1
|
Sun XJ, Xiao SJ, Ma WQ, Jin H, Ren LQ, Yao YY, Chen ZD, Li XX, Chen T, Liu NF. Activation of TFEB protects against diabetic vascular calcification by improving autophagic flux and activating Nrf2 antioxidant system. Am J Physiol Endocrinol Metab 2025; 328:E924-E939. [PMID: 39805031 DOI: 10.1152/ajpendo.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Autophagic flux blockade and excessive oxidative stress play important roles in the pathogenesis of diabetic vascular calcification (VC). Transcription factor EB (TFEB) is an important regulator of many autophagy-lysosomal related components, which is mainly involved in promoting autophagy process in cells. Nuclear factor erythroid-2 related factor 2 (Nrf2) antioxidant system is considered as one of the key pathways in response to intracellular oxidative stress. Periostin (POSTN), a matrix protein, is widely involved in regulating the formation and maintenance of organs such as bones, teeth, heart valves, and tendons. We have previously reported that POSTN interfered with autophagic flux in an oxidative stress-dependent manner in vascular smooth muscle cells (VSMCs) to aggravate the development of diabetic VC. However, how POSTN interfered with autophagic flux by regulating oxidative stress has not been clarified. This study aims to further explore the roles of TFEB, POSTN, autophagy, and Nrf2 antioxidant system in the development of diabetic VC. Our experimental results revealed that activation of TFEB attenuated diabetic VC by improving autophagic flux and activating Nrf2 antioxidant system, whereas POSTN reduced the autophagic degradation of Kelch-like ECH-associated protein 1 (KEAP1) by inhibiting lysosomal function, thus inhibiting the activation of the Nrf2 antioxidant system, and ultimately abolishing the protective effect of TFEB against diabetic VC. In conclusion, this study uncovers that TFEB play an important role in alleviating diabetic VC by improving autophagic flux and activating Nrf2 antioxidant system, suggesting that TFEB may be a new target for the prevention and treatment of diabetic VC.NEW & NOTEWORTHY This study is the first to suggest the protective effect of activation of transcription factor EB (TFEB) against diabetic vascular calcification (VC), emphasizing that activation of TFEB alleviated diabetic VC by improving the autophagic flux and activating the Nuclear factor erythroid-2 related factor 2 (Nrf2) antioxidant system in vascular smooth muscle cells (VSMCs), and revealing that periostin (POSTN) partially abolished the protective effect of TFEB on diabetic VC by inhibiting the autophagic degradation of Kelch-like ECH-associated protein 1 (KEAP1).
Collapse
Affiliation(s)
- Xue-Jiao Sun
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Sheng-Jue Xiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Wen-Qi Ma
- Department of cardiovascular medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong Jin
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Li-Qun Ren
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Zheng-Dong Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Tian Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Yang Y, Li X, Xiao S, Wei Q, Ren L, Yao Y, Liu N. PARylation of POLG Mediated by PARP1 Accelerates Ferroptosis-Induced Vascular Calcification via Activating Adora2a/Rap1 Signaling. Arterioscler Thromb Vasc Biol 2025. [PMID: 40401372 DOI: 10.1161/atvbaha.124.321682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 05/06/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Vascular calcification (VC) is associated with diabetes, chronic kidney disease, and aging. VC is found to be a powerful and independent risk factor for cardiovascular mortality. Vascular smooth muscle cell (VSMC) ferroptosis, a form of cell death, is known to be involved in VC. However, whether VSMC ferroptosis is regulated by posttranslational modifications remains undefined. METHODS We explored the potential role and mechanism of PARP1 (poly[ADP-ribose] polymerase 1)-mediated poly(ADP-ribosyl)ation (PARylation) in VSMC ferroptosis during VC. Mouse VSMCs were treated with β-glycerophosphate, and Parp1flox/flox Tagln Cre+ calcified mice were generated with AAV9-sh-POLG (DNA polymerase gamma) injected to establish in vitro and in vivo models, respectively. RNA-sequencing analysis was performed to determine the transcriptomic alterations in VSMCs overexpressing POLG and treated with β-glycerophosphate. RESULTS Both PARP1 expression and PARylation levels were increased in β-glycerophosphate-induced VC, with PARP1 knockdown mitigating VC by improving mitochondrial function and inhibiting the subsequent VSMC ferroptosis. Mechanistically, POLG PARylation levels were increased in calcified VSMCs from PARP1 activation, triggering PARylation-dependent ubiquitination of POLG that resulted in POLG downregulation. This led to mitochondrial dysfunction and Adora2a (adenosine receptor A2A)/Rap1 (Ras-associated protein 1) signaling pathway activation to induce VSMC ferroptosis, which ultimately aggravated VC. CONCLUSIONS Our study establishes the critical role of PARP1-mediated PARylation-dependent ubiquitination of POLG in VSMC ferroptosis-induced VC. These findings suggest that PARP1 inhibitors could potentially serve as novel therapeutic strategies for VC.
Collapse
Affiliation(s)
- Yiqing Yang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoxue Li
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shengjue Xiao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Qin Wei
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Liqun Ren
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Naifeng Liu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Huang Y, Zhan W, Song C, Tan M, Wu L, Wu S. The lncRNA SENCR knockdown alleviates vascular calcification via miR-4731-5p by suppressing endoplasmic reticulum stress. PLoS One 2025; 20:e0323058. [PMID: 40354352 PMCID: PMC12068569 DOI: 10.1371/journal.pone.0323058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Accumulation of calcium phosphate crystals is associated with vascular calcification (VC); however, the mechanism that promotes VC remains unclear. Accumulating evidence indicates that smooth muscle and endothelial cell-enriched migration/differentiation-associated lncRNA (SENCR) exerts a critical role in VC. This work focuses on the molecules involved in β-glycerophosphate-induced osteogenic differentiation of vascular smooth muscle cells (VSMCs) through SENCR epigenetic modification of Runx2 in an endoplasmic reticulum stress (ERS)-dependent manner. METHODS We cultured VSMCs to explore the relationship among β-glycerophosphate, SENCR, and VC and also investigate the function of SENCR in β-glycerophosphate-induced osteogenic differentiation and VC in vitro. RESULTS Our findings indicate that β-glycerophosphate enhanced SENCR, MSH homeobox 2, Runx2, ERS-related markers, alkaline phosphatase activity, and cellular calcium deposition and suppressed the expression of α-SMA, SM 22α, and miR-4731-5p. SENCR silencing increased miR-4731-5p expression, which subsequently inhibited β-glycerophosphate-associated endoplasmic reticulum stress at the post-transcriptional level. Critically, the facts that direct interplay between SENCR and miR-4731-5p, and the downregulation of miR-4731-5p efficiently reversed the suppression of ERS-induced by SENCR silencing were observed. Collectively, the present study clarifies a novel mechanism by which downregulation of SRNRC contributes to the ERS-dependent osteogenic differentiation of VSMCs and VC by sponging miR-4731-5p. This study demonstrates that SENCR/miR-4731-5p axis is involved in β-glycerophosphate-mediated VC in vitro.
Collapse
MESH Headings
- Endoplasmic Reticulum Stress/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/pathology
- Glycerophosphates/pharmacology
- Core Binding Factor Alpha 1 Subunit/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/drug effects
- Osteogenesis/genetics
- Osteogenesis/drug effects
- Myocytes, Smooth Muscle/metabolism
- Cells, Cultured
- Rats
- Gene Knockdown Techniques
Collapse
Affiliation(s)
- Yongpan Huang
- School of Medicine, Changsha Social Work College, Changsha, Hunan, China
| | - Wei Zhan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Chong Song
- School of Medicine, Changsha Social Work College, Changsha, Hunan, China
| | - Meihua Tan
- Hunan Carnation Endowment Industry Investment Real Estate Co., Ltd, Changsha, China
| | - Li Wu
- Hunan Carnation Endowment Industry Investment Real Estate Co., Ltd, Changsha, China
| | - Sina Wu
- Department of Respiratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Guo X, Liu S, Wu X, Yang R, Ren Q, Zhou Y, Shi K, Yuan L, Zhang N, Liu S. Alleviating vascular calcification with Bushen Huoxue formula in rats with chronic kidney disease by inhibiting the PTEN/PI3K/AKT signaling pathway through exosomal microRNA-32. J Pharm Pharmacol 2025; 77:550-563. [PMID: 39440885 DOI: 10.1093/jpp/rgae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 08/29/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Vascular calcification (VC) significantly raises cardiovascular mortality in chronic kidney disease (CKD) patients. VC is characterized by the phenotypic transformation of vascular smooth muscle cells (VSMCs) to osteoblast-like cells, mediated by exosomes derived from calcified VSMCs and the exosomal microRNAs (miRNA) which may trigger some signals to recipient VSMCs. Bushen Huoxue (BSHX) formula has demonstrated its clinical efficacy in CKD and its protective role in CKD-VC rats has also been observed. However, little is known about its underlying mechanism. METHODS To establish a VC model, aortic VSMCs from rats were induced to osteogenic differentiation by high-level phosphate (HP) in vitro. The expression of exosome and calcification makers were analyzed by western blot, including CD9, CD63, α-SMA, BMP-2, and Runx2, respectively. Differential expression of exosomal miRNAs in normal and HP-induced VSMCs were identified by using whole miRNA microarray technology. GO and KEGG analyses were performed to determine the significant enrichment of functions and signaling pathways in the target genes. In vivo, the CKD-VC rat model was established by administering adenine gavage combined with a high phosphorus diet. The rats were divided into normal control, model, low-dose BSHX, medium-dose BSHX, high-dose BSHX groups, and sevelamer groups. The blood biochemical parameters were measured. Renal histopathology and aortic calcification were observed. Western blot detected the levels of the calcification markers. Quantitative real-time PCR (qPCR) assay detected exosomal microRNA-32 (miR-32) mRNA expression in the aorta, the most differentially expressed exosomal miRNA previously identified. Phosphatase and tensin homolog located on chromosome ten (PTEN)/phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling pathway components were also tested by western blot. RESULTS Exosomal miRNA-32 and PI3K/AKT signaling pathways were highly differentially expressed between normal and HP-induced VSMCs. In vivo, BSHX improved blood biochemical parameters, renal histopathology, and aortic calcification in CKD-VC rats. BSHX increased the expression level of α-SMA and decreased the level of BMP-2 and Runx2. BSHX also lowered the expression level of exosomal miR-32 mRNA, enhanced PTEN expression, therefore, reduced p-PI3K and p-AKT levels in the aorta. CONCLUSION BSHX alleviated VC in CKD rats by downregulating exosomal miR-32 expression in the aorta, thereby promoting PTEN expression and inhibiting the PI3K/AKT signaling pathway.
Collapse
MESH Headings
- Animals
- Vascular Calcification/drug therapy
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/complications
- Exosomes/metabolism
- Exosomes/drug effects
- Signal Transduction/drug effects
- Male
- Drugs, Chinese Herbal/pharmacology
- Rats
- Proto-Oncogene Proteins c-akt/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Rats, Sprague-Dawley
- PTEN Phosphohydrolase/metabolism
- Disease Models, Animal
- Phosphatidylinositol 3-Kinases/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Cells, Cultured
Collapse
Affiliation(s)
- Xingyun Guo
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Fever Outpatient Clinic, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shiwei Liu
- Department of Nephrology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ronglu Yang
- Department of Traditional Chinese Medicine, The First Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Qiuyue Ren
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450003, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100007, China
| | - Kaifeng Shi
- Department of Nephrology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Lisha Yuan
- Department of Nephrology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ning Zhang
- Department of Nephrology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Shiyi Liu
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
5
|
Chen J, Ma C, Li J, Niu X, Fan Y. Collagen-mediated cardiovascular calcification. Int J Biol Macromol 2025; 301:140225. [PMID: 39864707 DOI: 10.1016/j.ijbiomac.2025.140225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Cardiovascular calcification is a pathological process commonly observed in the elderly. Based on the location of the calcification, cardiovascular calcification can be classified into two main types: vascular calcification and valvular calcification. Collagen plays a critical role in the development of cardiovascular calcification lesions. The content and type of collagen are the result of a dynamic balance between synthesis and degradation. Unregulated processes can lead to adverse outcomes. During cardiovascular calcification, collagen not only serves as a scaffold for ectopic mineral deposition but also acts as a signal transduction pathway that mediates calcification by guiding the aggregation and nucleation of matrix vesicles and promoting the proliferation, migration and phenotypic changes of cells involved in the lesion. This review provides an overview of collagen subtypes in the cardiovascular system under physiological conditions and discusses their distribution. Additionally, we introduce pathological changes and mechanisms of collagen in blood vessels and heart valves. Then, the formation process and characteristic stages of cardiovascular calcification are described. Finally, we highlight the role of collagen in cardiovascular calcification, explore strategied for mediating calcification, and suggest potential directions for future research.
Collapse
Affiliation(s)
- Junlin Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chunyang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China.
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Engineering Medicine, Beihang University, Beijing 100083, China.
| |
Collapse
|
6
|
Denman K, Blissett A, Glisic S, Weiss B, Zachariadou C, Awad H, Litsky A, Cray J, Lee BS, Foster BL, Agarwal G. Discoidin Domain Receptor 1 impacts bone microarchitecture with aging in female mice. JBMR Plus 2025; 9:ziae160. [PMID: 39776614 PMCID: PMC11701535 DOI: 10.1093/jbmrpl/ziae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Discoidin Domain Receptor 1 (DDR1) is a receptor tyrosine kinase that binds to and is activated by collagen(s), including collagen type I. Ddr1 deletion in osteoblasts and chondrocytes has previously demonstrated the importance of this receptor in bone development. In this study, we examined the effect of DDR1 ablation on bone architecture and mechanics as a function of aging. Femurs were collected from female global Ddr1 knockout (KO) and wild-type (WT) mice at 2, 6, and 12 mo of age and analyzed by high-resolution micro-computed tomography (μCT), mechanical testing, and histology. Primary monocytes were collected for in vitro osteoclastogenesis assays. Our studies on younger (2 mo) mice revealed no significant differences between the two genotypes and the microarchitectural and mechanical features had a similar trend as those reported earlier for osteoblast or chondrocyte specific Ddr1 knockdown. At an advanced age (12 mo), significant differences were noted across the two genotypes. μCT analysis showed a decrease in medullary cavity area as well as increased trabeculation in cortical and trabecular bone in the Ddr1 KO vs. WT mice. In addition, Ddr1 KO mouse bones exhibited reduced mechanical properties (lower peak load, yield load, and energy to yield) at 12 mo. Histological analysis revealed reduced osteoclast count in Ddr1 KO femurs at 12 mo with no significant difference in osteocyte count between the genotypes. In vitro, osteoclastogenesis was impaired in Ddr1 KO bone marrow derived cells. These results suggest that DDR1 deficiency adversely impacts osteoclast differentiation and bone remodeling in an age-dependent manner.
Collapse
Affiliation(s)
- Kimberly Denman
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, United States
| | - Angela Blissett
- Department of Pathology, The Ohio State University, Columbus, OH 43210, United States
| | - Stevan Glisic
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, United States
| | - Brent Weiss
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, United States
| | - Christina Zachariadou
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14260, United States
| | - Hani Awad
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY 14642, United States
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Alan Litsky
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, United States
| | - James Cray
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, United States
- Department of Biomedical Education and Anatomy, The Ohio State College of Medicine, Columbus, OH 43210, United States
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, United States
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, United States
| | - Gunjan Agarwal
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
7
|
Behzadi P, St Hilaire C. Metabolites and metabolism in vascular calcification: links between adenosine signaling and the methionine cycle. Am J Physiol Heart Circ Physiol 2024; 327:H1361-H1375. [PMID: 39453431 PMCID: PMC11588312 DOI: 10.1152/ajpheart.00267.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The global population of individuals with cardiovascular disease is expanding, and a key risk factor for major adverse cardiovascular events is vascular calcification. The pathogenesis of cardiovascular calcification is complex and multifaceted, with external cues driving epigenetic, transcriptional, and metabolic changes that promote vascular calcification. This review provides an overview of some of the lesser understood molecular processes involved in vascular calcification and discusses the links between calcification pathogenesis and aspects of adenosine signaling and the methionine pathway; the latter of which salvages the essential amino acid methionine, but also provides the substrate critical for methylation, a modification that regulates the function and activity of DNA and proteins. We explore the complex and dynamic nature of osteogenic reprogramming underlying intimal atherosclerotic calcification and medial arterial calcification (MAC). Atherosclerotic calcification is more widely studied; however, emerging studies now show that MAC is a significant pathology independent from atherosclerosis. Furthermore, we emphasize metabolite and metabolic-modulating factors that influence vascular calcification pathogenesis. Although the contributions of these mechanisms are more well-define in relation to atherosclerotic intimal calcification, understanding these pathways may provide crucial mechanistic insights into MAC and inform future therapeutic approaches. Herein, we highlight the significance of adenosine and methyltransferase pathways as key regulators of vascular calcification pathogenesis.
Collapse
Affiliation(s)
- Parya Behzadi
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
Liu M, Zhang J, Li X, Wang Y. Research progress of DDR1 inhibitors in the treatment of multiple human diseases. Eur J Med Chem 2024; 268:116291. [PMID: 38452728 DOI: 10.1016/j.ejmech.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase (RTK) and plays pivotal roles in regulating cellular functions such as proliferation, differentiation, invasion, migration, and matrix remodeling. DDR1 is involved in the occurrence and progression of many human diseases, including cancer, fibrosis, and inflammation. Therefore, DDR1 represents a highly promising therapeutic target. Although no selective small-molecule inhibitors have reached clinical trials to date, many molecules have shown therapeutic effects in preclinical studies. For example, BK40143 has demonstrated significant promise in the therapy of neurodegenerative diseases. In this context, our perspective aims to provide an in-depth exploration of DDR1, encompassing its structure characteristics, biological functions, and disease relevance. Furthermore, we emphasize the importance of understanding the structure-activity relationship of DDR1 inhibitors and highlight the unique advantages of dual-target or multitarget inhibitors. We anticipate offering valuable insights into the development of more efficacious DDR1-targeted drugs.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
9
|
Wei J, Li Z, Fan Y, Feng L, Zhong X, Li W, Guo T, Ning X, Li Z, Ou C. Lactobacillus rhamnosus GG aggravates vascular calcification in chronic kidney disease: A potential role for extracellular vesicles. Life Sci 2023; 331:122001. [PMID: 37625519 DOI: 10.1016/j.lfs.2023.122001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
AIMS Lactobacillus rhamnosus GG (LGG) is a probiotic with great promise in future clinical application, which can significantly promote bone formation. However, the effect of LGG on CKD-related vascular calcification is unclear. In this study, we aimed to investigate the effect of LGG on CKD-related vascular calcification. MATERIALS AND METHODS After 2 weeks of 5/6 nephrectomy, CKD rats received a special diet (4 % calcium and 1.8 % phosphate) combined with 1,25-dihydroxyvitamin D3 to induce vascular calcification. Meanwhile, CKD rats in the LGG group were gavaged orally with LGG (1 × 109 CFU bacteria/day). 16S RNA amplicon sequencing was performed to analyze the effect of LGG treatment on gut microbiota composition. Furthermore, differential ultracentrifugation was utilized to extract EVs. The effects of EVs on vascular calcification were evaluated in rat VSMCs, rat aortic rings, and CKD rat calcification models. In this study, vascular calcification was assessed by microcomputed tomography analysis, alizarin red staining, calcium content determination, and the expression of osteogenic transcription factors RUNX2 and BMP2. KEY FINDINGS LGG remarkably aggravated vascular calcification. LGG supplementation significantly altered gut microbiota composition in CKD rats, particularly increasing Lactobacillus. Interestingly, EVs presented a significant promoting effect on the development of calcification. Finally, mechanistic analysis proved that EVs aggravated vascular calcification through PI3K/AKT signaling. SIGNIFICANCE These results do not support the supplementation of LGG in CKD-associated vascular calcification patients. Our study presented a fresh perspective on LGG with potential risks and adverse effects. CKD patients should use specific probiotic strains cautiously.
Collapse
Affiliation(s)
- Jintao Wei
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China
| | - Zehua Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Ying Fan
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China
| | - Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xinglong Zhong
- Department of Cardiology, The Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Workers' Hospital, Liuzhou, PR China
| | - Weirun Li
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China
| | - Tingting Guo
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiaodong Ning
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China.
| | - Caiwen Ou
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China.
| |
Collapse
|
10
|
Franceschi RT, Hallett SA, Ge C. Discoidin domain receptors; an ancient family of collagen receptors has major roles in bone development, regeneration and metabolism. FRONTIERS IN DENTAL MEDICINE 2023; 4:1181817. [PMID: 38222874 PMCID: PMC10785288 DOI: 10.3389/fdmed.2023.1181817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
The extracellular matrix (ECM) niche plays a critical role in determining cellular behavior during bone development including the differentiation and lineage allocation of skeletal progenitor cells to chondrocytes, osteoblasts, or marrow adipocytes. As the major ECM component in mineralized tissues, collagen has instructive as well as structural roles during bone development and is required for bone cell differentiation. Cells sense their extracellular environment using specific cell surface receptors. For many years, specific β1 integrins were considered the main collagen receptors in bone, but, more recently, the important role of a second, more primordial collagen receptor family, the discoidin domain receptors, has become apparent. This review will specifically focus on the roles of discoidin domain receptors in mineralized tissue development as well as related functions in abnormal bone formation, regeneration and metabolism.
Collapse
Affiliation(s)
- Renny T. Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Shawn A. Hallett
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Chunxi Ge
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Liu J, Wang J, Liu Y, Xie SA, Zhang J, Zhao C, Zhou Y, Pang W, Yao W, Peng Q, Wang X, Zhou J. Liquid-Liquid Phase Separation of DDR1 Counteracts the Hippo Pathway to Orchestrate Arterial Stiffening. Circ Res 2023; 132:87-105. [PMID: 36475898 DOI: 10.1161/circresaha.122.322113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Hippo-YAP (yes-associated protein) signaling pathway is modulated in response to various environmental cues. Activation of YAP in vascular smooth muscle cells conveys the extracellular matrix stiffness-induced changes in vascular smooth muscle cells phenotype and behavior. Recent studies have established a mechanoreceptive role of receptor tyrosine kinase DDR1 (discoidin domain receptor 1) in vascular smooth muscle cells. METHODS We conduced 5/6 nephrectomy in vascular smooth muscle cells-specific Ddr1-knockout mice, accompanied by pharmacological inhibition of the Hippo pathway kinase LATS1 (large tumor suppressor 1), to investigate DDR1 in YAP activation. We utilized polyacrylamide gels of varying stiffness or the DDR1 ligand, type I collagen, to stimulate the cells. We employed multiple molecular biological techniques to explore the role of DDR1 in controlling the Hippo pathway and to determine the mechanistic basis by which DDR1 exerts this effect. RESULTS We identified the requirement for DDR1 in stiffness/collagen-induced YAP activation. We uncovered that DDR1 underwent stiffness/collagen binding-stimulated liquid-liquid phase separation and co-condensed with LATS1 to inactivate LATS1. Mutagenesis experiments revealed that the transmembrane domain is responsible for DDR1 droplet formation. Purified DDR1 N-terminal and transmembrane domain was sufficient to drive its reversible condensation. Depletion of the DDR1 C-terminus led to failure in co-condensation with LATS1. Interaction between the DDR1 C-terminus and LATS1 competitively inhibited binding of MOB1 (Mps one binder 1) to LATS1 and thus the subsequent phosphorylation of LATS1. Introduction of the single-point mutants, histidine-745-proline and histidine-902-proline, to DDR1 on the C-terminus abolished the co-condensation. In mouse models, YAP activity was positively correlated with collagen I expression and arterial stiffness. LATS1 inhibition reactivated the YAP signaling in Ddr1-deficient vessels and abrogated the arterial softening effect of Ddr1 deficiency. CONCLUSIONS These findings identify DDR1 as a mediator of YAP activation by mechanical and chemical stimuli and demonstrate that DDR1 regulates LATS1 phosphorylation in an liquid-liquid phase separation-dependent manner.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.)
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.).,Beijing Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China (J.W.)
| | - Yueqi Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.)
| | - Si-An Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.)
| | - Jianrui Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.)
| | - Chuanrong Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.)
| | - Yuan Zhou
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China (Y.Z.)
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.)
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.)
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, China (Q.P.)
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, China (X.W.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.)
| |
Collapse
|
12
|
Jiang Y, Qian HY. Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis. Mol Med 2023; 29:2. [PMID: 36604627 PMCID: PMC9817296 DOI: 10.1186/s10020-022-00586-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS), leading to gradual occlusion of the arterial lumen, refers to the accumulation of lipids and inflammatory debris in the arterial wall. Despite therapeutic advances over past decades including intervention or surgery, atherosclerosis is still the most common cause of cardiovascular diseases and the main mechanism of death and disability worldwide. Vascular smooth muscle cells (VSMCs) play an imperative role in the occurrence of atherosclerosis and throughout the whole stages. In the past, there was a lack of comprehensive understanding of VSMCs, but the development of identification technology, including in vivo single-cell sequencing technology and lineage tracing with the CreERT2-loxP system, suggests that VSMCs have remarkable plasticity and reevaluates well-established concepts about the contribution of VSMCs. Transcription factors, a kind of protein molecule that specifically recognizes and binds DNA upstream promoter regions or distal enhancer DNA elements, play a key role in the transcription initiation of the coding genes and are necessary for RNA polymerase to bind gene promoters. In this review, we highlight that, except for environmental factors, VSMC genes are transcriptionally regulated through complex interactions of multiple conserved cis-regulatory elements and transcription factors. In addition, through a series of transcription-related regulatory processes, VSMCs could undergo phenotypic transformation, proliferation, migration, calcification and apoptosis. Finally, enhancing or inhibiting transcription factors can regulate the development of atherosclerotic lesions, and the downstream molecular mechanism of transcriptional regulation has also been widely studied.
Collapse
Affiliation(s)
- Yu Jiang
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| | - Hai-Yan Qian
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| |
Collapse
|
13
|
Li X, Chen H, Zhang D. Discoidin domain receptor 1 may be involved in biological barrier homeostasis. J Clin Pharm Ther 2022; 47:2397-2407. [PMID: 35665520 DOI: 10.1111/jcpt.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase involved in the pathological processes of several diseases, such as keloid formation, renal fibrosis, atherosclerosis, tumours, and inflammatory processes. The biological barrier is the first line of defence against pathogens, and its disruption is closely related to diseases. In this review, we attempt to elucidate the relationship between DDR1 and the biological barrier, explore the potential biological value of DDR1, and review the current research status and clinical potential of DDR1-selective inhibitors. METHODS We conducted an extensive literature search on PubMed to collect studies on the relevance of DDR1 to biological barriers and DDR1-selective inhibitors. With these studies, we explored the relationship between DDR1 and biological barriers and briefly reviewed representative DDR1-selective inhibitors that have been reported in recent years. RESULTS AND DISCUSSION First, the review of the potential mechanisms by which DDR1 regulates biological barriers, including the epithelial, vascular, glomerular filtration, blood-labyrinth, and blood-brain barriers. In the body, DDR1 dysfunction and aberrant expression may be involved in the homeostasis of the biological barrier. Secondly, the review of DDR1 inhibitors reported in recent years shows that DDR1-targeted inhibition is an attractive and promising pharmacological intervention. WHAT IS NEW AND CONCLUSIONS This review shows that DDR1 is involved in various physiological and pathological processes and in the regulation of biological barrier homeostasis. However, studies on DDR1 and biological barriers are still scarce, and further studies are needed to elucidate their specific mechanisms. The development of targeted inhibitors provides a new direction and idea to study the mechanism of DDR1.
Collapse
Affiliation(s)
- Xiaoli Li
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Huiling Chen
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, LanZhou University, Lanzhou, China
| |
Collapse
|
14
|
Abstract
ABSTRACT Vascular calcification is a pathological process characterized by ectopic calcification of the vascular wall. Medial calcifications are most often associated with kidney disease, diabetes, hypertension, and advanced age. Intimal calcifications are associated with atherosclerosis. Collagen can regulate mineralization by binding to apatite minerals and promoting their deposition, binding to collagen receptors to initiate signal transduction, and inducing cell transdifferentiation. In the process of vascular calcification, type I collagen is not only the scaffold for mineral deposition but also a signal entity, guiding the distribution, aggregation, and nucleation of vesicles and promoting the transformation of vascular smooth muscle cells into osteochondral-like cells. In recent years, collagen has been shown to affect vascular calcification through collagen disc-domain receptors, matrix vesicles, and transdifferentiation of vascular smooth muscle cells.
Collapse
|
15
|
Zhao W, He C, Jiang J, Zhao Z, Yuan H, Wang F, Shen B. The role of discoid domain receptor 1 on renal tubular epithelial pyroptosis in diabetic nephropathy. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:427-438. [PMID: 36302618 PMCID: PMC9614395 DOI: 10.4196/kjpp.2022.26.6.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Pyroptosis, a form of cell death associated with inflammation, is known to be involved in diabetic nephropathy (DN), and discoid domain receptor 1 (DDR1), an inflammatory regulatory protein, is reported to be associated with diabetes. However, the mechanism underlying DDR1 regulation and pyroptosis in DN remains unknown. We aimed to investigate the effect of DDR1 on renal tubular epithelial cell pyroptosis and the mechanism underlying DN. In this study, we used high glucose (HG)-treated HK-2 cells and rats with a single intraperitoneal injection of streptozotocin as DN models. Subsequently, the expression of pyroptosis-related proteins (cleaved caspase-1, GSDMD-N, Interleukin-1β [IL-1β], and interleukin-18 [IL-18]), DDR1, phosphorylated NF-κB (p-NF-κB), and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes were determined through Western blotting. IL-1β and IL-18 levels were determined using ELISA. The rate of pyroptosis was assessed by propidium iodide (PI) staining. The results revealed upregulated expression of pyroptosis-related proteins and increased concentration of IL-1β and IL-18, accompanied by DDR1, p-NF-κB, and NLRP3 upregulation in DN rat kidney tissues and HG-treated HK-2 cells. Moreover, DDR1 knockdown in the background of HG treatment resulted in inhibited expression of pyroptosis-related proteins and attenuation of IL-1β and IL-18 production and PI-positive cell frequency via the NF-κB/NLRP3 pathway in HK-2 cells. However, NLRP3 overexpression reversed the effect of DDR1 knockdown on pyroptosis. In conclusion, we demonstrated that DDR1 may be associated with pyroptosis, and DDR1 knockdown inhibited HG-induced renal tubular epithelial cell pyroptosis. The NF-κB/NLRP3 pathway is probably involved in the underlying mechanism of these findings.
Collapse
Affiliation(s)
- Weichen Zhao
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Chunyuan He
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Junjie Jiang
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Zongbiao Zhao
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Hongzhong Yuan
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Facai Wang
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Bingxiang Shen
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| |
Collapse
|
16
|
Masbuchin AN, Widodo, Rohman MS, Liu PY. The two facets of receptor tyrosine kinase in cardiovascular calcification-can tyrosine kinase inhibitors benefit cardiovascular system? Front Cardiovasc Med 2022; 9:986570. [PMID: 36237897 PMCID: PMC9552878 DOI: 10.3389/fcvm.2022.986570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are widely used in cancer treatment due to their effectiveness in cancer cell killing. However, an off-target of this agent limits its success. Cardiotoxicity-associated TKIs have been widely reported. Tyrosine kinase is involved in many regulatory processes in a cell, and it is involved in cancer formation. Recent evidence suggests the role of tyrosine kinase in cardiovascular calcification, specifically, the calcification of heart vessels and valves. Herein, we summarized the accumulating evidence of the crucial role of receptor tyrosine kinase (RTK) in cardiovascular calcification and provided the potential clinical implication of TKIs-related ectopic calcification. We found that RTKs, depending on the ligand and tissue, can induce or suppress cardiovascular calcification. Therefore, RTKs may have varying effects on ectopic calcification. Additionally, in the context of cardiovascular calcification, TKIs do not always relate to an unfavored outcome-they might offer benefits in some cases.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Widodo
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Sinha S, Haque M. Obesity, Diabetes Mellitus, and Vascular Impediment as Consequences of Excess Processed Food Consumption. Cureus 2022; 14:e28762. [PMID: 36105908 PMCID: PMC9441778 DOI: 10.7759/cureus.28762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 12/15/2022] Open
Abstract
Regular intake of ready-to-eat meals is related to obesity and several noninfectious illnesses, such as cardiovascular diseases, hypertension, diabetes mellitus (DM), and tumors. Processed foods contain high calories and are often enhanced with excess refined sugar, saturated and trans fat, Na+ andphosphate-containing taste enhancers, and preservatives. Studies showed that monosodium glutamate (MSG) induces raised echelons of oxidative stress, and excessive hepatic lipogenesis is concomitant to obesity and type 2 diabetes mellitus (T2DM). Likewise, more than standard salt intake adversely affects the cardiovascular system, renal system, and central nervous system (CNS), especially the brain. Globally, excessive utilization of phosphate-containing preservatives and additives contributes unswervingly to excessive phosphate intake through food. In addition, communities and even health experts, including medical doctors, are not well-informed about the adverse effects of phosphate preservatives on human health. Dietary phosphate excess often leads to phosphate toxicity, ultimately potentiating kidney disease development. The mechanisms involved in phosphate-related adverse effects are not explainable. Study reports suggested that high blood level of phosphate causes vascular ossification through the deposition of Ca2+ and substantially alters fibroblast growth factor-23 (FGF23) and calcitriol.
Collapse
|
18
|
Li X, Li Q, Xiong B, Chen H, Wang X, Zhang D. Discoidin domain receptor 1(DDR1) promote intestinal barrier disruption in Ulcerative Colitis through tight junction proteins degradation and epithelium apoptosis. Pharmacol Res 2022; 183:106368. [PMID: 35905891 DOI: 10.1016/j.phrs.2022.106368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Discoidin domain receptor 1 (DDR1) encodes a receptor tyrosine kinase involved in multiple physiological and pathological processes. DDR1 is expressed in the intestinal epithelium, but its role in Ulcerative Colitis (UC) is poorly understand. This study aimed to identify the function of DDR1 in maintaining the homeostasis of UC. METHODS The DDR1 expression level in non-inflamed and inflamed colon samples from IBD patients were assessed. DDR1 knock-out (DDR1-/-) and wild-type (WT) mice were administered dextran sulfate sodium (DSS) to induce colitis and assessed based on colitis symptoms. In addition, intestinal epithelial barrier injury was induced by TNF-α and IFN-γ incubation to cell monolayers transfected with PCDH-DDR1 or pLKO.1-sh-DDR1-1 plasmids. The effect of DDR1 in regulating barrier integrity, tight junctions (TJ) protein status, and cell apoptosis was investigated in vivo and in vitro. Furthermore, the activation of the NF-κB p65-MLCK-p-MLC2 pathway was also investigated. RESULTS Decreased DDR1 expression levels were observed at the inflamed sites compared with the non-inflamed. DDR1-/- mice had alleviated intestinal mucosal barrier injuries, upregulated TJ proteins, decreased epithelium apoptosis from DSS-induced colitis, and reduced proinflammatory cytokines production in the colon. These findings were further confirmed in vitro. DDR1 over-expression aggravated the TNF-α/IFN-γ-induced TJ disruption, while DDR1 shRNA prevented TJ damage even in the presence of JSH-23. DDR1 dependently destroyed the intestinal barrier via the NF-κB p65-MLCK-p-MLC2 pathway. CONCLUSION Our findings revealed that DDR1 regulated the intestinal barrier in colitis by modulating TJ proteins expression and epithelium apoptosis, making it a potential target of UC.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Qianqian Li
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Bin Xiong
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Huiling Chen
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China; Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
19
|
Chen C, Wu Y, Lu HL, Liu K, Qin X. Identification of potential biomarkers of vascular calcification using bioinformatics analysis and validation in vivo. PeerJ 2022; 10:e13138. [PMID: 35313524 PMCID: PMC8934046 DOI: 10.7717/peerj.13138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 01/12/2023] Open
Abstract
Background Vascular calcification (VC) is the most widespread pathological change in diseases of the vascular system. However, we know poorly about the molecular mechanisms and effective therapeutic approaches of VC. Methods The VC dataset, GSE146638, was downloaded from the Gene Expression Omnibus (GEO) database. Using the edgeR package to screen Differentially expressed genes (DEGs). Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to find pathways affecting VC. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on the DEGs. Meanwhile, using the String database and Cytoscape software to construct protein-protein interaction (PPI) networks and identify hub genes with the highest module scores. Correlation analysis was performed for hub genes. Receiver operating characteristic (ROC) curves, expression level analysis, GSEA, and subcellular localization were performed for each hub gene. Expression of hub genes in normal and calcified vascular tissues was verified by quantitative reverse transcription PCR (RT-qPCR) and immunohistochemistry (IHC) experiments. The hub gene-related miRNA-mRNA and TF-mRNA networks were constructed and functionally enriched for analysis. Finally, the DGIdb database was utilized to search for alternative drugs targeting VC hub genes. Results By comparing the genes with normal vessels, there were 64 DEGs in mildly calcified vessels and 650 DEGs in severely calcified vessels. Spp1, Sost, Col1a1, Fn1, and Ibsp were central in the progression of the entire VC by the MCODE plug-in. These hub genes are primarily enriched in ossification, extracellular matrix, and ECM-receptor interactions. Expression level results showed that Spp1, Sost, Ibsp, and Fn1 were significantly highly expressed in VC, and Col1a1 was incredibly low. RT-qPCR and IHC validation results were consistent with bioinformatic analysis. We found multiple pathways of hub genes acting in VC and identified 16 targeting drugs. Conclusions This study perfected the molecular regulatory mechanism of VC. Our results indicated that Spp1, Sost, Col1a1, Fn1, and Ibsp could be potential novel biomarkers for VC and promising therapeutic targets.
Collapse
Affiliation(s)
- Chuanzhen Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Hai-lin Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Kai Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xiao Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
20
|
Zhang F, Li J, Gu C, Zhang H. MiR-140-5p upregulation suppressed β-glycerophosphate-induced vascular smooth muscle cell calcification via targeting TLR4. Immunopharmacol Immunotoxicol 2022; 44:295-305. [PMID: 35272550 DOI: 10.1080/08923973.2022.2043896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The role and function of microRNA (miRNA, miR)-140-5p in the calcification of vascular smooth muscle cells (VSMCs) have been explored in this study. METHODS The calcium nodules formed in transfected and β-glycerophosphate (β-GP)-treated VSMCs were observed using Alizarin Red S staining, and alkaline phosphatase (ALP) activity was determined. VSMC apoptosis was detected with flow cytometry assay. The target gene of miR-140-5p was predicted and confirmed with dual-luciferase reporter assay. Relative expressions of miR-140-5p, toll like receptor 4 (TLR4) and vascular calcification-related proteins (α-smooth muscle actin, α-SMA; Msh Homeobox 2, MSX2; bone morphogenetic protein 2, BMP2; Kruppel-like factor 4, KLF4; Runt-related transcription factor 2, RUNX2) were measured through quantitative real time polymerase chain reaction (qRT-PCR) and western blot. RESULTS MiR-140-5p upregulation reversed the effects of β-GP on downregulating miR-140-5p and α-SMA expressions, enhancing ALP activity, calcium nodule formation and cell apoptosis, and upregulating levels of MSX2, BMP2, KLF4 and RUNX2. TLR4 was the target of miR-140-5p, and offset the effects of miR-140-5p on β-GP-induced VSMCs. CONCLUSIONS MiR-140-5p upregulation represses β-GP-induced calcification of VSMCs via targeting TLR4, providing a potential therapeutic method for vascular calcification.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jingxing Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengxiong Gu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haibo Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Image-Based Annotation of Chemogenomic Libraries for Phenotypic Screening. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041439. [PMID: 35209227 PMCID: PMC8878468 DOI: 10.3390/molecules27041439] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Phenotypical screening is a widely used approach in drug discovery for the identification of small molecules with cellular activities. However, functional annotation of identified hits often poses a challenge. The development of small molecules with narrow or exclusive target selectivity such as chemical probes and chemogenomic (CG) libraries, greatly diminishes this challenge, but non-specific effects caused by compound toxicity or interference with basic cellular functions still pose a problem to associate phenotypic readouts with molecular targets. Hence, each compound should ideally be comprehensively characterized regarding its effects on general cell functions. Here, we report an optimized live-cell multiplexed assay that classifies cells based on nuclear morphology, presenting an excellent indicator for cellular responses such as early apoptosis and necrosis. This basic readout in combination with the detection of other general cell damaging activities of small molecules such as changes in cytoskeletal morphology, cell cycle and mitochondrial health provides a comprehensive time-dependent characterization of the effect of small molecules on cellular health in a single experiment. The developed high-content assay offers multi-dimensional comprehensive characterization that can be used to delineate generic effects regarding cell functions and cell viability, allowing an assessment of compound suitability for subsequent detailed phenotypic and mechanistic studies.
Collapse
|
22
|
Vascular Pathobiology: Atherosclerosis and Large Vessel Disease. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Feng L, Que D, Li Z, Zhong X, Yan J, Wei J, Zhang X, Yang P, Ou C, Chen M. Dihydromyricetin ameliorates vascular calcification in chronic kidney disease by targeting AKT signaling. Clin Sci (Lond) 2021; 135:2483-2502. [PMID: 34643227 DOI: 10.1042/cs20210259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/29/2022]
Abstract
Vascular calcification is highly prevalent in chronic kidney disease (CKD), and is characterized by transdifferentiation from contractile vascular smooth muscle cells (VSMCs) into an osteogenic phenotype. However, no effective and therapeutic option to prevent vascular calcification is yet available. Dihydromyricetin (DMY), a bioactive flavonoid isolated from Ampelopsis grossedentata, has been found to inhibit VSMCs proliferation and the injury-induced neointimal formation. However, whether DMY has an effect on osteogenic differentiation of VSMCs and vascular calcification is still unclear. In the present study, we sought to investigate the effect of DMY on vascular calcification in CKD and the underlying mechanism. DMY treatment significantly attenuated calcium/phosphate-induced calcification of rat and human VSMCs in a dose-dependent manner, as shown by Alizarin Red S staining and calcium content assay, associated with down-regulation of osteogenic markers including type I collagen (COL I), Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2) and osteocalcin (OCN). These results were further confirmed in aortic rings ex vivo. Moreover, DMY ameliorated vascular calcification in rats with CKD. Additionally, we found that AKT signaling was activated during vascular calcification, whereas significantly inhibited by DMY administration. DMY treatment significantly reversed AKT activator-induced vascular calcification. Furthermore, inhibition of AKT signaling efficiently attenuated calcification, which was similar to that after treatment with DMY alone, and DMY had a better inhibitory effect on calcification as compared with AKT inhibitor. The present study demonstrated that DMY has a potent inhibitory role in vascular calcification partially by inhibiting AKT activation, suggesting that DMY may act as a promising therapeutic candidate for patients suffering from vascular calcification.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/enzymology
- Aorta/pathology
- Aortic Diseases/enzymology
- Aortic Diseases/etiology
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Cells, Cultured
- Disease Models, Animal
- Flavonols/pharmacology
- Humans
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Osteogenesis/drug effects
- Phosphorylation
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/enzymology
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Vascular Calcification/enzymology
- Vascular Calcification/etiology
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
- Rats
Collapse
Affiliation(s)
- Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Dongdong Que
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zehua Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xinglong Zhong
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jintao Wei
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiuli Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Caiwen Ou
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Minsheng Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
24
|
He HQ, Qu YQ, Kwan Law BY, Qiu CL, Han Y, Ricardo de Seabra Rodrigues Dias I, Liu Y, Zhang J, Wu AG, Wu CW, Fai Mok SW, Cheng X, He YZ, Wai Wong VK. AGEs-Induced Calcification and Apoptosis in Human Vascular Smooth Muscle Cells Is Reversed by Inhibition of Autophagy. Front Pharmacol 2021; 12:692431. [PMID: 34744705 PMCID: PMC8564286 DOI: 10.3389/fphar.2021.692431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular calcification (VC) in macrovascular and peripheral blood vessels is one of the main factors leading to diabetes mellitus (DM) and death. Apart from the induction of vascular calcification, advanced glycation end products (AGEs) have also been reported to modulate autophagy and apoptosis in DM. Autophagy plays a role in maintaining the stabilization of the external and internal microenvironment. This process is vital for regulating arteriosclerosis. However, the internal mechanisms of this pathogenic process are still unclear. Besides, the relationship among autophagy, apoptosis, and calcification in HASMCs upon AGEs exposure has not been reported in detail. In this study, we established a calcification model of SMC through the intervention of AGEs. It was found that the calcification was upregulated in AGEs treated HASMCs when autophagy and apoptosis were activated. In the country, AGEs-activated calcification and apoptosis were suppressed in Atg7 knockout cells or pretreated with wortmannin (WM), an autophagy inhibitor. These results provide new insights to conduct further investigations on the potential clinical applications for autophagy inhibitors in the treatment of diabetes-related vascular calcification.
Collapse
Affiliation(s)
- Hu-Qiang He
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuan-Qing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, China
| | - Cong-Ling Qiu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yu Han
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ivo Ricardo de Seabra Rodrigues Dias
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yong Liu
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - An-Guo Wu
- Laboratory of Chinese Materia Medical, School of Pharmacy, Southwest Medical University, Luzhou, China.,Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Cheng-Wen Wu
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Simon Wing Fai Mok
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xin Cheng
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Affiliated Hospital of Ya'an Polytechnic College, Ya'an, China
| | - Yan-Zheng He
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, China
| |
Collapse
|
25
|
Yan L, Xie X, Niu BX, Wu MT, Tong WQ, He SY, Huang CY, Zhao WC, Li G, Li NS, Jiang JL. Involvement of miR-199a-3p/DDR1 in vascular endothelial cell senescence in diabetes. Eur J Pharmacol 2021; 908:174317. [PMID: 34270989 DOI: 10.1016/j.ejphar.2021.174317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Endothelial cell dysfunction is a prominent feature of diabetic cardiovascular complications, and endothelial cell senescence is considered to be an important contributor to endothelial dysfunction. Discoidin domain receptor 1 (DDR1) has been reported to be involved in atherogenesis and cerebral ischemia/reperfusion injury. In this study, we aimed to explore the role of DDR1 in endothelial cell senescence under diabetic conditions and elucidate the underlying mechanisms. A diabetic rat model was established by a single intraperitoneal injection of streptozocin (STZ) (60 mg/kg), which showed an increase in senescence-associated β-galactosidase (SA-β-gal) staining signal of thoracic aortic endothelium, impaired vascular structure and function, accompanied by an up-regulation of DDR1. Next, we verified the role of DDR1 in endothelial senescence and the underlying mechanisms in high glucose-treated human umbilical vein endothelial cells (HUVECs). Consistent with the in vivo findings, high glucose induced endothelial senescence, impaired endothelial function and elevated DDR1 expression, accompanied by the elevation of senescence-related genes p53 and p21 expression, and these effects were reversed by DDR1 siRNA. DDR1 has been documented to be a potential target of miR-199a-3p. Here, we found that miR-199a-3p was down-regulated by high glucose in the aorta tissue and HUVECs, while miR-199a-3p mimic significantly suppressed increased endothelial senescence and elevated DDR1 induced by high glucose. In conclusion, our data demonstrated that miR-199a-3p/DDR1/p53/p21 signaling pathway was involved in endothelial senescence under diabetic conditions, and therapeutic targeting DDR1 would be exploited to inhibit endothelial senescence owing to high glucose exposure.
Collapse
Affiliation(s)
- Li Yan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Departments of Pharmacy, Wuhan Asia General Hospital, Wuhan, 430056, China
| | - Xu Xie
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Bing-Xuan Niu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Mei-Ting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Wei-Qiang Tong
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Shuang-Yi He
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Chu-Yi Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Wei-Chen Zhao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Ge Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Nian-Sheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jun-Lin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
26
|
Procyanidin B2 Reduces Vascular Calcification through Inactivation of ERK1/2-RUNX2 Pathway. Antioxidants (Basel) 2021; 10:antiox10060916. [PMID: 34198832 PMCID: PMC8228429 DOI: 10.3390/antiox10060916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
Vascular calcification is strongly associated with atherosclerotic plaque burden and plaque instability. The activation of extracellular signal-regulated kinase 1/2 (ERK1/2) increases runt related transcription factor 2 (RUNX2) expression to promote vascular calcification. Procyanidin B2 (PB2), a potent antioxidant, can inhibit ERK1/2 activation in human aortic smooth muscle cells (HASMCs). However, the effects and involved mechanisms of PB2 on atherosclerotic calcification remain unknown. In current study, we fed apoE-deficient (apoE−/−) mice a high-fat diet (HFD) while treating the animals with PB2 for 18 weeks. At the end of the study, we collected blood and aorta samples to determine atherosclerosis and vascular calcification. We found PB2 treatment decreased lesions in en face aorta, thoracic, and abdominal aortas by 21.4, 24.6, and 33.5%, respectively, and reduced sinus lesions in the aortic root by 17.1%. PB2 also increased α-smooth muscle actin expression and collagen content in lesion areas. In the aortic root, PB2 reduced atherosclerotic calcification areas by 75.8%. In vitro, PB2 inhibited inorganic phosphate-induced osteogenesis in HASMCs and aortic rings. Mechanistically, the expression of bone morphogenetic protein 2 and RUNX2 were markedly downregulated by PB2 treatment. Additionally, PB2 inhibited ERK1/2 phosphorylation in the aortic root plaques of apoE−/− mice and calcified HASMCs. Reciprocally, the activation of ERK1/2 phosphorylation by C2-MEK1-mut or epidermal growth factor can partially restore the PB2-inhibited RUNX2 expression or HASMC calcification. In conclusion, our study demonstrates that PB2 inhibits vascular calcification through the inactivation of the ERK1/2-RUNX2 pathway. Our study also suggests that PB2 can be a potential option for vascular calcification treatment.
Collapse
|
27
|
Freise C, Querfeld U, Ludwig A, Hamm B, Schnorr J, Taupitz M. Uraemic extracellular vesicles augment osteogenic transdifferentiation of vascular smooth muscle cells via enhanced AKT signalling and PiT-1 expression. J Cell Mol Med 2021; 25:5602-5614. [PMID: 33960650 PMCID: PMC8184672 DOI: 10.1111/jcmm.16572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EV) function as messengers between endothelial cells (EC) and vascular smooth muscle cells (VSMC). Since chronic kidney disease (CKD) increases the risk for vascular calcifications, we investigated whether EV derived from uraemic milieu‐stimulated EC and derived from uraemic rats impact the osteogenic transdifferentiation/calcification of VSMC. For that purpose, human EC were treated with urea and indoxyl sulphate or left untreated. Experimental uraemia in rats was induced by adenine feeding. ‘Uraemic’ and control EV (EVUR; EVCTRL) were isolated from supernatants and plasma by using an exosome isolation reagent. Rat VSMC were treated with a pro‐calcifying medium (CM) with or without EV supplementation. Gene expressions, miRNA contents and protein expressions were determined by qPCR and Western blots, respectively. Calcifications were determined by colorimetric assays. Delivery of miRNA inhibitors/mimics to EV and siRNA to VSMC was achieved via transfection. EVCTRL and EVUR differed in size and miRNA contents. Contrary to EVCTRL, EC‐ and plasma‐derived EVUR significantly increased the pro‐calcifying effects of CM, including altered gene expressions of osterix, runx2, osteocalcin and SM22α. Further, EVUR enhanced the protein expression of the phosphate transporter PiT‐1 in VSMC and induced a phosphorylation of AKT and ERK. Knock down of PiT‐1 and individual inhibition of AKT and ERK signalling in VSMC blocked the pro‐calcifying effects of EVUR. Similar effects were achieved by inhibition of miR‐221/‐222 and mimicking of miR‐143/‐145 in EVUR. In conclusion, EVUR might represent an additional puzzle piece of the complex pathophysiology of vascular calcifications in CKD.
Collapse
Affiliation(s)
- Christian Freise
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Uwe Querfeld
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Antje Ludwig
- Department of Cardiology and Angiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthias Taupitz
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
28
|
Aikawa E, Blaser MC. 2020 Jeffrey M. Hoeg Award Lecture: Calcifying Extracellular Vesicles as Building Blocks of Microcalcifications in Cardiovascular Disorders. Arterioscler Thromb Vasc Biol 2021; 41:117-127. [PMID: 33115271 PMCID: PMC7832175 DOI: 10.1161/atvbaha.120.314704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular calcification is an insidious form of ectopic tissue mineralization that presents as a frequent comorbidity of atherosclerosis, aortic valve stenosis, diabetes, renal failure, and chronic inflammation. Calcification of the vasculature and heart valves contributes to mortality in these diseases. An inability to clinically image or detect early microcalcification coupled with an utter lack of pharmaceutical therapies capable of inhibiting or regressing entrenched and detectable macrocalcification has led to a prominent and deadly gap in care for a growing portion of our rapidly aging population. Recognition of this mounting concern has arisen over the past decade and led to a series of revolutionary works that has begun to pull back the curtain on the pathogenesis, mechanistic basis, and causative drivers of cardiovascular calcification. Central to this progress is the discovery that calcifying extracellular vesicles act as active precursors of cardiovascular microcalcification in diverse vascular beds. More recently, the omics revolution has resulted in the collection and quantification of vast amounts of molecular-level data. As the field has become poised to leverage these resources for drug discovery, new means of deriving relevant biological insights from these rich and complex datasets have come into focus through the careful application of systems biology and network medicine approaches. As we look onward toward the next decade, we envision a growing need to standardize approaches to study this complex and multifaceted clinical problem and expect that a push to translate mechanistic findings into therapeutics will begin to finally provide relief for those impacted by this disease.
Collapse
Affiliation(s)
- Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Romayor I, Badiola I, Benedicto A, Márquez J, Herrero A, Arteta B, Olaso E. Silencing of sinusoidal DDR1 reduces murine liver metastasis by colon carcinoma. Sci Rep 2020; 10:18398. [PMID: 33110221 PMCID: PMC7591579 DOI: 10.1038/s41598-020-75395-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Liver metastasis depends on the collagenous microenvironment generated by hepatic sinusoidal cells (SCs). DDR1 is an atypical collagen receptor linked to tumor progression, but whether SCs express DDR1 and its implication in liver metastasis remain unknown. Freshly isolated hepatic stellate cells (HSCs), Kupffer cells (KCs), and liver sinusoidal endothelial cells (LSECs), that conform the SCs, expressed functional DDR1. HSCs expressed the largest amounts. C26 colon carcinoma secretomes increased DDR1 phosphorylation in HSCs and KCs by collagen I. Inhibition of kinase activity by DDR1-IN-1 or mRNA silencing of DDR1 reduced HSCs secretion of MMP2/9 and chemoattractant and proliferative factors for LSECs and C26 cells. DDR1-IN-1 did not modify MMP2/9 in KCs or LSECs secretomes, but decreased the enhancement of C26 migration and proliferation induced by their secretomes. Gene array showed that DDR1 silencing downregulated HSCs genes for collagens, MMPs, interleukins and chemokines. Silencing of DDR1 before tumor inoculation reduced hepatic C26 metastasis in mice. Silenced livers bore less tumor foci than controls. Metastatic foci in DDR1 silenced mice were smaller and contained an altered stroma with fewer SCs, proliferating cells, collagen and MMPs than foci in control mice. In conclusion, hepatic DDR1 promotes C26 liver metastasis and favors the pro-metastatic response of SCs to the tumor.
Collapse
Affiliation(s)
- Irene Romayor
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48940, Leioa, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, 48940, Leioa, Spain
| | - Aitor Benedicto
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48940, Leioa, Spain
| | - Joana Márquez
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48940, Leioa, Spain
| | - Alba Herrero
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48940, Leioa, Spain
| | - Beatriz Arteta
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48940, Leioa, Spain
| | - Elvira Olaso
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48940, Leioa, Spain.
| |
Collapse
|
30
|
Chou LY, Chen CH, Chuang SC, Cheng TL, Lin YH, Chou HC, Fu YC, Wang YH, Wang CZ. Discoidin Domain Receptor 1 Regulates Runx2 during Osteogenesis of Osteoblasts and Promotes Bone Ossification via Phosphorylation of p38. Int J Mol Sci 2020; 21:E7210. [PMID: 33003599 PMCID: PMC7582985 DOI: 10.3390/ijms21197210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Discoidin domain receptor 1 (Drd1) is a collagen-binding membrane protein, but its role in osteoblasts during osteogenesis remains undefined. We generated inducible osteoblast-specific Ddr1 knockout (OKOΔDdr1) mice; their stature at birth, body weight and body length were significantly decreased compared with those of control Ddr1f/f-4OHT mice. We hypothesize that Ddr1 regulates osteogenesis of osteoblasts. Micro-CT showed that compared to 4-week-old Ddr1f/f-4OHT mice, OKOΔDdr1 mice presented significant decreases in cancellous bone volume and trabecular number and significant increases in trabecular separation. The cortical bone volume was decreased in OKOΔDdr1 mice, resulting in decreased mechanical properties of femurs compared with those of Ddr1f/f-4OHT mice. In femurs of 4-week-old OKOΔDdr1 mice, H&E staining showed fewer osteocytes and decreased cortical bone thickness than Ddr1f/f-4OHT. Osteoblast differentiation markers, including BMP2, Runx2, alkaline phosphatase (ALP), Col-I and OC, were decreased compared with those of control mice. Ddr1 knockdown in osteoblasts resulted in decreased mineralization, ALP activity, phosphorylated p38 and protein levels of BMP2, Runx2, ALP, Col-I and OC during osteogenesis. Overexpression and knockdown of Ddr1 in osteoblasts demonstrated that DDR1 mediates the expression and activity of Runx2 and the downstream osteogenesis markers during osteogenesis through regulation of p38 phosphorylation.
Collapse
Affiliation(s)
- Liang-Yin Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (L.-Y.C.); (H.-C.C.); (Y.-C.F.)
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Cardiovascular Research Centre, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Hsiung Lin
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Chiao Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (L.-Y.C.); (H.-C.C.); (Y.-C.F.)
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yin-Chih Fu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (L.-Y.C.); (H.-C.C.); (Y.-C.F.)
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yan-Hsiung Wang
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chau-Zen Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (L.-Y.C.); (H.-C.C.); (Y.-C.F.)
- Orthopaedic Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-C.C.); (T.-L.C.); (Y.-H.W.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
31
|
Ngai D, Lino M, Rothenberg KE, Simmons CA, Fernandez-Gonzalez R, Bendeck MP. DDR1 (Discoidin Domain Receptor-1)-RhoA (Ras Homolog Family Member A) Axis Senses Matrix Stiffness to Promote Vascular Calcification. Arterioscler Thromb Vasc Biol 2020; 40:1763-1776. [PMID: 32493168 PMCID: PMC7310304 DOI: 10.1161/atvbaha.120.314697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Vascular calcification is a pathology characterized by arterial mineralization, which is a common late-term complication of atherosclerosis that independently increases the risk of adverse cardiovascular events by fourfold. A major source of calcifying cells is transdifferentiating vascular smooth muscle cells (VSMCs). Previous studies showed that deletion of the collagen-binding receptor, DDR1 (discoidin domain receptor-1), attenuated VSMC calcification. Increased matrix stiffness drives osteogenesis, and DDR1 has been implicated in stiffness sensing in other cell types; however, the role of DDR1 as a mechanosensor in VSMCs has not been investigated. Here, we test the hypothesis that DDR1 senses increased matrix stiffness and promotes VSMC transdifferentiation and calcification. Approach and Results: Primary VSMCs isolated from Ddr1+/+ (wild-type) and Ddr1−/− (knockout) mice were studied on collagen-I–coated silicon substrates of varying stiffness, culturing in normal or calcifying medium. DDR1 expression and phosphorylation increased with increasing stiffness, as did in vitro calcification, nuclear localization of Runx2 (Runt-related transcription factor 2), and expression of other osteochondrocytic markers. By contrast, DDR1 deficient VSMCs were not responsive to stiffness and did not undergo transdifferentiation. DDR1 regulated stress fiber formation and RhoA (ras homolog family member A) activation through the RhoGEF (rho guanine nucleotide exchange factor), Vav2. Inhibition of actomyosin contractility reduced Runx2 activation and attenuated in vitro calcification in wild-type VSMCs. Finally, a novel positive feedforward loop was uncovered between DDR1 and actomyosin contractility, important in regulating DDR1 expression, clustering, and activation. Conclusions: This study provides mechanistic insights into DDR1 mechanosignaling and shows that DDR1 activity and actomyosin contractility are interdependent in mediating stiffness-dependent increases in VSMC calcification.
Collapse
Affiliation(s)
- David Ngai
- From the Department of Laboratory Medicine and Pathobiology (D.N., M.L., M.P.B.), University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada
| | - Marsel Lino
- From the Department of Laboratory Medicine and Pathobiology (D.N., M.L., M.P.B.), University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada
| | - Katheryn E Rothenberg
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering (K.E.R., C.A.S., R.F.-G.), University of Toronto, Canada
| | - Craig A Simmons
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering (K.E.R., C.A.S., R.F.-G.), University of Toronto, Canada.,Department of Mechanical and Industrial Engineering (C.A.S.), University of Toronto, Canada
| | - Rodrigo Fernandez-Gonzalez
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering (K.E.R., C.A.S., R.F.-G.), University of Toronto, Canada.,Department of Cell and Systems Biology (R.F.-G.), University of Toronto, Canada
| | - Michelle P Bendeck
- From the Department of Laboratory Medicine and Pathobiology (D.N., M.L., M.P.B.), University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research (D.N. M.L., K.E.R., C.A.S., R.F.-G., M.P.B.), University of Toronto, Canada
| |
Collapse
|
32
|
Xu SN, Zhou X, Zhu CJ, Qin W, Zhu J, Zhang KL, Li HJ, Xing L, Lian K, Li CX, Sun Z, Wang ZQ, Zhang AJ, Cao HL. Nϵ-Carboxymethyl-Lysine Deteriorates Vascular Calcification in Diabetic Atherosclerosis Induced by Vascular Smooth Muscle Cell-Derived Foam Cells. Front Pharmacol 2020; 11:626. [PMID: 32499695 PMCID: PMC7243476 DOI: 10.3389/fphar.2020.00626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Nϵ-carboxymethyl-lysine (CML), an advanced glycation end product, is involved in vascular calcification (VC) in diabetic atherosclerosis. This study aimed to investigate the effects of CML on VC in diabetic atherosclerosis induced by vascular smooth muscle cell (VSMC)–derived foam cells. Human studies, animal studies and cell studies were performed. The human study results from 100 patients revealed a poor blood glucose and lipid status and more severe coronary lesions and stenosis in patients with coronary artery disease and diabetes mellitus. Intraperitoneal injection of streptozotocin combined with a high-fat diet was used to build a diabetic atherosclerosis model in ApoE−/− mice. The animal study results indicated that CML accelerated VC progression in diabetic atherosclerosis by accelerating the accumulation of VSMC-derived foam cells in ApoE−/− mice. The cell study results illustrated that CML induced VSMC-derived foam cells apoptosis and aggravated foam cells calcification. Consistent with this finding, calcium content and the expression levels of alkaline phosphatase, bone morphogenetic protein 2 and runt-related transcription factor 2 were significantly elevated in A7r5 cells treated with oxidation-low-density lipoprotein and CML. Thus, we concluded that CML promoted VSMC-derived foam cells calcification to aggravate VC in diabetic atherosclerosis, providing evidence for the contribution of foam cells to diabetic VC.
Collapse
Affiliation(s)
- Sui-Ning Xu
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xin Zhou
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Cun-Jun Zhu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Jie Zhu
- Department of Cardiology, Affiliated Luan Hospital of Anhui Medical University, Luan, China
| | - Ke-Lin Zhang
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Jin Li
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lu Xing
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng-Xiang Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhong-Qun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - An-Ji Zhang
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Ling Cao
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
33
|
Bi C, Fu Y, Zhang Z, Li B. Prostaglandin E2 confers protection against diabetic coronary atherosclerosis by stimulating M2 macrophage polarization via the activation of the CREB/BDNF/TrkB signaling pathway. FASEB J 2020; 34:7360-7371. [PMID: 32350920 DOI: 10.1096/fj.201902055r] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Changlong Bi
- Department of Endocrinology The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen P.R. China
| | - Yili Fu
- School of Life Science and Technology Harbin Institute of Technology Harbin P.R. China
- State Key Laboratory of Robotics and Systems Harbin Institute of Technology Harbin P.R. China
| | - Zheqi Zhang
- Department of Endocrinology the Fourth Affiliated Hospital of Harbin Medical University Harbin P.R. China
| | - Bo Li
- Department of Endocrinology the Fourth Affiliated Hospital of Harbin Medical University Harbin P.R. China
| |
Collapse
|
34
|
Discoidin domain receptor 1-deletion ameliorates fibrosis and promotes adipose tissue beiging, brown fat activity, and increased metabolic rate in a mouse model of cardiometabolic disease. Mol Metab 2020; 39:101006. [PMID: 32360427 PMCID: PMC7242876 DOI: 10.1016/j.molmet.2020.101006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Discoidin domain receptor 1 (DDR1) is a collagen binding receptor tyrosine kinase implicated in atherosclerosis, fibrosis, and cancer. Our previous research showed that DDR1 could regulate smooth muscle cell trans-differentiation, fibrosis and calcification in the vascular system in cardiometabolic disease. This spectrum of activity led us to question whether DDR1 might also regulate adipose tissue fibrosis and remodeling. Methods We have used a diet-induced mouse model of cardiometabolic disease to determine whether DDR1 deletion impacts upon adipose tissue remodeling and metabolic dysfunction. Mice were fed a high fat diet (HFD) for 12 weeks, followed by assessment of glucose and insulin tolerance, respiration via indirect calorimetry, and brown fat activity by FDG-PET. Results Feeding HFD induced DDR1 expression in white adipose tissue, which correlated with adipose tissue expansion and fibrosis. Ddr1−/− mice fed an HFD had improved glucose tolerance, reduced body fat, and increased brown fat activity and energy expenditure compared to Ddr1+/+ littermate controls. HFD-fed DDR1−/− mice also had reduced fibrosis, smaller adipocytes with multilocular lipid droplets, and increased UCP-1 expression characteristic of beige fat formation in subcutaneous adipose tissue. In vitro, studying C3H10T1/2 cells stimulated to differentiate, DDR1 inhibition caused a shift from white to beige adipocyte differentiation, whereas DDR1 expression was increased with TGFβ-mediated pro-fibrotic differentiation. Conclusion This study is the first to identify a role for DDR1 as a driver of adipose tissue fibrosis and suppressor of beneficial beige fat formation. DDR1 deletion results in decreased obesity, and increased energy expenditure and brown fat activity. DDR1 expression was increased in adipose and correlated with obesity and fibrosis. DDR1 deletion increased UCP-1 expression in brown and white fat in vivo, and in mesenchymal cells in vitro. Invitro studies suggest that DDR1 suppresses UCP-1 and drives pro-fibrotic differentiation of mesenchymal cells.
Collapse
|
35
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
36
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
37
|
Brown RB. Diabetes, Diabetic Complications, and Phosphate Toxicity: A Scoping Review. Curr Diabetes Rev 2020; 16:674-689. [PMID: 31686640 DOI: 10.2174/1573399815666191104113236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
This article presents a scoping review and synthesis of research findings investigating the toxic cellular accumulation of dysregulated inorganic phosphate-phosphate toxicity-as a pathophysiological determinant of diabetes and diabetic complications. Phosphorus, an essential micronutrient, is closely linked to the cellular metabolism of glucose for energy production, and serum inorganic phosphate is often transported into cells along with glucose during insulin therapy. Mitochondrial dysfunction and apoptosis, endoplasmic reticulum stress, neuronal degeneration, and pancreatic cancer are associated with dysregulated levels of phosphate in diabetes. Ectopic calcification involving deposition of calcium-phosphate crystals is prevalent throughout diabetic complications, including vascular calcification, nephropathy, retinopathy, and bone disorders. A low-glycemic, low-phosphate dietary intervention is proposed for further investigations in the treatment and prevention of diabetes and related diabetic pathologies.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
38
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Annual Report on Sex in Preclinical Studies: Arteriosclerosis, Thrombosis, and Vascular Biology Publications in 2018. Arterioscler Thromb Vasc Biol 2019; 40:e1-e9. [PMID: 31869272 DOI: 10.1161/atvbaha.119.313556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.M.)
| | - Daniel J Rader
- Departments of Medicine and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
39
|
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/physiopathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Gene Expression Regulation
- Humans
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Vascular Diseases/genetics
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
- Vascular Remodeling/physiology
Collapse
Affiliation(s)
- Ning Shi
- Department of Surgery, University of Missouri, Columbia, MO
- Department of Physiology & pharmacology, The University of Georgia, Athens, GA
| | - Xiaohan Mei
- Department of Physiology & pharmacology, The University of Georgia, Athens, GA
| | - Shi-You Chen
- Department of Surgery, University of Missouri, Columbia, MO
- Department of Physiology & pharmacology, The University of Georgia, Athens, GA
- Correspondence to: Shi-You Chen, PhD, Department of Surgery, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, , Tel: (573) 882-3137, Fax: (573)884-4585
| |
Collapse
|
40
|
Zhang ZY, Wang N, Qian LL, Miao LF, Dang SP, Wu Y, Wang RX. Glucose Fluctuations Promote Aortic Fibrosis through the ROS/p38 MAPK/Runx2 Signaling Pathway. J Vasc Res 2019; 57:24-33. [PMID: 31715615 DOI: 10.1159/000503608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/23/2019] [Indexed: 11/19/2022] Open
Abstract
AIM Glucose fluctuations may be responsible for, or further the onset of arterial hypertension, but the exact mechanisms remain unclear. The purpose of this study was to investigate the mechanisms behind and related to aortic fibrosis and aortic stiffening induced by glucose fluctuations. METHODS Sprague-Dawley rats were injected with streptozotocin (STZ) and randomly divided into three treatment groups: controlled STZ-induced diabetes (C-STZ); uncontrolled STZ-induced diabetes (U-STZ); and STZ-induced diabetes with glucose fluctuations (STZ-GF). After 3 weeks, rat blood pressure (BP) was tested, and aortic fibrosis was detected by using the Masson trichrome staining technique. Levels of p38 mitogen-activated protein kinase (p38 MAPK), runt-related transcription factor 2 (Runx2), collagen type 1 (collagen I), and NADPH oxidases were determined by Western blot.Rat vascular smooth muscle cells in vitro were used to explore underlying mechanisms. RESULTS The systolic BP of diabetic rats in the C-STZ, U-STZ, and STZ-GF groups was 127.67 ± 6.53, 150.03 ± 5.24, and 171.63 ± 3.53 mm Hg, respectively (p< 0.05). The mean BP of diabetic rats in the three groups was 91.20 ± 10.07, 117.29 ± 4.28, and 140.58 ± 2.14 mm Hg, respectively (p< 0.05). The diastolic BP of diabetic rats in the three groups was 73.20 ± 12.63, 101.93 ± 5.79, and 125.37 ± 4.62 mm Hg, respectively (p< 0.05). The ratios of fibrosis areas in the aortas of the three groups were 11.85 ± 1.23, 29.00 ± 0.87, and 48.36 ± 0.55, respectively (p< 0.05). The expressions of p38 MAPK, Runx2, and collagen I were significantly increased in the STZ-GF group. In vitro, applications of inhibitors of reactive oxygen species (ROS) and p38 MAPK successfully reversed glucose fluctuations that would have possibly induced aortic fibrosis. CONCLUSIONS Blood glucose fluctuations aggravate aortic fibrosis via affecting the ROS/p38 MAPK /Runx2 signaling pathway.
Collapse
Affiliation(s)
- Zhen-Ye Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ning Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ling-Feng Miao
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Shi-Peng Dang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ying Wu
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China,
| |
Collapse
|
41
|
Li Z, Wu J, Zhang X, Ou C, Zhong X, Chen Y, Lu L, Liu H, Li Y, Liu X, Wu B, Wang Y, Yang P, Yan J, Chen M. CDC42 promotes vascular calcification in chronic kidney disease. J Pathol 2019; 249:461-471. [PMID: 31397884 DOI: 10.1002/path.5334] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023]
Abstract
Vascular calcification is prevalent in patients with chronic kidney disease (CKD) and a major risk factor of cardiovascular disease. Vascular calcification is now recognised as a biological process similar to bone formation involving osteogenic differentiation of vascular smooth muscle cells (VSMCs). Cell division cycle 42 (CDC42), a Rac1 family member GTPase, is essential for cartilage development during endochondral bone formation. However, whether CDC42 affects osteogenic differentiation of VSMCs and vascular calcification remains unknown. In the present study, we observed a significant increase in the expression of CDC42 both in rat VSMCs and in calcified arteries during vascular calcification. Alizarin red staining and calcium content assay revealed that adenovirus-mediated CDC42 overexpression led to an apparent VSMC calcification in the presence of calcifying medium, accompanied with up-regulation of bone-related molecules including RUNX2 and BMP2. By contrast, inhibition of CDC42 by ML141 significantly blocked calcification of VSMCs in vitro and aortic rings ex vivo. Moreover, ML141 markedly attenuated vascular calcification in rats with CKD. Furthermore, pharmacological inhibition of AKT signal was shown to block CDC42-induced VSMC calcification. These findings demonstrate for the first time that CDC42 contributes to vascular calcification through a mechanism involving AKT signalling; this uncovered a new function of CDC42 in regulating vascular calcification. This may provide a potential therapeutic target for the treatment of vascular calcification in the context of CKD. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zehua Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Ji Wu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiuli Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Caiwen Ou
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xinglong Zhong
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yanting Chen
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, PR China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, PR China
| | - Hailin Liu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Bo Wu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yuxi Wang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Minsheng Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
42
|
Chiusa M, Hu W, Liao HJ, Su Y, Borza CM, de Caestecker MP, Skrypnyk NI, Fogo AB, Pedchenko V, Li X, Zhang MZ, Hudson BG, Basak T, Vanacore RM, Zent R, Pozzi A. The Extracellular Matrix Receptor Discoidin Domain Receptor 1 Regulates Collagen Transcription by Translocating to the Nucleus. J Am Soc Nephrol 2019; 30:1605-1624. [PMID: 31383731 PMCID: PMC6727269 DOI: 10.1681/asn.2018111160] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 05/20/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The discoidin domain receptor 1 (DDR1) is activated by collagens, upregulated in injured and fibrotic kidneys, and contributes to fibrosis by regulating extracellular matrix production, but how DDR1 controls fibrosis is poorly understood. DDR1 is a receptor tyrosine kinase (RTK). RTKs can translocate to the nucleus via a nuclear localization sequence (NLS) present on the receptor itself or a ligand it is bound to. In the nucleus, RTKs regulate gene expression by binding chromatin directly or by interacting with transcription factors. METHODS To determine whether DDR1 translocates to the nucleus and whether this event is mediated by collagen-induced DDR1 activation, we generated renal cells expressing wild-type or mutant forms of DDR1 no longer able to bind collagen. Then, we determined the location of the DDR1 upon collagen stimulation. Using both biochemical assays and immunofluorescence, we analyzed the steps involved in DDR1 nuclear translocation. RESULTS We show that although DDR1 and its natural ligand, collagen, lack an NLS, DDR1 is present in the nucleus of injured human and mouse kidney proximal tubules. We show that DDR1 nuclear translocation requires collagen-mediated receptor activation and interaction of DDR1 with SEC61B, a component of the Sec61 translocon, and nonmuscle myosin IIA and β-actin. Once in the nucleus, DDR1 binds to chromatin to increase the transcription of collagen IV, a major collagen upregulated in fibrosis. CONCLUSIONS These findings reveal a novel mechanism whereby activated DDR1 translates to the nucleus to regulate synthesis of profibrotic molecules.
Collapse
Affiliation(s)
- Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Wen Hu
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Hong-Jun Liao
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Yan Su
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Corina M Borza
- Division of Nephrology and Hypertension, Department of Medicine, and
| | | | | | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Vadim Pedchenko
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Xiyue Li
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Trayambak Basak
- Division of Nephrology and Hypertension, Department of Medicine, and
| | | | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Veterans Affairs, Nashville, Tennessee
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Veterans Affairs, Nashville, Tennessee
| |
Collapse
|
43
|
Ruiz HH, Díez RL, Arivazahagan L, Ramasamy R, Schmidt AM. Metabolism, Obesity, and Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2019; 39:e166-e174. [PMID: 31242034 PMCID: PMC6693645 DOI: 10.1161/atvbaha.119.312005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity and diabetes remain leading causes of reduced health span and life span throughout the world. Hence, it is not surprising that these areas are at the center of highly active areas of research. The identification of novel mechanisms underlying these metabolic disorders sets the stage for uncovering new potential therapeutic strategies. In this issue of Highlights in Arteriosclerosis, Thrombosis and Vascular Biology, we review recently published papers in the journal that add to our understanding of causes and consequences of obesity and diabetes and how these disorders impact metabolic function. Collectively, these studies in cultured cells to in vivo animal models to human subjects add to the growing body of evidence that both cell-intrinsic and cell-cell communication mechanisms collaborate in metabolic disorders to cause obesity, insulin resistance and diabetes and its complications.
Collapse
Affiliation(s)
- Henry H. Ruiz
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, N.Y. 10016
| | - Raquel López Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, N.Y. 10016
| | - Lakshmi Arivazahagan
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, N.Y. 10016
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, N.Y. 10016
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, N.Y. 10016
| |
Collapse
|
44
|
Lactate accelerates calcification in VSMCs through suppression of BNIP3-mediated mitophagy. Cell Signal 2019; 58:53-64. [PMID: 30851408 DOI: 10.1016/j.cellsig.2019.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
Arterial media calcification is one of the major complications of diabetes mellitus, which is related to oxidative stress and apoptosis. Mitophagy is a special regulation of mitochondrial homeostasis and takes control of intracellular ROS generation and apoptotic pathways. High circulating levels of lactate usually accompanies diabetes. The potential link between lactate, mitophagy and vascular calcification is investigated in this study. Lactate treatment accelerated VSMC calcification, evaluated by measuring the calcium content, ALP activity, RUNX2, BMP-2 protein levels, and Alizarin red S staining. Lactate exposure caused excessive intracellular ROS generation and VSMC apoptosis. Lactate also impaired mitochondrial function, determined by mPTP opening rate, mitochondrial membrane potential and mitochondrial biogenesis markers. Western blot analysis of LC3-II and p62 and mRFP-GFP-LC3 adenovirus detection for autophagy flux revealed that lactate blocked autophagy flux. LC3-II co-staining with LAMP-1 and autophagosome quantification revealed lactate inhibited autophagy. Furthermore, lactate inhibited mitophagy, which was confirmed by TOMM20 and BNIP3 protein levels, LC3-II colocalization with BNIP3 and TEM assays. In addition, BNIP3-mediated mitophagy played a protective role against VSMC calcification in the presence of lactate. This study suggests that lactate accelerates osteoblastic phenotype transition of VSMC and calcium deposition partly through the BNIP3-mediated mitophagy deficiency induced oxidative stress and apoptosis.
Collapse
|
45
|
Ngai D, Lino M, Bendeck MP. Cell-Matrix Interactions and Matricrine Signaling in the Pathogenesis of Vascular Calcification. Front Cardiovasc Med 2018; 5:174. [PMID: 30581820 PMCID: PMC6292870 DOI: 10.3389/fcvm.2018.00174] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is a complex pathological process occurring in patients with atherosclerosis, type 2 diabetes, and chronic kidney disease. The extracellular matrix, via matricrine-receptor signaling plays important roles in the pathogenesis of calcification. Calcification is mediated by osteochondrocytic-like cells that arise from transdifferentiating vascular smooth muscle cells. Recent advances in our understanding of the plasticity of vascular smooth muscle cell and other cells of mesenchymal origin have furthered our understanding of how these cells transdifferentiate into osteochondrocytic-like cells in response to environmental cues. In the present review, we examine the role of the extracellular matrix in the regulation of cell behavior and differentiation in the context of vascular calcification. In pathological calcification, the extracellular matrix not only provides a scaffold for mineral deposition, but also acts as an active signaling entity. In recent years, extracellular matrix components have been shown to influence cellular signaling through matrix receptors such as the discoidin domain receptor family, integrins, and elastin receptors, all of which can modulate osteochondrocytic differentiation and calcification. Changes in extracellular matrix stiffness and composition are detected by these receptors which in turn modulate downstream signaling pathways and cytoskeletal dynamics, which are critical to osteogenic differentiation. This review will focus on recent literature that highlights the role of cell-matrix interactions and how they influence cellular behavior, and osteochondrocytic transdifferentiation in the pathogenesis of cardiovascular calcification.
Collapse
Affiliation(s)
- David Ngai
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Marsel Lino
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|