ([almost equal to]4x) than that from WT HDL, whereas FC efflux capacity was similar. The higher mol% FC of ovaries, erythrocytes, heart, and macrophages of Scarb1-/- versus WT mice is associated with previously reported female infertility, impaired cell maturation, cardiac dysfunction, and atherosclerosis. The FC contents of other tissues were similar in the two genotypes, and these tissues were not associated with any overt pathology. In addition to the differences between WT versus Scarb1-/- mice, there were many sex-dependent differences in tissue-lipid composition and plasma FC clearance rates. Conclusions: Higher HDL-FC bioavailability among Scarb1-/- versus WT mice drives increased FC content of multiple cell sites and is a potential biomarker that is mechanistically linked to multiple pathologies.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
| | - Baiba K. Gillard
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Dedipya Yelamanchili
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
| | - Antonio M. Gotto
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Corina Rosales
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Henry J. Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| |
Collapse
|
13
|
Abdullah MMH, Vazquez-Vidal I, Baer DJ, House JD, Jones PJH, Desmarchelier C. Common Genetic Variations Involved in the Inter-Individual Variability of Circulating Cholesterol Concentrations in Response to Diets: A Narrative Review of Recent Evidence. Nutrients 2021; 13:695. [PMID: 33671529 PMCID: PMC7926676 DOI: 10.3390/nu13020695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
The number of nutrigenetic studies dedicated to the identification of single nucleotide polymorphisms (SNPs) modulating blood lipid profiles in response to dietary interventions has increased considerably over the last decade. However, the robustness of the evidence-based science supporting the area remains to be evaluated. The objective of this review was to present recent findings concerning the effects of interactions between SNPs in genes involved in cholesterol metabolism and transport, and dietary intakes or interventions on circulating cholesterol concentrations, which are causally involved in cardiovascular diseases and established biomarkers of cardiovascular health. We identified recent studies (2014-2020) that reported significant SNP-diet interactions in 14 cholesterol-related genes (NPC1L1, ABCA1, ABCG5, ABCG8, APOA1, APOA2, APOA5, APOB, APOE, CETP, CYP7A1, DHCR7, LPL, and LIPC), and which replicated associations observed in previous studies. Some studies have also shown that combinations of SNPs could explain a higher proportion of variability in response to dietary interventions. Although some findings still need replication, including in larger and more diverse study populations, there is good evidence that some SNPs are consistently associated with differing circulating cholesterol concentrations in response to dietary interventions. These results could help clinicians provide patients with more personalized dietary recommendations, in order to lower their risk for cardiovascular disease.
Collapse
Affiliation(s)
| | - Itzel Vazquez-Vidal
- Richardson Centre for Functional Foods & Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
| | - David J. Baer
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - James D. House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Peter J. H. Jones
- Nutritional Fundamentals for Health, Vaudreuil-Dorion, QC J7V 5V5, Canada;
| | | |
Collapse
|
14
|
Pownall HJ, Liu J, Gillard BK, Yelamanchili D, Rosales C. Physico-chemical and physiological determinants of lipo-nanoparticle stability. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102361. [PMID: 33540069 DOI: 10.1016/j.nano.2021.102361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Liposome-based nanoparticles (NPs) comprised mostly of phospholipids (PLs) have been developed to deliver diagnostic and therapeutic agents. Whereas reassembled plasma lipoproteins have been tested as NP carriers of hydrophobic molecules, they are unstable because the components can spontaneously transfer to other PL surfaces-cell membranes and lipoproteins-and can be degraded by plasma lipases. Here we review two strategies for NP stabilization. One is to use PLs that contain long acyl-chains: according to a quantitative thermodynamic model and in vivo tests, increasing the chain length of a PL reduces the spontaneous transfer rate and increases plasma lifetime. A second strategy is to substitute ether for ester bonds which makes the PLs lipase resistant. We conclude with recommendations of simple ex vivo and in vitro tests of NP stability that should be conducted before in vivo tests are begun.
Collapse
Affiliation(s)
- Henry J Pownall
- Center for Bioenergetics, Department of Medicine, Houston Methodist Academic Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA.
| | - Jing Liu
- Center for Bioenergetics, Department of Medicine, Houston Methodist Academic Institute, Houston, TX, USA; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Baiba K Gillard
- Center for Bioenergetics, Department of Medicine, Houston Methodist Academic Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| | - Dedipya Yelamanchili
- Center for Bioenergetics, Department of Medicine, Houston Methodist Academic Institute, Houston, TX, USA
| | - Corina Rosales
- Center for Bioenergetics, Department of Medicine, Houston Methodist Academic Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
15
|
Ohkawa R, Low H, Mukhamedova N, Fu Y, Lai SJ, Sasaoka M, Hara A, Yamazaki A, Kameda T, Horiuchi Y, Meikle PJ, Pernes G, Lancaster G, Ditiatkovski M, Nestel P, Vaisman B, Sviridov D, Murphy A, Remaley AT, Sviridov D, Tozuka M. Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood. J Lipid Res 2020; 61:1577-1588. [PMID: 32907987 PMCID: PMC7707172 DOI: 10.1194/jlr.ra120000635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1-/- mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.
Collapse
Affiliation(s)
- Ryunosuke Ohkawa
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - Hann Low
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Ying Fu
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Shao-Jui Lai
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Sasaoka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayuko Hara
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Azusa Yamazaki
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Kameda
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuna Horiuchi
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Gerard Pernes
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | | | - Paul Nestel
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Boris Vaisman
- Lipoprotein Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Denis Sviridov
- Lipoprotein Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Murphy
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Alan T Remaley
- Lipoprotein Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.
| | - Minoru Tozuka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Life Science Research Center, Nagano Children's Hospital, Azumino, Japan
| |
Collapse
|
16
|
Larsen MC, Lee J, Jorgensen JS, Jefcoate CR. STARD1 Functions in Mitochondrial Cholesterol Metabolism and Nascent HDL Formation. Gene Expression and Molecular mRNA Imaging Show Novel Splicing and a 1:1 Mitochondrial Association. Front Endocrinol (Lausanne) 2020; 11:559674. [PMID: 33193082 PMCID: PMC7607000 DOI: 10.3389/fendo.2020.559674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
STARD1 moves cholesterol (CHOL) from the outer mitochondrial membrane (OMM) to the inner membrane (IMM) in steroidogenic cells. This activity is integrated into CHOL trafficking and synthesis homeostasis, involving uptake through SR-B1 and LDL receptors and distribution through endosomes, ER, and lipid droplets. In adrenal cells, STARD1 is imported into the mitochondrial matrix accompanied by delivery of several hundred CHOL molecules. This transfer limits CYP11A1-mediated generation of pregnenolone. CHOL transfer is coupled to translation of STARD1 mRNA at the OMM. In testis cells, slower CHOL trafficking seems to be limiting. STARD1 also functions in a slower process through ER OMM contacts. The START domain of STARD1 is utilized by a family of genes, which includes additional STARD (forms 3-6) and GRAMD1B proteins that transfer CHOL. STARD forms 2 and 7 deliver phosphatidylcholine. STARD1 and STARD7 target their respective activities to mitochondria, via N-terminal domains (NTD) of over 50 amino acids. The NTD is not essential for steroidogenesis but exerts tissue-selective enhancement (testis>>adrenal). Three conserved sites for cleavage by the mitochondrial processing protease (MPP) generate three forms, each potentially with specific functions, as demonstrated in STARD7. STARD1 is expressed in macrophage and cardiac repair fibroblasts. Additional functions include CHOL metabolism by CYP27A1 that directs activation of LXR and CHOL export processes. STARD1 generates 3.5- and 1.6-kb mRNA from alternative polyadenylation. The 3.5-kb form exclusively binds the PKA-induced regulator, TIS11b, which binds at conserved sites in the extended 3'UTR to control mRNA translation and turnover. STARD1 expression also exhibits a novel, slow splicing that delayed splicing delivery of mRNA to mitochondria. Stimulation of transcription by PKA is directed by suppression of SIK forms that activate a CRTC/CREB/CBP promoter complex. This process is critical to pulsatile hormonal activation in vivo. sm-FISH RNA imaging shows a flow of single STARD1 mRNA particles from asymmetric accumulations of primary transcripts at gene loci to 1:1 complex of 3.5-kb mRNA with peri-nuclear mitochondria. Adrenal cells are similar but distinguished from testis cells by appreciable basal expression prior to hormonal activation. This difference is conserved in culture and in vivo.
Collapse
Affiliation(s)
- Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Joan S. Jorgensen
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
17
|
Chétiveaux M, Croyal M, Ouguerram K, Fall F, Flet L, Zair Y, Nobecourt E, Krempf M. Effect of fasting and feeding on apolipoprotein A-I kinetics in preβ 1-HDL, α-HDL, and triglyceride-rich lipoproteins. Sci Rep 2020; 10:15585. [PMID: 32973209 PMCID: PMC7519065 DOI: 10.1038/s41598-020-72323-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/03/2020] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to compare the kinetics of apolipoprotein (apo)A-I during fed and fasted states in humans, and to determine to what extent the intestine contributes to apoA-I production. A stable isotope study was conducted to determine the kinetics of apoA-I in preβ1 high-density lipoprotein (HDL) and α-HDL. Six healthy male subjects received a constant intravenous infusion of 2H3-leucine for 14 h. Subjects in the fed group also received small hourly meals. Blood samples were collected hourly during tracer infusion and then daily for 4 days. Tracer enrichments were measured by mass spectrometry and then fitted to a compartmental model using asymptotic plateau of very-low-density lipoprotein (VLDL) apoB100 and triglyceride-rich lipoprotein (TRL) apoB48 as estimates of hepatic and intestinal precursor pools, respectively. The clearance rate of preβ1-HDL-apoA-I was lower in fed individuals compared with fasted subjects (p < 0.05). No other differences in apoA-I production or clearance rates were observed between the groups. No significant correlation was observed between plasma apoC-III concentrations and apoA-I kinetic data. In contrast, HDL-apoC-III was inversely correlated with the conversion of α-HDL to preβ1-HDL. Total apoA-I synthesis was not significantly increased in fed subjects. Hepatic production was not significantly different between the fed group (17.17 ± 2.75 mg/kg/day) and the fasted group (18.67 ± 1.69 mg/kg/day). Increase in intestinal apoA-I secretion in fed subjects was 2.20 ± 0.61 mg/kg/day. The HDL-apoA-I kinetics were similar in the fasted and fed groups, with 13% of the total apoA-I originating from the intestine with feeding.
Collapse
Affiliation(s)
| | - Mikaël Croyal
- CRNH-O Mass Spectrometry Core Facility, Nantes, France. .,NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, IRS-UN-Spectrométrie de Masse-8, quai Moncousu, 44000, Nantes, France.
| | - Khadija Ouguerram
- CRNH-O Mass Spectrometry Core Facility, Nantes, France.,NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, IRS-UN-Spectrométrie de Masse-8, quai Moncousu, 44000, Nantes, France
| | - Fanta Fall
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
| | - Laurent Flet
- Pharmacy Department, Nantes University Hospital, Nantes, France
| | - Yassine Zair
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
| | - Estelle Nobecourt
- CRNH-O Mass Spectrometry Core Facility, Nantes, France.,Nephrology Department, CHU Saint-Pierre, La Réunion, France
| | - Michel Krempf
- CRNH-O Mass Spectrometry Core Facility, Nantes, France.,Clinique Bretéché, Groupe Elsan, Nantes, France
| |
Collapse
|
18
|
Cedó L, Metso J, Santos D, García-León A, Plana N, Sabate-Soler S, Rotllan N, Rivas-Urbina A, Méndez-Lara KA, Tondo M, Girona J, Julve J, Pallarès V, Benitez-Amaro A, Llorente-Cortes V, Pérez A, Gómez-Coronado D, Ruotsalainen AK, Levonen AL, Sanchez-Quesada JL, Masana L, Kovanen PT, Jauhiainen M, Lee-Rueckert M, Blanco-Vaca F, Escolà-Gil JC. LDL Receptor Regulates the Reverse Transport of Macrophage-Derived Unesterified Cholesterol via Concerted Action of the HDL-LDL Axis: Insight From Mouse Models. Circ Res 2020; 127:778-792. [PMID: 32495699 DOI: 10.1161/circresaha.119.316424] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE The HDL (high-density lipoprotein)-mediated stimulation of cellular cholesterol efflux initiates macrophage-specific reverse cholesterol transport (m-RCT), which ends in the fecal excretion of macrophage-derived unesterified cholesterol (UC). Early studies established that LDL (low-density lipoprotein) particles could act as efficient intermediate acceptors of cellular-derived UC, thereby preventing the saturation of HDL particles and facilitating their cholesterol efflux capacity. However, the capacity of LDL to act as a plasma cholesterol reservoir and its potential impact in supporting the m-RCT pathway in vivo both remain unknown. OBJECTIVE We investigated LDL contributions to the m-RCT pathway in hypercholesterolemic mice. METHODS AND RESULTS Macrophage cholesterol efflux induced in vitro by LDL added to the culture media either alone or together with HDL or ex vivo by plasma derived from subjects with familial hypercholesterolemia was assessed. In vivo, m-RCT was evaluated in mouse models of hypercholesterolemia that were naturally deficient in CETP (cholesteryl ester transfer protein) and fed a Western-type diet. LDL induced the efflux of radiolabeled UC from cultured macrophages, and, in the simultaneous presence of HDL, a rapid transfer of the radiolabeled UC from HDL to LDL occurred. However, LDL did not exert a synergistic effect on HDL cholesterol efflux capacity in the familial hypercholesterolemia plasma. The m-RCT rates of the LDLr (LDL receptor)-KO (knockout), LDLr-KO/APOB100, and PCSK9 (proprotein convertase subtilisin/kexin type 9)-overexpressing mice were all significantly reduced relative to the wild-type mice. In contrast, m-RCT remained unchanged in HAPOB100 Tg (human APOB100 transgenic) mice with fully functional LDLr, despite increased levels of plasma APO (apolipoprotein)-B-containing lipoproteins. CONCLUSIONS Hepatic LDLr plays a critical role in the flow of macrophage-derived UC to feces, while the plasma increase of APOB-containing lipoproteins is unable to stimulate m-RCT. The results indicate that, besides the major HDL-dependent m-RCT pathway via SR-BI (scavenger receptor class B type 1) to the liver, a CETP-independent m-RCT path exists, in which LDL mediates the transfer of cholesterol from macrophages to feces. Graphical Abstract: A graphical abstract is available for this article.
Collapse
Affiliation(s)
- Lídia Cedó
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| | - Jari Metso
- Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum, Helsinki, Finland (J.M., M.J.)
| | - David Santos
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| | - Annabel García-León
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Núria Plana
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.).,Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain (N.P., J.G., L.M.)
| | - Sonia Sabate-Soler
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Noemí Rotllan
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Andrea Rivas-Urbina
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Karen A Méndez-Lara
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Mireia Tondo
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain (N.P., J.G., L.M.)
| | - Josep Julve
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| | - Victor Pallarès
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Aleyda Benitez-Amaro
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Institut de Recerca Josep Carreras, Barcelona, Spain (V.P.); Biomedical Research Institute Sant Pau (IIB Sant Pau), Institute of Biomedical Research of Barcelona-Spanish National Research Council (A.B.-A., V.L.-C.)
| | - Vicenta Llorente-Cortes
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Institut de Recerca Josep Carreras, Barcelona, Spain (V.P.); Biomedical Research Institute Sant Pau (IIB Sant Pau), Institute of Biomedical Research of Barcelona-Spanish National Research Council (A.B.-A., V.L.-C.).,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (V.L.-C.)
| | - Antonio Pérez
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain (D.G.-C.).,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain (D.G.-C.)
| | - Anna-Kaisa Ruotsalainen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio (A.-K.R., A.-L.L.)
| | - Anna-Liisa Levonen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio (A.-K.R., A.-L.L.)
| | - José Luis Sanchez-Quesada
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| | - Luís Masana
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.).,Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain (N.P., J.G., L.M.)
| | - Petri T Kovanen
- and Wihuri Research Institute, Helsinki, Finland (P.T.K., M.L.-R.)
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum, Helsinki, Finland (J.M., M.J.)
| | | | - Francisco Blanco-Vaca
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| | - Joan Carles Escolà-Gil
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| |
Collapse
|
19
|
Navdaev AV, Sborgi L, Wright SD, Didichenko SA. Nascent HDL (High-Density Lipoprotein) Discs Carry Cholesterol to HDL Spheres: Effects of HDL Particle Remodeling on Cholesterol Efflux. Arterioscler Thromb Vasc Biol 2020; 40:1182-1194. [PMID: 32131613 PMCID: PMC7176342 DOI: 10.1161/atvbaha.120.313906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To characterize the fate of protein and lipid in nascent HDL (high-density lipoprotein) in plasma and explore the role of interaction between nascent HDL and mature HDL in promoting ABCA1 (ATP-binding cassette transporter 1)-dependent cholesterol efflux. Approach and Results: Two discoidal species, nascent HDL produced by RAW264.7 cells expressing ABCA1 (LpA-I [apo AI containing particles formed by incubating ABCA1-expressing cells with apo AI]), and CSL112, human apo AI (apolipoprotein AI) reconstituted with phospholipids, were used for in vitro incubations with human plasma or purified spherical plasma HDL. Fluorescent labeling and biotinylation of HDL were employed to follow the redistribution of cholesterol and apo AI, cholesterol efflux was measured using cholesterol-loaded cells. We show that both nascent LpA-I and CSL112 can rapidly fuse with spherical HDL. Redistribution of the apo AI molecules and cholesterol after particle fusion leads to the formation of (1) enlarged, remodeled, lipid-rich HDL particles carrying lipid and apo AI from LpA-I and (2) lipid-poor apo AI particles carrying apo AI from both discs and spheres. The interaction of discs and spheres led to a greater than additive elevation of ABCA1-dependent cholesterol efflux. CONCLUSIONS These data demonstrate that although newly formed discs are relatively poor substrates for ABCA1, they can interact with spheres to produce lipid-poor apo AI, a much better substrate for ABCA1. Because the lipid-poor apo AI generated in this interaction can itself become discoid by the action of ABCA1, cycles of cholesterol efflux and disc-sphere fusion may result in net ABCA1-dependent transfer of cholesterol from cells to HDL spheres. This process may be of particular importance in atherosclerotic plaque where cholesterol acceptors may be limiting.
Collapse
Affiliation(s)
- Alexei V Navdaev
- From the CSL Behring AG, Bern, Switzerland (A.V.N., L.S., S.A.D.)
| | - Lorenzo Sborgi
- From the CSL Behring AG, Bern, Switzerland (A.V.N., L.S., S.A.D.)
| | | | | |
Collapse
|
20
|
Fawaz MV, Kim SY, Li D, Ming R, Xia Z, Olsen K, Pogozheva ID, Tesmer JJG, Schwendeman A. Phospholipid Component Defines Pharmacokinetic and Pharmacodynamic Properties of Synthetic High-Density Lipoproteins. J Pharmacol Exp Ther 2020; 372:193-204. [PMID: 31776208 PMCID: PMC6978696 DOI: 10.1124/jpet.119.257568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Synthetic high-density lipoprotein (sHDL) nanoparticles composed of apolipoprotein A-I mimetic peptide and phospholipids have been shown to reduce atherosclerosis in animal models. Cholesterol is mobilized from atheroma macrophages by sHDL into the blood compartment and delivered to the liver for elimination. Historically, sHDL drug discovery efforts were focused on optimizing peptide sequences for interaction with cholesterol cellular transporters rather than understanding how both sHDL components, peptide and lipid, influence its pharmacokinetic and pharmacodynamic profiles. We designed two sets of sHDL having either identical phospholipid but variable peptide sequences with different plasma stability or identical peptide and phospholipids with variable fatty acid chain length and saturation. We found that sHDL prepared with proteolytically stable 22A-P peptide had 2-fold longer circulation half-time relative to the less stable 22A peptide. Yet, longer half-life did not translate into any improvement in cholesterol mobilization. In contrast, sHDL with variable phospholipid compositions showed significant differences in phospholipid PK, with distearoyl phosphatidylcholine-based sHDL demonstrating the longest half-life of 6.0 hours relative to 1.0 hour for palmitoyl-oleoyl phosphatidylcholine-based sHDL. This increase in half-life corresponded to an approx. 6.5-fold increase in the area under the curve for the mobilized cholesterol. Therefore, the phospholipid component in sHDL plays a major role in cholesterol mobilization in vivo and should not be overlooked in the design of future sHDL. SIGNIFICANCE STATEMENT: The phospholipid composition in sHDL plays a critical role in determining half-life and cholesterol mobilization in vivo.
Collapse
Affiliation(s)
- Maria V Fawaz
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Sang Yeop Kim
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Dan Li
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Ran Ming
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Ziyun Xia
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Karl Olsen
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Irina D Pogozheva
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - John J G Tesmer
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Anna Schwendeman
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| |
Collapse
|
21
|
Du W, Hu Z, Wang L, Li M, Zhao D, Li H, Wei J, Zhang R. ABCA1 Variants rs1800977 (C69T) and rs9282541 (R230C) Are Associated with Susceptibility to Type 2 Diabetes. Public Health Genomics 2020; 23:20-25. [PMID: 31982877 DOI: 10.1159/000505344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Accumulated evidence suggests that ATP-binding cassette A1 transporter (ABCA1) contributes to secreting insulin in pancreatic β-cells and amyloid beta formation. This study aimed to investigate the association between three single nucleotide polymorphisms (SNPs) of ABCA1 and susceptibility to type 2 diabetes mellitus (T2DM) in a Han Chinese population. METHODS A total of 996 T2DM patients and 1,002 controls were included in the study. Three SNPs in the ABCA1 gene, i.e., rs2230806 (R219K), rs1800977 (C69T), and rs9282541 (R230C), were genotyped by SNaPshot. A genotype model, an allele model, a dominant model, and a recessive model were used to assess susceptibility to T2DM. RESULTS There were significant associations between rs1800977 and T2DM in different genetic models (TT vs. CC, OR = 0.591 [0.446-0.793], p < 0.001; T vs. C, OR = 0.835 [0.735-0.949], p = 0.006; recessive model, OR = 0.583 [0.449-0.756], p < 0.001). There were also significant associations between rs9282541 and T2DM in different genetic models (CT vs. CC, OR = 1.690 [0.807-1.005], p = 0.048; T vs. C, OR = 1.756 [0.694-1.060], p = 0.029; dominant model, OR = 1.735 [0.715-1.034], p = 0.037). CONCLUSION Our case-control study showed that the two SNPs rs1800977 and rs9282541 in the ABCA1 gene are significantly associated with susceptibility to T2DM in our Han Chinese population. Study of further mechanisms should be performed before application to clinical therapy.
Collapse
Affiliation(s)
- Weiping Du
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Zhixi Hu
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Li Wang
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Miaomiao Li
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Dong Zhao
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Hui Li
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Junsheng Wei
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Rui Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China,
| |
Collapse
|
22
|
Rodriguez A, Trigatti BL, Mineo C, Knaack D, Wilkins JT, Sahoo D, Asztalos BF, Mora S, Cuchel M, Pownall HJ, Rosales C, Bernatchez P, Ribeiro Martins da Silva A, Getz GS, Barber JL, Shearer GC, Zivkovic AM, Tietge UJF, Sacks FM, Connelly MA, Oda MN, Davidson WS, Sorci-Thomas MG, Vaisar T, Ruotolo G, Vickers KC, Martel C. Proceedings of the Ninth HDL (High-Density Lipoprotein) Workshop: Focus on Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:2457-2467. [PMID: 31597448 DOI: 10.1161/atvbaha.119.313340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HDL (high-density lipoprotein) Workshop was established in 2009 as a forum for candid discussions among academic basic scientists, clinical investigators, and industry researchers about the role of HDL in cardiovascular disease. This ninth HDL Workshop was held on May 16 to 17, 2019 in Boston, MA, and included outstanding oral presentations from established and emerging investigators. The Workshop featured 5 sessions with topics that tackled the role of HDL in the vasculature, its structural complexity, its role in health and disease states, and its interaction with the intestinal microbiome. The highlight of the program was awarding the Jack Oram Award to the distinguished professor emeritus G.S. Getz from the University of Chicago. The tenth HDL Workshop will be held on May 2020 in Chicago and will continue the focus on intellectually stimulating presentations by established and emerging investigators on novel roles of HDL in cardiovascular and noncardiovascular health and disease states.
Collapse
Affiliation(s)
- Annabelle Rodriguez
- From the Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health, Farmington (A.R.)
| | - Bernardo L Trigatti
- Department of Biochemistry and Biomedical Sciences, McMaster University, and Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada (B.L.T.)
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics and Cell Biology, University of Texas Southwestern Medical Center, Dallas (C.M.)
| | - Darcy Knaack
- Department of Biochemistry (D.K., D.S.), Medical College of Wisconsin, Milwaukee
| | - John T Wilkins
- Division of Cardiology, Departments of Medicine and of Preventive Medicine, Northwestern University, Chicago, IL (J.T.W.)
| | - Daisy Sahoo
- Department of Biochemistry (D.K., D.S.), Medical College of Wisconsin, Milwaukee.,Division of Endocrinology (D.S., M.G.S.-T.), Medical College of Wisconsin, Milwaukee
| | - Bela F Asztalos
- Human Nutrition Research Center, Tufts University, Boston, MA (B.F.A.)
| | - Samia Mora
- Center for Lipid Metabolomics, Divisions of Preventive and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.M.)
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (M.C.)
| | - Henry J Pownall
- Institute for Academic Medicine, Houston Methodist, Weill Cornell Medical College, Houston, TX (H.J.P., C.R.)
| | - Corina Rosales
- Institute for Academic Medicine, Houston Methodist, Weill Cornell Medical College, Houston, TX (H.J.P., C.R.)
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Heart and Lung Innovation Centre, St Paul's Hospital, Vancouver, BC, Canada (P.B.)
| | | | - Godfrey S Getz
- Department of Pathology, University of Chicago, IL (G.S.G.)
| | - Jacob L Barber
- Department of Exercise Science, University of South Carolina, Columbia (J.L.B.)
| | - Gregory C Shearer
- Department Nutritional Sciences, The Pennsylvania State University, University Park (G.C.S.)
| | | | - Uwe J F Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (U.J.F.T.).,Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden (U.J.F.T.)
| | - Frank M Sacks
- Harvard T.H. Chan School of Public Health, Boston, MA (F.M.S.)
| | - Margery A Connelly
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC (M.A.C.)
| | | | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH (W.S.D.)
| | - Mary G Sorci-Thomas
- Division of Endocrinology (D.S., M.G.S.-T.), Medical College of Wisconsin, Milwaukee
| | - Tomas Vaisar
- UW Medicine Diabetes Institute, University of Washington, Seattle (T.V.)
| | | | - Kasey C Vickers
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (K.C.V.)
| | - Catherine Martel
- Montreal Heart Institute, Montreal and Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada (C.M.)
| |
Collapse
|
23
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
24
|
Wang F, Ji Y, Chen X, Song Y, Huang S, Zhou C, Huang C, Chen Z, Zhang L, Ge J. ABCA1 variants rs2230806 (R219K), rs4149313 (M8831I), and rs9282541 (R230C) are associated with susceptibility to coronary heart disease. J Clin Lab Anal 2019; 33:e22896. [PMID: 31006134 PMCID: PMC6642322 DOI: 10.1002/jcla.22896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND To investigate the association between three single nucleotide polymorphisms (SNPs) of ABCA1 gene and susceptibility to coronary heart disease (CHD) in Chinese Han population. METHODS A total of 484 CHD patients and 488 controls were included in the study. Three SNPs rs2230806 (R219K), rs4149313 (M8831I), and rs9282541 (R230C) in ABCA1 gene were genotyped by SNaPshot. RESULTS Single nucleotide polymorphism rs1800977 was associated with susceptibility to CHD (AA vs GG, P = 0.013; A vs G, P = 0.029; recessive model, P = 0.020). Rs4149313 (AA vs GG, P = 0.010; recessive model, P = 0.011) and rs9282541 (T vs C, P = 0.029; dominant model, P = 0.039) were also risk factor for CHD. CONCLUSION This study suggests that three SNPs rs2230806, rs4149313, and rs9282541 in ABCA1 gene are significantly associated with susceptibility to CHD; further mechanism should be performed to be applied to drug research and development.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Cardiovascular Disease, Changzhou No. 2 People’s HospitalAffiliated Nanjing Medical UniversityChangzhouChina
| | - Yuan Ji
- Department of Cardiovascular Disease, Changzhou No. 2 People’s HospitalAffiliated Nanjing Medical UniversityChangzhouChina
| | - Xin Chen
- Department of Cardiovascular Disease, Changzhou No. 2 People’s HospitalAffiliated Nanjing Medical UniversityChangzhouChina
| | - Ying Song
- Department of Cardiovascular Disease, Changzhou No. 2 People’s HospitalAffiliated Nanjing Medical UniversityChangzhouChina
| | - Shenglan Huang
- Department of Cardiovascular Disease, Changzhou No. 2 People’s HospitalAffiliated Nanjing Medical UniversityChangzhouChina
| | - Changle Zhou
- Department of Cardiovascular Disease, Changzhou No. 2 People’s HospitalAffiliated Nanjing Medical UniversityChangzhouChina
| | - Changgen Huang
- Department of Cardiovascular Disease, Changzhou No. 2 People’s HospitalAffiliated Nanjing Medical UniversityChangzhouChina
| | - Zengguang Chen
- Department of Cardiovascular Disease, Changzhou No. 2 People’s HospitalAffiliated Nanjing Medical UniversityChangzhouChina
| | - Liangfeng Zhang
- Department of Cardiovascular Disease, Changzhou No. 2 People’s HospitalAffiliated Nanjing Medical UniversityChangzhouChina
| | - Jiyong Ge
- Department of Cardiovascular Disease, Changzhou No. 2 People’s HospitalAffiliated Nanjing Medical UniversityChangzhouChina
| |
Collapse
|
25
|
Pedretti S, Brulhart-Meynet MC, Montecucco F, Lecour S, James RW, Frias MA. HDL protects against myocardial ischemia reperfusion injury via miR-34b and miR-337 expression which requires STAT3. PLoS One 2019; 14:e0218432. [PMID: 31220137 PMCID: PMC6586303 DOI: 10.1371/journal.pone.0218432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE High density lipoprotein (HDL) protects against myocardial infarction via mechanisms that remain unclear. STAT3 (signal transducer and activator of transcription 3) plays a key role in HDL-induced cardioprotection. In the heart, microRNAs (miRNAs) are involved in ischemia reperfusion injury. We therefore investigated whether the cardioprotective effect of HDL modulates miRNAs as a downstream target of STAT3 activation. METHODS STAT3 cardiomyocyte deficient mice (STAT3-KO) and wildtype littermates (STAT3-WT) were submitted to left coronary ligature and reperfused (IR) with or without injection of HDL. Infarct size (IS) was determined and cardiac miRNA expression was evaluated after reperfusion in sham, IR and IR+HDL hearts by microarray analysis. In vitro, neonatal rat ventricular cardiomyocytes were submitted to hypoxia with or without HDL incubation. Cell viability and miRNA expression were analysed. RESULTS In vivo, HDL reduced IS from 40.5±4.3% to 24.4±2.1% (p<0.05) in STAT3-WT mice. HDL failed to protect in STAT3-KO mice. In STAT3-WT mice, both miR-34b and miR-337 were increased in IR compared to sham and IR+HDL groups (p<0.05). These miRNAs were not modulated in STAT3-KO mice. In vitro, incubation with HDL improved cell viability against hypoxia (p<0.05). The expression of miR-34b and miR-337 was increased by hypoxia and reduced by HDL treatment (p<0.05). In cardiomyocytes transfected with miRNA mimics, HDL failed to improve cell viability against hypoxia. CONCLUSIONS Our study, performed both in vivo and in vitro, delineates a novel cardioprotective signalling pathway activated by HDL, involving STAT3-mediated decrease of miR-34b and miR-337 expression.
Collapse
Affiliation(s)
- Sarah Pedretti
- Department of Medical Specialties-Endocrinology, Diabetology, Hypertension and Nutrition, University of Geneva, Geneva, Switzerland
| | - Marie-Claude Brulhart-Meynet
- Department of Medical Specialties-Endocrinology, Diabetology, Hypertension and Nutrition, University of Geneva, Geneva, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy
- IRCCS AOU San Martino—IST, Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Richard W. James
- Department of Medical Specialties-Endocrinology, Diabetology, Hypertension and Nutrition, University of Geneva, Geneva, Switzerland
| | - Miguel A. Frias
- Department of Medical Specialties-Endocrinology, Diabetology, Hypertension and Nutrition, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
26
|
Rosales C, Gillard BK, Xu B, Gotto AM, Pownall HJ. Revisiting Reverse Cholesterol Transport in the Context of High-Density Lipoprotein Free Cholesterol Bioavailability. Methodist Debakey Cardiovasc J 2019; 15:47-54. [PMID: 31049149 DOI: 10.14797/mdcj-15-1-47] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dysregulated free cholesterol (FC) metabolism has been implicated in nearly all stages of atherosclerosis, the underlying cause of most cardiovascular disease. According to a widely cited model, the burden of macrophage FC in the arterial wall is relieved by transhepatic reverse cholesterol transport (RCT), which comprises three successive steps: (1) macrophage FC efflux to high-density lipoprotein (HDL) and/or its major protein, apolipoprotein AI; (2) FC esterification by lecithin:cholesterol acyltransferase (LCAT); and (3) HDL-cholesteryl ester (CE) uptake via the hepatic HDL-receptor, scavenger receptor class B type 1 (SR-B1). Recent studies have challenged the validity of this model, most notably the role of LCAT, which appears to be of minor importance. In mice, most macrophage-derived FC is rapidly cleared from plasma (t1/2 < 5 min) without esterification by hepatic uptake; the remainder is taken up by multiple tissue and cell types, especially erythrocytes. Further, some FC is cleared by the nonhepatic transintestinal pathway. Lastly, FC movement among lipid surfaces is reversible, so that a higher-than-normal level of HDL-FC bioavailability-defined by high plasma HDL levels concurrent with a high mol% HDL-FC-leads to the transfer of excess FC to cells in vivo. SR-B1-/- mice provide an animal model to study the mechanistic consequences of high HDL-FC bioavailability that provokes atherosclerosis and other metabolic abnormalities. Future efforts should aim to reduce HDL-FC bioavailability, thereby reducing FC accretion by tissues and the attendant atherosclerosis.
Collapse
Affiliation(s)
- Corina Rosales
- HOUSTON METHODIST RESEARCH INSTITUTE, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS.,WEILL CORNELL MEDICINE, NEW YORK, NEW YORK
| | - Baiba K Gillard
- HOUSTON METHODIST RESEARCH INSTITUTE, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS.,WEILL CORNELL MEDICINE, NEW YORK, NEW YORK
| | - Bingqing Xu
- XIANGYA HOSPITAL, CENTRAL SOUTH UNIVERSITY, CHANGSHA, CHINA
| | - Antonio M Gotto
- HOUSTON METHODIST RESEARCH INSTITUTE, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS.,WEILL CORNELL MEDICINE, NEW YORK, NEW YORK
| | - Henry J Pownall
- HOUSTON METHODIST RESEARCH INSTITUTE, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS.,WEILL CORNELL MEDICINE, NEW YORK, NEW YORK
| |
Collapse
|
27
|
Pownall HJ, Gotto AM. Cholesterol: Can't Live With It, Can't Live Without It. Methodist Debakey Cardiovasc J 2019; 15:9-15. [PMID: 31049144 DOI: 10.14797/mdcj-15-1-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Given its role in many biochemical processes essential to life, cholesterol remains a topic of intense research. Of all the plasma lipids, cholesterol is distinctive because it is a precursor to steroidogenic molecules, some of which regulate metabolism, and its blood concentration in the form of low- and high-density lipoprotein cholesterol (HDL-C) are positive and negative risk factors for atherosclerotic cardiovascular disease (ASCVD). New research, however, has challenged the widely held belief that high HDL-C levels are atheroprotective and is showing that both low and high plasma HDL-C levels confer an increased risk of ASCVD. Furthermore, it is disputing the widely cited mechanism involved in reverse cholesterol transport. This review explores the evolution of cholesterol research starting with the Gofman and Framingham studies, the development of traditional and emerging lipid-lowering therapies, and the role of reverse cholesterol transport in HDL cardioprotection.
Collapse
Affiliation(s)
- Henry J Pownall
- HOUSTON METHODIST RESEARCH INSTITUTE, HOUSTON, TEXAS; WEILL CORNELL MEDICINE, NEW YORK, NEW YORK
| | - Antonio M Gotto
- HOUSTON METHODIST RESEARCH INSTITUTE, HOUSTON, TEXAS; WEILL CORNELL MEDICINE, NEW YORK, NEW YORK
| |
Collapse
|
28
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
29
|
He Y, Kothari V, Bornfeldt KE. High-Density Lipoprotein Function in Cardiovascular Disease and Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2019; 38:e10-e16. [PMID: 29367232 DOI: 10.1161/atvbaha.117.310222] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yi He
- From the Division of Metabolism, Endocrinology and Nutrition, Department of Medicine (Y.H., V.K., K.E.B.) and Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle
| | - Vishal Kothari
- From the Division of Metabolism, Endocrinology and Nutrition, Department of Medicine (Y.H., V.K., K.E.B.) and Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle
| | - Karin E Bornfeldt
- From the Division of Metabolism, Endocrinology and Nutrition, Department of Medicine (Y.H., V.K., K.E.B.) and Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle.
| |
Collapse
|
30
|
Affiliation(s)
- Jacqueline S Dron
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Julieta Lazarte
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
31
|
Muñoz-Vega M, Massó F, Páez A, Vargas-Alarcón G, Coral-Vázquez R, Mas-Oliva J, Carreón-Torres E, Pérez-Méndez Ó. HDL-Mediated Lipid Influx to Endothelial Cells Contributes to Regulating Intercellular Adhesion Molecule (ICAM)-1 Expression and eNOS Phosphorylation. Int J Mol Sci 2018; 19:ijms19113394. [PMID: 30380707 PMCID: PMC6274843 DOI: 10.3390/ijms19113394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 01/19/2023] Open
Abstract
Reverse cholesterol transport (RCT) is considered as the most important antiatherogenic role of high-density lipoproteins (HDL), but interventions based on RCT have failed to reduce the risk of coronary heart disease. In contrast to RCT, important evidence suggests that HDL deliver lipids to peripheral cells. Therefore, in this paper, we investigated whether HDL could improve endothelial function by delivering lipids to the cells. Internalization kinetics using cholesterol and apolipoprotein (apo) AI fluorescent double-labeled reconstituted HDL (rHDL), and human dermal microvascular endothelial cells-1 (HMEC-1) showed a fast cholesterol influx (10 min) and a slower HDL protein internalization as determined by confocal microscopy and flow cytometry. Sphingomyelin kinetics overlapped that of apo AI, indicating that only cholesterol became dissociated from rHDL during internalization. rHDL apo AI internalization was scavenger receptor class B type I (SR-BI)-dependent, whereas HDL cholesterol influx was independent of SR-BI and was not completely inhibited by the presence of low-density lipoproteins (LDL). HDL sphingomyelin was fundamental for intercellular adhesion molecule-1 (ICAM-1) downregulation in HMEC-1. However, vascular cell adhesion protein-1 (VCAM-1) was not inhibited by rHDL, suggesting that components such as apolipoproteins other than apo AI participate in HDL's regulation of this adhesion molecule. rHDL also induced endothelial nitric oxide synthase eNOS S1177 phosphorylation in HMEC-1 but only when the particle contained sphingomyelin. In conclusion, the internalization of HDL implies the dissociation of lipoprotein components and a SR-BI-independent fast delivery of cholesterol to endothelial cells. HDL internalization had functional implications that were mainly dependent on sphingomyelin. These results suggest a new role of HDL as lipid vectors to the cells, which could be congruent with the antiatherogenic properties of these lipoproteins.
Collapse
Affiliation(s)
- Mónica Muñoz-Vega
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Felipe Massó
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Araceli Páez
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Gilberto Vargas-Alarcón
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Ramón Coral-Vázquez
- Graduate School and Research Division, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 México City, Mexico.
- Sub-Directorate of Research and Education, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, 03100 México City, Mexico.
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - Elizabeth Carreón-Torres
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Óscar Pérez-Méndez
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| |
Collapse
|
32
|
Lyssenko NN, Haider N, Picataggi A, Cipollari E, Jiao W, Phillips MC, Rader DJ, Chavali VRM. Directional ABCA1-mediated cholesterol efflux and apoB-lipoprotein secretion in the retinal pigment epithelium. J Lipid Res 2018; 59:1927-1939. [PMID: 30076206 DOI: 10.1194/jlr.m087361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Cholesterol-containing soft drusen and subretinal drusenoid deposits (SDDs) occur at the basolateral and apical side of the retinal pigment epithelium (RPE), respectively, in the chorioretina and are independent risk factors for late age-related macular degeneration (AMD). Cholesterol in these deposits could originate from the RPE as nascent HDL or apoB-lipoprotein. We characterized cholesterol efflux and apoB-lipoprotein secretion in RPE cells. Human RPE cells, ARPE-19, formed nascent HDL that was similar in physicochemical properties to nascent HDL formed by other cell types. In highly polarized primary human fetal RPE (phfRPE) monolayers grown in low-lipid conditions, cholesterol efflux to HDL was moderately directional to the apical side and much stronger than ABCA1-mediated efflux to apoA-I at both sides; ABCA1-mediated efflux was weak and equivalent between the two sides. Feeding phfRPE monolayers with oxidized or acetylated LDL increased intracellular levels of free and esterified cholesterol and substantially raised ABCA1-mediated cholesterol efflux at the apical side. phfRPE monolayers secreted apoB-lipoprotein preferentially to the apical side in low-lipid and oxidized LDL-feeding conditions. These findings together with evidence from human genetics and AMD pathology suggest that RPE-generated HDL may contribute lipid to SDDs.
Collapse
Affiliation(s)
- Nicholas N Lyssenko
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Naqi Haider
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| | - Antonino Picataggi
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eleonora Cipollari
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wanzhen Jiao
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA
| | - Michael C Phillips
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
33
|
Wilson CJ, Das M, Jayaraman S, Gursky O, Engen JR. Effects of Disease-Causing Mutations on the Conformation of Human Apolipoprotein A-I in Model Lipoproteins. Biochemistry 2018; 57:4583-4596. [PMID: 30004693 DOI: 10.1021/acs.biochem.8b00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma high-density lipoproteins (HDLs) are protein-lipid nanoparticles that transport lipids and protect against atherosclerosis. Human apolipoprotein A-I (apoA-I) is the principal HDL protein whose mutations can cause either aberrant lipid metabolism or amyloid disease. Hydrogen-deuterium exchange (HDX) mass spectrometry (MS) was used to study the apoA-I conformation in model discoidal lipoproteins similar in size to large plasma HDL. We examined how point mutations associated with hereditary amyloidosis (F71Y and L170P) or atherosclerosis (L159R) influence the local apoA-I conformation in model lipoproteins. Unlike other apoA-I forms, the large particles showed minimal conformational heterogeneity, suggesting a fully extended protein conformation. Mutation-induced structural perturbations in lipid-bound protein were attenuated compared to the free protein and indicated close coupling between the two belt-forming apoA-I molecules. These perturbations propagated to distant lipoprotein sites, either increasing or decreasing their protection. This HDX MS study of large model HDL, compared with previous studies of smaller particles, ascertained that apoA-I's central region helps accommodate the protein conformation to lipoproteins of various sizes. This study also reveals that the effects of mutations on lipoprotein conformational dynamics are much weaker than those in a lipid-free protein. Interestingly, the mutation-induced perturbations propagate to distant sites nearly 10 nm away and alter their protection in ways that cannot be predicted from the lipoprotein structure and stability. We propose that long-range mutational effects are mediated by both protein and lipid and can influence lipoprotein functionality.
Collapse
Affiliation(s)
- Christopher J Wilson
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Madhurima Das
- Department of Physiology & Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118 , United States
| | - Shobini Jayaraman
- Department of Physiology & Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118 , United States
| | - Olga Gursky
- Department of Physiology & Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118 , United States.,Amyloidosis Research Center , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - John R Engen
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
34
|
Gillard BK, Rosales C, Xu B, Gotto AM, Pownall HJ. Rethinking reverse cholesterol transport and dysfunctional high-density lipoproteins. J Clin Lipidol 2018; 12:849-856. [PMID: 29731282 DOI: 10.1016/j.jacl.2018.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022]
Abstract
Human plasma high-density lipoprotein cholesterol concentrations are a negative risk factor for atherosclerosis-linked cardiovascular disease. Pharmacological attempts to reduce atherosclerotic cardiovascular disease by increasing plasma high-density lipoprotein cholesterol have been disappointing so that recent research has shifted from HDL quantity to HDL quality, that is, functional vs dysfunctional HDL. HDL has varying degrees of dysfunction reflected in impaired reverse cholesterol transport (RCT). In the context of atheroprotection, RCT occurs by 2 mechanisms: one is the well-known trans-hepatic pathway comprising macrophage free cholesterol (FC) efflux, which produces early forms of FC-rich nascent HDL (nHDL). Lecithin:cholesterol acyltransferase converts HDL-FC to HDL-cholesteryl ester while converting nHDL from a disc to a mature spherical HDL, which transfers its cholesteryl ester to the hepatic HDL receptor, scavenger receptor B1 for uptake, conversion to bile salts, or transfer to the intestine for excretion. Although widely cited, current evidence suggests that this is a minor pathway and that most HDL-FC and nHDL-FC rapidly transfer directly to the liver independent of lecithin:cholesterol acyltransferase activity. A small fraction of plasma HDL-FC enters the trans-intestinal efflux pathway comprising direct FC transfer to the intestine. SR-B1-/- mice, which have impaired trans-hepatic FC transport, are characterized by high plasma levels of a dysfunctional FC-rich HDL that increases plasma FC bioavailability in a way that produces whole-body hypercholesterolemia and multiple pathologies. The design of future therapeutic strategies to improve RCT will have to be formulated in the context of these dual RCT mechanisms and the role of FC bioavailability.
Collapse
Affiliation(s)
- Baiba K Gillard
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| | - Corina Rosales
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| | - Bingqing Xu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Antonio M Gotto
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| | - Henry J Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Phillips MC. Is ABCA1 a lipid transfer protein? J Lipid Res 2018; 59:749-763. [PMID: 29305383 DOI: 10.1194/jlr.r082313] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/02/2018] [Indexed: 12/16/2022] Open
Abstract
ABCA1 functions as a lipid transporter because it mediates the transfer of cellular phospholipid (PL) and free (unesterified) cholesterol (FC) to apoA-I and related proteins present in the extracellular medium. ABCA1 is a membrane PL translocase and its enzymatic activity leads to transfer of PL molecules from the cytoplasmic leaflet to the exofacial leaflet of a cell plasma membrane (PM). The presence of active ABCA1 in the PM promotes binding of apoA-I to the cell surface. About 10% of this bound apoA-I interacts directly with ABCA1 and stabilizes the transporter. Most of the pool of cell surface-associated apoA-I is bound to lipid domains in the PM that are created by the activity of ABCA1. The amphipathic α-helices in apoA-I confer detergent-like properties on the protein enabling it to solubilize PL and FC in these membrane domains to create a heterogeneous population of discoidal nascent HDL particles. This review focuses on current understanding of the structure-function relationships of human ABCA1 and the molecular mechanisms underlying HDL particle production.
Collapse
Affiliation(s)
- Michael C Phillips
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158
| |
Collapse
|
36
|
Yang S, Si L, Fan L, Jian W, Pei H, Lin R. Polysaccharide IV from Lycium barbarum L. Improves Lipid Profiles of Gestational Diabetes Mellitus of Pregnancy by Upregulating ABCA1 and Downregulating Sterol Regulatory Element-Binding Transcription 1 via miR-33. Front Endocrinol (Lausanne) 2018; 9:49. [PMID: 29527188 PMCID: PMC5829030 DOI: 10.3389/fendo.2018.00049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/05/2018] [Indexed: 01/24/2023] Open
Abstract
Lycium barbarum L. (LBL) has beneficial effects on gestational diabetes mellitus (GDM) but the related mechanism remains unclear. Polysaccharides of LBL (LBLP) are the main bioactive components of LBL. miR-33, ATP-binding cassette transporter A1 (ABCA1) and sterol regulatory element-binding transcription 1 (SREBF1) affect lipid profiles, which are associated with GDM risk. LBLP may exert protective against GDM by affecting these molecules. Four LBLP fractions: LBLP-I, LBLP-II, LBLP-III, and LBLP-IV were isolated from LBL and further purified by using DEAE-Sephadex column. The effects of purified each fraction on pancreatic beta cells were comparatively evaluated. A total of 158 GDM patients were recruited and randomly divided into LBL group (LG) and placebo group (CG). miR-33 levels, lipid profiles, insulin resistance and secretory functions were measured. The association between serum miR-33 levels and lipid profiles were evaluated by using Spearman's rank-order correlation test. After 4-week therapy, LBL reduced miR-33 level, insulin resistance and increased insulin secretion of GDM patients. LBL increased the levels of ABCA1, high-density lipoprotein cholesterol (HDL-C) and reduced miR-33, SREBF1, low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), and malondialdehyde. Homeostatic model assessment of β-cell function and insulin resistance was lower in LG than in CG, whereas homeostatic model assessment of β-cell function and insulin secretory function was higher in LG than in CG. There was a strong positive association between miR-33 level and TG, or TC and or LDL-C, and a strong negative association between miR-33 level and HDL-C. The levels of miR-33 had negative relation with ABCA1 and positive relation with SREBF1. ABCA1 has negative relation with TG, TC, and LDL-C and positive relation with HDL-C. Inversely, SREBF1 had positive relation with TG, TC, and LDL-C and negative relation with HDL-C. The main bioactive compound LBLP-IV of LBL increased insulin secretion of beta cells and the levels of ABCA1, and reduced miR-33 levels and SREBF1 in beta cells. However, LBLP-IV could not change the levels of these molecules anymore when miR-33 was overexpressed or silenced. LBLP-IV had the similar effects with LBL on beta cells while other components had no such effects. Thus, LBLP-IV from LBL improves lipid profiles by upregulating ABCA1 and downregulating SREBF1 via miR-33.
Collapse
Affiliation(s)
- Shuli Yang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Lihui Si
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Limei Fan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Wenwen Jian
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Huilin Pei
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Ruixin Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ruixin Lin,
| |
Collapse
|