1
|
Tasouli-Drakou V, Ogurek I, Shaikh T, Ringor M, DiCaro MV, Lei K. Atherosclerosis: A Comprehensive Review of Molecular Factors and Mechanisms. Int J Mol Sci 2025; 26:1364. [PMID: 39941130 PMCID: PMC11818631 DOI: 10.3390/ijms26031364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis, a condition characterized by the accumulation of lipids and a culprit behind cardiovascular events, has long been studied. However, in recent years, there has been an increase in interest in its initiation, with researchers shifting focus from traditional pathways involving the vascular infiltration of oxidized lipids and towards the novel presence of chronic inflammatory pathways. The accumulation of pro-inflammatory cytokines, in combination with the activation of transcription factors, creates a positive feedback loop that drives the creation and progression of atherosclerosis. From the upregulation of the nod-like receptor protein 3 (NLRP3) inflammasome and the Notch and Wnt pathways to the increased expression of VEGF-A and the downregulation of connexins Cx32, Cx37, and Cx40, these processes contribute further to endothelial dysfunction and plaque formation. Herein, we aim to provide insight into the molecular pathways and mechanisms implicated in the initiation and progression of atherosclerotic plaques, and to review the risk factors associated with their development.
Collapse
Affiliation(s)
- Vasiliki Tasouli-Drakou
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Ian Ogurek
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Taha Shaikh
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Marc Ringor
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Michael V. DiCaro
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - KaChon Lei
- Department of Cardiovascular Medicine, University of Nevada, Las Vegas, NV 89106, USA;
| |
Collapse
|
2
|
Zeng Z, Zhao Z, Yuan Q, Yang S, Wang Z, Wang Z, Zeng S, Li A, Chen Q, Zhu G, Xiao X, Luo G, Luo H, Li J, Zu X, Xie H, Liu J. Hepatic Steatosis Aggravates Vascular Calcification via Extracellular Vesicle-Mediated Osteochondrogenic Switch of Vascular Smooth Muscle Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408660. [PMID: 39680681 PMCID: PMC11791995 DOI: 10.1002/advs.202408660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/17/2024] [Indexed: 12/18/2024]
Abstract
The global incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) has risen sharply. This condition is strongly associated with the risk of cardiovascular disease (CVD), but how MAFLD affects the development and progression of CVD, particularly concerning vascular calcification, remains unclear. Herein, extracellular vesicles (EVs) are identified from steatotic hepatocytes as a trigger that accelerated the progression of both vascular intimal and medial calcification. Steatotic hepatocytes are found to release more EVs, which are able to reach the vascular tissue, be taken up by vascular smooth muscle cells (VSMCs), and promote their osteogenic differentiation. Within these toxic vesicles, a protein cargo is identified called lectin galactoside-binding soluble 3 binding protein (Lgals3bp) that acted as a potent inducer of osteochondrogenic transformation in VSMCs. Both the inhibition of EV release and the liver-specific knockdown of Lgals3bp profoundly attenuated vascular calcification. This work partially explains the reason for the high incidence of vascular calcification in MAFLD and unveils a novel mechanism that may be used to prevent or treat cardiovascular complications in patients with MAFLD.
Collapse
Affiliation(s)
- Zhao‐Lin Zeng
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Institute of Cardiovascular DiseaseKey Lab for Arteriosclerology of Hunan ProvinceHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Zhi‐Bo Zhao
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Qing Yuan
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Shi‐Qi Yang
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Zhen‐Xing Wang
- Department of OrthopedicsMovement System Injury and Repair Research CenterNational Clinical Research Center for Geriatric DisordersHunan Key Laboratory of AngmedicineXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Zuo Wang
- Institute of Cardiovascular DiseaseKey Lab for Arteriosclerology of Hunan ProvinceHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Shi‐Yu Zeng
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - An‐Qi Li
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Qian Chen
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Guo‐Qiang Zhu
- Department of OrthopedicsMovement System Injury and Repair Research CenterNational Clinical Research Center for Geriatric DisordersHunan Key Laboratory of AngmedicineXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Xin‐Hua Xiao
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Guang‐Hua Luo
- Department of RadiologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Hai‐Yan Luo
- Department of GastroenterologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Jiao‐Yang Li
- Department of Occupational and Environmental HealthSchool of Public HealthWuhan UniversityWuhan430071P. R. China
| | - Xu‐Yu Zu
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Hui Xie
- Department of OrthopedicsMovement System Injury and Repair Research CenterNational Clinical Research Center for Geriatric DisordersHunan Key Laboratory of AngmedicineXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Jiang‐Hua Liu
- Department of Metabolism and EndocrinologyThe First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
- Diabetes Clinical Medical Research Center of Hunan ProvincialHengyangHunan421001P. R. China
- Department of Clinical Laboratory MedicineThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| |
Collapse
|
3
|
Bhakta S, Chowdhury MM, Tarkin JM, Rudd JHF, Warburton EA, Evans NR. 18F-NaF uptake on vascular PET imaging in symptomatic versus asymptomatic atherosclerotic disease: A meta-analysis. Vasc Med 2025; 30:10-19. [PMID: 39415512 PMCID: PMC11804149 DOI: 10.1177/1358863x241287692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
INTRODUCTION 18F-sodium fluoride (NaF) positron-emission tomography (PET) is increasingly being used to measure microcalcification in atherosclerotic disease in vivo. Correlations have been drawn between sodium fluoride uptake and the presence of high-risk plaque features, as well as its association with clinical atherosclerotic sequelae. The aim of this study was to perform a meta-analysis of NaF uptake on PET imaging and its relation to symptomatic and asymptomatic disease. METHODS A systematic review was performed according to PRISMA guidelines, via searching the Ovid MEDLINE, Ovid Embase, Cochrane Library, PubMed, Scopus, and Web of Science Core Collection databases up to May 2024. The search strategy included the terms 'NaF', 'PET', and 'plaque', and all studies with data regarding the degree of microcalcification, as measured by 18F-NaF uptake in symptomatic and asymptomatic atherosclerotic plaques, were included. Analysis involved calculating mean differences between uptake values and comparison using a random-effects model. RESULTS A total of 16 articles, involving 423 participants, were included in the meta-analysis (10 carotid artery studies, five coronary artery studies, and one in peripheral vascular disease). Comparing 18F-NaF uptake in symptomatic versus asymptomatic atherosclerotic plaques, a mean difference of 0.43 (95% CI 0.29 to 0.57; p < 0.0001, I2 = 65%) was noted in studies comparing symptomatic and asymptomatic plaques in the same participant, with a significant difference in effect based on arterial territory studied (χ2 = 12.68, p = 0.0018). In studies of participants with and without symptomatic disease, there was no significant difference between symptomatic and asymptomatic plaques (mean difference 0.27, 95% CI -0.26 to 0.80, p = 0.28, I2 = 85%). CONCLUSIONS PET imaging using 18F-NaF can detect differences in microcalcification between symptomatic and asymptomatic atherosclerotic plaques within, but not between, individuals, and thus, is a marker of symptomatic disease. The standardization of 18F-NaF PET imaging protocols, and its future use as a risk stratification tool or outcome measure, requires further study. (PROSPERO Registration ID: CRD42023451363).
Collapse
Affiliation(s)
- Shiv Bhakta
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Jason M Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - James HF Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | | | - Nicholas R Evans
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Wang Y, Li S. Lipid metabolism disorders and albuminuria risk: insights from National Health and Nutrition Examination Survey 2001-2018 and Mendelian randomization analyses. Ren Fail 2024; 46:2420841. [PMID: 39491271 PMCID: PMC11536668 DOI: 10.1080/0886022x.2024.2420841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Previous studies have revealed an underlying connection between abnormal lipid metabolism and albuminuria. We aim to investigate the causal relationship between lipid metabolism disorders and the risk of albuminuria from both a population and genetic perspective. METHODS A cross-sectional study was conducted by using data from the National Health and Nutrition Examination Survey (NHANES) 2001-2018. Multivariable-adjusted logistic regression, subgroup analysis, interaction tests and restricted cubic spline (RCS) were employed statistically. Mendelian randomization (MR) analysis was performed to validate the causal relationship between exposure and outcome to mitigate confounding factors and reverse causation interference. RESULTS After adjusting for confounders, HDL levels (1.03-2.07 nmol/L) were associated with a reduced risk of albuminuria. In contrast, elevated cholesterol levels (>6.2 nmol/L) and triglyceride levels (>2.3 nmol/L) were associated with an increased risk of albuminuria. Serum triglyceride concentration emerged as a potential risk factor for albuminuria. In MR analysis, a reduced risk of albuminuria was associated with serum total HDL level (IVW: OR = 0.91, 95% CI = 0.86-0.97, p = 0.002). In contrast, cholesterol esters in medium VLDL (IVW: OR = 1.05, 95% CI = 1.00-1.10, p = 0.032), chylomicrons and extremely large VLDL (IVW: OR = 1.08, 95% CI = 1.03-1.14, p = 0.003), and triglycerides (IVW: OR = 1.14, 95% CI = 1.09-1.19, p < 0.001) were associated with an increased risk of albuminuria. CONCLUSION A causal relationship exists between serum lipid metabolism disorder and albuminuria risk. Further validation of additional blood lipid metabolism biomarkers is imperative for future studies.
Collapse
Affiliation(s)
- Yangyang Wang
- Second Medical College of Wenzhou Medical University, Wenzhou, China
| | - Sen Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Bartosik M, Simon A, Busse B, Barvencik F, Amling M, Oheim R, von Brackel FN. Sex-Specific Association Patterns of Bone Microstructure and Lower Leg Arterial Calcification. Calcif Tissue Int 2024; 115:636-647. [PMID: 39397150 PMCID: PMC11531430 DOI: 10.1007/s00223-024-01299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
In conversations about bone loss and the importance of calcium homeostasis, patients frequently inquire about the association with arterial calcifications. Although a relationship between bone loss and the occurrence of vascular calcifications is suspected, it is not yet fully investigated and understood. This study aims to analyze associations between bone mineralization, structure, and vascular calcification at the lower leg in patients with low bone mineral density in HR-pQCT. We retrospectively analyzed 774 high-resolution quantitative computed tomography (HR-pQCT) scans of the distal tibia for the presence of vascular calcifications. After sex-specific propensity score matching for age and BMI to account for confounders, 132 patients remained for quantification of bone microstructure, bone density, lower leg arterial calcification (LLAC), and laboratory parameters of bone turnover. The interactions between bone parameters and vascular calcification were quantified by regression analyses. The calcium metabolism was not different between individuals with and without LLAC, nor oral calcium supplementation. Female patients with LLAC had a higher cortical perimeter (p = 0.016) compared to female patients without LLAC, whereas male patients with LLAC had lower cortical pore diameter than male patients without LLAC (p = 0.027). The appearance of LLAC was sex specifically associated with bone parameters. In female patients, only plaque density was associated with HR-pQCT bone parameters and age, whereas in male patients, plaque volume was associated with HR-pQCT parameters of the distal tibia. Female patients exhibit an increasing plaque density depended on age and trabecular thinning. Decreasing cortical pore diameter and trabecular number along with increasing bone mineralization are linked to increasing plaque volume in male patients.
Collapse
Affiliation(s)
- Mikolaj Bartosik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Alexander Simon
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Felix N von Brackel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany.
- Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany.
| |
Collapse
|
6
|
Diévart F, Bruckert E, Aboyans V, Bekka S, Boccara F, Bourdon Baron Munoz B, Emmerich J, Farnier M, Gallo A, Lemesle G, Paillard F, Schiele F, Kownator S. Management of lipid variables in primary cardiovascular prevention: A position paper from the Heart, Vessels and Metabolism Group of the French Society of Cardiology. Arch Cardiovasc Dis 2024; 117:358-378. [PMID: 38762344 DOI: 10.1016/j.acvd.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 05/20/2024]
Abstract
Low-density lipoprotein cholesterol has been established as a powerful cardiovascular risk factor; its reduction provides a clinical benefit in primary cardiovascular prevention, irrespective of the characteristics of the patients treated. It is useful to tailor low-density lipoprotein cholesterol targets according to the magnitude of cardiovascular risk (low, high or very high) in order to reduce the cardiovascular risk as fully as possible. In order to provide a uniform approach, it is necessary to propose recommendations for good practice, defining strategies for reducing low-density lipoprotein cholesterol. It is also necessary to know their merits, to analyse their practical limits and to propose adaptations, taking into account limitations and national specifics. This position paper aims to analyse the contribution and limits, as well as the adaptation to French practice, of 2019 and 2021 European Society of Cardiology recommendations for the management of lipid variables and cardiovascular prevention.
Collapse
Affiliation(s)
- François Diévart
- Elsan clinique Villette, 18, rue Parmentier, 59240 Dunkerque, France.
| | | | | | - Saïd Bekka
- Institut de diabétologie et nutrition du centre, 28300 Mainvilliers, France
| | | | | | | | - Michel Farnier
- Institut de recherche cardiovasculaire, CHU François-Mitterrand, 21000 Dijon, France
| | | | - Gilles Lemesle
- Institut cœur-poumon, CHRU de Lille, 59000 Lille, France
| | | | | | | |
Collapse
|
7
|
Watanabe R, Saito Y, Tokimasa S, Takaoka H, Kitahara H, Yamanouchi M, Kobayashi Y. Diagnostic Ability of Manual Calcification Length Assessment on Non-Electrocardiographically Gated Computed Tomography for Estimating the Presence of Coronary Artery Disease. J Clin Med 2024; 13:2255. [PMID: 38673528 PMCID: PMC11051080 DOI: 10.3390/jcm13082255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Coronary artery calcification score (CACS) on electrocardiography (ECG)-gated computed tomography (CT) is used for risk stratification of atherosclerotic cardiovascular disease, which requires dedicated analytic software. In this study, we evaluated the diagnostic ability of manual calcification length assessment on non-ECG-gated CT for epicardial coronary artery disease (CAD). Methods: A total of 100 patients undergoing both non-ECG-gated plain CT scans with a slice interval of 1.25 mm and invasive coronary angiography were retrospectively included. We manually measured the length of the longest calcified lesions of coronary arteries on each branch. The relationship between the number of coronary arteries with the length of coronary calcium > 5, 10, or 15 mm and the presence of epicardial CAD on invasive angiography was evaluated. Standard CACS was also evaluated using established software. Results: Of 100 patients, 49 (49.0%) had significant epicardial CAD on angiography. The median standard CACS was 346 [7, 1965]. In both manual calcium assessment and standard CACS, the increase in calcium burden was progressively associated with the presence of epicardial CAD on angiography. The receiver operating characteristic curve analysis showed similar diagnostic abilities of the two diagnostic methods. The best cut-off values for CAD were 2, 1, and 1 for the number of vessels with calcium > 5, 10, and 15 mm, respectively. Overall, the diagnostic ability of manual calcium assessment was similar to that of standard CACS > 400. Conclusions: Manual assessment of coronary calcium length on non-ECG-gated plain CT provided similar diagnostic ability for the presence of significant epicardial CAD on invasive angiography, as compared to standard CACS.
Collapse
Affiliation(s)
- Ryota Watanabe
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan; (R.W.); (H.T.); (H.K.); (Y.K.)
- Department of Cardiology, Chiba Rosai Hospital, Ichihara 290-0003, Chiba, Japan; (S.T.); (M.Y.)
| | - Yuichi Saito
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan; (R.W.); (H.T.); (H.K.); (Y.K.)
| | - Satoshi Tokimasa
- Department of Cardiology, Chiba Rosai Hospital, Ichihara 290-0003, Chiba, Japan; (S.T.); (M.Y.)
| | - Hiroyuki Takaoka
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan; (R.W.); (H.T.); (H.K.); (Y.K.)
| | - Hideki Kitahara
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan; (R.W.); (H.T.); (H.K.); (Y.K.)
| | - Masato Yamanouchi
- Department of Cardiology, Chiba Rosai Hospital, Ichihara 290-0003, Chiba, Japan; (S.T.); (M.Y.)
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan; (R.W.); (H.T.); (H.K.); (Y.K.)
| |
Collapse
|
8
|
Wu NQ, Li ZF, Lu MY, Li JJ. Monoclonal antibodies for dyslipidemia in adults: a focus on vulnerable patients groups. Expert Opin Biol Ther 2024; 24:157-169. [PMID: 38375817 DOI: 10.1080/14712598.2024.2321374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Dyslipidemia significantly contributes to atherosclerotic cardiovascular disease (ASCVD). Patients with lipid-rich vulnerable plaques are particularly susceptible to cardiovascular complications. Despite available lipid-lowering therapies (LLTs), challenges in effective lipid management remain. AREAS COVERED This article reviews monoclonal antibody (mAb) therapy in dyslipidemia, particularly focusing on vulnerable plaques and patients. We have reviewed the definitions of vulnerable plaques and patients, outlined the efficacy of traditional LLTs, and discussed in-depth the mAbs targeting PCSK9. We extensively discuss the potential mechanisms, intracoronary imaging, and clinical evidence of PCSK9mAbs in vulnerable plaques and patients. A brief overview of promising mAbs targeting other targets such as ANGPTL3 is also provided. EXPERT OPINION Research consistently supports the potential of mAb therapies in treating adult dyslipidemia, particularly in vulnerable patients. PCSK9mAbs are effective in regulating lipid parameters, such as LDL-C and Lp(a), and exhibit anti-inflammatory and anti-thrombotic properties. These antibodies also maintain endothelial and smooth muscle health, contributing to the stabilization of vulnerable plaques and reduction in adverse cardiovascular events. Future research aims to further understand PCSK9 and other targets like ANGPTL3, focusing on vulnerable groups. Overall, mAbs are emerging as a promising and superior approach in dyslipidemia management and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Na-Qiong Wu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Zhi-Fan Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Meng-Ying Lu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Li R, Liu M, Li J, Jiao X, Guo X. Intracranial Spotty Calcium Predicts Recurrent Stroke in Patients with Symptomatic Intracranial Atherosclerotic Stenosis : A Prospective Cohort Study. Clin Neuroradiol 2023; 33:985-992. [PMID: 37284877 PMCID: PMC10654160 DOI: 10.1007/s00062-023-01299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE Accumulating evidence highlights the association of calcium characteristics and cardiovascular events, but its role in cerebrovascular stenosis has not been well studied. We aimed to investigate the contribution of calcium patterns and density to recurrent ischemic stroke in patients with symptomatic intracranial atherosclerotic stenosis (ICAS). METHODS In this prospective study, 155 patients with symptomatic ICAS in the anterior circulation were included, and all subjects underwent computed tomography angiography. The median follow-up for all patients was 22 months and recurrent ischemic stroke were recorded. Cox regression analysis was performed to examine whether calcium patterns and density were associated with recurrent ischemic stroke. RESULTS During the follow-up, 29 patients who experienced recurrent ischemic stroke were older than those without recurrent ischemic stroke (62.93 ± 8.10 years vs. 57.00 ± 12.07 years, p = 0.027). A significantly higher prevalence of intracranial spotty calcium (86.2% vs. 40.5%, p < 0.001) and very low-density intracranial calcium (72.4% vs. 37.3%, p = 0.001) were observed in patients with recurrent ischemic stroke. Multivariable Cox regression analysis showed that intracranial spotty calcium, rather than very low-density intracranial calcium, remained an independent predictor of recurrent ischemic stroke (adjusted hazard ratio 5.35, 95% confidence interval 1.32-21.69, p = 0.019). CONCLUSION In patients with symptomatic ICAS, intracranial spotty calcium is an independent predictor of recurrent ischemic stroke, which will further facilitate risk stratification and suggest that more aggressive treatment should be considered for these patients.
Collapse
Affiliation(s)
- Rui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Moqi Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Jialu Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Xueqiao Jiao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Xiuhai Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
10
|
Nelles G, Abdelwahed YS, Alyaqoob A, Seppelt C, Stähli BE, Meteva D, Kränkel N, Haghikia A, Skurk C, Dreger H, Knebel F, Trippel TD, Krisper M, Sieronski L, Gerhardt T, Zanders L, Klotsche J, Landmesser U, Joner M, Leistner DM. Spotty calcium deposits within acute coronary syndrome (ACS)-causing culprit lesions impact inflammatory vessel-wall interactions and are associated with higher cardiovascular event rates at one year follow-up: Results from the prospective translational OPTICO-ACS study program. Atherosclerosis 2023; 385:117284. [PMID: 37871405 DOI: 10.1016/j.atherosclerosis.2023.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND AND AIMS Spotty calcium deposits (SCD) represent a vulnerable plaque feature which seems to result - as based on recent invitro studies - from inflammatory vessel-wall interactions. SCD can be reliably assessed by optical coherence tomography (OCT). Their prognostic impact is yet unknown. Therefore, the aims of this translational study were to comprehensively characterize different plaque calcification patterns, to analyze the associated inflammatory mechanisms in the microenvironment of acute coronary syndrome (ACS)-causing culprit lesions (CL) and to investigate the prognostic significance of SCD in a large cohort of ACS-patients. METHODS CL of the first 155 consecutive ACS-patients from the translational OPTICO-ACS-study program were investigated by OCT-characterization of the calcium phenotype at ACS-causing culprit lesions. Simultaneous immunophenotyping by flow-cytometric analysis and cytokine bead array technique across the CL gradient (ratio local/systemic levels) was performed and incidental major adverse cardiovascular events plus (MACE+) at 12 months after ACS were assessed. RESULTS SCD were observed within 45.2% of all analyzed ACS-causing culprit lesions (CL). Culprits containing spotty calcium were characterized by an increased culprit ratio of innate effector cytokines interleukin (IL)-8 [2.04 (1.24) vs. 1.37 (1.10) p < 0.05], as well as TNF (tumor necrosis factor)-α [1.17 (0.93) vs. 1.06 (0.89); p < 0.05)] and an increased ratio of circulating neutrophils [0.96 (0.85) vs. 0.91 (0.77); p < 0.05] as compared to culprit plaques without SCD. Total monocyte levels did not differ between the two groups (p = n.s.). However, SCD-containing CLs were characterized by an increased culprit ratio of intermediate monocytes [(1.15 (0.81) vs. 0.96 (0.84); p < 0.05)] with an enhanced surface expression of the integrin receptor CD49d as compared to intermediate monocytes derived from SCD-free CLs [(1.06 (0.94) vs. 0.97 (0.91)] p < 0.05. Finally, 12 months rates of MACE+ were higher in patients with, as compared to patients without SCD at CL (16.4% vs. 5.3%; p < 0.05). CONCLUSIONS This study for the first time identified a specific inflammatory profile of CL with SCD, with a predominance of neutrophils, intermediate monocytes and their corresponding effector molecules. Hence, this study advances our understanding of ACS-causing CL and provides the basis for future personalized anti-inflammatory, therapeutic approaches to ACS.
Collapse
Affiliation(s)
- Gregor Nelles
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany; Department of Medicine, Cardiology/Angiology, Goethe University Hospital, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Frankfurt Rhine-Main, Frankfurt, Germany
| | - Youssef S Abdelwahed
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany
| | - Aseel Alyaqoob
- Department of Cardiology and ISAR Research Centre, German Heart Centre, 80636, Munich, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Munch, 80636, Munich, Germany
| | - Claudio Seppelt
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany; Department of Medicine, Cardiology/Angiology, Goethe University Hospital, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Frankfurt Rhine-Main, Frankfurt, Germany
| | - Barbara E Stähli
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany; Department of Cardiology, Universitäres Herzzentrum, Universitätsspital Zürich, Zurich, Switzerland
| | - Denitsa Meteva
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany
| | - Nicolle Kränkel
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany
| | - Arash Haghikia
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany
| | - Henryk Dreger
- DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany; Department of Cardiology Charité University Medicine Berlin, Campus Mitte, 10117, Germany
| | - Fabian Knebel
- DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany; Department of Cardiology Charité University Medicine Berlin, Campus Mitte, 10117, Germany; Department of Cardiology, Sana Clinic Lichtenberg, 10365, Berlin, Germany
| | - Tobias D Trippel
- DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany; Department of Cardiology, Charité University Medicine, Campus Virchow, 13353, Berlin, Germany
| | - Maximilian Krisper
- Department of Cardiology, Charité University Medicine, Campus Virchow, 13353, Berlin, Germany
| | - Lara Sieronski
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany
| | - Teresa Gerhardt
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany; Berlin Institute of Health (BIH), 10117, Berlin, Germany; Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, USA
| | - Lukas Zanders
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany
| | - Jens Klotsche
- German Rheumatism Research Centre Berlin, Institute for Social Medicine, Epidemiology und Heath Economy, Charité University Medicine Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany; Berlin Institute of Health (BIH), 10117, Berlin, Germany
| | - Michael Joner
- Department of Cardiology and ISAR Research Centre, German Heart Centre, 80636, Munich, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Munch, 80636, Munich, Germany
| | - David M Leistner
- Department of Cardiology Charité University Medicine Berlin, Campus Benjamin-Franklin, 12203, Berlin, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, 12203, Berlin, Germany; Department of Medicine, Cardiology/Angiology, Goethe University Hospital, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Berlin Institute of Health (BIH), 10117, Berlin, Germany.
| |
Collapse
|
11
|
Song G, Liu B, Xue C, Dong Y, Yang X, Yin Q, Wang C, Lin L, Yang H, Yang G. Intimal predominant calcification is associated with plaque instability in the vertebrobasilar artery by vessel wall magnetic resonance imaging and computed tomography. Eur J Radiol 2023; 168:111132. [PMID: 37806194 DOI: 10.1016/j.ejrad.2023.111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/26/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND AND AIMS It remains unknown about the relationship between vertebrobasilar artery (VBA) calcification and plaque instability. We aimed to investigate the characteristics of VBA calcification using vessel wall magnetic resonance imaging (MRI) and computed tomography (CT) and its association with acute cerebral infarction (ACI). METHODS Nine hundred and thirty patients with VBA stenosis who underwent vessel wall MRI and CT examinations were evaluated retrospectively. Calcification morphology was classified as either intimal or non-intimal predominant using a CT-pathology-validated grading method. Qualitative and quantitative plaque MRI variables and calcification characteristics were compared between culprit and non-culprit lesions. The association between VBA calcification and the occurrence of culprit lesions was investigated using multivariate logistic regression. RESULTS A total of 150 patients with ACI and 142 patients without ACI were eligible for subsequent analyses, respectively. In the qualitative analysis, T1 hyperintensity (p < 0.001) and intimal predominant calcification (p = 0.021) were more frequently observed in the culprit than non-culprit lesions. In the quantitative analyses, culprit lesions had a larger stenosis degree, plaque length, normal wall index, contrast enhancement ratio, lower calcification density and smaller calcification volume than non-culprit lesions (p all < 0.05). Intimal predominant calcification (odds ratio [OR], 2.51; 95 % confident interval [CI], 1.31-4.82, p = 0.006) and calcification density (OR, 0.53; 95 % CI, 0.35-0.78, p = 0.001) were independently associated with the presence of ACI after adjusting for clinical risk factors and plaque variables. CONCLUSIONS Intimal predominant calcification in vertebrobasilar atherosclerosis is associated with the likelihood of having caused acute cerebral infarction. The morphology and density of VBA calcification may provide insight into stroke risk stratification in the posterior circulation.
Collapse
Affiliation(s)
- Guodong Song
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bo Liu
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Xue
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Yin Dong
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Cuiyan Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Liangjie Lin
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Huan Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
12
|
Blanchard I, Vootukuru N, Bhattaru A, Patil S, Rojulpote C. PET Radiotracers in Atherosclerosis: A Review. Curr Probl Cardiol 2023; 48:101925. [PMID: 37392979 DOI: 10.1016/j.cpcardiol.2023.101925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Traditional atherosclerosis imaging modalities are limited to late stages of disease, prior to which patients are frequently asymptomatic. Positron emission tomography (PET) imaging allows for the visualization of metabolic processes underscoring disease progression via radioactive tracer, allowing earlier-stage disease to be identified. 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG) uptake largely reflects the metabolic activity of macrophages, but is unspecific and limited in its utility. By detecting areas of microcalcification, 18F-Sodium Fluoride (18F-NaF) uptake also provides insight into atherosclerosis pathogenesis. Gallium-68 DOTA-0-Tyr3-Octreotate (68Ga-DOTATATE) PET has also shown potential in identifying vulnerable atherosclerotic plaques with high somatostatin receptor expression. Finally, 11-carbon (11C)-choline and 18F-fluoromethylcholine (FMCH) tracers may identify high-risk atherosclerotic plaques by detecting increased choline metabolism. Together, these radiotracers quantify disease burden, assess treatment efficacy, and stratify risk for adverse cardiac events.
Collapse
Affiliation(s)
| | - Nishita Vootukuru
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Abhijit Bhattaru
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ; Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | - Chaitanya Rojulpote
- Department of Radiology, University of Pennsylvania, Philadelphia, PA; Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA.
| |
Collapse
|
13
|
Barbato E, Gallinoro E, Abdel-Wahab M, Andreini D, Carrié D, Di Mario C, Dudek D, Escaned J, Fajadet J, Guagliumi G, Hill J, McEntegart M, Mashayekhi K, Mezilis N, Onuma Y, Reczuch K, Shlofmitz R, Stefanini G, Tarantini G, Toth GG, Vaquerizo B, Wijns W, Ribichini FL. Management strategies for heavily calcified coronary stenoses: an EAPCI clinical consensus statement in collaboration with the EURO4C-PCR group. Eur Heart J 2023; 44:4340-4356. [PMID: 37208199 DOI: 10.1093/eurheartj/ehad342] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Since the publication of the 2015 EAPCI consensus on rotational atherectomy, the number of percutaneous coronary interventions (PCI) performed in patients with severely calcified coronary artery disease has grown substantially. This has been prompted on one side by the clinical demand for the continuous increase in life expectancy, the sustained expansion of the primary PCI networks worldwide, and the routine performance of revascularization procedures in elderly patients; on the other side, the availability of new and dedicated technologies such as orbital atherectomy and intravascular lithotripsy, as well as the optimization of the rotational atherectomy system, has increased operators' confidence in attempting more challenging PCI. This current EAPCI clinical consensus statement prepared in collaboration with the EURO4C-PCR group describes the comprehensive management of patients with heavily calcified coronary stenoses, starting with how to use non-invasive and invasive imaging to assess calcium burden and inform procedural planning. Objective and practical guidance is provided on the selection of the optimal interventional tool and technique based on the specific calcium morphology and anatomic location. Finally, the specific clinical implications of treating these patients are considered, including the prevention and management of complications and the importance of adequate training and education.
Collapse
Affiliation(s)
- Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University, Via di Grottarossa n. 1035, Rome, 00189, Italy
| | - Emanuele Gallinoro
- Division of University Cardiology, IRCCS Galeazzi-Sant'Ambrogio Hospital, University of Milan, Milan, Italy
| | | | - Daniele Andreini
- Division of University Cardiology, IRCCS Galeazzi-Sant'Ambrogio Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Didier Carrié
- Service de Cardiologie B, CHU Rangueil, Université Paul Sabatier, Toulouse, France
| | - Carlo Di Mario
- Interventional Structural Cardiology Division, Department of Clinical & Experimental Medicine, Careggi University Hospital, Florence, Italy
| | - Dariusz Dudek
- Institute of Cardiology, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Javier Escaned
- Hospital Clínico San Carlos IDISCC, Complutense University of Madrid, Madrid, Spain
| | | | | | - Jonathan Hill
- Department of Cardiology, Royal Brompton Hospital, London, UK
| | - Margaret McEntegart
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kambis Mashayekhi
- Department of Internal Medicine and Cardiology, MediClin Heart Institute Lahr/Baden, Lahr & Division of Cardiology and Angiology II, University Heart Center Freiburg-Bad Krozingen, Bad Krozingen, Germany
| | | | - Yoshinobu Onuma
- Department of Cardiology, Cardiovascular Center, Fujita Health University Hospital, Toyoake, Japan
- Department of Cardiology, National University of Ireland, Galway, Ireland
| | - Krzyszstof Reczuch
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | | | - Giulio Stefanini
- Humanitas Clinical and Research Hospital IRCCS & Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giuseppe Tarantini
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Gabor G Toth
- University Heart Center Graz, Medical University of Graz, Graz, Austria
| | - Beatriz Vaquerizo
- Unidad de Cardiología Intervencionista, Hospital del Mar, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - William Wijns
- The Lambe Institute for Translational Medicine, The Smart Sensors Laboratory, Corrib Core Laboratory and Curam, National University of Ireland, Galway, Ireland
| | - Flavio L Ribichini
- Cardiovascular Section of the Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Belhoul-Fakir H, Brown ML, Thompson PL, Hamzah J, Jansen S. Connecting the Dots: How Injury in the Arterial Wall Contributes to Atherosclerotic Disease. Clin Ther 2023; 45:1092-1098. [PMID: 37891144 DOI: 10.1016/j.clinthera.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
PURPOSE The occurrence and development of atherosclerotic cardiovascular disease, which can result in severe outcomes, such as myocardial infarction, stroke, loss of limb, renal failure, and infarction of the gut, are strongly associated with injury to the intimal component of the arterial wall whether via the inside-out or outside-in pathways. The role of injury to the tunica media as a pathway of atherosclerosis initiation is an underresearched area. This review focuses on potential pathways to vessel wall injury as well as current experimental and clinical research in the middle-aged and elderly populations, including the role of exercise, as it relates to injury to the tunica media. METHODS A database search using PubMed and Google Scholar was conducted for research articles published between 1909 and 2023 that focused on pathways of atherogenesis and the impact of mechanical forces on wall injury. The following key words were searched: wall injury, tunica media, atherogenesis, vascular aging, and wall strain. Studies were analyzed, and the relevant information was extracted from each study. FINDINGS A link between high mechanical stress in the arterial wall and reduced vascular compliance was found. The stiffening and calcification of the arterial wall with aging induce high blood pressure and pulse pressure, thereby causing incident hypertension and cardiovascular disease. In turn, prolonged high mechanical stress, particularly wall strain, applied to the arterial wall during vigorous exercise, results in stiffening and calcification of tunica media, accelerated arterial aging, and cardiovascular disease events. In both scenarios, the tunica media is the primary target of mechanical stress and the first to respond to hemodynamic changes. The cyclical nature of these impacts confounds the results of each because they are not mutually exclusive. IMPLICATIONS The role of stress in the tunica media appears to be overlooked despite its relevance, and further research into new primary preventive therapies is needed aside from cautioning the role of vigorous exercise in the elderly population.
Collapse
Affiliation(s)
- Hanane Belhoul-Fakir
- Curtin Medical School, Curtin University, Bentley, Perth, Western Australia, Australia; Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
| | - Michael Lawrence Brown
- School of Population Health, Curtin University, Bently, Perth, Western Australia, Australia
| | - Peter L Thompson
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Juliana Hamzah
- Curtin Medical School, Curtin University, Bentley, Perth, Western Australia, Australia; Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Bentley, Perth, Western Australia, Australia; Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Nedlands, Perth, Western Australia, Australia.
| |
Collapse
|
15
|
Wang C, Ma Q, Yu X. Bile Acid Network and Vascular Calcification-Associated Diseases: Unraveling the Intricate Connections and Therapeutic Potential. Clin Interv Aging 2023; 18:1749-1767. [PMID: 37885621 PMCID: PMC10599251 DOI: 10.2147/cia.s431220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Bile acids play a crucial role in promoting intestinal nutrient absorption and biliary cholesterol excretion, thereby protecting the liver from cholesterol accumulation and bile acid toxicity. Additionally, bile acids can bind to specific nuclear and membrane receptors to regulate energy expenditure and specific functions of particular tissues. Vascular calcification refers to the pathological process of calcium-phosphate deposition in blood vessel walls, which serves as an independent predictor for cardiovascular adverse events. In addition to aging, this pathological change is associated with aging-related diseases such as atherosclerosis, hypertension, chronic kidney disease, diabetes mellitus, and osteoporosis. Emerging evidence suggests a close association between the bile acid network and these aforementioned vascular calcification-associated conditions. Several bile acids have been proven to participate in calcium-phosphate metabolism, affecting the transdifferentiation of vascular smooth muscle cells and thus influencing vascular calcification. Targeting the bile acid network shows potential for ameliorating these diseases and their concomitant vascular calcification by regulating pathways such as energy metabolism, inflammatory response, oxidative stress, and cell differentiation. Here, we present a summary of the metabolism and functions of the bile acid network and aim to provide insights into the current research on the profound connections between the bile acid network and these vascular calcification-associated diseases, as well as the therapeutic potential.
Collapse
Affiliation(s)
- Cui Wang
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| |
Collapse
|
16
|
Liu CJ, Li WH, Li CH, Wu JS, Lu ZH, Tsai YS, Chao TH, Huang HS. Nephrolithiasis is associated with the severity of coronary artery calcification, but not with coronary artery stenosis. World J Urol 2023; 41:1967-1974. [PMID: 37284843 DOI: 10.1007/s00345-023-04442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
PURPOSE Emerging data have indicated that nephrolithiasis is possibly associated with subclinical coronary artery disease (CAD). Considering that a significant proportion of obstructive CAD in non-elderly individuals occurs in those without detectable calcium score (CACS), this study aimed to investigate whether nephrolithiasis is still associated with CAD as assessed by coronary computed tomography (CT)-derived luminal stenosis [using Gensini score (GS)]. METHODS A total of 1170 asymptomatic adults without known CAD who underwent health examinations were recruited. Nephrolithiasis was assessed using abdominal ultrasonography (US). Individuals with a self-reported stone history, but no evidence of nephrolithiasis were excluded. The CACS and GS were measured using 256-slice coronary CT. RESULTS Nearly half of these patients had a CACS > 0 (48.1%), and a higher prevalence of nephrolithiasis was observed than in those who had zero CACS (13.1% vs. 9.7%). However, no significant intergroup difference in GS was detected. A greater proportion of stone formers than non-stone formers had a higher risk category, whereas no significant difference was noted in Gensini category. Multiple linear regression analyses showed that the CACS independently predicted the presence of nephrolithiasis after adjustment. Importantly, we found that stone formers had a nearly threefold higher risk than non-stone formers of developing severe coronary calcification (CAC > 400). CONCLUSIONS Nephrolithiasis was significantly associated with coronary artery calcification presence and severity, but not coronary luminal stenosis in patients without known CAD. Accordingly, the relationship between stone disease and CAD remains controversial, and additional studies are imperative to validate these findings.
Collapse
Affiliation(s)
- Chan-Jung Liu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Wen-Huang Li
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
- Department of Family Medicine, An Nan Hospital, China Medical University, Tainan, 709040, Taiwan
| | - Chung-Hao Li
- Department of Family Medicine, An Nan Hospital, China Medical University, Tainan, 709040, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jin-Shang Wu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
- Department of Family Medicine, National Cheng Kung University Hospital, Douliou Branch, College of Medicine, National Cheng Kung University, Yunlin, 640003, Taiwan
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Ze-Hong Lu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
- Center for Clinical Medicine Research, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan.
| | - Ho-Shiang Huang
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan.
| |
Collapse
|
17
|
Wang Z, Ma J, Yue H, Zhang Z, Fang F, Wang G, Liu X, Shen Y. Vascular smooth muscle cells in intracranial aneurysms. Microvasc Res 2023:104554. [PMID: 37236346 DOI: 10.1016/j.mvr.2023.104554] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Intracranial aneurysm (IA) is a severe cerebrovascular disease characterized by abnormal bulging of cerebral vessels that may rupture and cause a stroke. The expansion of the aneurysm accompanies by the remodeling of vascular matrix. It is well-known that vascular remodeling is a process of synthesis and degradation of extracellular matrix (ECM), which is highly dependent on the phenotype of vascular smooth muscle cells (VSMCs). The phenotypic switching of VSMC is considered to be bidirectional, including the physiological contractile phenotype and alternative synthetic phenotype in response to injury. There is increasing evidence indicating that VSMCs have the ability to switch to various phenotypes, including pro-inflammatory, macrophagic, osteogenic, foamy and mesenchymal phenotypes. Although the mechanisms of VSMC phenotype switching are still being explored, it is becoming clear that phenotype switching of VSMCs plays an essential role in IA formation, progression, and rupture. This review summarized the various phenotypes and functions of VSMCs associated with IA pathology. The possible influencing factors and potential molecular mechanisms of the VSMC phenotype switching were further discussed. Understanding how phenotype switching of VSMC contributed to the pathogenesis of unruptured IAs can bring new preventative and therapeutic strategies for IA.
Collapse
Affiliation(s)
- Zhenye Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jia Ma
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyan Yue
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zhewei Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Guixue Wang
- Jinfeng Laboratory, Chongqing 401329, China; Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
18
|
Bagyura Z, Kiss L, Lux Á, Csobay-Novák C, Jermendy ÁL, Polgár L, Tabák ÁG, Soós P, Szelid Z, Merkely B, Kőhidai L, Pállinger É. Neutrophil-to-Lymphocyte Ratio Is an Independent Risk Factor for Coronary Artery Disease in Central Obesity. Int J Mol Sci 2023; 24:ijms24087397. [PMID: 37108560 PMCID: PMC10138538 DOI: 10.3390/ijms24087397] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Several inflammatory biomarkers were found to be associated with an increased risk of cardiovascular disease. Neutrophil-to-lymphocyte ratio (NLR) is a marker of subclinical inflammation that increases with the stress response. Visceral adiposity index (VAI) calculated as a combination of anthropometric and metabolic parameters reflects both the extent and function of visceral adipose tissue. Given the association of subclinical inflammation with both obesity and cardiovascular diseases, it is plausible that the inflammation-CVD association is modulated by the amount and function of adipose tissue. Thus, our aim was to examine the association between NLR and coronary artery calcium score (CACS), an intermediate marker of coronary artery disease in asymptomatic patients across VAI tertiles. Methods: Data from 280 asymptomatic participants of a cardiovascular screening program were analysed. In addition to the collection of lifestyle and medical history, a non-contrast cardiac CT scan and laboratory tests were performed on all participants. Multivariate logistic regression was conducted with CACS > 100 as the outcome and with conventional cardiovascular risk factors and NLR, VAI, and NLR by VAI tertile as predictors. Results: We found an interaction between VAI tertiles and NLR; NLR values were similar in the lower VAI tertiles, while they were higher in the CACS > 100 in the 3rd VAI tertile (CACS ≤ 100: 1.94 ± 0.58 vs. CACS > 100: 2.48 ± 1.1, p = 0.008). According to multivariable logistic regression, the interaction between NLR and VAI tertiles remained: NLR was associated with CACS > 100 in the 3rd VAI tertile (OR = 1.67, 95% CI 1.06-2.62, p = 0.03) but not in the lower tertiles even after adjustment for age, sex, smoking, history of hypertension, hyperlipidaemia, and diabetes mellitus, as well as high-sensitivity C-reactive protein. Our findings draw attention to the independent association between subclinical, chronic, systemic inflammation and subclinical coronary disease in obesity.
Collapse
Affiliation(s)
- Zsolt Bagyura
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, H-1122 Budapest, Hungary
| | - Loretta Kiss
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, H-1122 Budapest, Hungary
| | - Árpád Lux
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, H-1122 Budapest, Hungary
| | - Csaba Csobay-Novák
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, H-1122 Budapest, Hungary
| | - Ádám L Jermendy
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, H-1122 Budapest, Hungary
| | - Lívia Polgár
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, H-1122 Budapest, Hungary
| | - Ádám G Tabák
- Department of Public Health, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Korányi S. u. 2/a, H-1083 Budapest, Hungary
- UCL Brain Sciences, University College London, 1-19 Torrington Place, London WC1E 6BT, UK
| | - Pál Soós
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, H-1122 Budapest, Hungary
| | - Zsolt Szelid
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, H-1122 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, H-1122 Budapest, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| |
Collapse
|
19
|
Inflammation, Microcalcification, and Increased Expression of Osteopontin Are Histological Hallmarks of Plaque Vulnerability in Patients with Advanced Carotid Artery Stenosis. Biomedicines 2023; 11:biomedicines11030881. [PMID: 36979863 PMCID: PMC10045225 DOI: 10.3390/biomedicines11030881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Background: severe carotid artery stenosis is a major cause of ischemic stroke and consequent neurological deficits. The most important steps of atherosclerotic plaque development, leading to carotid stenosis, are well-known; however, their exact timeline and intricate causal relationships need to be more characterized. Methods: in a cohort of 119 patients, who underwent carotid endarterectomy, we studied the histological correlations between arterial calcification patterns and localization, the presence of the inflammatory infiltrate and osteopontin expression, with ulceration, thrombosis, and intra-plaque hemorrhage, as direct signs of vulnerability. Results: in patients with an inflammatory infiltrate, aphasia was more prevalent, and microcalcification, superficial calcification, and high-grade osteopontin expression were characteristic. Higher osteopontin expression was also correlated with the presence of a lipid core. Inflammation and microcalcification were significantly associated with plaque ulceration in logistic regression models; furthermore, ulceration and the inflammatory infiltrate were significant determinants of atherothrombosis. Conclusion: our results bring histological evidence for the critically important role of microcalcification and inflammatory cell invasion in the formation and destabilization of advanced carotid plaques. In addition, as a calcification organizer, high-grade osteopontin expression is associated with ulceration, the presence of a large lipid core, and may also have an intrinsic role in plaque progression.
Collapse
|
20
|
Kavurma MM, Bursill C, Stanley CP, Passam F, Cartland SP, Patel S, Loa J, Figtree GA, Golledge J, Aitken S, Robinson DA. Endothelial cell dysfunction: Implications for the pathogenesis of peripheral artery disease. Front Cardiovasc Med 2022; 9:1054576. [PMID: 36465438 PMCID: PMC9709122 DOI: 10.3389/fcvm.2022.1054576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Peripheral artery disease (PAD) is caused by occluded or narrowed arteries that reduce blood flow to the lower limbs. The treatment focuses on lifestyle changes, management of modifiable risk factors and vascular surgery. In this review we focus on how Endothelial Cell (EC) dysfunction contributes to PAD pathophysiology and describe the largely untapped potential of correcting endothelial dysfunction. Moreover, we describe current treatments and clinical trials which improve EC dysfunction and offer insights into where future research efforts could be made. Endothelial dysfunction could represent a target for PAD therapy.
Collapse
Affiliation(s)
- Mary M. Kavurma
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Christina Bursill
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | | | - Freda Passam
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Central Clinical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Siân P. Cartland
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jacky Loa
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Gemma A. Figtree
- Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
- The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, Australia
| | - Sarah Aitken
- Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
- Concord Institute of Academic Surgery, Concord Hospital, Sydney, NSW, Australia
| | | |
Collapse
|
21
|
Sampietro T, Sbrana F, Bigazzi F, Dal Pino B. Paradoxical effect of lipid lowering therapy in homozygous familial hypercholesterolemia: Atherosclerotic plaque calcifications and increased cardiovascular events. Rev Port Cardiol 2022; 41:805-807. [DOI: 10.1016/j.repc.2021.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
|
22
|
Sohn M, Chun EJ, Lim S. Cilostazol treatment for preventing adverse cardiovascular events in patients with type 2 diabetes and coronary atherosclerosis: Long-term follow-up of the ESCAPE study. J Diabetes 2022; 14:524-531. [PMID: 35932165 PMCID: PMC9426278 DOI: 10.1111/1753-0407.13300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Previously, in the ESCAPE study, a randomized controlled trial, we found that 12 months of cilostazol administration significantly decreased coronary artery stenosis and the noncalcified plaque component compared with aspirin. The goal of the current study was to evaluate the effect of cilostazol treatment on cardiovascular events up to 7 years after the end of the original study. METHODS After the end of the ESCAPE study with patients with type 2 diabetes mellitus (T2DM) and mild to moderate coronary artery stenosis, we decided to extend the ESCAPE study to investigate the long-term effect of cilostazol and aspirin, named the ESCAPE-extension study. The study participants had been investigated for cardiovascular events for up to 7 years, bringing the total follow-up time to a median of 5.2 years (interquartile range 3.6-6.7 years). Adverse events were also investigated. RESULTS Among 100 participants from the original study, 88 were included in this extension study. Cilostazol treatment reduced the incidence of cardiovascular events in the patients with T2DM when compared with aspirin for a 5.2-year median follow-up (hazard ratio 0.24; 95% CI, 0.07-0.83). The cardiovascular benefit of cilostazol therapy was maintained along with age, sex, systolic blood pressure, low-density lipoprotein cholesterol, and coronary artery calcium score. No serious adverse events in the cilostazol group were noted in the follow-up period. CONCLUSIONS In this ESCAPE-extension study, cilostazol treatment proved its efficacy in reducing cardiovascular events compared with aspirin in diabetic patients with subclinical coronary artery disease, suggesting the beneficial role of cilostazol in the primary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal MedicineSeoul National University Bundang Hospital, Seoul National University College of MedicineSeongnamRepublic of Korea
| | - Eun Ju Chun
- Department of RadiologySeoul National University Bundang Hospital, Seoul National University College of MedicineSeongnamRepublic of Korea
| | - Soo Lim
- Department of Internal MedicineSeoul National University Bundang Hospital, Seoul National University College of MedicineSeongnamRepublic of Korea
| |
Collapse
|
23
|
Hou D, Yang X, Wang Y, Huang S, Tang Y, Wu D. Carotid Siphon Calcification Predicts the Symptomatic Progression in Branch Artery Disease With Intracranial Artery Stenosis. Arterioscler Thromb Vasc Biol 2022; 42:1094-1101. [PMID: 35652332 PMCID: PMC9311467 DOI: 10.1161/atvbaha.122.317670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Arterial calcification in the aortic arch, carotid bifurcation, or siphon on computed tomography was associated with cardiovascular disease. The association between arterial calcification prevalence and progression of branch atheromatous disease (BAD) in intracranial artery atherosclerosis was little investigated.
Collapse
Affiliation(s)
- Duanlu Hou
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China. (D.H., X.Y., Y.W., S.H., D.W.)
| | - Xiaoli Yang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China. (D.H., X.Y., Y.W., S.H., D.W.)
| | - Yuanyuan Wang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China. (D.H., X.Y., Y.W., S.H., D.W.)
| | - Shengwen Huang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China. (D.H., X.Y., Y.W., S.H., D.W.)
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China. (Y.T.)
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China. (D.H., X.Y., Y.W., S.H., D.W.)
| |
Collapse
|
24
|
Hafiane A, Favari E, Bortnick AE. Measures of high-density lipoprotein function in men and women with severe aortic stenosis. Lipids Health Dis 2022; 21:48. [PMID: 35643498 PMCID: PMC9148512 DOI: 10.1186/s12944-022-01653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Calcification of the aortic valve is a common heart valve disorder, in some cases leading to clinically impactful severe aortic stenosis (AS). Sex-specific differences in aortic valve calcification (ACV) exist, with women having a lower burden of calcification than men as measured by computed tomography; however, the pathophysiological mechanism that leads to these differences remains unclear. METHODS Using cultured human Tamm-Horsfall protein 1 (THP-1) macrophages and human aortic valve interstitial cells, the effects of high-density lipoprotein (HDL) particles isolated from the plasma of men and women with severe AS were studied for cholesterol efflux capacity (CEC). RESULTS HDL-CEC was assessed in 46 patients with severe AS, n = 30 men, n = 16 women. ATP-Binding Cassette A1 (ABCA1)-mediated HDL-CEC was measured from human cultured THP-1 macrophages to plasma HDL samples. Women with severe AS had more ABCA1-mediated HDL-CEC, as compared to men (8.50 ± 3.90% cpm vs. 6.80 ± 1.50% cpm, P = 0.04). HDL pre-β1 and α-particles were higher in woman than in men by spectral density, (pre-β1 HDL, 20298.29 ± 1076.15 vs. 15,661.74 ± 789.00, P = 0.002, and α-HDL, 63006.35 ± 756.81 vs. 50,447.00 ± 546.52, P = 0.03). Lecithin-cholesterol acyltransferase conversion of free cholesterol into cholesteryl esters was higher in women than men (16.44 ± 9.11%/h vs. 12.00 ± 8.07%/h, P = 0.03). CONCLUSIONS Sex-specific changes in various parameters of HDL-CEC were found in patients with severe AS. Sex-based modifications in HDL functionality by HDL-CEC might account for the reduced burden of calcification in women vs. men with severe AS. Therefore, future studies should target sex-related pathways in AS to help to improve understanding and treatment of AS. Sex specifc differences in AVC and differences associated with HDL function in men and women with severe AS. When compared to men, women had higher preβ-HDL and α-HDL migrating particles, higher cholesterol efflux to HDL, and higher lecithin cholesterol acyl transferase (LCAT) activity, possibly indicating that improved reverse cholesterol transport may be protective against worsened calcification.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, 1001 Boulevard Decarie, Montreal, Québec, H3A 1A1, Canada.
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Anna E Bortnick
- Department of Medicine, Division of Cardiology, Bronx, New York, USA
- Division of Geriatrics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
25
|
Gao F, Li YP, Ma XT, Wang ZJ, Shi DM, Zhou YJ. Effect of Alirocumab on Coronary Calcification in Patients With Coronary Artery Disease. Front Cardiovasc Med 2022; 9:907662. [PMID: 35600486 PMCID: PMC9120536 DOI: 10.3389/fcvm.2022.907662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors have been documented with significantly reduction in LDL cholesterol levels and cardiovascular events. However, evidence regarding the impact of PCSK9 inhibitors on coronary calcification is limited. Methods Eligible patients with intermediate coronary lesions and elevated LDL cholesterol values were randomized to either alirocumab 75 mg Q2W plus statin (atorvastatin 20 mg/day or rosuvastatin 10 mg/day) therapy or standard statin therapy. Calcium score based on coronary computed tomographic angiography at baseline and follow up were compared. Results Compared with baseline levels, LDL cholesterol were significantly decreased in both groups, while the absolute reduction of LDL cholesterol levels were higher in patients treated with alirocumab (1.69 ± 0.52 vs. 0.92 ± 0.60, P < 0.0001). Additionally, patients in alirocumab group demonstrated a significant reduction of Lp(a) levels, whereas it was not observed in the standard statin group. Notably, greater increases in the percentage changes of CAC score (10.6% [6.3–23.3] vs. 2.9% [−6.7–8.3]; P < 0.0001) were observed in the statin group compared to the alirocumab group. Consistently, CAC progression was significantly lower in the alirocumab group than in the standard statin group (0.6 ± 2.2% vs. 2.7 ± 2.3%; P = 0.002). Conclusions Study indicated that administration of the PCSK9 inhibitors to statins produced significantly lower rate of CAC progression in patients with coronary artery disease. Further studies with CAC progression and their clinical outcomes are needed. Trial Registration ClinicalTrials.gov, Identifier: NCT04851769.
Collapse
|
26
|
Qin Z, Liu Q, Jiao P, Geng J, Liao R, Su B. Higher Blood Cadmium Concentration Is Associated With Increased Likelihood of Abdominal Aortic Calcification. Front Cardiovasc Med 2022; 9:870169. [PMID: 35557529 PMCID: PMC9086707 DOI: 10.3389/fcvm.2022.870169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
AimsThis study aimed to evaluate the association between blood cadmium concentration (BCC) and abdominal aortic calcification (AAC) in adults aged ≥40 years in the United States.MethodsData were obtained from the 2013–2014 National Health and Nutrition Examination Survey (NHANES). Participants without data about BCC and AAC scores were excluded. BCC was directly measured using inductively coupled plasma mass spectrometry (ICP–MS). AAC scores were quantified by the Kauppila scoring system, and severe AAC was defined as an AAC score >6. Weighted multivariable regression analysis and subgroup analysis were conducted to explore the independent relationship between cadmium exposure with AAC scores and severe AAC.ResultsA total of 1,530 participants were included with an average BCC of 0.47 ± 0.02 μg/L and AAC score of 1.40 ± 0.10 [mean ± standard error (SE)]. The prevalence of severe AAC was 7.96% in the whole subjects and increased with the higher BCC tertiles (Tertile 1: 4.74%, Tertile 2: 9.83%, and Tertile 3: 10.17%; p = 0.0395). We observed a significant positive association between BCC and the AAC score (β = 0.16, 95% CI: 0.01~0.30) and an increased risk of severe AAC [odds ratio (OR) = 1.45; 95% CI: 1.03~2.04]. Subgroup analysis and interaction tests revealed that there was no dependence for the association between BCC and AAC.ConclusionBlood cadmium concentration was associated with a higher AAC score and an increased likelihood of severe AAC in adults in the United States. Cadmium exposure is a risk factor for AAC, and attention should be given to the management of blood cadmium.
Collapse
Affiliation(s)
- Zheng Qin
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu, China
- Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Qiang Liu
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu, China
- Chengdu First People's Hospital, Chengdu, China
| | - Pengcheng Jiao
- West China School of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jiwen Geng
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu, China
- Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Ruoxi Liao
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu, China
- Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Baihai Su
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu, China
- Med-X Center for Materials, Sichuan University, Chengdu, China
- *Correspondence: Baihai Su
| |
Collapse
|
27
|
New Therapeutics Targeting Arterial Media Calcification: Friend or Foe for Bone Mineralization? Metabolites 2022; 12:metabo12040327. [PMID: 35448514 PMCID: PMC9027727 DOI: 10.3390/metabo12040327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.
Collapse
|
28
|
Jeong J, Cho S, Lee BS, Seo M, Jang Y, Lim S, Park S. Soluble RAGE attenuates Ang II-induced arterial calcification via inhibiting AT1R-HMGB1-RAGE axis. Atherosclerosis 2022; 346:53-62. [DOI: 10.1016/j.atherosclerosis.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
|
29
|
Saba L, Chen H, Cau R, Rubeis G, Zhu G, Pisu F, Jang B, Lanzino G, Suri J, Qi Y, Wintermark M. Impact Analysis of Different CT Configurations of Carotid Artery Plaque Calcifications on Cerebrovascular Events. AJNR Am J Neuroradiol 2022; 43:272-279. [PMID: 35121588 PMCID: PMC8985662 DOI: 10.3174/ajnr.a7401] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE CT is considered the standard reference both for quantification and characterization of carotid artery calcifications. Our aim was to investigate the relationship among different types of calcium configurations detected with CT within the plaque with a novel classification and to investigate the prevalence of cerebrovascular events. MATERIALS AND METHODS Seven hundred ninety patients (men = 332; mean age, 69.7 [SD, 13] years; 508 symptomatic for cerebrovascular symptoms and 282 asymptomatic) who underwent computed tomography of the carotid arteries were retrospectively included in this institutional review board-approved study. The plaque was classified into 6 types according to the different types of calcium configurations as the following: type 1, complete absence of calcification within the plaque; type 2, intimal or superficial calcifications; type 3, deep or bulky calcifications; type 4, adventitial calcifications with internal soft plaque of <2 mm thickness; type 5, mixed patterns with intimal and bulky calcifications; and type 6, positive rim sign. RESULTS The highest prevalence of cerebrovascular events was observed for type 6, for which 89 of the 99 cases were symptomatic. Type 6 plaque had the highest degree of correlation with TIA, stroke, symptoms, and ipsilateral infarct for both sides with a higher prevalence in younger patients. The frequency of symptoms observed by configuration type significantly differed between right and left plaques, with symptoms observed more frequently in type 6 calcification on the right side (50/53; 94%) than on the left side (39/46; 85%, P < .001). CONCLUSIONS We propose a novel carotid artery plaque configuration classification that is associated with the prevalence of cerebrovascular events. If confirmed in longitudinal analysis, this classification could be used to stratify the risk of occurrence of ischemic events.
Collapse
Affiliation(s)
- L. Saba
- From the Department of Radiology (L.S., R.C., F.P.), Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - H. Chen
- Department of Radiology (H.C., G.Z., B.J., M.W.), Division of Neuroradiology, Stanford University Hospital, Stanford, California
| | - R. Cau
- From the Department of Radiology (L.S., R.C., F.P.), Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - G.D. Rubeis
- Department of Radiology, UOC of Diagnostic and Interventional Neuroradiology (G.D.R.), San Camillo-Forlanini Hospital, Rome, Italy
| | - G. Zhu
- Department of Radiology (H.C., G.Z., B.J., M.W.), Division of Neuroradiology, Stanford University Hospital, Stanford, California
| | - F. Pisu
- From the Department of Radiology (L.S., R.C., F.P.), Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - B. Jang
- Department of Radiology (H.C., G.Z., B.J., M.W.), Division of Neuroradiology, Stanford University Hospital, Stanford, California
| | - G. Lanzino
- Department of Neurologic Surgery (G.L.), Mayo Clinic, Rochester, Minnesota
| | - J.S. Suri
- Stroke Monitoring and Diagnostic Division (J.S.S.), AtheroPoint, Roseville, California
| | - Y. Qi
- Department of Xuanwu Hospital (Y.Q.), Capital Medical University, Beijing, Chin
| | - M. Wintermark
- Department of Radiology (H.C., G.Z., B.J., M.W.), Division of Neuroradiology, Stanford University Hospital, Stanford, California
| |
Collapse
|
30
|
Beck-Joseph J, Tabrizian M, Lehoux S. Molecular Interactions Between Vascular Smooth Muscle Cells and Macrophages in Atherosclerosis. Front Cardiovasc Med 2021; 8:737934. [PMID: 34722670 PMCID: PMC8554018 DOI: 10.3389/fcvm.2021.737934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023] Open
Abstract
Atherosclerosis is the largest contributor toward life-threatening cardiovascular events. Cellular activity and cholesterol accumulation lead to vascular remodeling and the formation of fatty plaques. Complications arise from blood clots, forming at sites of plaque development, which may detach and result in thrombotic occlusions. Vascular smooth muscle cells and macrophages play dominant roles in atherosclerosis. A firm understanding of how these cells influence and modulate each other is pivotal for a better understanding of the disease and the development of novel therapeutics. Recent studies have investigated molecular interactions between both cell types and their impact on disease progression. Here we aim to review the current knowledge. Intercellular communications through soluble factors, physical contact, and extracellular vesicles are discussed. We also present relevant background on scientific methods used to study the disease, the general pathophysiology and intracellular factors involved in phenotypic modulation of vascular smooth muscle cells. We conclude this review with a discussion of the current state, shortcomings and potential future directions of the field.
Collapse
Affiliation(s)
- Jahnic Beck-Joseph
- Biomat'X Research Laboratories, Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Maryam Tabrizian
- Biomat'X Research Laboratories, Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Stephanie Lehoux
- Department of Medicine, Lady Davis Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Atorvastatin Promotes Macrocalcification, But Not Microcalcification in Atherosclerotic Rabbits: An 18F-NaF PET/CT Study. J Cardiovasc Pharmacol 2021; 78:544-550. [PMID: 34651601 DOI: 10.1097/fjc.0000000000001088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/29/2021] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Our study aimed to investigate the effect of atorvastatin on plaque calcification by matching the results obtained by 18F-sodium fluoride (18F-NaF) positron emission tomography (PET)/computed tomography (CT) with data from histologic sections. METHODS AND RESULTS The rabbits were divided into 2 groups as follows: an atherosclerosis group (n = 10) and an atorvastatin group (n = 10). All rabbits underwent an abdominal aortic operation and were fed a high-fat diet to induce atherosclerosis. Plasma samples were used to analyze serum inflammation markers and blood lipid levels. 18F-NaF PET/CT scans were performed twice. The plaque area, macrophage number and calcification were measured, and the data from the pathological sections were matched with the 18F-NaF PET/CT scan results. The mean standardized uptake value (0.725 ± 0.126 vs. 0.603 ± 0.071, P < 0.001) and maximum standardized uptake value (1.024 ± 0.116 vs. 0.854 ± 0.091, P < 0.001) significantly increased in the atherosclerosis group, but only slightly increased in the atorvastatin group (0.616 ± 0.103 vs. 0.613 ± 0.094, P = 0.384; 0.853 ± 0.099 vs.0.837 ± 0.089, P < 0.001, respectively). The total calcium density was significantly increased in rabbits treated with atorvastatin compared with rabbits not treated with atorvastatin (1.64 ± 0.90 vs. 0.49 ± 0.35, P < 0.001), but the microcalcification level was significantly lower. There were more microcalcification deposits in the areas with increased radioactive uptake of 18F-NaF. CONCLUSIONS Our study suggests that the anti-inflammatory activity of atorvastatin may promote macrocalcification but not microcalcification within atherosclerotic plaques. 18F-NaF PET/CT can detect plaque microcalcifications.
Collapse
|
32
|
Imaging Inflammation in Patients and Animals: Focus on PET Imaging the Vulnerable Plaque. Cells 2021; 10:cells10102573. [PMID: 34685553 PMCID: PMC8533866 DOI: 10.3390/cells10102573] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Acute coronary syndrome (ACS) describes a range of conditions associated with the rupture of high-risk or vulnerable plaque. Vulnerable atherosclerotic plaque is associated with many changes in its microenvironment which could potentially cause rapid plaque progression. Present-day PET imaging presents a plethora of radiopharmaceuticals designed to image different characteristics throughout plaque progression. Improved knowledge of atherosclerotic disease pathways has facilitated a growing number of pathophysiological targets for more innovative radiotracer design aimed at identifying at-risk vulnerable plaque and earlier intervention opportunity. This paper reviews the efficacy of PET imaging radiotracers 18F-FDG, 18F-NaF, 68Ga-DOTATATE, 64Cu-DOTATATE and 68Ga-pentixafor in plaque characterisation and risk assessment, as well as the translational potential of novel radiotracers in animal studies. Finally, we discuss our murine PET imaging experience and the challenges encountered.
Collapse
|
33
|
Sun C, He B, Sun M, Lv X, Wang F, Chen J, Zhang J, Ye Z, Wen J, Liu P. Yes-Associated Protein in Atherosclerosis and Related Complications: A Potential Therapeutic Target That Requires Further Exploration. Front Cardiovasc Med 2021; 8:704208. [PMID: 34513949 PMCID: PMC8430249 DOI: 10.3389/fcvm.2021.704208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis and its complications diseases remain leading causes of cardiovascular morbidity and mortality, bringing a massive burden on public health worldwide. Atherosclerosis is recognized as chronic inflammation, and involves several highly correlated processes, including lipid metabolism dysfunction, endothelial cell dysfunction, inflammation, oxidative stress, vascular smooth muscle cell activation, platelet activation, thrombosis, altered matrix metabolism, and vascular remodeling. Within the past few decades, accumulating evidence has shown that the Yes-associated protein (YAP), the major effector of the Hippo pathway, can play a crucial role in pathogenesis and development of atherosclerosis. Activation of YAP-related pathways, which are induced by alerting flow pattern and matrix stiffness among others, can regulate processes including vascular endothelial cell dysfunction, monocyte infiltration, and smooth muscle cell migration, which contribute to atherosclerotic lesion formation. Further, YAP potentially modulates atherosclerotic complications such as vascular calcification and intraplaque hemorrhage, which require further investigation. Here, we summarized the relevant literature to outline current findings detailing the relationship between of YAP and atherosclerosis and highlight areas for future research.
Collapse
Affiliation(s)
- Congrui Sun
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Bin He
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Mingsheng Sun
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiaoshuo Lv
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jie Chen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianbin Zhang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianyan Wen
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
34
|
Playford D, Hamilton-Craig C, Dwivedi G, Figtree G. Examining the Potential for Coronary Artery Calcium (CAC) Scoring for Individuals at Low Cardiovascular Risk. Heart Lung Circ 2021; 30:1819-1828. [PMID: 34332891 DOI: 10.1016/j.hlc.2021.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/24/2021] [Accepted: 04/15/2021] [Indexed: 10/20/2022]
Abstract
Atherosclerosis is the commonest cause of death in Australia. Cardiovascular (CV) risk calculators have an important role in preventative cardiology, although they are are strongly age-dependent and designed to identify individuals at high risk of an imminent event. The imprecision around "intermediate" or "low" risk generates therapeutic uncertainty, and a significant proportion of patients presenting with myocardial infarction come from these groups, often with no warning. This highlights a conundrum: "Low" risk does not mean "no" risk. A fresh approach may be required to address the clinical conundrum around CV preventative approaches in non-high-risk individuals. While probabilistic calculators do not measure atherosclerosis, calculation of Coronary Artery Calcium (CAC) scores by low-dose computed tomography (CT) can provide a snapshot of atherosclerotic burden. In intermediate-risk individuals, CAC is well-established as an aid to CV risk prediction. Although CAC scoring in low-risk asymptomatic people may be considered controversial, CAC has emerged as the single best predictor of CV events in asymptomatic individuals, independent of traditional risk factor calculators. Therefore, apart from the contribution of age and sex, the somewhat arbitrary distinction between "intermediate" and "low" CV risk using probabilistic calculators may need to be reconsidered. A zero CAC score has a very low future event rate and non-zero CAC scores are associated with a progressive, graded increase in risk as the CAC score rises. In this review, we examine the evidence for CAC screening in low-risk individuals, and propose more widespread use of CAC using simple new model intended to enhance established CV risk prediction equations.
Collapse
Affiliation(s)
- David Playford
- The University of Notre Dame, Sydney, Fremantle, WA, Australia.
| | | | - Girish Dwivedi
- Harry Perkins Institute for Medical Research (University of Western Australia), Perth, WA, Australia; Fiona Stanley Hospital, Perth, WA, Australia
| | - Gemma Figtree
- Royal North Shore Hospital, Sydney, NSW, Australia; Kolling Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
35
|
Procyanidin B2 Reduces Vascular Calcification through Inactivation of ERK1/2-RUNX2 Pathway. Antioxidants (Basel) 2021; 10:antiox10060916. [PMID: 34198832 PMCID: PMC8228429 DOI: 10.3390/antiox10060916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
Vascular calcification is strongly associated with atherosclerotic plaque burden and plaque instability. The activation of extracellular signal-regulated kinase 1/2 (ERK1/2) increases runt related transcription factor 2 (RUNX2) expression to promote vascular calcification. Procyanidin B2 (PB2), a potent antioxidant, can inhibit ERK1/2 activation in human aortic smooth muscle cells (HASMCs). However, the effects and involved mechanisms of PB2 on atherosclerotic calcification remain unknown. In current study, we fed apoE-deficient (apoE−/−) mice a high-fat diet (HFD) while treating the animals with PB2 for 18 weeks. At the end of the study, we collected blood and aorta samples to determine atherosclerosis and vascular calcification. We found PB2 treatment decreased lesions in en face aorta, thoracic, and abdominal aortas by 21.4, 24.6, and 33.5%, respectively, and reduced sinus lesions in the aortic root by 17.1%. PB2 also increased α-smooth muscle actin expression and collagen content in lesion areas. In the aortic root, PB2 reduced atherosclerotic calcification areas by 75.8%. In vitro, PB2 inhibited inorganic phosphate-induced osteogenesis in HASMCs and aortic rings. Mechanistically, the expression of bone morphogenetic protein 2 and RUNX2 were markedly downregulated by PB2 treatment. Additionally, PB2 inhibited ERK1/2 phosphorylation in the aortic root plaques of apoE−/− mice and calcified HASMCs. Reciprocally, the activation of ERK1/2 phosphorylation by C2-MEK1-mut or epidermal growth factor can partially restore the PB2-inhibited RUNX2 expression or HASMC calcification. In conclusion, our study demonstrates that PB2 inhibits vascular calcification through the inactivation of the ERK1/2-RUNX2 pathway. Our study also suggests that PB2 can be a potential option for vascular calcification treatment.
Collapse
|
36
|
Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, Nordestgaard BG, Watts GF, Bruckert E, Fazio S, Ference BA, Graham I, Horton JD, Landmesser U, Laufs U, Masana L, Pasterkamp G, Raal FJ, Ray KK, Schunkert H, Taskinen MR, van de Sluis B, Wiklund O, Tokgozoglu L, Catapano AL, Ginsberg HN. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2021; 41:2313-2330. [PMID: 32052833 PMCID: PMC7308544 DOI: 10.1093/eurheartj/ehz962] [Citation(s) in RCA: 861] [Impact Index Per Article: 215.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/10/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M John Chapman
- Endocrinology-Metabolism Division, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.,National Institute for Health and Medical Research (INSERM), Paris, France
| | - Ronald M Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute and UCSF, Oakland, CA 94609, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jacob F Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mat J Daemen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Denmark
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia.,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Eric Bruckert
- INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hopital de la Pitie, Paris, France
| | - Sergio Fazio
- Departments of Medicine, Physiology and Pharmacology, Knight Cardiovascular Institute, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK.,Institute for Advanced Studies, University of Bristol, Bristol, UK.,MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, Leipzig, Germany
| | - Luis Masana
- Research Unit of Lipids and Atherosclerosis, IISPV, CIBERDEM, University Rovira i Virgili, C. Sant Llorenç 21, Reus 43201, Spain
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, London, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Faculty of Medicine, Technische Universität München, Lazarettstr, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| | - Henry N Ginsberg
- Department of Medicine, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
Nakajima A, Araki M, Kurihara O, Minami Y, Soeda T, Yonetsu T, Higuma T, Kakuta T, McNulty I, Lee H, Malhotra R, Nakamura S, Jang IK. Predictors for Rapid Progression of Coronary Calcification: An Optical Coherence Tomography Study. J Am Heart Assoc 2021; 10:e019235. [PMID: 33496191 PMCID: PMC7955445 DOI: 10.1161/jaha.120.019235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background The role of coronary calcification in cardiovascular events and plaque stabilization is still being debated, and factors involved in the progression of coronary calcification are not fully understood. This study aimed to identify the predictors for rapid progression of coronary calcification. Methods and Results Patients with serial optical coherence tomography imaging at baseline and at 6 months were selected. Changes in the calcification index and predictors for progression of calcification were studied. Calcification index was defined as the product of the mean calcification arc and calcification length. Rapid progression of calcification was defined as an increase in the calcification index above the median value. Among 187 patients who had serial optical coherence tomography imaging, 235 calcified plaques were identified in 105 patients (56.1%) at baseline. After 6 months, the calcification index increased in 95.3% of calcified plaques from 132.0 to 178.2 (P<0.001). In multivariable analysis, diabetes mellitus (odds ratio [OR], 3.911; P<0.001), chronic kidney disease (OR, 2.432; P=0.037), lipid-rich plaque (OR, 2.698; P=0.034), and macrophages (OR, 6.782; P<0.001) were found to be independent predictors for rapid progression of coronary calcification. Interestingly, rapid progression of calcification was associated with a significant reduction of inflammatory features (thin-cap fibroatheroma; from 21.2% to 11.9%, P=0.003; macrophages; from 74.6% to 61.0%, P=0.001). Conclusions Diabetes mellitus, chronic kidney disease, lipid-rich plaque, and macrophages were independent predictors for rapid progression of coronary calcification. Baseline vascular inflammation and subsequent stabilization may be related to rapid progression of calcification. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT01110538.
Collapse
Affiliation(s)
- Akihiro Nakajima
- Cardiology Division Massachusetts General HospitalHarvard Medical School Boston MA
| | - Makoto Araki
- Cardiology Division Massachusetts General HospitalHarvard Medical School Boston MA
| | - Osamu Kurihara
- Cardiology Division Massachusetts General HospitalHarvard Medical School Boston MA
| | - Yoshiyasu Minami
- Department of Cardiovascular Medicine Kitasato University School of Medicine Sagamihara Kanagawa Japan
| | - Tsunenari Soeda
- Department of Cardiovascular Medicine Nara Medical University Kashihara Nara Japan
| | - Taishi Yonetsu
- Department of Interventional Cardiology Tokyo Medical and Dental University Tokyo Japan
| | - Takumi Higuma
- Division of Cardiology Department of Internal Medicine St. Marianna University School of Medicine Kanagawa Japan
| | - Tsunekazu Kakuta
- Department of Cardiology Tsuchiura Kyodo General Hospital Tsuchiura Ibaraki Japan
| | - Iris McNulty
- Cardiology Division Massachusetts General HospitalHarvard Medical School Boston MA
| | - Hang Lee
- Biostatistics Center Massachusetts General HospitalHarvard Medical School Boston MA
| | - Rajeev Malhotra
- Cardiology Division Massachusetts General HospitalHarvard Medical School Boston MA
| | - Sunao Nakamura
- Interventional Cardiology Unit New Tokyo Hospital Chiba Japan
| | - Ik-Kyung Jang
- Cardiology Division Massachusetts General HospitalHarvard Medical School Boston MA.,Division of Cardiology Kyung Hee University Hospital Seoul Korea
| |
Collapse
|
38
|
Zhang J, Yang Y, Zhang H, Gao P, Zhang Z, Fu W, Zheng L, Zhao Y. Study on the predictive effect of fibrinogen on vascular calcification. Vascular 2021; 29:952-958. [PMID: 33427123 DOI: 10.1177/1708538120985243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Fibrinogen, lipoprotein, and high-density lipoprotein levels were associated with vascular calcification, but their predictive capacity for a vascular calcification was not reported. AIMS The purpose of this study was to evaluate the predictive efficacy of fibrinogen, lipoprotein, and high-density lipoprotein by retrospective analysis of fibrinogen, lipoprotein, and high-density lipoprotein levels in patients with vascular calcification, to explore the effective predictive indexes of vascular calcification, to predict the occurrence and development of vascular calcification, and to provide a simple and effective method for the diagnosis and prevention of vascular calcification.Hypothesis: Fibrinogen is a good prediction of vascular calcification. METHODS Univariate and multivariate analyses were used to assess the effects of fibrinogen, lipoprotein, and high-density lipoprotein on the CV, and the ROC curve of the predictive model was used to assess its predictive effectiveness. We collected the relevant indicators of 462 patients admitted to the Department of Vascular Surgery of the First Hospital of Hebei Medical University from August 2018 to July 2020, including 189 patients with vascular calcification (40.9%) and 273 patients without vascular calcification (59.1%); 75% of the collected data is used for modeling (modeling group) and 25% for verification (verification group). RESULTS Results from the multivariate analysis showed fibrinogen, lipoprotein, and high-density lipoprotein to be independent predictors of vascular calcification. Next, the three-factor models are developed respectively. The area below the ROC curve in the fibrinogen, lipoprotein, and high-density lipoprotein forecast model was 0.8018, 0.7348, and 0.7019, respectively. CONCLUSIONS Fibrinogen is more predictive than high-density lipoprotein and lipoprotein in patients with arteriosclerosis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yan Yang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongsong Zhang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pengju Gao
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zepeng Zhang
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenxiu Fu
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Lihua Zheng
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaheng Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, the First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
39
|
Zeng P, Yang J, Liu L, Yang X, Yao Z, Ma C, Zhu H, Su J, Zhao Q, Feng K, Yang S, Zhu Y, Li X, Wang W, Duan Y, Han J, Chen Y. ERK1/2 inhibition reduces vascular calcification by activating miR-126-3p-DKK1/LRP6 pathway. Am J Cancer Res 2021; 11:1129-1146. [PMID: 33391525 PMCID: PMC7738895 DOI: 10.7150/thno.49771] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: Vascular microcalcification increases the risk of rupture of vulnerable atherosclerotic lesions. Inhibition of ERK1/2 reduces atherosclerosis in animal models while its role in vascular calcification and the underlying mechanisms remains incompletely understood. Methods: Levels of activated ERK1/2, DKK1, LRP6 and BMP2 in human calcific aortic valves were determined. ApoE deficient mice received ERK1/2 inhibitor (U0126) treatment, followed by determination of atherosclerosis, calcification and miR-126-3p production. C57BL/6J mice were used to determine the effect of U0126 on Vitamin D3 (VD3)-induced medial arterial calcification. HUVECs, HAECs and HASMCs were used to determine the effects of ERK1/2 inhibitor or siRNA on SMC calcification and the involved mechanisms. Results: We observed the calcification in human aortic valves was positively correlated to ERK1/2 activity. At cellular and animal levels, U0126 reduced intimal calcification in atherosclerotic lesions of high-fat diet-fed apoE deficient mice, medial arterial calcification in VD3-treated C57BL/6J mice, and calcification in cultured SMCs and arterial rings. The reduction of calcification was attributed to ERK1/2 inhibition-reduced expression of ALP, BMP2 and RUNX2 by activating DKK1 and LRP6 expression, and consequently inactivating both canonical and non-canonical Wnt signaling pathways in SMCs. Furthermore, we determined ERK1/2 inhibition activated miR-126-3p production by facilitating its maturation through activation of AMPKα-mediated p53 phosphorylation, and the activated miR-126-3p from ECs and SMCs played a key role in anti-vascular calcification actions of ERK1/2 inhibition. Conclusions: Our study demonstrates that activation of miR-126-3p production in ECs/SMCs and interactions between ECs and SMCs play an important role in reduction of vascular calcification by ERK1/2 inhibition.
Collapse
|
40
|
Reinhold S, Blankesteijn WM, Foulquier S. The Interplay of WNT and PPARγ Signaling in Vascular Calcification. Cells 2020; 9:cells9122658. [PMID: 33322009 PMCID: PMC7763279 DOI: 10.3390/cells9122658] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Vascular calcification (VC), the ectopic deposition of calcium phosphate crystals in the vessel wall, is one of the primary contributors to cardiovascular death. The pathology of VC is determined by vascular topography, pre-existing diseases, and our genetic heritage. VC evolves from inflammation, mediated by macrophages, and from the osteochondrogenic transition of vascular smooth muscle cells (VSMC) in the atherosclerotic plaque. This pathologic transition partly resembles endochondral ossification, involving the chronologically ordered activation of the β-catenin-independent and -dependent Wingless and Int-1 (WNT) pathways and the termination of peroxisome proliferator-activated receptor γ (PPARγ) signal transduction. Several atherosclerotic plaque studies confirmed the differential activity of PPARγ and the WNT signaling pathways in VC. Notably, the actively regulated β-catenin-dependent and -independent WNT signals increase the osteochondrogenic transformation of VSMC through the up-regulation of the osteochondrogenic transcription factors SRY-box transcription factor 9 (SOX9) and runt-related transcription factor 2 (RUNX2). In addition, we have reported studies showing that WNT signaling pathways may be antagonized by PPARγ activation via the expression of different families of WNT inhibitors and through its direct interaction with β-catenin. In this review, we summarize the existing knowledge on WNT and PPARγ signaling and their interplay during the osteochondrogenic differentiation of VSMC in VC. Finally, we discuss knowledge gaps on this interplay and its possible clinical impact.
Collapse
Affiliation(s)
- Stefan Reinhold
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-433881409
| |
Collapse
|
41
|
Kostyunin A, Mukhamadiyarov R, Glushkova T, Bogdanov L, Shishkova D, Osyaev N, Ovcharenko E, Kutikhin A. Ultrastructural Pathology of Atherosclerosis, Calcific Aortic Valve Disease, and Bioprosthetic Heart Valve Degeneration: Commonalities and Differences. Int J Mol Sci 2020; 21:E7434. [PMID: 33050133 PMCID: PMC7587971 DOI: 10.3390/ijms21207434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 01/24/2023] Open
Abstract
Atherosclerosis, calcific aortic valve disease (CAVD), and bioprosthetic heart valve degeneration (alternatively termed structural valve deterioration, SVD) represent three diseases affecting distinct components of the circulatory system and their substitutes, yet sharing multiple risk factors and commonly leading to the extraskeletal calcification. Whereas the histopathology of the mentioned disorders is well-described, their ultrastructural pathology is largely obscure due to the lack of appropriate investigation techniques. Employing an original method for sample preparation and the electron microscopy visualisation of calcified cardiovascular tissues, here we revisited the ultrastructural features of lipid retention, macrophage infiltration, intraplaque/intraleaflet haemorrhage, and calcification which are common or unique for the indicated types of cardiovascular disease. Atherosclerotic plaques were notable for the massive accumulation of lipids in the extracellular matrix (ECM), abundant macrophage content, and pronounced neovascularisation associated with blood leakage and calcium deposition. In contrast, CAVD and SVD generally did not require vasculo- or angiogenesis to occur, instead relying on fatigue-induced ECM degradation and the concurrent migration of immune cells. Unlike native tissues, bioprosthetic heart valves contained numerous specialised macrophages and were not capable of the regeneration that underscores ECM integrity as a pivotal factor for SVD prevention. While atherosclerosis, CAVD, and SVD show similar pathogenesis patterns, these disorders demonstrate considerable ultrastructural differences.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (A.K.); (R.M.); (T.G.); (L.B.); (D.S.); (N.O.); (E.O.)
| |
Collapse
|
42
|
Fernandez-Prado R, Perez-Gomez MV, Ortiz A. Pelacarsen for lowering lipoprotein(a): implications for patients with chronic kidney disease. Clin Kidney J 2020; 13:753-757. [PMID: 33123354 PMCID: PMC7577764 DOI: 10.1093/ckj/sfaa001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) patients are at an increased risk of cardiovascular disease (CVD) and statins may not be protective in advanced CKD. The reasons for the limited efficacy of statins in advanced CKD are unclear, but statins may increase plasma levels of the highly atherogenic molecule lipoprotein(a), also termed Lp(a), as well as PCSK9 (protein convertase subtilisin/kexin type 9) levels. Lp(a) has also been linked to calcific aortic stenosis, which is common in CKD. Moreover, circulating Lp(a) levels increase in nephrotic syndrome with declining renal function and are highest in patients on peritoneal dialysis. Thus, the recent publication of the Phase 2 randomized controlled trial of pelacarsen [also termed AKCEA-APO(a)-LRx and TQJ230], a hepatocyte-directed antisense oligonucleotide targeting the LPA gene messenger RNA, in persons with CVD should be good news for nephrologists. Pelacarsen safely and dose-dependently decreased Lp(a) levels by 35-80% and a Phase 3 trial [Lp(a)HORIZON, NCT04023552] is planned to run from 2020 to 2024. Unfortunately, patients with estimated glomerular filtration rate <60 mL/min or urinary albumin:creatinine ratio >100 mg/g were excluded from Phase 2 trials and those with 'significant kidney disease' will be excluded from the Phase 3 trial. Optimized exclusion criteria for Lp(a)HORIZON would provide insights into the role of Lp(a) in CVD in CKD patients.
Collapse
Affiliation(s)
- Raul Fernandez-Prado
- IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| |
Collapse
|
43
|
Saito Y, Nakamura K, Ito H. Effects of Eicosapentaenoic Acid on Arterial Calcification. Int J Mol Sci 2020; 21:ijms21155455. [PMID: 32751754 PMCID: PMC7432365 DOI: 10.3390/ijms21155455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
Arterial calcification is a hallmark of advanced atherosclerosis and predicts cardiovascular events. However, there is no clinically accepted therapy that prevents progression of arterial calcification. HMG-CoA reductase inhibitors, statins, lower low-density lipoprotein-cholesterol and reduce cardiovascular events, but coronary artery calcification is actually promoted by statins. The addition of eicosapentaenoic acid (EPA) to statins further reduced cardiovascular events in clinical trials, JELIS and REDUCE-IT. Additionally, we found that EPA significantly suppressed arterial calcification in vitro and in vivo via suppression of inflammatory responses, oxidative stress and Wnt signaling. However, so far there is a lack of evidence showing the effect of EPA on arterial calcification in a clinical situation. We reviewed the molecular mechanisms of the inhibitory effect of EPA on arterial calcification and the results of some clinical trials.
Collapse
|
44
|
Youssef A, Clark JR, Koschinsky ML, Boffa MB. Lipoprotein(a): Expanding our knowledge of aortic valve narrowing. Trends Cardiovasc Med 2020; 31:305-311. [PMID: 32525013 DOI: 10.1016/j.tcm.2020.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 01/05/2023]
Abstract
Elevated levels of lipoprotein(a) [Lp(a)] have been identified as an independent and causal risk factor for atherosclerotic cardiovascular disease (ASCVD) and, more recently, calcific aortic valve disease (CAVD). CAVD is a slow, progressive disorder presenting as severe trileaflet calcification known as aortic valve stenosis (AS) that impairs valve motion and restricts ventricular outflow. AS afflicts 2% of the aging population (≥ 65 years) and tends to be quite advanced by the time it presents clinical symptoms of exertional angina, syncope, or heart failure. Currently, the only effective clinical therapy for AS patients is surgical or transcatheter aortic valve replacement. Evidence is accumulating that Lp(a) can exacerbate pathophysiological processes in CAVD, specifically, endothelial dysfunction, formation of foam cells, and promotion of a pro-inflammatory state. In the valve milieu, the pro-inflammatory effects of Lp(a) are manifested in valve thickening and mineralization through pro-osteogenic signaling and changes in gene expression in valve interstitial cells that is primarily facilitated by the oxidized phospholipid content of Lp(a). In AS pathogenesis, an incomplete understanding of the role of Lp(a) at the molecular level and the absence of appropriate animal models are barriers for the development of specific and effective clinical interventions designed to mitigate the role of Lp(a) in AS. However, the advent of effective therapies that dramatically lower Lp(a) provides the possibility of the first medical treatment to halt AS progression.
Collapse
Affiliation(s)
| | | | - Marlys L Koschinsky
- Robarts Research Institute, Canada; Department of Physiology & Pharmacology, Canada.
| | - Michael B Boffa
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, Room 2260 Robarts Research Institute, 1151 Richmond Street North London, London N6A 5B7, ON, Canada
| |
Collapse
|