1
|
Daugherty A, Milewicz DM, Dichek DA, Ghaghada KB, Humphrey JD, LeMaire SA, Li Y, Mallat Z, Saeys Y, Sawada H, Shen YH, Suzuki T, Zhou (周桢) Z. Recommendations for Design, Execution, and Reporting of Studies on Experimental Thoracic Aortopathy in Preclinical Models. Arterioscler Thromb Vasc Biol 2025; 45:609-631. [PMID: 40079138 PMCID: PMC12018150 DOI: 10.1161/atvbaha.124.320259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
There is a recent dramatic increase in research on thoracic aortic diseases that includes aneurysms, dissections, and rupture. Experimental studies predominantly use mice in which aortopathy is induced by chemical interventions, genetic manipulations, or both. Many parameters should be deliberated in experimental design in concert with multiple considerations when providing dimensional data and characterization of aortic tissues. The purpose of this review is to provide recommendations on guidance in (1) the selection of a mouse model and experimental conditions for the study, (2) parameters for standardizing detection and measurements of aortic diseases, (3) meaningful interpretation of characteristics of diseased aortic tissue, and (4) reporting standards that include rigor and transparency.
Collapse
Affiliation(s)
- Alan Daugherty
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David A. Dichek
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ketan B. Ghaghada
- Department of Radiology, Texas Children’s Hospital, and Department of Radiology, Baylor College of Medicine Houston, TX, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Scott A. LeMaire
- Heart & Vascular Institute, Geisinger Health System, Danville, PA, USA
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; Unversité de Paris, Inserm U970, Paris Cardiovascular Research Centre, Paris, France
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Department of Applied Mathematics, Computer Science and Statistics, Ghent University Ghent, Belgium
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK and Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhen Zhou (周桢)
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
2
|
Zhou QY, Pan JQ, Liu W, Jiang ZT, Gao FY, Zhao ZW, Tang CK. Angiotensin II: A novel biomarker in vascular diseases. Clin Chim Acta 2025; 568:120154. [PMID: 39855324 DOI: 10.1016/j.cca.2025.120154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The renin-angiotensin system (RAS), composed mainly of renin, angiotensin, and aldosterone, is a key endocrine pathway involved in cardiovascular activity regulation. Under physiological conditions, the RAS plays a vital role in water and salt metabolism, blood pressure regulation, and electrolyte balance. Angiotensin II (Ang II) is the most important active component of the RAS, and its receptors are concentrated in vascular, pulmonary, cardiac, and renal tissues in vivo. Moreover, Ang II is closely associated with the development of vascular lesions. Ang II expression is closely associated with atherosclerosis, aortic aneurysm/dissection, ischemic stroke, hypertension, pulmonary hypertension, and type 2 diabetes mellitus. Given the significant pathophysiological role of Ang II in vascular diseases and the availability of advanced detection methods, Ang II holds promise as a reliable biomarker and therapeutic target in clinical settings. This review summarizes the mechanisms through which Ang II contributes to different vascular diseases and discusses its potential application as a biomarker for disease diagnosis.
Collapse
Affiliation(s)
- Qin-Yi Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China; The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Jin-Qian Pan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China
| | - Wang Liu
- The Affiliated Nanhua Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China
| | - Zhen-Tao Jiang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Fang-Ya Gao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Zhen-Wang Zhao
- School of Basic Medicine, Health Science Center, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China.
| |
Collapse
|
3
|
Li TX, Yang YY, Zong JB, Li M, Fu XX, Jiang XX, Wang WT, Li XQ, Qi HZ, Yu T. Activated neutrophil membrane-coated tRF-Gly-CCC nanoparticles for the treatment of aortic dissection/aneurysm. J Control Release 2025; 378:334-349. [PMID: 39672274 DOI: 10.1016/j.jconrel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Aortic dissection/aneurysm (AAD) is a critical and life-threatening condition marked by a lack of effective pharmacological treatments. Gene therapy has emerged as a promising approach to treat AAD and slow its advancement. However, the clinical utility of gene therapy is impeded by significant challenges, including the scarcity of innovative genetic drugs in current medical practices and the absence of a streamlined gene delivery mechanism. Our investigation centered on a unique gene target, tRF-Gly-CCC, belonging to tsRNAs, essential for maintaining vascular smooth muscle cell function and regulating inflammatory cell responses. To enhance in vivo treatment, we developed a kind of activated neutrophil membrane bionic nanoparticles (neu MCs), incorporating tRF-Gly-CCC-loaded polymer nanoparticles as the core and activated neutrophil membrane as the outer layer. The utilization of activated neutrophil membrane cloaking serves a dual purpose by safeguarding tRF-Gly-CCC and facilitating targeted delivery to the AAD site. Neu MCs exhibit improved stability in circulation, enabling precise delivery to aortic lesions and reducing AAD mortality. Notably, studies suggest that neu MCs offer a superior approach for immediate intervention to reduce vascular rupture. In conclusion, our study utilized a novel genetic drug and an effective delivery system to enable early intervention in AAD.
Collapse
Affiliation(s)
- Tian-Xiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China
| | - Yan-Yan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jin-Bao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266000, People's Republic of China
| | - Min Li
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266000, People's Republic of China
| | - Xiu-Xiu Fu
- Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Xiao-Xin Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China
| | - Wen-Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China
| | - Xiao-Qian Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China
| | - Hong-Zhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China.
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China; Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| |
Collapse
|
4
|
Leite TFDO, da Silva ER, Evelyn K, Tirapelli DPDC, Joviliano EE. Expression of Plasma Levels of miRNA-181b and miRNA-21 in Patients With Abdominal Aortic Aneurysms and Their Effect on Clinical Outcome After Endovascular Treatment. J Endovasc Ther 2025:15266028251314352. [PMID: 39878154 DOI: 10.1177/15266028251314352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
INTRODUCTION Abdominal aortic aneurysms (AAA) are major causes of morbidity and mortality in the elderly population. Endovascular aneurysm repair (EVAR) is associated with lower complications rates than conventional treatment; however, rigorous follow-up with contrast imaging is required to confirm aneurysmal sac exclusion. The main objective of this study was to quantify and evaluate miRNA expression response to EVAR based on serum dosages at the 6-month follow-up. POPULATION AND METHOD 47 patients with indication for EVAR were recruited and 10 patients without comorbidities. miRNA-181b and miRNA-21 were selected for this study and their serum dosages were measured at two time points: preoperatively and after 6 months of follow-up, and only once in the control group. Demographic profiles, clinical follow-ups, and imaging examinations with angiotomography performed preoperatively and after 6 months were collected. RESULTS Overexpression of miRNA-181b and miRNA-21 was observed in the whole blood of patients with AAA. EVAR of patients with AAA resulted in decreased expression of the studied miRNAs, indicating that exclusion of the aneurysmal sac alters the expression of these markers. In addition, the expressions of miRNAs did not correlate with endoleaks or the diameter of the aneurysm or with the different types of devices used for the EVAR. CONCLUSIONS The overexpression of miRNA-181b, miRNA-21 with its reduction after EVAR, may suggest the use of these molecules as potential biomarkers in the follow-up of these patients. However, miRNAs were not able to identify possible endoleaks or discriminate them into subtypes. CLINICAL IMPACT The clinical application of the use of biomarkers in other areas such as oncology is already well established. In endovascular surgery it is still incipient although with great potential in daily practice, in order to anticipate or schedule possible interventions in patients with endoleak. In addition, understand the mechanisms of action of miRNAs in Atherosclerotic diseases and aortic syndromes could provide a better understanding of the pathophysiology as well as pharmacological development for AAA prevention as well as remodeling of the aneurysm sac after EVAR.
Collapse
Affiliation(s)
- Túlio Fabiano de Oliveira Leite
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, Clinical Hospital of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Elpidio Ribeiro da Silva
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, Clinical Hospital of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Karoline Evelyn
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, Clinical Hospital of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Edwaldo Edner Joviliano
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, Clinical Hospital of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Euler G, Parahuleva M. Monocytic microRNAs-Novel targets in atherosclerosis therapy. Br J Pharmacol 2025; 182:206-219. [PMID: 38575391 DOI: 10.1111/bph.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Atherosclerosis is a chronic proinflammatory disease of the vascular wall resulting in narrowing of arteries due to plaque formation, thereby causing reduced blood supply that is the leading cause for diverse end-organ damage with high mortality rates. Monocytes/macrophages, activated by elevated circulating lipoproteins, are significantly involved in the formation and development of atherosclerotic plaques. The imbalance between proinflammatory and anti-inflammatory macrophages, arising from dysregulated macrophage polarization, appears to be a driving force in this process. Proatherosclerotic processes acting on monocytes/macrophages include accumulation of cholesterol in macrophages leading to foam cell formation, as well as dysfunctional efferocytosis, all of which contribute to the formation of unstable plaques. In recent years, microRNAs (miRs) were identified as factors that could modulate monocyte/macrophage function and may therefore interfere with the atherosclerotic process. In this review, we present effects of monocyte/macrophage-derived miRs on atherosclerotic processes in order to reveal new treatment options using miRmimics or antagomiRs. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Gerhild Euler
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Mariana Parahuleva
- Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, Marburg, Germany
| |
Collapse
|
6
|
Tao Y, Li G, Wang Z, Wang S, Peng X, Tang G, Li X, Liu J, Yu T, Fu X. MiR-1909-5p targeting GPX4 affects the progression of aortic dissection by modulating nicotine-induced ferroptosis. Food Chem Toxicol 2024; 191:114826. [PMID: 38897284 DOI: 10.1016/j.fct.2024.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Aortic dissection (AD) is a prevalent and acute clinical catastrophe characterized by abrupt manifestation, swift progression, and elevated fatality rates. Despite smoking being a significant risk factor for AD, the precise pathological process remains elusive. This investigation endeavors to explore the mechanisms by which smoking accelerates AD through ferroptosis induction. METHODOLOGY In this novel study, we detected considerable endothelial cell death by ferroptosis within the aortic inner lining of both human AD patients with a smoking history and murine AD models induced by β-aminopropionitrile, angiotensin II, and nicotine. Utilizing bioinformatic approaches, we identified microRNAs regulating the expression of the ferroptosis inhibitor Glutathione peroxidase 4 (GPX4). Nicotine's impact on ferroptosis was further assessed in human umbilical vein endothelial cells (HUVECs) through modulation of miR-1909-5p. Additionally, the therapeutic potential of miR-1909-5p antagomir was evaluated in vivo in nicotine-exposed AD mice. FINDINGS Our results indicate a predominance of ferroptosis over apoptosis, pyroptosis, and necroptosis in the aortas of AD patients who smoke. Nicotine exposure instigated ferroptosis in HUVECs, where the miR-1909-5p/GPX4 axis was implicated. Modulation of miR-1909-5p in these cells revealed its regulatory role over GPX4 levels and subsequent endothelial ferroptosis. In vivo, miR-1909-5p suppression reduced ferroptosis and mitigated AD progression in the murine model. CONCLUSIONS Our data underscore the involvement of the miR-1909-5p/GPX4 axis in the pathogenesis of nicotine-induced endothelial ferroptosis in AD.
Collapse
Affiliation(s)
- Yan Tao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Shizhong Wang
- The Department of Cardiology Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xingang Peng
- The Department of Emergency General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Guozhang Tang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Jianhua Liu
- Ultrasound Medicine Department, Guangzhou First People's Hospital, Guangzhou, 510000, People's Republic of China.
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
7
|
Wang T, Yu Y, Ding Y, Yang Z, Jiang S, Gao F, Liu S, Shao L, Shen Z. miR-3529-3p/ABCA1 axis regulates smooth muscle cell homeostasis by enhancing inflammation via JAK2/STAT3 pathway. Front Cardiovasc Med 2024; 11:1441123. [PMID: 39257845 PMCID: PMC11384995 DOI: 10.3389/fcvm.2024.1441123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
Background Thoracic Aortic Dissection (TAD) is a life-threatening disease without effective drug treatments. The disruption of HASMCs homeostasis is one direct histopathologic alteration in TAD pathological process. Several miRNAs have been shown abnormally expressed in TAD and to regulate HASMCs homeostasis. The primary goal of this study is to identify the miRNAs and the specific mechanisms that lead to HASMCs homeostasis disruption. Methods Bulk miRNA sequencing was performed to explore the aberrantly expressed miRNA profile in TAD, and differentially expressed miRNAs were verified with qRT-PCR. To explore the role of the key miRNAs (miR-3529) in HASMCs homeostasis, we overexpressed this miRNA with lentivirus in HASMCs. Integrative transcriptomics and metabolomics analysis were used to uncover the functional roles of this miRNA in regulating HASMCs homeostasis. Further, the target gene of miR-3529 was predicted by bioinformatics and verified through a dual-luciferase reporter assay. Results Bulk miRNA sequencing showed miR-3529 was elevated in TAD tissues and confirmed by qRT-PCR. Further experimental assay revealed miR-3529 upregulation induced HASMCs homeostasis disruption, accompanied by reducing contractile markers and increasing pro-inflammatory cytokines. Integrative transcriptomics and metabolomics analysis showed that miR-3529 overexpression altered the metabolic profile of HASMC, particularly lipid metabolism. ABCA1 was found to be a direct target of miR-3529. Mechanistically, the miR-3529/ABCA1 axis disrupted HASMCs homeostasis through the JAK2/STAT3 signaling pathway. Conclusions miR-3529 is elevated in TAD patients and disrupts HASMCs homeostasis by reprogramming metabolism through the JAK2/STAT3 signaling pathway. These findings favor a role for miR-3529 as a novel target for TAD therapy.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - You Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Yinglong Ding
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Shumin Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Faxiong Gao
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Shan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Abulsoud AI, Elshaer SS, Rizk NI, Khaled R, Abdelfatah AM, Aboelyazed AM, Waseem AM, Bashier D, Mohammed OA, Elballal MS, Mageed SSA, Elrebehy MA, Zaki MB, Elesawy AE, El-Dakroury WA, Abdel-Reheim MA, Saber S, Doghish AS. Unraveling the miRNA Puzzle in Atherosclerosis: Revolutionizing Diagnosis, Prognosis, and Therapeutic Approaches. Curr Atheroscler Rep 2024; 26:395-410. [PMID: 38869707 DOI: 10.1007/s11883-024-01216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE OF REVIEW To eradicate atherosclerotic diseases, novel biomarkers, and future therapy targets must reveal the burden of early atherosclerosis (AS), which occurs before life-threatening unstable plaques form. The chemical and biological features of microRNAs (miRNAs) make them interesting biomarkers for numerous diseases. We summarized the latest research on miRNA regulatory mechanisms in AS progression studies, which may help us use miRNAs as biomarkers and treatments for difficult-to-treat diseases. RECENT FINDINGS Recent research has demonstrated that miRNAs have a regulatory function in the observed changes in gene and protein expression during atherogenesis, the process that leads to atherosclerosis. Several miRNAs play a role in the development of atherosclerosis, and these miRNAs could potentially serve as non-invasive biomarkers for atherosclerosis in various regions of the body. These miRNAs have the potential to serve as biomarkers and targets for early treatment of atherosclerosis. The start and development of AS require different miRNAs. It reviews new research on miRNAs affecting endothelium, vascular smooth muscle, vascular inflammation, lipid retention, and cholesterol metabolism in AS. A miRNA gene expression profile circulates with AS everywhere. AS therapies include lipid metabolism, inflammation reduction, and oxidative stress inhibition. Clinical use of miRNAs requires tremendous progress. We think tiny miRNAs can enable personalized treatment.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Ahmed M Aboelyazed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Aly M Waseem
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | | | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Biochemistry, 32897, Menoufia, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
9
|
Ye Z, Zhu S, Li G, Lu J, Huang S, Du J, Shao Y, Ji Z, Li P. Early matrix softening contributes to vascular smooth muscle cell phenotype switching and aortic dissection through down-regulation of microRNA-143/145. J Mol Cell Cardiol 2024; 192:1-12. [PMID: 38718921 DOI: 10.1016/j.yjmcc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Thoracic aortic dissection (TAD) is characterized by extracellular matrix (ECM) dysregulation. Aberrations in the ECM stiffness can lead to changes in cellular functions. However, the mechanism by which ECM softening regulates vascular smooth muscle cell (VSMCs) phenotype switching remains unclear. To understand this mechanism, we cultured VSMCs in a soft extracellular matrix and discovered that the expression of microRNA (miR)-143/145, mediated by activation of the AKT signalling pathway, decreased significantly. Furthermore, overexpression of miR-143/145 reduced BAPN-induced aortic softening, switching the VSMC synthetic phenotype and the incidence of TAD in mice. Additionally, high-throughput sequencing of immunoprecipitated RNA indicated that the TEA domain transcription factor 1 (TEAD1) is a common target gene of miR-143/145, which was subsequently verified using a luciferase reporter assay. TEAD1 is upregulated in soft ECM hydrogels in vitro, whereas the switch to a synthetic phenotype in VSMCs decreases after TEAD1 knockdown. Finally, we verified that miR-143/145 levels are associated with disease severity and prognosis in patients with thoracic aortic dissection. ECM softening, as a result of promoting the VSMCs switch to a synthetic phenotype by downregulating miR-143/145, is an early trigger of TAD and provides a therapeutic target for this fatal disease. miR-143/145 plays a role in the early detection of aortic dissection and its severity and prognosis, which can offer information for future risk stratification of patients with dissection.
Collapse
Affiliation(s)
- Zhaofei Ye
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Guoqi Li
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jie Lu
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Shan Huang
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Yihui Shao
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China.
| | - Zhili Ji
- Beijing Chaoyang Hospital of Capital Medical University, China.
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China.
| |
Collapse
|
10
|
Liu T, Zhang T, Guo C, Liang X, Wang P, Zheng B. Murine double minute 2-mediated estrogen receptor 1 degradation activates macrophage migration inhibitory factor to promote vascular smooth muscle cell dedifferentiation and oxidative stress during thoracic aortic aneurysm progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119661. [PMID: 38218386 DOI: 10.1016/j.bbamcr.2024.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Estrogen receptor 1 (ESR1) has been recently demonstrated as a potential diagnostic biomarker for thoracic aortic aneurysm (TAA). However, its precise role in the progression of TAA remains unclear. In this study, TAA models were established in ApoE-knockout mice and primary mouse vascular smooth muscle cells (VSMCs) through treatment with angiotensin (Ang) II. Our findings revealed a downregulation of ESR1 in Ang II-induced TAA mice and VSMCs. Upregulation of ESR1 mitigated expansion and cell apoptosis in the mouse aorta, reduced pathogenetic transformation of VSMCs, and reduced inflammatory infiltration and oxidative stress both in vitro and in vivo. Furthermore, we identified macrophage migration inhibitory factor (MIF) as a biological target of ESR1. ESR1 bound to the MIF promoter to suppress its transcription. Artificial MIF restoration negated the mitigating effects of ESR1 on TAA. Additionally, we discovered that murine double minute 2 (MDM2) was highly expressed in TAA models and mediated protein degradation of ESR1 through ubiquitination modification. Silencing of MDM2 reduced VSMC dedifferentiation and suppressed oxidative stress. However, these effects were reversed upon further silencing of ESR1. In conclusion, this study demonstrates that MDM2 activates MIF by mediating ESR1 degradation, thus promoting VSMC dedifferentiation and oxidative stress during TAA progression.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Cardiovascular Surgery, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning 530001, Guangxi, PR China
| | - Tian Zhang
- Department of Cardiovascular Surgery, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning 530001, Guangxi, PR China
| | - Chenfan Guo
- Department of Cardiovascular Surgery, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning 530001, Guangxi, PR China
| | - Xiangsen Liang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, PR China
| | - Pandeng Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| | - Baoshi Zheng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| |
Collapse
|
11
|
Liu H, Sun M, Wu N, Liu B, Liu Q, Fan X. TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and VEGF: Their mechanisms and roles in vascular remodeling related diseases. Immun Inflamm Dis 2023; 11:e1060. [PMID: 38018603 PMCID: PMC10629241 DOI: 10.1002/iid3.1060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
Vascular remodeling is a basic pathological process in various diseases characterized by abnormal changes in the morphology, structure, and function of vascular cells, such as migration, proliferation, hypertrophy, and apoptosis. Various growth factors and pathways are involved in the process of vascular remodeling. The transforming growth factor-β (TGF-β) signaling pathway, which is mainly mediated by TGF-β1, is an important factor in vascular wall enhancement during vascular development and regulates the vascular response to injury by promoting the accumulation of intimal tissue. Vascular endothelial growth factor (VEGF) has an important effect on initiating the formation of blood vessels. The Hippo-YAP/TAZ signaling pathway also plays an important role in angiogenesis. In addition, studies have shown that there is a certain interaction between the TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and VEGF. Many studies have shown that in the development of atherosclerosis, hypertension, aneurysm, vertebrobasilar dolichoectasia, pulmonary hypertension, restenosis after percutaneous transluminal angioplasty, and other diseases, various inflammatory reactions lead to changes in vascular structure and vascular microenvironment, which leads to vascular remodeling. The occurrence of vascular remodeling changes the morphology of blood vessels and thus changes the hemodynamics, which is the cause of further development of the disease process. Vascular remodeling can cause vascular smooth muscle cell dysfunction and vascular homeostasis regulation. This review aims to explore the mechanisms of the TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and vascular endothelial growth factor in vascular remodeling and related diseases. This paper is expected to provide new ideas for research on the occurrence and development of related diseases and provide a new direction for research on the treatment of related diseases.
Collapse
Affiliation(s)
- Hui Liu
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Mingyue Sun
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Nan Wu
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric DisordersBinzhou Medical University HospitalBinzhouChina
| | - Qingxin Liu
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Xueli Fan
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| |
Collapse
|
12
|
Chen H, Li Y, Li Z, Shi Y, Zhu H. Diagnostic biomarkers and aortic dissection: a systematic review and meta-analysis. BMC Cardiovasc Disord 2023; 23:497. [PMID: 37817089 PMCID: PMC10563263 DOI: 10.1186/s12872-023-03448-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/14/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Aortic dissection (AD) is a serious and fatal vascular disease. The earlier the condition of AD patients can be assessed precisely, the more scientifically controlled the patient's condition will be. Therefore, timely and accurate diagnosis is significant for AD. Blood biomarker testing as a method of liquid biopsy can improve the diagnostic efficiency of AD. This study conducted a systematic review of the current blood diagnostic biomarkers of AD. METHODS The PubMed, Cochrane Library, Web of Science, and Embase electronic databases were systematically searched from inception to January 1, 2023, using the terms "aortic dissection", "serum", "plasma" and "diagnosis". Stata 12.0 software was used to perform Random effects meta-analysis was performed using Stata 12.0 software to determine the effect sizes and corresponding 95% confidence intervals. Then, a summary receiver operator characteristic (SROC) curve was drawn, and the area under the ROC curve (AUC) was calculated. RESULTS D-dimer had the best sensitivity and AUC for AD, with values of 0.96 (95% CI: 0.93-0.98) and 0.95 (95% CI: 0.93-0.97), respectively. The sensitivity and AUC values for D-dimer with a cut-off value of 500 ng/mL were 0.97 (95% CI: 0.95-0.99) and 0.94 (95% CI: 0.92-0.96), respectively. In contrast, microRNA had a better specificity value for AD, at 0.79 (95% CI: 0.73-0.83). CONCLUSIONS D-dimer and microRNA have good accuracy in the diagnosis of AD, but the specificity of D-dimer is worse, and studies of microRNA are insufficient. The combination of different biomarkers can improve the diagnostic accuracy. Other blood biomarkers are related to the pathological progression of AD and can be selected according to pathological progress.
Collapse
Affiliation(s)
- Hongjian Chen
- Department of Infection Disease, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunjie Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheqian Li
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanli Shi
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Haobo Zhu
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Song J, Peng H, Lai M, Kang H, Chen X, Cheng Y, Su X. Relationship between inflammatory-related cytokines with aortic dissection. Int Immunopharmacol 2023; 122:110618. [PMID: 37480750 DOI: 10.1016/j.intimp.2023.110618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
Aortic dissection, characterized by severe intramural hematoma formation and acute endometrial rupture, is caused by excessive bleeding within the aortic wall or a severe tear within the intimal layer of the aorta, which subsequently promotes the separation or dissection in the layers of the aortic wall. Epidemiological surveys showed that aortic dissection was most observed among those patients from 55 to 80 years of age, with a prevalence of approximately 40 cases per 100,000 individuals per year, posing serious risks to future health and leading to high mortality. Other risk factors of aortic dissection progression contained dyslipidemia, hypertension, and genetic disorders, such as Marfan syndrome. Currently, emerging evidence indicates the pathological progression of aortic dissection is significantly complicated, which is correlated with the aberrant infiltration of pro-inflammatory cells into the aortic wall, subsequently facilitating the apoptosis of vascular smooth muscle cells (VSMCs) and inducing the aberrant expression of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon (IF). Other pro-inflammatory-related cytokines, including the colony-stimulating factor (CSF), chemotactic factor, and growth factor (GF), played an essential function in facilitating aortic dissection. Multiple studies focused on the important relationship between pro-inflammatory cytokines and aortic dissection, which could deepen the understanding of aortic dissection and further guide the therapeutic strategies in clinical practice. The present review elucidated pro-inflammatory cytokines' functions in modulating the risk of aortic dissection are summarized. Moreover, the emerging evidence that aimed to elucidate the potential mechanisms wherebyvarious pro-inflammatory cytokines affected the pathological development of aortic dissection was also listed.
Collapse
Affiliation(s)
- Jingjin Song
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hua Peng
- Department of Cardiac Macrovascular Surgery, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Min Lai
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Huiyuan Kang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaofang Chen
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
14
|
Sum H, Brewer AC. Epigenetic modifications as therapeutic targets in atherosclerosis: a focus on DNA methylation and non-coding RNAs. Front Cardiovasc Med 2023; 10:1183181. [PMID: 37304954 PMCID: PMC10248074 DOI: 10.3389/fcvm.2023.1183181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Significant progress in the diagnosis and treatment of cardiovascular disease (CVD) has been made in the past decade, yet it remains a leading cause of morbidity and mortality globally, claiming an estimated 17.9 million deaths per year. Although encompassing any condition that affects the circulatory system, including thrombotic blockage, stenosis, aneurysms, blood clots and arteriosclerosis (general hardening of the arteries), the most prevalent underlying hallmark of CVD is atherosclerosis; the plaque-associated arterial thickening. Further, distinct CVD conditions have overlapping dysregulated molecular and cellular characteristics which underlie their development and progression, suggesting some common aetiology. The identification of heritable genetic mutations associated with the development of atherosclerotic vascular disease (AVD), in particular resulting from Genome Wide Association Studies (GWAS) studies has significantly improved the ability to identify individuals at risk. However, it is increasingly recognised that environmentally-acquired, epigenetic changes are key factors associated with atherosclerosis development. Increasing evidence suggests that these epigenetic changes, most notably DNA methylation and the misexpression of non-coding, microRNAs (miRNAs) are potentially both predictive and causal in AVD development. This, together with their reversible nature, makes them both useful biomarkers for disease and attractive therapeutic targets potentially to reverse AVD progression. We consider here the association of aberrant DNA methylation and dysregulated miRNA expression with the aetiology and progression of atherosclerosis, and the potential development of novel cell-based strategies to target these epigenetic changes therapeutically.
Collapse
|
15
|
Škrlec I. Circadian system microRNAs - Role in the development of cardiovascular diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:225-267. [PMID: 37709378 DOI: 10.1016/bs.apcsb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Circadian rhythm regulates numerous physiological processes, and disruption of the circadian clock can lead to cardiovascular disease. Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Small non-coding RNAs, microRNAs (miRNAs), are involved in regulating gene expression, both those important for the cardiovascular system and key circadian clock genes. Epigenetic mechanisms based on miRNAs are essential for fine-tuning circadian physiology. Indeed, some miRNAs depend on circadian periodicity, others are under the influence of light, and still others are under the influence of core clock genes. Dysregulation of miRNAs involved in circadian rhythm modulation has been associated with inflammatory conditions of the endothelium and atherosclerosis, which can lead to coronary heart disease and myocardial infarction. Epigenetic processes are reversible through their association with environmental factors, enabling innovative preventive and therapeutic strategies for cardiovascular disease. Here, is a review of recent findings on how miRNAs modulate circadian rhythm desynchronization in cardiovascular disease. In the era of personalized medicine, the possibility of treatment with miRNA antagomirs should be time-dependent to correspond to chronotherapy and achieve the most significant efficacy.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| |
Collapse
|
16
|
Zhu F, Chen J, Luo M, Yao D, Hu X, Guo Y. EphrinB2 promotes the human aortic smooth muscle cell growth and migration via mediating F-actin remodeling. Vascular 2023; 31:142-151. [PMID: 34854323 DOI: 10.1177/17085381211052196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To evaluate the potential effect of EphrinB2 in human thoracic aortic dissection (TAD) and to illustrate the mechanisms governing the role of EphrinB2 in the growth of human aortic smooth muscle cells (HASMC). METHODS In the study, EphrinB2 expression was investigated by qRT-PCR and immunohistochemistry in 12 pairs of TAD and adjacent human tissues. HASMCs were used for in vitro experiments. Next, EphrinB2 overexpression and depletion in HASMCs were established by EphrinB2-overexpressing vectors and small interfering RNA, respectively. The transfection efficiency was evaluated by qRT-PCR and Western blot. The effects of overexpression and depletion of EphrinB2 on cell proliferation, migration, and invasion were tested in vitro. Cell Counting Kit-8, flow cytometry and transwell migration/invasion, and wound healing assay were used to explore the function of EphrinB2 on HASMC cell lines. The relationship between EphrinB2 and F-actin was assessed by Western blot, immunofluorescence, and Co-IP. RESULTS We found that EphrinB2 was a prognostic biomarker of TAD patients. Moreover, EphrinB2 expression negatively correlated to aortic dissection tissues, and disease incidence of males, suggesting that EphrinB2 might act as a TAD suppressor by promoting proliferation or decreasing apoptosis in HASMC. Next, over-expression of EphrinB2 in HASMC lines drove cell proliferation, migration, and invasion, and inhibited apoptosis while knockdown EphrinB2 showed the opposite phenomenon, respectively. Furthermore, the level of F-actin in mRNA, protein, and distribution in HASMC cell lines highly matched with the expression of EphrinB2, which indicated that EphrinB2 could mediate the HASMC cytoskeleton via inducing F-actin. CONCLUSIONS In conclusion, our results first provided the pivotal role of EphrinB2 in HASMC proliferation initiated by mediating F-actin and demonstrated a prognostic biomarker and the potential targets for therapy to prevent thoracic aortic dissection.
Collapse
Affiliation(s)
- Fan Zhu
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Disease Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Jia Chen
- Department of Laboratory Medicine, Longhua Hospital, 74754Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, 34736Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongting Yao
- Department of Laboratory Medicine, Longhua Hospital, 74754Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Hu
- Department of Laboratory Medicine, Longhua Hospital, 74754Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Guo
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Disease Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
Yue Z, Wang DS, Le S, Xia JH, Ye P, Huang XF. Aortic Dissection Research in China: Analysis of Studies Funded by the National Natural Science Foundation of China. Curr Med Sci 2023; 43:206-212. [PMID: 36867363 DOI: 10.1007/s11596-022-2662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/07/2021] [Indexed: 03/04/2023]
Abstract
OBJECTIVE The National Natural Science Foundation of China (NSFC) has made great progress in promoting the development of aortic dissection research in recent years. This study aimed to examine the development and research status of aortic dissection research in China so as to provide references for future research. METHODS The NSFC projects data from 2008 to 2019 were collected from the Internet-based Science Information System and other websites utilized as search engines. The publications and citations were retrieved by Google Scholar, and the impact factors were checked by the InCite Journal Citation Reports database. The investigator's degree and department were identified from the institutional faculty profiles. RESULTS A total of 250 grant funds totaling 124.3 million Yuan and resulting in 747 publications were analyzed. The funds in economically developed and densely populated areas were more than those in underdeveloped and sparsely populated areas. There was no significant difference in the amount of funding per grant between different departments' investigators. However, the funding output ratios of the grants for cardiologists were higher than those for basic science investigators. The amount of funding for clinical researchers and basic scientific researchers in aortic dissection was also similar. Clinical researchers were better in terms of the funding output ratio. CONCLUSION These results suggest that the medical and scientific research level of aortic dissection in China has been greatly improved. However, there are still some problems that urgently need to be solved, such as the unreasonable regional allocation of medical and scientific research resources, and the slow transition from basic science to clinical practice.
Collapse
Affiliation(s)
- Zhang Yue
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Da-Shuai Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Hong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ping Ye
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Xiao-Fan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
18
|
Targeted inhibition of osteoclastogenesis reveals the pathogenesis and therapeutics of bone loss under sympathetic neurostress. Int J Oral Sci 2022; 14:39. [PMID: 35915088 PMCID: PMC9343357 DOI: 10.1038/s41368-022-00193-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
Sympathetic cues via the adrenergic signaling critically regulate bone homeostasis and contribute to neurostress-induced bone loss, but the mechanisms and therapeutics remain incompletely elucidated. Here, we reveal an osteoclastogenesis-centered functionally important osteopenic pathogenesis under sympatho-adrenergic activation with characterized microRNA response and efficient therapeutics. We discovered that osteoclastic miR-21 was tightly regulated by sympatho-adrenergic cues downstream the β2-adrenergic receptor (β2AR) signaling, critically modulated osteoclastogenesis in vivo by inhibiting programmed cell death 4 (Pdcd4), and mediated detrimental effects of both isoproterenol (ISO) and chronic variable stress (CVS) on bone. Intriguingly, without affecting osteoblastic bone formation, bone protection against ISO and CVS was sufficiently achieved by a (D-Asp8)-lipid nanoparticle-mediated targeted inhibition of osteoclastic miR-21 or by clinically relevant drugs to suppress osteoclastogenesis. Collectively, these results unravel a previously underdetermined molecular and functional paradigm that osteoclastogenesis crucially contributes to sympatho-adrenergic regulation of bone and establish multiple targeted therapeutic strategies to counteract osteopenias under stresses.
Collapse
|
19
|
Oltipraz, the activator of nuclear factor erythroid 2-related factor 2 (Nrf2), protects against the formation of BAPN-induced aneurysms and dissection of the thoracic aorta in mice by inhibiting activation of the ROS-mediated NLRP3 inflammasome. Eur J Pharmacol 2022; 936:175361. [DOI: 10.1016/j.ejphar.2022.175361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
20
|
Emerging Role of Non-Coding RNAs in Aortic Dissection. Biomolecules 2022; 12:biom12101336. [PMID: 36291545 PMCID: PMC9599213 DOI: 10.3390/biom12101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic dissection (AD) is a fatal cardiovascular acute disease with high incidence and mortality, and it seriously threatens patients’ lives and health. The pathogenesis of AD mainly includes vascular inflammation, extracellular matrix degradation, and phenotypic conversion as well as apoptosis of vascular smooth muscle cells (VSMCs); however, its detailed mechanisms are still not fully elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are an emerging class of RNA molecules without protein-coding ability, and they play crucial roles in the progression of many diseases, including AD. A growing number of studies have shown that the dysregulation of ncRNAs contributes to the occurrence and development of AD by modulating the expression of specific target genes or the activity of related proteins. In addition, some ncRNAs exhibit great potential as promising biomarkers and therapeutic targets in AD treatment. In this review, we systematically summarize the recent findings on the underlying mechanism of ncRNA involved in AD regulation and highlight their clinical application as biomarkers and therapeutic targets in AD treatment. The information reviewed here will be of great benefit to the development of ncRNA-based therapeutic strategies for AD patients.
Collapse
|
21
|
Chen J, Chang R. Association of TGF-β Canonical Signaling-Related Core Genes With Aortic Aneurysms and Aortic Dissections. Front Pharmacol 2022; 13:888563. [PMID: 35517795 PMCID: PMC9065418 DOI: 10.3389/fphar.2022.888563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) signaling is essential for the maintenance of the normal structure and function of the aorta. It includes SMAD-dependent canonical pathways and noncanonical signaling pathways. Accumulated genetic evidence has shown that TGF-β canonical signaling-related genes have key roles in aortic aneurysms (AAs) and aortic dissections and many gene mutations have been identified in patients, such as those for transforming growth factor-beta receptor one TGFBR1, TGFBR2, SMAD2, SMAD3, SMAD4, and SMAD6. Aortic specimens from patients with these mutations often show paradoxically enhanced TGF-β signaling. Some hypotheses have been proposed and new AA models in mice have been constructed to reveal new mechanisms, but the role of TGF-β signaling in AAs is controversial. In this review, we focus mainly on the role of canonical signaling-related core genes in diseases of the aorta, as well as recent advances in gene-mutation detection, animal models, and in vitro studies.
Collapse
Affiliation(s)
- Jicheng Chen
- Department of Vasculocardiology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| | - Rong Chang
- Department of Vasculocardiology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
22
|
Wang Q, Guo X, Huo B, Feng X, Fang ZM, Jiang DS, Wei X. Integrating Bulk Transcriptome and Single-Cell RNA Sequencing Data Reveals the Landscape of the Immune Microenvironment in Thoracic Aortic Aneurysms. Front Cardiovasc Med 2022; 9:846421. [PMID: 35463756 PMCID: PMC9021420 DOI: 10.3389/fcvm.2022.846421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is a life-threatening cardiovascular disease whose formation is reported to be associated with massive vascular inflammatory responses. To elucidate the roles of immune cell infiltration in the pathogenesis underlying TAA, we utilized multiple TAA datasets (microarray data and scRNA-seq data) and various immune-related algorithms (ssGSEA, CIBERSORT, and Seurat) to reveal the landscapes of the immune microenvironment in TAA. The results exhibited a significant increase in the infiltration of macrophages and T cells, which were mainly responsible for TAA formation among the immune cells. To further reveal the roles of immunocytes in TAA, we inferred the intercellular communications among the identified cells of aortic tissues. Notably, we found that in both normal aortic tissue and TAA tissue, the cells that interact most frequently are macrophages, endothelial cells (ECs), fibroblasts, and vascular smooth muscle cells (VSMCs). Among the cells, macrophages were the most prominent signal senders and receivers in TAA and normal aortic tissue. These findings suggest that macrophages play an important role in both the physiological and pathological conditions of the aorta. The present study provides a comprehensive evaluation of the immune cell composition and reveals the intercellular communication among aortic cells in human TAA tissues. These findings improve our understanding of TAA formation and progression and facilitate the development of effective medications to treat these conditions.
Collapse
Affiliation(s)
- Qunhui Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Tongji Hospital, Sino-Swiss Heart-Lung Transplantation Institute, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
23
|
Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest 2022; 52:e13697. [PMID: 34698377 PMCID: PMC9285394 DOI: 10.1111/eci.13697] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aortic aneurysms (AA) are pathological dilations of the aorta, associated with an overall mortality rate up to 90% in case of rupture. In addition to dilation, the aortic layers can separate by a tear within the layers, defined as aortic dissections (AD). Vascular smooth muscle cells (vSMC) are the predominant cell type within the aortic wall and dysregulation of vSMC functions contributes to AA and AD development and progression. However, since the exact underlying mechanism is poorly understood, finding potential therapeutic targets for AA and AD is challenging and surgery remains the only treatment option. METHODS In this review, we summarize current knowledge about vSMC functions within the aortic wall and give an overview of how vSMC functions are altered in AA and AD pathogenesis, organized per anatomical location (abdominal or thoracic aorta). RESULTS Important functions of vSMC in healthy or diseased conditions are apoptosis, phenotypic switch, extracellular matrix regeneration and degradation, proliferation and contractility. Stressors within the aortic wall, including inflammatory cell infiltration and (epi)genetic changes, modulate vSMC functions and cause disturbance of processes within vSMC, such as changes in TGF-β signalling and regulatory RNA expression. CONCLUSION This review underscores a central role of vSMC dysfunction in abdominal and thoracic AA and AD development and progression. Further research focused on vSMC dysfunction in the aortic wall is necessary to find potential targets for noninvasive AA and AD treatment options.
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | | | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Liu DB, He YF, Chen GJ, Huang H, Xie XL, Lin WJ, Peng ZJ. Construction of a circRNA-Mediated ceRNA Network Reveals Novel Biomarkers for Aortic Dissection. Int J Gen Med 2022; 15:3951-3964. [PMID: 35437351 PMCID: PMC9013255 DOI: 10.2147/ijgm.s355906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/18/2022] [Indexed: 12/26/2022] Open
Abstract
Background Aortic dissection (AD) is a rare and lethal disorder with its genetic basis remains largely unknown. Many studies have confirmed that circRNAs play important roles in various physiological and pathological processes. However, the roles of circRNAs in AD are still unclear and need further investigation. The present study aimed to elucidate the underlying molecular mechanisms of circRNAs regulation in AD based on the circRNA-associated competing endogenous RNA (ceRNA) network. Methods Expression profiles of circRNAs (GSE97745), miRNAs (GSE92427), and mRNAs (GSE52093) were downloaded from Gene Expression Omnibus (GEO) databases, and the differentially expressed RNAs (DERNAs) were subsequently identified by bioinformatics analysis. CircRNA–miRNA–mRNA ceRNA network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to predict the potential functions of circRNA-associated ceRNA network. RNA was isolated from human arterial blood samples after which qRT-PCR was performed to confirm the DERNAs. Results We identified 14 (5 up-regulated and 9 down-regulated) differentially expressed circRNAs (DEcircRNAs), 17 (8 up-regulated and 9 down-regulated) differentially expressed miRNAs (DEmiRNAs) and 527 (297 up-regulated and 230 down-regulated) differentially expressed mRNAs (DEmRNAs) (adjusted P-value <0.05 and | log2FC | > 1.0). KEGG pathway analysis indicated that DEmRNAs were related to focal adhesion and extracellular matrix receptor interaction signaling pathways. Simultaneously, the present study constructed a ceRNA network based on 1 circRNAs (hsa_circRNA_082317), 1 miRNAs (hsa-miR-149-3p) and 10 mRNAs (MLEC, ENTPD7, SLC16A3, SLC7A8, TBC1D16, PAQR4, MAPK13, PIK3R2, ITGA5, SERPINA1). qRT-PCR demonstrated that hsa_circRNA_082317 and ITGA5 were significantly up-regulated, and hsa-miR-149-3p was dramatically down-regulated in AD (n = 3). Conclusion This is the first study to demonstrate the circRNA-associated ceRNA network is altered in AD, implying that circRNAs may play important roles in regulating the onset and progression and thus may serve as potential biomarkers for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- De-Bin Liu
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - You-Fu He
- Department of Cardiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, People’s Republic of China
- Guizhou Provincial Cardiovascular Disease Clinical Medicine Research Center, Guiyang, Guizhou Province, People’s Republic of China
- Medical College, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| | - Gui-Jian Chen
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - Hua Huang
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - Xu-Ling Xie
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - Wan-Jun Lin
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
| | - Zhi-Jian Peng
- Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, Guangdong Province, People’s Republic of China
- Correspondence: Zhi-Jian Peng, Department of Cardiology, The Second People’s Hospital of Shantou, Shantou, 515000, Guangdong Province, People’s Republic of China, Tel +86 18316056382, Fax +86-754 88983534, Email
| |
Collapse
|
25
|
Imaging Techniques for Aortic Aneurysms and Dissections in Mice: Comparisons of Ex Vivo, In Situ, and Ultrasound Approaches. Biomolecules 2022; 12:biom12020339. [PMID: 35204838 PMCID: PMC8869425 DOI: 10.3390/biom12020339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/04/2023] Open
Abstract
Aortic aneurysms and dissections are life-threatening conditions that have a high risk for lethal bleeding and organ malperfusion. Many studies have investigated the molecular basis of these diseases using mouse models. In mice, ex vivo, in situ, and ultrasound imaging are major approaches to evaluate aortic diameters, a common parameter to determine the severity of aortic aneurysms. However, accurate evaluations of aortic dimensions by these imaging approaches could be challenging due to pathological features of aortic aneurysms. Currently, there is no standardized mode to assess aortic dissections in mice. It is important to understand the characteristics of each approach for reliable evaluation of aortic dilatations. In this review, we summarize imaging techniques used for aortic visualization in recent mouse studies and discuss their pros and cons. We also provide suggestions to facilitate the visualization of mouse aortas.
Collapse
|
26
|
Kanagasabai T, Li G, Shen TH, Gladoun N, Castillo-Martin M, Celada SI, Xie Y, Brown LK, Mark ZA, Ochieng J, Ballard BR, Cordon-Cardo C, Adunyah SE, Jin R, Matusik RJ, Chen Z. MicroRNA-21 deficiency suppresses prostate cancer progression through downregulation of the IRS1-SREBP-1 signaling pathway. Cancer Lett 2022; 525:46-54. [PMID: 34610416 DOI: 10.1016/j.canlet.2021.09.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022]
Abstract
Sterol regulatory element-binding protein 1 (SREBP-1), a master transcription factor in lipogenesis and lipid metabolism, is critical for disease progression and associated with poor outcomes in prostate cancer (PCa) patients. However, the mechanism of SREBP-1 regulation in PCa remains elusive. Here, we report that SREBP-1 is transcriptionally regulated by microRNA-21 (miR-21) in vitro in cultured cells and in vivo in mouse models. We observed aberrant upregulation of SREBP-1, fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC) in Pten/Trp53 double-null mouse embryonic fibroblasts (MEFs) and Pten/Trp53 double-null mutant mice. Strikingly, miR-21 loss significantly reduced cell proliferation and suppressed the prostate tumorigenesis of Pten/Trp53 mutant mice. Mechanistically, miR-21 inactivation decreased the levels of SREBP-1, FASN, and ACC in human PCa cells through downregulation of insulin receptor substrate 1 (IRS1)-mediated transcription and induction of cellular senescence. Conversely, miR-21 overexpression increased cell proliferation and migration; as well as the levels of IRS1, SREBP-1, FASN, and ACC in human PCa cells. Our findings reveal that miR-21 promotes PCa progression by activating the IRS1/SREBP-1 axis, and targeting miR-21/SREBP-1 signaling pathway can be a novel strategy for controlling PCa malignancy.
Collapse
Affiliation(s)
- Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Tian Huai Shen
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Nataliya Gladoun
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Mireia Castillo-Martin
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Sherly I Celada
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Yingqiu Xie
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Lakendria K Brown
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Zaniya A Mark
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Josiah Ochieng
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Billy R Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Carlos Cordon-Cardo
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA.
| |
Collapse
|
27
|
Si K, Lu D, Tian J. Integrated analysis and the identification of a circRNA-miRNA-mRNA network in the progression of abdominal aortic aneurysm. PeerJ 2022; 9:e12682. [PMID: 35036156 PMCID: PMC8711282 DOI: 10.7717/peerj.12682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a disease commonly seen in the elderly. The aneurysm diameter increases yearly, and the larger the AAA the higher the risk of rupture, increasing the risk of death. However, there are no current effective interventions in the early stages of AAA. Methods Four gene expression profiling datasets, including 23 normal artery (NOR) tissue samples and 97 AAA tissue samples, were integrated in order to explore potential molecular biological targets for early intervention. After preprocessing, differentially expressed genes (DEGs) between AAA and NOR were identified using LIMMA package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were conducted using the DAVID database. The protein-protein interaction network was constructed and hub genes were identified using the STRING database and plugins in Cytoscape. A circular RNA (circRNA) profile of four NOR tissues versus four AAA tissues was then reanalyzed. A circRNA-miRNA-mRNA interaction network was constructed after predictions were made using the Targetscan and Circinteractome databases. Results A total of 440 DEGs (263 up-regulated and 177 down-regulated) were identified in the AAA group, compared with the NOR group. The majority were associated with the extracellular matrix, tumor necrosis factor-α, and transforming growth factor-β. Ten hub gene-encoded proteins (namely IL6, RPS27A, JUN, UBC, UBA52, FOS, IL1B, MMP9, SPP1 and CCL2) coupled with a higher degree of connectivity hub were identified after protein‐protein interaction network analysis. Our results, in combination with the results of previous studies revealed that miR-635, miR-527, miR-520h, miR-938 and miR-518a-5p may be affected by circ_0005073 and impact the expression of hub genes such as CCL2, SPP1 and UBA52. The miR-1206 may also be affected by circ_0090069 and impact RPS27A expression. Conclusions This circRNA-miRNA-mRNA network may perform critical roles in AAA and may be a novel target for early intervention.
Collapse
Affiliation(s)
- Ke Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Da Lu
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai, People's Republic of China
| | - Jianbo Tian
- Institute of Information Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
28
|
Malekmohammad K, Bezsonov EE, Rafieian-Kopaei M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front Cardiovasc Med 2021; 8:707529. [PMID: 34552965 PMCID: PMC8450356 DOI: 10.3389/fcvm.2021.707529] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic lipid-driven and maladaptive inflammatory disease of arterial intima. It is characterized by the dysfunction of lipid homeostasis and signaling pathways that control the inflammation. This article reviews the role of inflammation and lipid accumulation, especially low-density lipoprotein (LDL), in the pathogenesis of atherosclerosis, with more emphasis on cellular mechanisms. Furthermore, this review will briefly highlight the role of medicinal plants, long non-coding RNA (lncRNA), and microRNAs in the pathophysiology, treatment, and prevention of atherosclerosis. Lipid homeostasis at various levels, including receptor-mediated uptake, synthesis, storage, metabolism, efflux, and its impairments are important for the development of atherosclerosis. The major source of cholesterol and lipid accumulation in the arterial wall is proatherogenic modified low-density lipoprotein (mLDL). Modified lipoproteins, such as oxidized low-density lipoprotein (ox-LDL) and LDL binding with proteoglycans of the extracellular matrix in the intima of blood vessels, cause aggregation of lipoprotein particles, endothelial damage, leukocyte recruitment, foam cell formation, and inflammation. Inflammation is the key contributor to atherosclerosis and participates in all phases of atherosclerosis. Also, several studies have shown that microRNAs and lncRNAs have appeared as key regulators of several physiological and pathophysiological processes in atherosclerosis, including regulation of HDL biogenesis, cholesterol efflux, lipid metabolism, regulating of smooth muscle proliferation, and controlling of inflammation. Thus, both lipid homeostasis and the inflammatory immune response are closely linked, and their cellular and molecular pathways interact with each other.
Collapse
Affiliation(s)
| | - Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
29
|
Li YH, Cao Y, Liu F, Zhao Q, Adi D, Huo Q, Liu Z, Luo JY, Fang BB, Tian T, Li XM, Liu D, Yang YN. Visualization and Analysis of Gene Expression in Stanford Type A Aortic Dissection Tissue Section by Spatial Transcriptomics. Front Genet 2021; 12:698124. [PMID: 34262602 PMCID: PMC8275070 DOI: 10.3389/fgene.2021.698124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Spatial transcriptomics enables gene expression events to be pinpointed to a specific location in biological tissues. We developed a molecular approach for low-cell and high-fiber Stanford type A aortic dissection and preliminarily explored and visualized the heterogeneity of ascending aortic types and mapping cell-type-specific gene expression to specific anatomical domains. Methods: We collected aortic samples from 15 patients with Stanford type A aortic dissection and a case of ascending aorta was randomly selected followed by 10x Genomics and spatial transcriptomics sequencing. In data processing of normalization, component analysis and dimensionality reduction analysis, different algorithms were compared to establish the pipeline suitable for human aortic tissue. Results: We identified 19,879 genes based on the count level of gene expression at different locations and they were divided into seven groups based on gene expression trends. Major cell that the population may contain are indicated, and we can find different main distribution of different cell types, among which the tearing sites were mainly macrophages and stem cells. The gene expression of these different locations and the cell types they may contain are correlated and discussed in terms of their involvement in immunity, regulation of oxygen homeostasis, regulation of cell structure and basic function. Conclusion: This approach provides a spatially resolved transcriptome− and tissue-wide perspective of the adult human aorta and will allow the application of human fibrous aortic tissues without any effect on genes in different layers with low RNA expression levels. Our findings will pave the way toward both a better understanding of Stanford type A aortic dissection pathogenesis and heterogeneity and the implementation of more effective personalized therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hong Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ying Cao
- Computational Virology Group, Center for Bacteria and Virus Resources and Application, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qian Zhao
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dilare Adi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qiang Huo
- Department of Cardiac Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zheng Liu
- Department of Cardiac Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jun-Yi Luo
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bin-Bin Fang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Di Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Computational Virology Group, Center for Bacteria and Virus Resources and Application, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Xinjiang Medical University, Urumqi, China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
30
|
Dichek DA. Response by Dichek to Letter Regarding Article, "Jugular Vein Injection of High-Titer Lentiviral Vectors Does Not Transduce the Aorta". Arterioscler Thromb Vasc Biol 2021; 41:e240-e242. [PMID: 33760630 DOI: 10.1161/atvbaha.121.315965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- David A Dichek
- Division of Cardiology, Department of Medicine, University of Washington, Seattle
| |
Collapse
|
31
|
Campanero MR, Redondo JM. Letter by Campanero and Redondo Regarding Article, "Jugular Vein Injection of High-Titer Lentiviral Vectors Does Not Transduce the Aorta". Arterioscler Thromb Vasc Biol 2021; 41:e238-e239. [PMID: 33760632 DOI: 10.1161/atvbaha.121.315934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Miguel R Campanero
- Cell-Cell Communication and Inflammation Department, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Spain (M.R.C.)
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.M.R.)
| |
Collapse
|
32
|
Ren K, Li B, Liu Z, Xia L, Zhai M, Wei X, Duan W, Yu S. GDF11 prevents the formation of thoracic aortic dissection in mice: Promotion of contractile transition of aortic SMCs. J Cell Mol Med 2021; 25:4623-4636. [PMID: 33764670 PMCID: PMC8107100 DOI: 10.1111/jcmm.16312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Thoracic aortic dissection (TAD) is an aortic disease associated with dysregulated extracellular matrix composition and de‐differentiation of vascular smooth muscle cells (SMCs). Growth Differentiation Factor 11 (GDF11) is a member of transforming growth factor β (TGF‐β) superfamily associated with cardiovascular diseases. The present study attempted to investigate the expression of GDF11 in TAD and its effects on aortic SMC phenotype transition. GDF11 level was found lower in the ascending thoracic aortas of TAD patients than healthy aortas. The mouse model of TAD was established by β‐aminopropionitrile monofumarate (BAPN) combined with angiotensin II (Ang II). The expression of GDF11 was also decreased in thoracic aortic tissues accompanied with increased inflammation, arteriectasis and elastin degradation in TAD mice. Administration of GDF11 mitigated these aortic lesions and improved the survival rate of mice. Exogenous GDF11 and adeno‐associated virus type 2 (AAV‐2)‐mediated GDF11 overexpression increased the expression of contractile proteins including ACTA2, SM22α and myosin heavy chain 11 (MYH11) and decreased synthetic markers including osteopontin and fibronectin 1 (FN1), indicating that GDF11 might inhibit SMC phenotype transition and maintain its contractile state. Moreover, GDF11 inhibited the production of matrix metalloproteinase (MMP)‐2, 3, 9 in aortic SMCs. The canonical TGF‐β (Smad2/3) signalling was enhanced by GDF11, while its inhibition suppressed the inhibitory effects of GDF11 on SMC de‐differentiation and MMP production in vitro. Therefore, we demonstrate that GDF11 may contribute to TAD alleviation via inhibiting inflammation and MMP activity, and promoting the transition of aortic SMCs towards a contractile phenotype, which provides a therapeutic target for TAD.
Collapse
Affiliation(s)
- Kai Ren
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Buying Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenhua Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Xia
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xufeng Wei
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
33
|
Li X, Meng C, Han F, Yang J, Wang J, Zhu Y, Cui X, Zuo M, Xu J, Chang B. Vildagliptin Attenuates Myocardial Dysfunction and Restores Autophagy via miR-21/SPRY1/ERK in Diabetic Mice Heart. Front Pharmacol 2021; 12:634365. [PMID: 33815116 PMCID: PMC8013777 DOI: 10.3389/fphar.2021.634365] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
Aim: Vildagliptin (vild) improves diastolic dysfunction and is associated with a lower relative risk of major adverse cardiovascular events in younger patients. The present study aimed to evaluate whether vild prevents the development of diabetic cardiomyopathy in type 2 diabetic mice and identify its underlying mechanisms. Methods: Type 2 diabetic mouse model was generated using wild-type (WT) (C57BL/6J) and miR-21 knockout mice by treatment with HFD/STZ. Cardiomyocyte-specific miR-21 overexpression was achieved using adeno-associated virus 9. Echocardiography was used to evaluate cardiac function in mice. Morphology, autophagy, and proteins levels in related pathway were analyzed. qRT-PCR was used to detect miR-21. Rat cardiac myoblast cell line (H9c2) cells were transfected with miR-21 mimics and inhibitor to explore the related mechanisms of miR-21 in diabetic cardiomyopathy. Results: Vild restored autophagy and alleviated fibrosis, thereby enhancing cardiac function in DM mice. In addition, miR-21 levels were increased under high glucose conditions. miR-21 knockout DM mice with miR-21 knockout had reduced cardiac hypertrophy and cardiac dysfunction compared to WT DM mice. Overexpression of miR-21 aggravated fibrosis, reduced autophagy, and attenuated the protective effect of vild on cardiac function. In high-glucose-treated H9c2 cells, the downstream effectors of sprouty homolog 1 (SPRY1) including extracellular signal-regulated kinases (ERK) and mammalian target of rapamycin showed significant changes following transfection with miR-21 mimics or inhibitor. Conclusion: The results of our study indicate that vild prevents DCM by restoring autophagy through the miR-21/SPRY1/ERK/mTOR pathway. Therefore, miR-21 is a target in the development of DCM, and vild demonstrates significant potential for clinical application in prevention of DCM.
Collapse
Affiliation(s)
- Xiaochen Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Cheng Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Fei Han
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yanjuan Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiao Cui
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Minxia Zuo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
34
|
Xie X, Cong L, Liu S, Xiang L, Fu X. Genistein alleviates chronic vascular inflammatory response via the miR‑21/NF‑κB p65 axis in lipopolysaccharide‑treated mice. Mol Med Rep 2021; 23:192. [PMID: 33495831 PMCID: PMC7809901 DOI: 10.3892/mmr.2021.11831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic vascular inflammatory response is an important pathological basis of cardiovascular disease. Genistein (GEN), a natural compound, exhibits anti‑inflammatory effects. The aim of the present study was to investigate the effects of GEN on lipopolysaccharide (LPS)‑induced chronic vascular inflammatory response in mice and explore the underlying anti‑inflammatory mechanisms. C57BL/6 mice were fed with a high‑fat diet combined with intraperitoneal injection of LPS to induce chronic vascular inflammation. The expression levels of TNF‑α, IL‑6 and microRNA (miR)‑21 in the vasculature were detected via reverse transcription‑quantitative (RT‑q)PCR. The protein levels of inducible nitric oxide synthase (iNOS) and NF‑κB p65 were detected via western blotting. NF‑κB p65 was also analyzed via immunohistochemistry and immunofluorescence (IF). In addition, after transfection with miR‑21 mimic or inhibitor for 24 h, vascular endothelial cells (VECs) were treated with GEN and LPS. RT‑qPCR and western blot analyses were performed to detect the expression of TNF‑α, IL‑6, miR‑21 and iNOS, and the protein levels of iNOS and NF‑κB p65, respectively. IF was used to measure NF‑κB p65 nuclear translocation. The results revealed that GEN significantly decreased the expression of inflammation‑associated vascular factors in LPS‑treated C57BL/6 mice, including TNF‑α, IL‑6, iNOS, NF‑κB p65 and miR‑21. Furthermore, miR‑21 antagomir enhanced the anti‑inflammatory effects of GEN. In LPS‑induced VECs, miR‑21 mimic increased inflammation‑associated factor expression and attenuated the anti‑inflammatory effects of GEN, whereas miR‑21 inhibitor induced opposing effects. Therefore, the results of the present study suggested that GEN inhibited chronic vascular inflammatory response in mice, which may be associated with the inhibition of VEC inflammatory injury via the miR‑21/NF‑κB p65 pathway.
Collapse
Affiliation(s)
- Xiaolin Xie
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Li Cong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Sujuan Liu
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Liping Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaohua Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Correspondence to: Professor Xiaohua Fu, Department of Basic Medicine, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, Hunan 410013, P.R. China, E-mail:
| |
Collapse
|
35
|
LncRNA Xist induces arterial smooth muscle cell apoptosis in thoracic aortic aneurysm through miR-29b-3p/Eln pathway. Biomed Pharmacother 2021; 137:111163. [PMID: 33761588 DOI: 10.1016/j.biopha.2020.111163] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a serious disease usually happening in elder people and with high death rate. Accumulating studies have reported that long non-coding RNAs (lncRNAs) are implicated in the progression of various human diseases, including TAA. AIM In our study, we intended to explore the function of elastin (Eln) and its upstream mechanism in TAA. METHODS RT-qPCR determined gene expressions and western blot tested changes in protein levels. Ang Ⅱ treatment was implemented to induce cell apoptosis. Flow cytometry analysis, TUNEL assay and JC-1 assay were exploited to measure cell apoptosis. Meanwhile, mechanistic assays such as RIP, RNA pull down and luciferase reporter assays were employed to identify the interplay between RNAs. RESULTS Eln inhibition was identified to protect rat arterial smooth muscle cells from apoptosis. Also, miR-29b-3p was identified to bind to Eln, and X inactive specific transcript (Xist) could boost Eln expression through absorbing miR-29b-3p. Meanwhile, Eln overexpression counteracted the suppression of silenced Xist on the apoptosis of rat arterial smooth muscle cells. More importantly, such ceRNA network was proved to aggravate the apoptosis of human aortic smooth muscle cells. CONCLUSION LncRNA Xist contributes to arterial smooth muscle cell apoptosis through miR-29b-3p/Eln pathway, providing new potential roads for treating TAA.
Collapse
|
36
|
MiR-126-5p promotes contractile switching of aortic smooth muscle cells by targeting VEPH1 and alleviates Ang II-induced abdominal aortic aneurysm in mice. J Transl Med 2020; 100:1564-1574. [PMID: 32612287 DOI: 10.1038/s41374-020-0454-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a potential lethal disease that is defined by an irreversible dilatation (>50%) of the aorta. During AAA expansion, the aortic wall is often remodeled, which is featured by extracellular matrix (ECM) degeneration, medial and adventitial inflammation, depletion and phenotypic switching of vascular smooth muscle cells (SMCs). Recent studies have suggested microRNAs as vital regulators for vascular SMC function. Our earlier work demonstrated an anti-AAA role of miR-126-5p in ApoE-/- mice infused with angiotensin (Ang) II. The present study aimed to further elucidate its role in AAA pathogenesis with a focus on aortic SMC phenotypic switching. Ventricular zone expressed PH domain containing 1 (VEPH1) was identified as a novel negative regulator for vascular SMC differentiation by our group, and its expression was negatively correlated to miR-126-5p in mouse abdominal aortas based on the present microarray data. In vivo, in addition attenuating Ang II infusion-induced aortic dilation and elastin degradation, miR-126-5p agomirs also significantly reduced the expression of VEPH1. In vitro, to induce synthetic transition of human aortic smooth muscle cells (hAoSMCs), cells were stimulated with 1 μM Ang II for 24 h. Ectopic overexpression of miR-126-5p restored the differentiation of hAoSMCs-the expression of contractile/differentiated SMC markers, MYH11, and α-SMA, increased, whilst that of synthetic/dedifferentiated SMC markers, PCNA and Vimentin, decreased. Both mus and homo VEPH1 genes were validated as direct targets for miR-126-5p. VEPH1 re-expression impaired miR-126-5p-induced differentiation of hAoSMCs. In addition, Ang II-induced upregulation in matrix metalloproteinase (MMP)-9 and MMP2, two key proteases responsible for ECM degradation, in mouse aortas and hAoSMCs was reduced by miR-126-5p overexpression as well. Collectively, these results reveal an important, but previously unexplored, role of miR-126-5p in inhibiting AAA development-associated aortic SMC dedifferentiation.
Collapse
|
37
|
Chen S, Chen H, Zhong Y, Ge Y, Li C, Qiao Z, Zhu J. Insulin-like growth factor-binding protein 3 inhibits angiotensin II-induced aortic smooth muscle cell phenotypic switch and matrix metalloproteinase expression. Exp Physiol 2020; 105:1827-1839. [PMID: 32936966 DOI: 10.1113/ep088927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022]
Abstract
NEW FINDINGS What is the central question of this study? Insulin-like growth factor 1 and its major binding protein insulin-like growth factor binding protein 3 (IGFBP3) are involved in collagen deregulation in several cardiovascular diseases: what is the role of IGFBP3 in thoracic aortic dissection and does it regulate aortic smooth muscle cells' phenotypic switch? What is the main finding and its importance? IGFBP3 inhibits aortic smooth muscle cells' phenotypic switch from a contractile to a synthetic phenotype, decreases matrix metalloproteinase 9 activation and suppresses elastin degradation. These findings provide a better understanding of the pathogenesis of thoracic aortic dissection. ABSTRACT Thoracic aortic dissection (TAD) is characterized by aortic media degeneration and is a highly lethal disease. An aortic smooth muscle cell (AoSMC) phenotypic switch is considered a key pathophysiological change in TAD. Insulin-like growth factor binding protein 3 (IGFBP3) was found to be downregulated in aortic tissues of TAD patients. The present work aimed to study the function of IGFBP3 in AoSMCs' phenotypic switch and matrix metalloproteinase (MMP) expression. We established a mouse model of TAD by angiotensin (Ang) II infusion to β-aminopropionitrile-administrated mice, and found decreased IGFBP3 expression accompanied by aortic dilatation and elastin degradation in vivo. Further, mouse (m)AoSMCs were isolated from mouse thoracic aorta and treated with Ang II. Ang II induced downregulation of IGFBP3 in vitro. To further study the function of IGFBP3, primary mAoSMCs were infected with adenovirus expressing IGFBP3 followed by Ang II induction. Enforced upregulation of IGFBP3 decreased MMP9 expression and activation as well as increasing tissue inhibitor of metalloproteinase (TIMP) 1 expression in Ang II-induced mAoSMCs. No difference was observed in MMP2 and TIMP3 expression. IGFBP3 suppressed subsequent Ang II-induced elastin degradation in vitro. IGFBP3 inhibited Ang II-induced mAoSMCs' phenotypic switch as evidenced by increased smooth muscle actin α-2 (ACTA2) and myosin heavy chain 11 (MYH11) expression and decreased secreted phosphoprotein 1 (SPP1) and vimentin expression. Taken together, the present study demonstrates the role of IGFBP3 in preserving AoSMCs' contractile state and reducing MMP9 activation and thus promoting elastic fibre synthesis, which provides a better understanding of the pathogenesis of TAD.
Collapse
Affiliation(s)
- Suwei Chen
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Chen
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongliang Zhong
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yipeng Ge
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengnan Li
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhiyu Qiao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Cheng M, Yang Y, Xin H, Li M, Zong T, He X, Yu T, Xin H. Non-coding RNAs in aortic dissection: From biomarkers to therapeutic targets. J Cell Mol Med 2020; 24:11622-11637. [PMID: 32885591 PMCID: PMC7578866 DOI: 10.1111/jcmm.15802] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/13/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Aortic dissection (AD) is the rupture of the aortic intima, causing the blood in the cavity to enter the middle of the arterial wall. Without urgent and proper treatment, the mortality rate increases to 50% within 48 hours. Most patients present with acute onset of symptoms, including sudden severe pain and complex and variable clinical manifestations, which can be easily misdiagnosed. Despite this, the molecular mechanisms underlying AD are still unknown. Recently, non‐coding RNAs have emerged as novel regulators of gene expression. Previous studies have proven that ncRNAs can regulate several cardiovascular diseases; therefore, their potential as clinical biomarkers and novel therapeutic targets for AD has aroused widespread interest. To date, several studies have reported that microRNAs are crucially involved in AD progression. Additionally, several long non‐coding RNAs and circular RNAs have been found to be differentially expressed in AD samples, suggesting their potential roles in vascular physiology and disease. In this review, we discuss the functions of ncRNAs in AD pathophysiology and highlight their potential as biomarkers and therapeutic targets for AD. Meanwhile, we present the animal models previously used for AD research, as well as the specific methods for constructing mouse or rat AD models.
Collapse
Affiliation(s)
- Mengdie Cheng
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hai Xin
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingqiang He
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Xin
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Yu J, Xu H, Cui J, Chen S, Zhang H, Zou Y, Zhao J, Le S, Jiang L, Chen Z, Liu H, Zhang D, Xia J, Wu J. PLK1 Inhibition alleviates transplant-associated obliterative bronchiolitis by suppressing myofibroblast differentiation. Aging (Albany NY) 2020; 12:11636-11652. [PMID: 32541091 PMCID: PMC7343459 DOI: 10.18632/aging.103330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic allograft dysfunction (CAD) resulting from fibrosis is the major limiting factor for long-term survival of lung transplant patients. Myofibroblasts promote fibrosis in multiple organs, including the lungs. In this study, we identified PLK1 as a promoter of myofibroblast differentiation and investigated the mechanism by which its inhibition alleviates transplant-associated obliterative bronchiolitis (OB) during CAD. High-throughput bioinformatic analyses and experiments using the murine heterotopic tracheal transplantation model revealed that PLK1 is upregulated in grafts undergoing CAD as compared with controls, and that inhibiting PLK1 alleviates OB in vivo. Inhibition of PLK1 in vitro reduced expression of the specific myofibroblast differentiation marker α-smooth muscle actin (α-SMA) and decreased phosphorylation of both MEK and ERK. Importantly, we observed a similar phenomenon in human primary fibroblasts. Our results thus highlight PLK1 as a promising therapeutic target for alleviating transplant-associated OB through suppression of TGF-β1-mediated myofibroblast differentiation.
Collapse
Affiliation(s)
- Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jing Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
40
|
Bersi MR, Acosta Santamaría VA, Marback K, Di Achille P, Phillips EH, Goergen CJ, Humphrey JD, Avril S. Multimodality Imaging-Based Characterization of Regional Material Properties in a Murine Model of Aortic Dissection. Sci Rep 2020; 10:9244. [PMID: 32514185 PMCID: PMC7280301 DOI: 10.1038/s41598-020-65624-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/04/2020] [Indexed: 01/21/2023] Open
Abstract
Chronic infusion of angiotensin-II in atheroprone (ApoE-/-) mice provides a reproducible model of dissection in the suprarenal abdominal aorta, often with a false lumen and intramural thrombus that thickens the wall. Such lesions exhibit complex morphologies, with different regions characterized by localized changes in wall composition, microstructure, and properties. We sought to quantify the multiaxial mechanical properties of murine dissecting aneurysm samples by combining in vitro extension-distension data with full-field multimodality measurements of wall strain and thickness to inform an inverse material characterization using the virtual fields method. A key advance is the use of a digital volume correlation approach that allows for characterization of properties not only along and around the lesion, but also across its wall. Specifically, deformations are measured at the adventitial surface by tracking motions of a speckle pattern using a custom panoramic digital image correlation technique while deformations throughout the wall and thrombus are inferred from optical coherence tomography. These measurements are registered and combined in 3D to reconstruct the reference geometry and compute the 3D finite strain fields in response to pressurization. Results reveal dramatic regional variations in material stiffness and strain energy, which reflect local changes in constituent area fractions obtained from histology but emphasize the complexity of lesion morphology and damage within the dissected wall. This is the first point-wise biomechanical characterization of such complex, heterogeneous arterial segments. Because matrix remodeling is critical to the formation and growth of these lesions, we submit that quantification of regional material properties will increase the understanding of pathological mechanical mechanisms underlying aortic dissection.
Collapse
Affiliation(s)
- Matthew R Bersi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Karl Marback
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Paolo Di Achille
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Stéphane Avril
- Mines Saint-Etienne, University of Lyon, University Jean Monnet, INSERM, Saint-Etienne, France.
| |
Collapse
|
41
|
Shi X, Xu C, Li Y, Wang H, Ma W, Tian Y, Yang H, Li L. A novel role of VEPH1 in regulating AoSMC phenotypic switching. J Cell Physiol 2020; 235:9336-9346. [PMID: 32342520 DOI: 10.1002/jcp.29736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/18/2020] [Accepted: 04/17/2020] [Indexed: 11/09/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a potentially lethal disease featured by focal dilatation in the aorta. The transition of vascular smooth muscle cells (SMCs) from a contractile/differentiated to a synthetic/dedifferentiated phenotype is considered to contribute to AAA formation and expansion. Our previous gene microarray data showed that Ventricular Zone Expressed PH Domain Containing 1 (VEPH1) expression increased in angiotensin II (Ang II)-infused aortic tissues. This study was thus performed to further explore the role of VEPH1. Herein, we first demonstrate that VEPH1 increases in the SMCs of Ang II-treated abdominal aortas. As in vivo, Ang II also upregulated VEPH1 expression in cultured hAoSMCs. The dedifferentiation of human aortic SMCs (hAoSMCs) was induced by a 24-hr stimulation of Ang II (1 μM)-the expression of contractile SMC markers, MYH11 and α-smooth muscle actin (α-SMA) decreased and that of synthetic markers, proliferating cell nuclear antigen and Vimentin increased. Inhibition of VEPH1 prevented Ang II-induced pathological dedifferentiation of hAoSMCs as indicated by the restored expression of MYH11 and α-SMA. In contrast, the forced overexpression of VEPH1 aggravated Ang II's effects. Furthermore, we demonstrated that VEPH1 and transforming growth factor-β1 (TGF-β1), a key regulator responsible for vascular SMC differentiation, negatively regulated each other's transcription. In contrast to VEPH1 silencing, its overexpression inhibited recombinant TGF-β1-induced increases in MYH11 and α-SMA and suppressed Smad3 phosphorylation and nuclear accumulation. Collectively, our study demonstrates that VEPH1 elevation promotes the synthetic phenotype switching of AoSMCs and suppressed the TGF-β1/Smad3 signaling pathway. Identification of VEPH1 as a pathogenic molecule for AAA formation provides novel insights into this disease.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Emergency, Tianjin First Center Hospital, Tianjin, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Department of Traditional Chinese Medicine, Dalian Obstetrics and Gynecology Hospital, Dalian, China
| | - Yongqi Li
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Han Wang
- Department of Vascular Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| | - Wei Ma
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning, China
| | - Yu Tian
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Haifeng Yang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
42
|
Shen YH, LeMaire SA, Webb NR, Cassis LA, Daugherty A, Lu HS. Aortic Aneurysms and Dissections Series: Part II: Dynamic Signaling Responses in Aortic Aneurysms and Dissections. Arterioscler Thromb Vasc Biol 2020; 40:e78-e86. [PMID: 32208998 DOI: 10.1161/atvbaha.120.313804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aortic structure and function are controlled by the coordinated actions of different aortic cells and the extracellular matrix. Several pathways have been identified that control the aortic wall in a cell-type-specific manner and play diverse roles in various phases of aortic injury, repair, and remodeling. This complexity of signaling in the aortic wall poses challenges to the development of therapeutic strategies for treating aortic aneurysms and dissections. Here, in part II of this Recent Highlights series on aortic aneurysms and dissections, we will summarize recent studies published in Arteriosclerosis, Thrombosis, and Vascular Biology that have contributed to our knowledge of the signaling pathway-related mechanisms of aortic aneurysms and dissections.
Collapse
Affiliation(s)
- Ying H Shen
- From the Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (Y.H.S., S.A.L.).,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Y.H.S., S.A.L.)
| | - Scott A LeMaire
- From the Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (Y.H.S., S.A.L.).,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Y.H.S., S.A.L.)
| | - Nancy R Webb
- Department of Pharmacology and Nutritional Sciences (N.R.W., L.A.C.), University of Kentucky, Lexington
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences (N.R.W., L.A.C.), University of Kentucky, Lexington
| | - Alan Daugherty
- Department of Physiology and Saha Cardiovascular Research Center (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- Department of Physiology and Saha Cardiovascular Research Center (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
43
|
Shen YH, LeMaire SA, Webb NR, Cassis LA, Daugherty A, Lu HS. Aortic Aneurysms and Dissections Series. Arterioscler Thromb Vasc Biol 2020; 40:e37-e46. [PMID: 32101472 DOI: 10.1161/atvbaha.120.313991] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aortic wall is composed of highly dynamic cell populations and extracellular matrix. In response to changes in the biomechanical environment, aortic cells and extracellular matrix modulate their structure and functions to increase aortic wall strength and meet the hemodynamic demand. Compromise in the structural and functional integrity of aortic components leads to aortic degeneration, biomechanical failure, and the development of aortic aneurysms and dissections (AAD). A better understanding of the molecular pathogenesis of AAD will facilitate the development of effective medications to treat these conditions. Here, we summarize recent findings on AAD published in ATVB. In this issue, we focus on the dynamics of aortic cells and extracellular matrix in AAD; in the next issue, we will focus on the role of signaling pathways in AAD.
Collapse
Affiliation(s)
- Ying H Shen
- From the Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (Y.H.S., S.A.L.).,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Y.H.S., S.A.L.)
| | - Scott A LeMaire
- From the Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (Y.H.S., S.A.L.).,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Y.H.S., S.A.L.)
| | - Nancy R Webb
- Department of Pharmacology and Nutritional Sciences (N.R.W., L.A.C.), University of Kentucky, Lexington
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences (N.R.W., L.A.C.), University of Kentucky, Lexington
| | - Alan Daugherty
- Department of Physiology and Saha Cardiovascular Research Center (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- Department of Physiology and Saha Cardiovascular Research Center (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
44
|
Zhang K, Pan X, Zheng J, Liu Y, Sun L. SIRT1 protects against aortic dissection by regulating AP-1/decorin signaling-mediated PDCD4 activation. Mol Biol Rep 2020; 47:2149-2159. [PMID: 32072402 DOI: 10.1007/s11033-020-05314-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/07/2020] [Indexed: 01/16/2023]
Abstract
Medial degeneration of aorta wall is the principal feature of aortic dissection (AD). Sirtuin 1 (SIRT1) plays essential protective effect on many aortic-associated disease. However, it is still unclear whether SIRT1participates in the process of medial degeneration-mediated AD. The purpose of this study is to explore the association between SIRT1 and AD process. qRT-PCR was used to evaluate the transcriptional level of genes involved in study. Protein levels and acetylation detection were measured by Western blotting. The regulatory relations between AP-1 and decorin was assessed by luciferase reporter gene assay. Acute aortic dissection (AAD) mice model was constructed by feeding with β-aminopropionitrile monofumarate (BAPN). Haematoxylin and eosin (HE) and Mallory staining were performed for pathological analysis. In clinical aorta tissue of thoracic aortic dissection (TAD), the expression of SIRT1, activator protein 1 (AP-1) and decorin were in accordant trend. AP-1 expression which acts on Decorin promoter region is possibly regulated in a SIRT1-mediated deacetylation dependent manner. Resveratrol or SRT1720-initiated SIRT1 activation ameliorated BAPN-induced AAD symptoms accompanied by the activation of AP-1/decorin signaling and decorin-mediated programmed cell death 4 (PDCD4) expression by inhibiting miR-21 and miR-181b. These data suggest that SIRT1/AP-1/decorin signal cascades possibly play a part role in the process of AD. Our research demonstrate that activation of SIRT1 protects against AAD symptoms by enhancing AP-1-mediated decorin expression and downstream PDCD4 signaling pathway. Possibly, SIRT1 is served as a protective factor of AD and targeting SIRT1 therapy might be an attractive therapeutic approaches for AD treatment.
Collapse
Affiliation(s)
- Kefeng Zhang
- Beijing Anzhen Hospital, Beijing Aortic Disease Center, Capital Medical University, Anzhen Road 2#, Chaoyang District, Beijing, China.
| | - Xudong Pan
- Beijing Anzhen Hospital, Beijing Aortic Disease Center, Capital Medical University, Anzhen Road 2#, Chaoyang District, Beijing, China
| | - Jun Zheng
- Beijing Anzhen Hospital, Beijing Aortic Disease Center, Capital Medical University, Anzhen Road 2#, Chaoyang District, Beijing, China
| | - Yongmin Liu
- Beijing Anzhen Hospital, Beijing Aortic Disease Center, Capital Medical University, Anzhen Road 2#, Chaoyang District, Beijing, China
| | - Lizhong Sun
- Beijing Anzhen Hospital, Beijing Aortic Disease Center, Capital Medical University, Anzhen Road 2#, Chaoyang District, Beijing, China
| |
Collapse
|
45
|
Davis FM, Daugherty A, Lu HS. Updates of Recent Aortic Aneurysm Research. Arterioscler Thromb Vasc Biol 2020; 39:e83-e90. [PMID: 30811252 DOI: 10.1161/atvbaha.119.312000] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Frank M Davis
- From the Department of Surgery, University of Michigan, Ann Arbor (F.M.D.)
| | - Alan Daugherty
- Saha Cardiovascular Research Center (A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- Saha Cardiovascular Research Center (A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
46
|
Ding X, Chen J, Wu C, Wang G, Zhou C, Chen S, Wang K, Zhang A, Ye P, Wu J, Chen S, Zhang H, Xu K, Wang S, Xia J. Nucleotide-Binding Oligomerization Domain-Like Receptor Protein 3 Deficiency in Vascular Smooth Muscle Cells Prevents Arteriovenous Fistula Failure Despite Chronic Kidney Disease. J Am Heart Assoc 2020; 8:e011211. [PMID: 30587058 PMCID: PMC6405733 DOI: 10.1161/jaha.118.011211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background The arteriovenous fistula (AVF) is the preferred hemodialysis access for patients with chronic kidney disease. Chronic kidney disease can increase neointima formation, which greatly contributes to AVF failure by an unknown mechanism. Our study aimed to determine the role of nucleotide‐binding oligomerization domain‐like receptor protein 3 (NLRP3) in neointima formation induced by experimental AVFs in the presence of chronic kidney disease. Methods and Results From our findings, NLRP3 was upregulated in the intimal lesions of AVFs in both uremic mice and patients. Smooth muscle–specific knockout NLRP3 mice exhibited markedly decreased neointima formation in the outflow vein of AVFs. Compared with primary vascular smooth muscle cells isolated from control mice, those isolated from smooth muscle–specific knockout NLRP3 mice showed compromised proliferation, migration, phenotypic switching, and a weakened ability to activate mononuclear macrophages. To identify how NLRP3 functions, several small‐molecule inhibitors were used. The results showed that NLRP3 regulates smooth muscle cell proliferation and migration through Smad2/3 phosphorylation rather than through caspase‐1/interleukin‐1 signaling. Unexpectedly, the selective NLRP3‐inflammasome inhibitor MCC950 also repressed Smad2/3 phosphorylation and relieved chronic kidney disease–promoted AVF failure independent of macrophages. Conclusions Our findings suggest that NLRP3 in vascular smooth muscle cells may play a crucial role in uremia‐associated AVF failure and may be a promising therapeutic target for the treatment of AVF failure.
Collapse
Affiliation(s)
- Xiangchao Ding
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jiuling Chen
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Chuangyan Wu
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,2 Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Guohua Wang
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Cheng Zhou
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shanshan Chen
- 3 Key Laboratory for Molecular Diagnosis of Hubei Province Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China.,4 Central Laboratory Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ke Wang
- 6 Department of Respiratory and Critical Care Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Anchen Zhang
- 5 Department of Cardiovascular Medicine Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ping Ye
- 5 Department of Cardiovascular Medicine Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jie Wu
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shanshan Chen
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Hao Zhang
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Kaiying Xu
- 2 Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Sihua Wang
- 2 Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jiahong Xia
- 1 Department of Cardiovascular Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
47
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Annual Report on Sex in Preclinical Studies: Arteriosclerosis, Thrombosis, and Vascular Biology Publications in 2018. Arterioscler Thromb Vasc Biol 2019; 40:e1-e9. [PMID: 31869272 DOI: 10.1161/atvbaha.119.313556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.M.)
| | - Daniel J Rader
- Departments of Medicine and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
48
|
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/physiopathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Gene Expression Regulation
- Humans
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Vascular Diseases/genetics
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
- Vascular Remodeling/physiology
Collapse
Affiliation(s)
- Ning Shi
- Department of Surgery, University of Missouri, Columbia, MO
- Department of Physiology & pharmacology, The University of Georgia, Athens, GA
| | - Xiaohan Mei
- Department of Physiology & pharmacology, The University of Georgia, Athens, GA
| | - Shi-You Chen
- Department of Surgery, University of Missouri, Columbia, MO
- Department of Physiology & pharmacology, The University of Georgia, Athens, GA
- Correspondence to: Shi-You Chen, PhD, Department of Surgery, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, , Tel: (573) 882-3137, Fax: (573)884-4585
| |
Collapse
|
49
|
Tingting T, Wenjing F, Qian Z, Hengquan W, Simin Z, Zhisheng J, Shunlin Q. The TGF-β pathway plays a key role in aortic aneurysms. Clin Chim Acta 2019; 501:222-228. [PMID: 31707165 DOI: 10.1016/j.cca.2019.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Aortic dissection and aortic aneurysms are currently among the most high-risk cardiovascular diseases due to their rapid onset and high mortality. Although aneurysm research has been extensive, the pathogenesis remains unknown. Studies have found that the TGF-β/Smad pathway and aneurysm formation appear linked. For example, the TGF-β signaling pathway was significantly activated in aneurysm development and aortic dissection. Aneurysms are not, however, mitigated following knockdown of TGF-β signaling pathway-related genes. Incidence and mortality rate of ruptured thoracic aneurysms increase with the down-regulation of the classical TGF-β signaling pathway. In this review, we summarize recent findings and evaluate the differential role of classical and non-classical TGF-β pathways on aortic aneurysm. It is postulated that the TGF-β signaling pathway is necessary to maintain vascular function, but over-activation will promote aneurysms whereas over-inhibition will lead to bypass pathway over-activation and promote aneurysm occurrence.
Collapse
Affiliation(s)
- Tang Tingting
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Fan Wenjing
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China; Emergency Department, The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zeng Qian
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Wan Hengquan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhao Simin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Jiang Zhisheng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Qu Shunlin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
50
|
Jiang T, Si L. Identification of the molecular mechanisms associated with acute type A aortic dissection through bioinformatics methods. ACTA ACUST UNITED AC 2019; 52:e8950. [PMID: 31721906 PMCID: PMC6853077 DOI: 10.1590/1414-431x20198950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/16/2019] [Indexed: 01/18/2023]
Abstract
Aortic dissection is characterized by the redirection of blood flow, which flows through an intimal tear into the aortic media. The purpose of this study was to find potential acute type A aortic dissection (AAAD)-related genes and molecular mechanisms by bioinformatics. The gene expression profiles of GSE52093 were obtained from Gene Expression Omnibus (GEO) database, including 7 AAAD samples and 5 normal samples. The differentially expressed genes (DEGs) were detected between AAAD and normal samples. The functional annotation and pathway enrichment analysis were conducted through the Database for Annotation, Visualization and Integration Discovery (DAVID). A protein-protein interaction network was established by the Search Tool for the Retrieval of Interacting Genes (STRING) software. The microRNAs (miRNAs) of these differentially expressed genes were predicted using <microRNA.org> database. Moreover, DEGs were analyzed in the comparative toxicogenomics (CTD) database to screen out the potential therapeutic small molecules. As a result, there were 172 DEGs identified in patients with AAAD. These DEGs were significantly enriched in 6 pathways, including cell cycle, oocyte meiosis, DNA replication, extracellular matrix-receptor interaction, and mineral absorption pathway. Notably, CDC20, CDK1, CHEK1, KIF20A, MCM10, PBK, PTTG1, RACGAP, and TOP2A were crucial genes with a high degree in the protein-protein interaction network. Furthermore, potential miRNAs (miR-301, miR-302 family, and miR-130 family) were identified. In addition, small molecules like azathioprine and zoledronic acid were identified to be potential drugs for AAAD.
Collapse
Affiliation(s)
- Tao Jiang
- Cardiovascular Department, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangyi Si
- Cardiovascular Department, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|