1
|
Lazzerini PE, Boutjdir M. Autoimmune cardiac channelopathies and heart rhythm disorders: A contemporary review. Heart Rhythm 2025:S1547-5271(25)02101-0. [PMID: 40058514 DOI: 10.1016/j.hrthm.2025.03.1879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Cardiac arrhythmias still represent a major health problem worldwide, at least in part because the fundamental pathogenic mechanisms are not fully understood, thus affecting the efficacy of therapeutic measures. In fact, whereas cardiac arrhythmias are in most cases due to structural heart diseases, the underlying cause remains elusive in a significant number of patients despite intensive investigations even including postmortem examination and molecular autopsy. A large body of data progressively accumulated during the last decade provides strong evidence that autoimmune mechanisms may be involved in a significant number of such unexplained or poorly explained cardiac arrhythmias. Several proarrhythmic anti-cardiac ion channel autoantibodies have been discovered, in all cases able to directly interfere with the electrophysiologic properties of the heart but leading to different arrhythmic phenotypes, including long QT syndrome, short QT syndrome, and atrioventricular block. These autoantibodies, which may develop independent of a history of autoimmune diseases, could help explain a percentage of arrhythmic events of unknown origin, thereby opening new frontiers for diagnosis and treatment of heart rhythm disorders. Based on this evidence, the novel term autoimmune cardiac channelopathies was coined in 2017. Since then, the interest in the field of cardioimmunology has shown a tumultuous growth, so much so that the number of arrhythmogenic anti-ion channel autoantibodies reported has significantly increased, also in association with not previously described arrhythmic phenotypes, such as atrial fibrillation, Brugada syndrome, and ventricular fibrillation/cardiac arrest. Thus, an updated reassessment of this topic, also highlighting perspectives and unmet needs, has become necessary and represents the main objective of this review.
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, Division of Internal Medicine and Geriatrics, Electroimmunology Unit, University of Siena, Siena, Italy.
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, SUNY Downstate Health Sciences University, New York, New York; New York University Grossman School of Medicine, New York, New York.
| |
Collapse
|
2
|
Thevathasan T, Claus J, Roßberg M, Skurk C, Fichtlscherer S, Akin I, Fuernau G, Hassager C, Zeymer U, Preusch MR, Graf T, Feistritzer HJ, Jobs A, de Waha S, Thiele H, Desch S, Pöss J, Freund A. Association of Electrocardiographic Patterns After Successfully Resuscitated Out-of-Hospital Cardiac Arrest With Significant Coronary Lesions and Mortality-A Predefined Angiography After Out-of-Hospital Cardiac Arrest Without ST-Segment Elevation (TOMAHAWK) Trial. Crit Care Med 2025:00003246-990000000-00473. [PMID: 39992171 DOI: 10.1097/ccm.0000000000006619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
OBJECTIVES The use of electrocardiograms for predicting significant coronary lesions and mortality in patients with successfully resuscitated out-of-hospital cardiac arrest (OHCA) without ST-segment elevation has not been defined yet. The objective of this study was to investigate the association and predictive value of various standardized 12-lead electrocardiogram patterns in patients with successfully resuscitated OHCA and no ST-segment elevations on the presence of significant coronary lesions (diagnostic performance) and 30-day mortality (prognostic performance). DESIGN Predefined subanalysis of the Angiography after Out-of-Hospital Cardiac Arrest without ST-Segment Elevation (TOMAHAWK) trial. SETTING Multicenter, international randomized controlled trial across 31 centers. PATIENTS Adult patients with successfully resuscitated OHCA and no ST-segment elevations. INTERVENTIONS The first recorded electrocardiogram after the return of spontaneous circulation (ROSC) at hospital admission was analyzed by experienced physicians. MEASUREMENTS AND MAIN RESULTS Significant coronary lesions and 30-day mortality. In total, 412 patients with a coronary angiography were included, of which 163 (40%) had significant coronary lesions. No electrocardiogram pattern was identified as a predictor of significant coronary lesions. In the total cohort of patients with and without coronary angiography, right bundle branch blocks (BBBs), prolonged intrinsicoid deflection times, and intrinsicoid deflections in right BBB were strong, independent predictors of 30-day mortality. The "intrinsicoid deflection" is the sharp upward deflection in the QRS complex of an electrocardiogram. The "intrinsicoid deflection time" is the interval from the start of the QRS complex to the peak of the R wave. The predictive performance for significant coronary lesions was poor across all electrocardiogram patterns and better for 30-day mortality. CONCLUSIONS Standardized 12-lead electrocardiogram patterns after ROSC at hospital admission in patients with successfully resuscitated OHCA without ST-segment elevations have poor predictive performance for the presence of significant coronary lesions. Different QRS-related patterns might identify patients with higher risk of short-term mortality.
Collapse
Affiliation(s)
- Tharusan Thevathasan
- DZHK (German Center for Cardiovascular Research), Berlin, Hamburg/Kiel/Lübeck and Heidelberg/Mannheim, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Julia Claus
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Michelle Roßberg
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Carsten Skurk
- DZHK (German Center for Cardiovascular Research), Berlin, Hamburg/Kiel/Lübeck and Heidelberg/Mannheim, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Stephan Fichtlscherer
- DZHK (German Center for Cardiovascular Research), Berlin, Hamburg/Kiel/Lübeck and Heidelberg/Mannheim, Germany
- University Clinic Frankfurt, Frankfurt, Germany
| | - Ibrahim Akin
- DZHK (German Center for Cardiovascular Research), Berlin, Hamburg/Kiel/Lübeck and Heidelberg/Mannheim, Germany
- First Department of Medicine, University Medical Centre Mannheim, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Georg Fuernau
- Clinic for Internal Medicine II, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau-Rosslau, Germany
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Uwe Zeymer
- Medizinische Klinik, Klinikum Ludwigshafen, Ludwigshafen, Germany
| | - Michael R Preusch
- DZHK (German Center for Cardiovascular Research), Berlin, Hamburg/Kiel/Lübeck and Heidelberg/Mannheim, Germany
- Department of Cardiology, Angiology, and Pneumology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Tobias Graf
- DZHK (German Center for Cardiovascular Research), Berlin, Hamburg/Kiel/Lübeck and Heidelberg/Mannheim, Germany
- University Heart Centre Lübeck, Lübeck, Germany
| | - Hans-Josef Feistritzer
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Alexander Jobs
- DZHK (German Center for Cardiovascular Research), Berlin, Hamburg/Kiel/Lübeck and Heidelberg/Mannheim, Germany
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Suzanne de Waha
- Department of Cardiac Surgery, Heart Centre Leipzig at the University of Leipzig, Leipzig, Germany
| | - Holger Thiele
- DZHK (German Center for Cardiovascular Research), Berlin, Hamburg/Kiel/Lübeck and Heidelberg/Mannheim, Germany
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Steffen Desch
- DZHK (German Center for Cardiovascular Research), Berlin, Hamburg/Kiel/Lübeck and Heidelberg/Mannheim, Germany
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Janine Pöss
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Anne Freund
- DZHK (German Center for Cardiovascular Research), Berlin, Hamburg/Kiel/Lübeck and Heidelberg/Mannheim, Germany
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Song Y, Zheng Z. Does COVID-19 impact the QT interval prolongation? Answers from genetic causal inference. Biosci Rep 2025; 45:1-14. [PMID: 39655724 DOI: 10.1042/bsr20241281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/31/2025] Open
Abstract
During the COVID-19 pandemic, there has been heightened interest in the QT interval, a crucial indicator of ventricular electrical activity. Mendelian randomization (MR) is used here to investigate the genetic causation between QT interval alterations and COVID-19. Genetic proxies representing three COVID-19 phenotypes-severe, hospitalized, and COVID-19-were identified in over 1,000,000 individuals of European ancestry. Univariate two-sample MR (TSMR) and multi-exposure-adjusted multivariate MR (MVMR) were used to assess genetic causal associations between COVID-19 and QT intervals in 84,630 UK Biobank participants. The MR-robust adjusted profile score (MR-RAPS) method and radial MR frame were utilized for effective robustness and outlier variant detection, with sensitivity analyses conducted to identify horizontal pleiotropy. For every COVID-19 phenotype, univariate TSMR analysis revealed non-significant causal estimates between COVID-19 and the QT interval [COVID-19: βIVW (95% CI): -0.44 (-1.72, 0.84), P = 0.50; hospitalization: βIVW: 0.12 (-0.57, 0.80), P = 0.74; severe case: βIVW: 0.11 (-0.29, 0.51), P = 0.58]. MR-RAPS and outlier-corrected radial MR analyses further supported this null causal estimation. In confounder-adjusted MVMR analysis, this nonsignificant causality was independent of body mass index (BMI), smoking, and alcohol consumption [βBMI+Alcohol+Smoking (95% CI): -0.77 (-2.44, 0.91), P = 0.37]. Sensitivity analyses did not detect any evidence of bias from horizontal pleiotropy, abnormal data distribution, or weak instruments. These findings suggest that COVID-19 does not directly causally prolong the QT interval. Inconsistent findings in observational research may be attributed to residual confounding.
Collapse
Affiliation(s)
- Yongfei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Zequn Zheng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
4
|
Goldwater PN, Gebien DJ. Metabolic acidosis and sudden infant death syndrome: overlooked data provides insight into SIDS pathogenesis. World J Pediatr 2025; 21:29-40. [PMID: 39656413 PMCID: PMC11814015 DOI: 10.1007/s12519-024-00860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/06/2024] [Indexed: 02/12/2025]
Abstract
BACKGROUND Decades of mainstream SIDS research based on the Triple Risk Model and neuropathological findings have failed to provide convincing evidence for a primary CNS-based mechanism behind putative secondary dyshomeostasis (respiratory or cardiac) or impaired arousal. Newly revealed data indicate that severe metabolic acidosis (and severe hyperkalemia) is a common accompaniment in SIDS. This supports the direct effect of sepsis on vital-organ function and occurrence of secondary CNS changes accompanied by the dyshomeostasis leading to SIDS. DATA SOURCES Using PubMed and Google Scholar literature searches, this paper examines how metabolic acidosis and sepsis might contribute to the underlying pathophysiologic mechanisms in SIDS. RESULTS The discovery of a series of non-peer-reviewed publications provided the basis for a serious examination of the role of metabolic acidosis and sepsis in SIDS. Most SIDS risk factors relate directly or indirectly to infection. This consequently elevated the position of septic or superantigenic shock and viremia in causing secondary organ failure leading to SIDS. The latter could include diaphragmatic failure, as evidenced by peripheral respiratory (muscle) arrests in experimental septic shock, as well as infectious myositis and diaphragm myopathy in sudden unexpected deaths, including SIDS. In addition, just as acidosis lowers the threshold for ventricular fibrillation and sudden cardiac arrest, it could also contribute to similarly unstable diaphragm excitation states leading to respiratory failure. CONCLUSIONS This paper uniquely reveals compelling evidence for a connection between metabolic acidosis, sepsis, viral infections, and sudden unexpected child deaths and provides a solid basis for further work to define which pathway (or pathways) lead to the tragedy of SIDS. It is recommended that all autopsies in sudden unexpected deaths should include pH, bicarbonate, lactate, and electrolyte measurements, as well as diaphragm histology.
Collapse
Affiliation(s)
- Paul N Goldwater
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia, 5006, Australia.
| | - Dov Jordan Gebien
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia, 5006, Australia
| |
Collapse
|
5
|
Wang H, Lin P. Evaluation of ventricular repolarization in dermatomyositis and relationship with inflammation and autoimmunity. Heart Vessels 2024; 39:979-987. [PMID: 38748241 DOI: 10.1007/s00380-024-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/09/2024] [Indexed: 10/19/2024]
Abstract
Dermatomyositis (DM) is a chronic multi-systemic inflammatory disorder of autoimmune origin, which has been associated with cardiovascular complications, including ventricular arrhythmias and sudden cardiac death. The Tp-e interval and Tp-e/QT ratio have been accepted as new markers for the assessment of myocardial repolarization and ventricular arrhythmogenesis. The aim of this study was to evaluate ventricular repolarization by using Tp-e interval and Tp-e/QT ratio in patients with DM, and to assess the relation with inflammation and autoimmunity. This study included 281 DM patients (180 females, 101 males; mean age 52.73 ± 15.80 years) and 281 control subjects (180 females, 101 males; mean age 53.38 ± 15.72 years). QTc, Tp-e interval and Tp-e/QT ratio were measured from the 12-lead ECG. The plasma level of blood routine test, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) was measured. These parameters were compared between groups. No statistically significant difference was found between two groups in terms of basic characteristics. In electrocardiographic parameters analysis, QTc, Tp-e interval and Tp-e/QT ratio were significantly increased in DM patients compared to the control group (441.44 ± 26.62 ms vs 422.72 ± 11.7 ms, 104.16 ± 24.34 ms vs 77.23 ± 16.25 ms and 0.27 ± 0.06 ms vs 0.20 ± 0.04 ms, all P value < 0.01). QTc, Tp-e interval and Tp-e/QT were positively correlated with NLR, CRP, and ESR (all P values < 0.01), and were increased in anti-Ro/SSA-52kD positive patients compared to those negative (452.33 ± 24.89 ms vs 438.55 ± 26.37 ms, 114.05 ± 22.68 ms vs 101.53 ± 24.13 ms, and 0.29 ± 0.06 ms vs 0.27 ± 0.05 ms, all P value < 0.01). Our study demonstrated that QTc, Tp-e interval, and Tp-e/QT ratio were increased in DM patients and were associated with inflammatory markers and anti-Ro/SSA-52kD positivity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Geriatrics, Hangzhou Third People's Hospital, Shangcheng District, Hangzhou City, Zhejiang Province, China
| | - Ping Lin
- Department of Geriatrics, Hangzhou Third People's Hospital, Shangcheng District, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
6
|
Ho CN, Chung WC, Kao CL, Hsu CW, Hung KC, Yu CH, Chen JY, Chen IW. Impact of preoperative QTc interval prolongation on short-term postoperative outcomes: A retrospective study. J Clin Anesth 2024; 98:111574. [PMID: 39121785 DOI: 10.1016/j.jclinane.2024.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
STUDY OBJECTIVE Although a prolonged heart rate-corrected QT interval (QTcI) is associated with an increased risk of mortality in the general population, its prognostic value in surgical patients remains unclear. We aimed to examine whether preoperative QTcI prolongation predicts short-term postoperative outcomes in elderly patients undergoing noncardiac surgery. DESIGN The study was a retrospective analysis using the TriNetX network database. SETTING Operating room. INTERVENTION Assessment and categorization of preoperative QTcI. PATIENTS Data of patients aged ≥65 years who underwent non-cardiac surgery between 2010 and 2023 were analyzed. MEASUREMENTS Patients were categorized into four groups based on preoperative QTcI: long (500-600 ms), borderline (460-500 ms), high-normal (420-460 ms) and control (370-420 ms) groups. The groups were compared using a propensity score-matched analysis. The primary outcome was the all-cause 90-day mortality risk. The secondary outcomes included 90-day risks of postoperative new-onset atrial fibrillation (Af), ventricular arrhythmias (VAs), emergency visits, hospital readmissions, and pneumonia. RESULTS In total, data on 519,929 patients were collected in this study. Pairwise comparisons showed that all QTcI prolongation groups demonstrated a heightened incidence of postoperative mortality, arrhythmias, and other complications compared to the control group. Patients with a long QTcI had a 3-fold higher risk of mortality (hazard ratio [HR] = 3.124, p < 0.001), Af (HR = 3.059, p < 0.001), and VAs (HR = 3.617, p < 0.001) than controls. The risks of emergency visits (HR = 1.287, p < 0.001), hospital readmissions (HR = 1.591, p < 0.001), and pneumonia (HR = 1.672, p < 0.001) were also higher in the long QTcI group than in the control group. A dose-dependent response was evident between QTcI and mortality as well as arrhythmia risk. CONCLUSION Preoperative QTcI screening effectively risk-stratifies elderly surgical patients, with a QTcI≥500 ms being strongly predictive of short-term postoperative mortality and other complications. Incorporating QTcI assessment into the preoperative evaluation may guide perioperative monitoring and management.
Collapse
Affiliation(s)
- Chun-Ning Ho
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan; Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Wei-Chu Chung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Chia-Li Kao
- Department of Anesthesiology, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Chia-Hung Yu
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Jen-Yin Chen
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan; Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - I-Wen Chen
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan City, Taiwan.
| |
Collapse
|
7
|
Gupta P, Gupta A, Gupta K, Bansal S, Sharma M, Balakrishnan I. Prevalence, Outcomes, and Predictors of Prolonged Corrected QT Interval in Hydroxychloroquine-Naïve Hospitalized COVID-19 Patients. Cardiovasc Toxicol 2024; 24:1053-1066. [PMID: 38954228 DOI: 10.1007/s12012-024-09886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
The studies regarding prevalence, outcomes, and predictors of prolonged corrected QT (QTc) among COVID-19 patients not on QTc-prolonging medication are not available in the literature. In this retrospective cohort study, the QTc of 295 hospital-admitted COVID-19 patients was analyzed and its association with in-hospital mortality was determined. The QTc was prolonged in 14.6% (43/295) of the study population. Prolonged QTc was seen in patients with older age (P = 0.018), coronary artery disease (P = 0.001), congestive heart failure (P = 0.042), elevated N-terminal-pro-B-type natriuretic peptide (NT-ProBNP) (P < 0.0001), and on remdesivir (P = 0.046). No episode of torsades de pointes arrhythmia or any arrhythmic death was observed among patients with prolonged QTc. The mortality was significantly high in patients with prolonged QTc (P = 0.003). The multivariate logistic regression analysis showed coronary artery disease (odds ratio (OR): 4.153, 95% CI 1.37-14.86; P = 0.013), and NT-ProBNP (ng/L) (OR: 1.000, 95% CI 1.000-1.000; P = 0.007) as predictors of prolonged QTc. The prolonged QTc was associated with the worst in-hospital survival (p by log-rank 0.001). A significant independent association was observed between prolonged QTc and in-hospital mortality in multivariate cox-regression analysis (adjusted hazard ratio: 3.861; (95% CI 1.719-6.523), P < 0.0001). QTc was found to be a marker of underlying comorbidities among COVID-19 patients. Prolonged QTc in hospitalized COVID-19 patients was independently associated with in-hospital mortality.
Collapse
Affiliation(s)
- Praveen Gupta
- Department of Cardiology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, 110029, India.
| | - Anunay Gupta
- Department of Cardiology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, 110029, India
| | - Kapil Gupta
- Department of Anesthesia and Critical Care, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, 110029, India
| | - Sandeep Bansal
- Department of Cardiology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, 110029, India
| | - Monica Sharma
- Department of Hematology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, 110029, India
| | - Ira Balakrishnan
- Department of Anesthesia and Critical Care, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, 110029, India
| |
Collapse
|
8
|
Yu L, Liu Y, Feng Y. Cardiac arrhythmia in COVID-19 patients. Ann Noninvasive Electrocardiol 2024; 29:e13105. [PMID: 38339786 PMCID: PMC10858328 DOI: 10.1111/anec.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 12/24/2023] [Indexed: 02/12/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) was first introduced in December 2019, which is known as severe acute respiratory syndrome caused by coronavirus-2 (SARS-CoV-2) that is a serious and life-threatening disease. Although pneumonia is the most common manifestation of COVID-19 and was initially introduced as a respiratory infection, in fact, the infection of COVID-19 is a subset of complications and damage to various organs. There are several reports of cardiac involvement with COVID-19. A wide range of cardiac complications may occur following COVID-19 infection, including systolic heart failure, myocarditis, pericarditis, atrial and ventricular arrhythmias, and thromboembolic events. There are various hypotheses about the pathophysiology of cardiovascular involvement by this virus. At the top of these hypotheses is the release of cytokines to the heart. Although there are other assumptions, considering that one of the causes of death in patients with COVID-19 is arrhythmia. It is necessary to know correctly about its pathophysiology and etiology. Therefore, in this study, we have reviewed the articles of recent years in the field of pathophysiology and etiology of arrhythmia in patients with COVID-19 infection. The purpose of this study was to provide a basis for a correct and more comprehensive understanding of the pathogenesis of arrhythmia in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Lei Yu
- Department of CardiologyJinan Third People's HospitalJinanChina
| | - Ying Liu
- Department of CardiologyShandong Second Provincial General HospitalJinanChina
| | - Yanjing Feng
- Department of CardiologyShandong Second Provincial General HospitalJinanChina
| |
Collapse
|
9
|
Lazzerini PE, Cupelli M, Cartocci A, Bertolozzi I, Salvini V, Accioli R, Salvadori F, Marzotti T, Verrengia D, Cevenini G, Bisogno S, Bicchi M, Donati G, Bernardini S, Laghi‐Pasini F, Acampa M, Capecchi PL, El‐Sherif N, Boutjdir M. Elevated Interleukin-6 Levels Are Associated With an Increased Risk of QTc Interval Prolongation in a Large Cohort of US Veterans. J Am Heart Assoc 2024; 13:e032071. [PMID: 38348789 PMCID: PMC11010073 DOI: 10.1161/jaha.123.032071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/13/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Although accumulating data indicate that IL-6 (interleukin-6) can promote heart rate-corrected QT interval (QTc) prolongation via direct and indirect effects on cardiac electrophysiology, current evidence comes from basic investigations and small clinical studies only. Therefore, IL-6 is still largely ignored in the clinical management of long-QT syndrome and related arrhythmias. The aim of this study was to estimate the risk of QTc prolongation associated with elevated IL-6 levels in a large population of unselected subjects. METHODS AND RESULTS An observational study using the Veterans Affairs Informatics and Computing Infrastructure was performed. Participants were US veterans who had an ECG and were tested for IL-6. Descriptive statistics and univariate and multivariate regression analyses were performed to study the relationship between IL-6 and QTc prolongation risk. Study population comprised 1085 individuals, 306 showing normal (<5 pg/mL), 376 moderately high (5-25 pg/mL), and 403 high (>25 pg/mL) IL-6 levels. Subjects with elevated IL-6 showed a concentration-dependent increase in the prevalence of QTc prolongation, and those presenting with QTc prolongation exhibited higher circulating IL-6 levels. Stepwise multivariate regression analyses demonstrated that increased IL-6 level was significantly associated with a risk of QTc prolongation up to 2 times the odds of the reference category of QTc (e.g. QTc >470 ms men/480 ms women ms: odds ratio, 2.28 [95% CI, 1.12-4.50] for IL-6 >25 pg/mL) regardless of the underlying cause. Specifically, the mean QTc increase observed in the presence of elevated IL-6 was quantitatively comparable (IL-6 >25 pg/mL:+6.7 ms) to that of major recognized QT-prolonging risk factors, such as hypokalemia and history of myocardial infarction. CONCLUSIONS Our data provide evidence that a high circulating IL-6 level is a robust risk factor for QTc prolongation in a large cohort of US veterans, supporting a potentially important arrhythmogenic role for this cytokine in the general population.
Collapse
Affiliation(s)
| | - Michael Cupelli
- VA New York Harbor Healthcare SystemNew YorkNYUSA
- SUNY Downstate Health Sciences UniversityNew YorkNYUSA
| | | | - Iacopo Bertolozzi
- Cardiology Intensive Therapy Unit, Department of Internal MedicineNuovo Ospedale San Giovanni di Dio (former Cardiology Intensive Therapy Unit, Department of Internal Medicine, Hospital of Carrara, Carrara, Italy)FlorenceItaly
| | - Viola Salvini
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaItaly
| | - Riccardo Accioli
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaItaly
| | - Fabio Salvadori
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaItaly
| | - Tommaso Marzotti
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaItaly
| | - Decoroso Verrengia
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaItaly
| | | | - Stefania Bisogno
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaItaly
| | - Maurizio Bicchi
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaItaly
| | - Giovanni Donati
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaItaly
| | - Sciaila Bernardini
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaItaly
| | - Franco Laghi‐Pasini
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaItaly
| | - Maurizio Acampa
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaItaly
| | | | - Nabil El‐Sherif
- VA New York Harbor Healthcare SystemNew YorkNYUSA
- SUNY Downstate Health Sciences UniversityNew YorkNYUSA
| | - Mohamed Boutjdir
- VA New York Harbor Healthcare SystemNew YorkNYUSA
- SUNY Downstate Health Sciences UniversityNew YorkNYUSA
- NYU Grossman School of MedicineNew YorkNYUSA
| |
Collapse
|
10
|
Sartorio A, Burrei G, Cristin L, Zoncapè M, Carlin M, Tadiello E, Minuz P, Dalbeni A, Romano S. QTc Prolongation to Predict Mortality in Patients Admitted with COVID-19 Infection: An Observational Study. Curr Vasc Pharmacol 2024; 22:106-121. [PMID: 38073101 DOI: 10.2174/0115701611250248231114114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 06/14/2024]
Abstract
BACKGROUND Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes Coronavirus disease 2019 (COVID-19), characterized by pulmonary infection ranging from asymptomatic forms to respiratory insufficiency and death. Evidence of cardiac involvement in COVID-19 is increasing, and systemic inflammation or direct heart damage by SARS-CoV-2 can prolong the corrected QT interval (QTc). METHODS In this observational study, a total of 333 consecutive patients admitted to the Covid Center of Verona University Hospital from November 2020 to April 2021 were included. Patients with bundle branch block, pacemaker-controlled heart rhythm and heart rate >120 beats/min were excluded. A complete electrocardiogram (ECG) was performed at admission, and QTc values of ≥440 ms for males and ≥460 ms for females were considered prolonged. RESULTS Overall, 153 patients had prolonged QTc (45.5%). In multivariate logistic regression analysis, male sex (odds ratio (OR)=6.612, p=0.046), troponin (OR=1.04, p=0.015) and lymphocyte count (OR=3.047, p=0.019) were independently associated with QTc prolongation. Multivariate logistic regression showed that QTc was independently associated with mortality (OR=4.598, p=0.036). Age, sex, the ratio between the partial pressure of oxygen (PaO2) and the fraction of inspired oxygen (FiO2) (P/F), and fibrosis-4 index for liver fibrosis (FIB-4) were also independently associated with mortality. CONCLUSION QTc interval prolongation appears to be a frequent finding in patients with COVID-19. Moreover, prolonged QTc may be predictive of more severe forms of COVID-19 and worse outcome.
Collapse
Affiliation(s)
- Andrea Sartorio
- Division of Internal Medicine C, Department of Medicine, University of Verona, Italy
| | - Giulia Burrei
- Division of Internal Medicine C, Department of Medicine, University of Verona, Italy
| | - Luca Cristin
- Division of Internal Medicine C, Department of Medicine, University of Verona, Italy
| | - Mirko Zoncapè
- Division of Internal Medicine C, Department of Medicine, University of Verona, Italy
| | - Michele Carlin
- Division of Internal Medicine C, Department of Medicine, University of Verona, Italy
| | - Enrico Tadiello
- Division of Internal Medicine C, Department of Medicine, University of Verona, Italy
| | - Pietro Minuz
- Division of Internal Medicine C, Department of Medicine, University of Verona, Italy
| | - Andrea Dalbeni
- Division of Internal Medicine C, Department of Medicine, University of Verona, Italy
| | - Simone Romano
- Division of Internal Medicine C, Department of Medicine, University of Verona, Italy
| |
Collapse
|
11
|
Meleis MM, Hahn SB, Carraro MN, Deutsch AB. Extensive longitudinal acute transverse myelitis complicated by pulseless ventricular tachycardia and recent shingles vaccination. Am J Emerg Med 2023; 68:213.e1-213.e3. [PMID: 37120396 DOI: 10.1016/j.ajem.2023.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
This case describes a 50-year-old male with a history of psoriatic arthritis who presented to the emergency department with a chief complaint of ascending bilateral lower extremity paresthesia one week following a shingles vaccine. MRI of the patient's spine was significant for longitudinally extensive T2 hyperintensity involving the lower cervical spine with extension into the upper thoracic spine suggestive of acute transverse myelitis (ATM). The patient's hospital course was complicated by a self-limiting episode of pulseless ventricular tachycardia accompanied by a brief loss of consciousness. Initial treatment included IV solumedrol, however due to lack of clinical improvement after a 5-day steroid treatment, plasmapheresis was initiated. The patient's condition improved with plasmapheresis and he was subsequently discharged to a rehab facility with a diagnosis of ATM of unclear etiology. Extensive serology, cardiac and CSF studies failed to determine the cause of this patient's myelitis or pulseless ventricular tachycardia. The following case report explores the potential factors that may have contributed to this patient's symptoms.
Collapse
Affiliation(s)
- Mostafa M Meleis
- Department of Emergency and Hospital Medicine, Lehigh Valley Health Network, USF Morsani College of Medicine, Allentown, PA, USA.
| | - Su Bin Hahn
- Department of Emergency and Hospital Medicine, Lehigh Valley Health Network, USF Morsani College of Medicine, Allentown, PA, USA.
| | - Michelle N Carraro
- Department of Emergency and Hospital Medicine, Lehigh Valley Health Network, USF Morsani College of Medicine, Allentown, PA, USA.
| | - Aaron B Deutsch
- Department of Emergency and Hospital Medicine, Lehigh Valley Health Network, USF Morsani College of Medicine, Allentown, PA, USA.
| |
Collapse
|
12
|
Mojón-Álvarez D, Izquierdo A, Cubero-Gallego H, Calvo-Fernández A, Marrugat J, Pérez-Fernández S, Cabero P, Solà-Richarte C, Soler C, Farré N, Vaquerizo B. The natural history of QTc interval and its clinical impact in coronavirus disease 2019 survivors after 1 year. Front Cardiovasc Med 2023; 10:1140276. [PMID: 37089886 PMCID: PMC10117953 DOI: 10.3389/fcvm.2023.1140276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Background and objectiveProlonged QTc interval on admission and a higher risk of death in SARS-CoV-2 patients have been reported. The long-term clinical impact of prolonged QTc interval is unknown. This study examined the relationship in COVID-19 survivors of a prolonged QTc on admission with long-term adverse events, changes in QTc duration and its impact on 1-year prognosis, and factors associated with a prolonged QTc at follow-up.MethodsWe conducted a single-center prospective cohort study of 523 SARS-CoV-2-positive patients who were alive on discharge. An electrocardiogram was taken on these patients within the first 48 h after diagnosis and before the administration of any medication with a known effect on QT interval and repeated in 421 patients 7 months after discharge. Mortality, hospital readmission, and new arrhythmia rates 1 year after discharge were reviewed.ResultsThirty-one (6.3%) survivors had a baseline prolonged QTc. They were older, had more cardiovascular risk factors, cardiac disease, and comorbidities, and higher levels of terminal pro-brain natriuretic peptide. There was no relationship between prolonged QTc on admission and the 1-year endpoint (9.8% vs. 5.5%, p = 0.212). In 84% of survivors with prolonged baseline QTc, it normalized at 7.9 ± 2.2 months. Of the survivors, 2.4% had prolonged QTc at follow-up, and this was independently associated with obesity, ischemic cardiomyopathy, chronic obstructive pulmonary disease, and cancer. Prolonged baseline QTc was not independently associated with the composite adverse event at 1 year.ConclusionsProlonged QTc in the acute phase normalized in most COVID-19 survivors and had no clinical long-term impact. Prolonged QTc at follow-up was related to the presence of obesity and previously acquired chronic diseases and was not related to 1-year prognosis.
Collapse
Affiliation(s)
- Diana Mojón-Álvarez
- Cardiology Department, Hospital del Mar, Barcelona, Spain
- Medicine Department, Autonomous University of Barcelona, Barcelona, Spain
| | - Andrea Izquierdo
- Cardiology Department, Hospital del Mar, Barcelona, Spain
- Medicine Department, Autonomous University of Barcelona, Barcelona, Spain
| | - Héctor Cubero-Gallego
- Cardiology Department, Hospital del Mar, Barcelona, Spain
- IMIM, Heart Disease Biomedical Research Group, Barcelona, Spain
| | - Alicia Calvo-Fernández
- Cardiology Department, Hospital del Mar, Barcelona, Spain
- Medicine Department, Autonomous University of Barcelona, Barcelona, Spain
- Medicine Department, Pompeu Fabra University, Barcelona, Spain
| | - Jaume Marrugat
- CIBER Group in Epidemiology and Public Heath (CIBERCV), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- REGICOR (Registre Gironí del Cor) Study Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Silvia Pérez-Fernández
- Scientific Coordination Facility, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Paula Cabero
- Cardiology Department, Hospital del Mar, Barcelona, Spain
| | | | - Cristina Soler
- Cardiology Department, Hospital del Mar, Barcelona, Spain
| | - Núria Farré
- Cardiology Department, Hospital del Mar, Barcelona, Spain
- Medicine Department, Autonomous University of Barcelona, Barcelona, Spain
- IMIM, Heart Disease Biomedical Research Group, Barcelona, Spain
- Medicine Department, Pompeu Fabra University, Barcelona, Spain
| | - Beatriz Vaquerizo
- Cardiology Department, Hospital del Mar, Barcelona, Spain
- Medicine Department, Autonomous University of Barcelona, Barcelona, Spain
- IMIM, Heart Disease Biomedical Research Group, Barcelona, Spain
- Medicine Department, Pompeu Fabra University, Barcelona, Spain
- CIBER Group in Epidemiology and Public Heath (CIBERCV), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Correspondence: Beatriz Vaquerizo
| |
Collapse
|
13
|
Molitor N, Hofer D, Çimen T, Gasperetti A, Akdis D, Costa S, Jenni R, Breitenstein A, Wolber T, Winnik S, Fokstuen S, Fu G, Medeiros-Domingo A, Ruschitzka F, Brunckhorst C, Duru F, Saguner AM. Evolution and triggers of defibrillator shocks in patients with arrhythmogenic right ventricular cardiomyopathy. Heart 2023:heartjnl-2022-321739. [PMID: 36889907 DOI: 10.1136/heartjnl-2022-321739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
INTRODUCTION Implantable cardioverter-defibrillators (ICDs) can prevent sudden cardiac death due to ventricular arrhythmias in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). The aim of our study was to assess the cumulative burden, evolution and potential triggers of appropriate ICD shocks during long-term follow-up, which may help to reduce and further refine individual arrhythmic risk in this challenging disease. METHODS This retrospective cohort study included 53 patients with definite ARVC according to the 2010 Task Force Criteria from the multicentre Swiss ARVC Registry with an implanted ICD for primary or secondary prevention. Follow-up was conducted by assessing all available patient records from patient visits, hospitalisations, blood samples, genetic analysis, as well as device interrogation and tracings. RESULTS Fifty-three patients (male 71.7%, mean age 43±2.2 years, genotype positive 58.5%) were analysed during a median follow-up of 7.9 (IQR 10) years. In 29 (54.7%) patients, 177 appropriate ICD shocks associated with 71 shock episodes occurred. Median time to first appropriate ICD shock was 2.8 (IQR 3.6) years. Long-term risk of shocks remained high throughout long-term follow-up. Shock episodes occurred mainly during daytime (91.5%, n=65) and without seasonal preference. We identified potentially reversible triggers in 56 of 71 (78.9%) appropriate shock episodes, the main triggers representing physical activity, inflammation and hypokalaemia. CONCLUSION The long-term risk of appropriate ICD shocks in patients with ARVC remains high during long-term follow-up. Ventricular arrhythmias occur more often during daytime, without seasonal preference. Reversible triggers are frequent with the most common triggers for appropriate ICD shocks being physical activity, inflammation and hypokalaemia in this patient population.
Collapse
Affiliation(s)
- Nadine Molitor
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Hofer
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Tolga Çimen
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Alessio Gasperetti
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, US
| | - Deniz Akdis
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Division of Cardiology, GZO - Regional Health Center, Wetzikon, Switzerland
| | - Sarah Costa
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Rolf Jenni
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Breitenstein
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Wolber
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Stephan Winnik
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Siv Fokstuen
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Genetic Medicine division, Diagnostic Department, Hôpitaux Universitaires de Genève, Genève, Switzerland
| | - Guan Fu
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Frank Ruschitzka
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Corinna Brunckhorst
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Firat Duru
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Cardiology, Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Landerholm A, Fedotova NO, Levy-Carrick NC, Chung R, Funk MC. C-L Case Conference: Torsades de Pointes in a Patient With Lifelong Medical Trauma, COVID-19, Remdesivir, Citalopram, Quetiapine, and Hemodialysis. J Acad Consult Liaison Psychiatry 2023; 64:147-157. [PMID: 36351521 DOI: 10.1016/j.jaclp.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
We present a case of Torsades de Pointes (TdP) in a patient with COVID-19 infection and multiple TdP risk factors including QT-interval prolongation, hemodialysis, bradycardia, and treatment with remdesivir, citalopram, and quetiapine. The case was complicated by post-resuscitation anxiety superimposed on a history of medical trauma since childhood. Top experts in the field of consultation-liaison psychiatry, trauma informed care, and cardiac electrophysiology provide perspectives on this case with a review of the literature. Key teaching topics include identification of TdP risk factors in patients with a complex illness; the necessity for prompt electrophysiology consultation in clinical scenarios with high risk for TdP; and the approach to patients with medical trauma using a trauma-informed lens. We highlight the contributions of COVID-19, the pharmacokinetics of QT-interval-prolonging psychotropic medications, the risks of hemodialysis, and the role of remdesivir-induced bradycardia in this first reported case of TdP in a patient treated with remdesivir.
Collapse
Affiliation(s)
- Angela Landerholm
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA; Department of Psychosocial Oncology, Dana Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA.
| | - Natalie O Fedotova
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Nomi C Levy-Carrick
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Roy Chung
- Department of Cardiovascular Medicine, Cardiac Electrophysiology and Pacing Section, Cleveland Clinic, Cleveland, OH
| | - Margo C Funk
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Fir(e)ing the Rhythm. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
16
|
Zhan Y, Yue H, Liang W, Wu Z. Effects of COVID-19 on Arrhythmia. J Cardiovasc Dev Dis 2022; 9:jcdd9090292. [PMID: 36135437 PMCID: PMC9504579 DOI: 10.3390/jcdd9090292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 01/08/2023] Open
Abstract
The World Health Organization announced that COVID-19, with SARS-CoV-2 as its pathogen, had become a pandemic on 11 March 2020. Today, the global epidemic situation is still serious. With the development of research, cardiovascular injury in patients with COVID-19, such as arrhythmia, myocardial injury, and heart failure, is the second major symptom in addition to respiratory symptoms, and cardiovascular injury is related to the prognosis and mortality of patients. The incidence of arrhythmia in COVID-19 patients ranges from 10% to 20%. The potential mechanisms include viral infection-induced angiotensin-converting enzyme 2 expression change, myocarditis, cytokine storm, cardiac injury, electrophysiological effects, hypoxemia, myocardial strain, electrolyte abnormalities, intravascular volume imbalance, drug toxicities and interactions, and stress response caused by virus infection. COVID-19 complicated with arrhythmia needs to be accounted for and integrated in management. This article reviews the incidence, potential mechanisms, and related management measures of arrhythmia in COVID-19 patients.
Collapse
Affiliation(s)
| | | | | | - Zhong Wu
- Correspondence: ; Tel.: +86-028-85422897
| |
Collapse
|
17
|
Fouda MA, Mohamed YF, Fernandez R, Ruben PC. Anti-inflammatory effects of cannabidiol against lipopolysaccharides in cardiac sodium channels. Br J Pharmacol 2022; 179:5259-5272. [PMID: 35906756 DOI: 10.1111/bph.15936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Sepsis, caused by a dysregulated host response to infections, can lead to cardiac arrhythmias. However, the mechanisms underlying sepsis-induced inflammation, and how inflammation provokes cardiac arrhythmias, are not well understood. We hypothesized that CBD may ameliorate lipopolysaccharides (LPS)-induced cardiotoxicity via Toll-like receptor 4 (TLR-4) and cardiac sodium channels (Nav1.5). METHODS AND RESULTS We incubated human immune cells (THP-1 macrophages) with LPS for 24 hours, then extracted the THP-1 incubation media. ELISA assay showed that LPS (1 or 5 μg/ml), in a concentration-dependent manner, or MPLA (TLR-4 agonist, 5 μg/ml) stimulated the THP-1 cells to release inflammatory cytokines (TNF-α and IL-6). Prior incubation (4 hours) with cannabidiol (CBD: 5 μM) or C34 (TLR-4 antagonist: 5 μg/ml) inhibited LPS and MPLA-induced release of both IL-6 and TNF-α. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) were subsequently incubated for 24 hours in the media extracted from THP-1 cells incubated with LPS, MPLA alone, or in combination with CBD or C34. Voltage-clamp experiments showed a right shift in the voltage dependence of Nav1.5 activation, steady state fast inactivation (SSFI), increased persistent current and prolonged in silico action potential duration in hiSPC-CM incubated in the LPS or MPLA-THP-1 media. Co-incubation with CBD or C34 rescued the biophysical dysfunction caused by LPS and MPLA. CONCLUSION Our results suggest that CBD may protect against sepsis-induced inflammation and subsequent arrhythmias through (i) inhibition of the release of inflammatory cytokines, antioxidant and anti-apoptotic effects and/or (ii) direct effect on Nav1.5.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Yasmine Fathy Mohamed
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.,Department of Microbiology and Immunology, Alexandria University, Alexandria, Egypt
| | - Rachel Fernandez
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
18
|
Isakadze N, Engels MC, Beer D, McClellan R, Yanek LR, Mondaloo B, Hays AG, Metkus TS, Calkins H, Barth AS. C-reactive Protein Elevation Is Associated With QTc Interval Prolongation in Patients Hospitalized With COVID-19. Front Cardiovasc Med 2022; 9:866146. [PMID: 35811700 PMCID: PMC9261932 DOI: 10.3389/fcvm.2022.866146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/28/2022] [Indexed: 12/27/2022] Open
Abstract
Background The relationship between inflammation and corrected QT (QTc) interval prolongation is currently not well defined in patients with COVID-19. Objective This study aimed to assess the effect of marked interval changes in the inflammatory marker C-reactive protein (CRP) on QTc interval in patients hospitalized with COVID-19. Methods In this retrospective cohort study of hospitalized adult patients admitted with COVID-19 infection, we identified 85 patients who had markedly elevated CRP levels and serial measurements of an ECG and CRP during the same admission. We compared mean QTc interval duration, and other clinical and ECG characteristics between times when CRP values were high and low. We performed mixed-effects linear regression analysis to identify associations between CRP levels and QTc interval in univariable and adjusted models. Results Mean age was 58 ± 16 years, of which 39% were women, 41% were Black, and 25% were White. On average, the QTc interval calculated via the Bazett formula was 15 ms higher when the CRP values were “high” vs. “low” [447 ms (IQR 427–472 ms) and 432 ms (IQR 412–452 ms), respectively]. A 100 mg/L increase in CRP was associated with a 1.5 ms increase in QTc interval [β coefficient 0.15, 95% CI (0.06–0.24). In a fully adjusted model for sociodemographic, ECG, and clinical factors, the association remained significant (β coefficient 0.14, 95% CI 0.05–0.23). Conclusion An interval QTc interval prolongation is observed with a marked elevation in CRP levels in patients with COVID-19.
Collapse
Affiliation(s)
- Nino Isakadze
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marc C. Engels
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dominik Beer
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rebecca McClellan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lisa R. Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Bahareh Mondaloo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thomas S. Metkus
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andreas S. Barth
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Andreas S. Barth
| |
Collapse
|
19
|
Mouram S, Pannone L, Gauthey A, Sorgente A, Vergara P, Bisignani A, Monaco C, Mojica J, Al Housari M, Miraglia V, Del Monte A, Paparella G, Ramak R, Overeinder I, Bala G, Almorad A, Ströker E, Sieira J, Brugada P, La Meir M, Chierchia GB, de Asmundis C. Incidence and Predictors of Cardiac Arrhythmias in Patients With COVID-19. Front Cardiovasc Med 2022; 9:908177. [PMID: 35811696 PMCID: PMC9257009 DOI: 10.3389/fcvm.2022.908177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a systemic disease caused by severe acute respiratory syndrome coronavirus 2. Arrhythmias are frequently associated with COVID-19 and could be the result of inflammation or hypoxia. This study aimed to define the incidence of arrhythmias in patients with COVID-19 and to correlate arrhythmias with pulmonary damage assessed by computed tomography (CT). Methods All consecutive patients with a COVID-19 diagnosis hospitalized at Universitair Ziekenhuis Brussel, Belgium, between March 2020 and May 2020, were screened. All included patients underwent a thorax CT scan and a CT severity score, a semiquantitative scoring system of pulmonary damage, was calculated. The primary endpoint was the arrhythmia occurrence during follow-up. Results In this study, 100 patients were prospectively included. At a mean follow-up of 19.6 months, 25 patients with COVID-19 (25%) experienced 26 arrhythmic episodes, including atrial fibrillation in 17 patients, inappropriate sinus tachycardia in 7 patients, atrial flutter in 1 patient, and third-degree atrioventricular block in 1 patient. No ventricular arrhythmias were documented. Patients with COVID-19 with arrhythmias showed more often need for oxygen, higher oxygen maximum flow, longer QTc at admission, and worse damage at CT severity score. In univariate logistic regression analysis, significant predictors of the primary endpoint were: the need for oxygen therapy (odds ratio [OR] 4.59, 95% CI 1.44-14.67, p = 0.01) and CT severity score of pulmonary damage (OR per 1 point increase 1.25, 95% CI 1.11-1.4, p < 0.001). Conclusions In a consecutive cohort of patients with COVID-19 the incidence of cardiac arrhythmias was 25%. The need for oxygen therapy and CT severity score were predictors of arrhythmia occurrence during follow-up.
Collapse
Affiliation(s)
- Sahar Mouram
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Luigi Pannone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Anaïs Gauthey
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Antonio Sorgente
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Pasquale Vergara
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Antonio Bisignani
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Cinzia Monaco
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Joerelle Mojica
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Maysam Al Housari
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Vincenzo Miraglia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Alvise Del Monte
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Gaetano Paparella
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Robbert Ramak
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Ingrid Overeinder
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Gezim Bala
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Alexandre Almorad
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Erwin Ströker
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Juan Sieira
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Mark La Meir
- Department of Cardiac Surgery, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium
| | - Gian Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| |
Collapse
|
20
|
Heidari S, Kargar M. Low Dose Antipsychotics for the Treatment of Delirium in Hospitalized Elderly Patients and Their Effects on QTc Interval. J Pharm Pract 2022:8971900221108966. [PMID: 35722782 DOI: 10.1177/08971900221108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Shima Heidari
- Faculty of Pharmacy, Department of Clinical Pharmacy, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Kargar
- Research Center for Rational Use of Drugs, 48439Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Bi X, Zhang S, Jiang H, Ma W, Li Y, Lu W, Yang F, Wei Z. Mechanistic Insights Into Inflammation-Induced Arrhythmias: A Simulation Study. Front Physiol 2022; 13:843292. [PMID: 35711306 PMCID: PMC9196871 DOI: 10.3389/fphys.2022.843292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases are the primary cause of death of humans, and among these, ventricular arrhythmias are the most common cause of death. There is plausible evidence implicating inflammation in the etiology of ventricular fibrillation (VF). In the case of systemic inflammation caused by an overactive immune response, the induced inflammatory cytokines directly affect the function of ion channels in cardiomyocytes, leading to a prolonged action potential duration (APD). However, the mechanistic links between inflammatory cytokine-induced molecular and cellular influences and inflammation-associated ventricular arrhythmias need to be elucidated. The present study aimed to determine the potential impact of systemic inflammation on ventricular electrophysiology by means of multiscale virtual heart models. The experimental data on the ionic current of three major cytokines [i.e., tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1β), and interleukin-6 (IL-6)] were incorporated into the cell model, and the effects of each cytokine and their combined effect on the cell action potential (AP) were evaluated. Moreover, the integral effect of these cytokines on the conduction of excitation waves was also investigated in a tissue model. The simulation results suggested that inflammatory cytokines significantly prolonged APD, enhanced the transmural and regional repolarization heterogeneities that predispose to arrhythmias, and reduced the adaptability of ventricular tissue to fast heart rates. In addition, simulated pseudo-ECGs showed a prolonged QT interval—a manifestation consistent with clinical observations. In summary, the present study provides new insights into ventricular arrhythmias associated with inflammation.
Collapse
Affiliation(s)
- Xiangpeng Bi
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Huasen Jiang
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Wenjian Ma
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Yuanfei Li
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Weigang Lu
- Department of Educational Technology, Ocean University of China, Qingdao, China
| | - Fei Yang
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, China
| | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| |
Collapse
|
22
|
Poovieng J, Sakboonyarat B, Nasomsong W. Bacterial etiology and mortality rate in community-acquired pneumonia, healthcare-associated pneumonia and hospital-acquired pneumonia in Thai university hospital. Sci Rep 2022; 12:9004. [PMID: 35637232 PMCID: PMC9150030 DOI: 10.1038/s41598-022-12904-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 02/08/2023] Open
Abstract
Pneumonia is caused by infection at the pulmonary parenchyma which constitutes a crucial risk factor for morbidity and mortality. We aimed to determine the mortality rate and its risk factors as well as etiology among inpatients with community-acquired pneumonia (CAP), hospital-acquired pneumonia (HAP) and healthcare-associated pneumonia (HCAP). A hospital-based retrospective cohort study was conducted in a university hospital located in Bangkok, Thailand. A total of 250 inpatients with pneumonia was included in the present study. The inhospital mortality rate was 1.25 (95% CI 0.99-1.56) per 100 person-days. The present study reported that overall pneumonia caused by gram-negative pathogens accounted for 60.5%. P. aeruginosa was a frequent gram-negative pathogen among these participants, especially among patients with HCAP and HAP. Adjusted hazard ratio (AHR) of inhospital mortality among patients with HAP was 1.75 (95% CI 1.01-3.03) times that of those among patients with CAP, while AHR for 28-day mortality among patients with HAP compared with those with CAP was 2.81 (95% CI 1.38-5.75). Individual risks factors including cardiomyopathy, active-smoker and insulin use were potential risk factors for mortality. Initial qSOFA and acid-based disturbance should be assessed to improve proper management and outcomes.
Collapse
Affiliation(s)
- Jaturon Poovieng
- Department of Medicine, Phramongkutklao Hospital, Bangkok, 10400, Thailand
| | - Boonsub Sakboonyarat
- Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Worapong Nasomsong
- Division of Infectious Disease, Department of Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, 10400, Thailand.
| |
Collapse
|
23
|
Acampa M, Roever L. Editorial: Clinical Cases in Cardiovascular Medicine: 2021. Front Cardiovasc Med 2022; 9:930230. [PMID: 35669481 PMCID: PMC9164012 DOI: 10.3389/fcvm.2022.930230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maurizio Acampa
- Stroke Unit, Department of Emergency-Urgency and Transplants, Azienda Ospedaliera Universitaria Senese, “Santa Maria alle Scotte” General Hospital, Siena, Italy
| | - Leonardo Roever
- Department of Clinical Research, Federal University of Uberlandia, Uberlândia, Brazil
| |
Collapse
|
24
|
Lazzerini PE, Accioli R, Acampa M, Zhang WH, Verrengia D, Cartocci A, Bacarelli MR, Xin X, Salvini V, Chen KS, Salvadori F, D’errico A, Bisogno S, Cevenini G, Marzotti T, Capecchi M, Laghi-Pasini F, Chen L, Capecchi PL, Boutjdir M. Interleukin-6 Elevation Is a Key Pathogenic Factor Underlying COVID-19-Associated Heart Rate-Corrected QT Interval Prolongation. Front Cardiovasc Med 2022; 9:893681. [PMID: 35665254 PMCID: PMC9161021 DOI: 10.3389/fcvm.2022.893681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background Heart rate-corrected QT interval (QTc) prolongation is prevalent in patients with severe coronavirus disease 2019 (COVID-19) and is associated with poor outcomes. Recent evidence suggests that the exaggerated host immune-inflammatory response characterizing the disease, specifically interleukin-6 (IL-6) increase, may have an important role, possibly via direct effects on cardiac electrophysiology. The aim of this study was to dissect the short-term discrete impact of IL-6 elevation on QTc in patients with severe COVID-19 infection and explore the underlying mechanisms. Methods We investigated the following mechanisms: (1) the QTc duration in patients with COVID-19 during the active phase and recovery, and its association with C-reactive protein (CRP) and IL-6 levels; (2) the acute impact of IL-6 administration on QTc in an in vivo guinea pig model; and (3) the electrophysiological effects of IL-6 on ventricular myocytes in vitro. Results In patients with active severe COVID-19 and elevated IL-6 levels, regardless of acute myocardial injury/strain and concomitant QT-prolonging risk factors, QTc was significantly prolonged and rapidly normalized in correlation with IL-6 decrease. The direct administration of IL-6 in an in vivo guinea pig model acutely prolongs QTc duration. Moreover, ventricular myocytes incubated in vitro with IL-6 show evident prolongation in the action potential, along with significant inhibition in the rapid delayed rectifier potassium current (IKr). Conclusion For the first time, we demonstrated that in severe COVID-19, systemic inflammatory activation can per se promote QTc prolongation via IL-6 elevation, leading to ventricular electric remodeling. Despite being transitory, such modifications may significantly contribute to arrhythmic events and associated poor outcomes in COVID-19. These findings provide a further rationale for current anti-inflammatory treatments for COVID-19, including IL-6-targeted therapies.
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
- *Correspondence: Pietro Enea Lazzerini,
| | - Riccardo Accioli
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Wen-Hui Zhang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacy, Maanshan People’s Hospital, Maanshan, China
| | - Decoroso Verrengia
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Maria Romana Bacarelli
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Xiaofeng Xin
- Department of Respiration, Affiliated Jinling Hospital School of Medicine, Nanjing University, Nanjing, China
| | - Viola Salvini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Ke-Su Chen
- School of Medicine, Nanjing University, Nanjing, China
| | - Fabio Salvadori
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Antonio D’errico
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Stefania Bisogno
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Gabriele Cevenini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Tommaso Marzotti
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Matteo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Long Chen
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Mohamed Boutjdir
- VA New York Harbor Healthcare System, New York, NY, United States
- SUNY Downstate Health Sciences University, New York, NY, United States
- NYU School of Medicine, New York, NY, United States
| |
Collapse
|
25
|
Neutrophil-to-Lymphocyte Ratio (NLR) Is a Promising Predictor of Mortality and Admission to Intensive Care Unit of COVID-19 Patients. J Clin Med 2022; 11:jcm11082235. [PMID: 35456328 PMCID: PMC9027549 DOI: 10.3390/jcm11082235] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR) is an inflammatory marker predicting the prognosis of several diseases. We aimed to assess its role as a predictor of mortality or admission to the intensive care unit in COVID-19 patients. We retrospectively evaluated a cohort of 411 patients with COVID-19 infection. The neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and C-reactive protein (CRP) of patients with COVID-19 were compared. The median age of our sample was 72 years (interquartile range: 70−75); 237 were males. Hypertension, diabetes and ischemic heart disease were the most common comorbidities. The study population was subdivided into three groups according to NLR tertiles. Third-tertile patients were older, showing significantly higher levels of inflammatory markers; 133 patients (32%) died during hospitalization, 81 of whom belonged to the third tertile; 79 patients (19%) were admitted to ICU. NLR showed the largest area under the curve (0.772), with the highest specificity (71.9%) and sensitivity (72.9%), whereas CRP showed lower sensitivity (60.2%) but slightly higher specificity (72.3%). Comparisons between NLR and CRP ROC curves were significantly different (p = 0.0173). Cox regression models showed that the association between NLR and death was not weakened after adjustment for confounders. Comparisons of ROC curves showed no significant differences between NLR, PLR, and CRP. Cox regression analysis showed that NLR predicted the risk of admission to ICU independently of demographic characteristics and comorbidities (HR: 3.9597, p < 0.0001). These findings provide evidence that NLR is an independent predictor of mortality and a worse outcome in COVID-19 patients and may help identify high-risk individuals with COVID-19 infection at admission.
Collapse
|
26
|
Chen L, Wang W, Peng X, Liu L, Zhang A, Li X, Ma K, Wang L. Alpha1-adrenoceptors activate NLRP3 inflammasome through downregulation of Kir2.1 in cardiac inflammation. Exp Physiol 2022; 107:589-600. [PMID: 35363405 DOI: 10.1113/ep090243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The mechanism of cardiac inflammation induced by α 1 -AR stimulation by NLRP3 inflammasome activation is unclear. What is the main finding and its importance? In the mechanism of cardiac inflammation induced by α1 -AR overreaction, Kir2.1 exerts cardioprotective and anti-inflammatory effects by inhibiting the activation of NLRP3 Inflammasome. ABSTRACT Overstimulated sympathetic nerves in cardiovascular diseases can lead to impaired cardiomyocyte function and potential heart failure, which activates not only β-AR but also α1 -AR. A previous report indicated that NLRP3 inflammasome activation is involved in cardiac inflammation induced by the α1 -AR agonist phenylephrine, but the mechanism is still unknown. Here, we aimed to study whether Kir2.1 is involved in cardiac inflammation caused by phenylephrine. The results from in vitro experiments showed that phenylephrine upregulated the expression levels of NLRP3, Caspase-1, IL-18, and IL-1β and downregulated the expression level of Kir2.1 in H9C2 cells. The Kir2.1 agonist zacopride downregulated the expression of NLRP3, Caspase-1, IL-1β and IL-18, and the Kir2.1 inhibitor ML133 upregulated the expression of these genes. To further explore the mechanism, we found that zacopride downregulated the protein expression level of p-p65 and that ML133 upregulated it. Moreover, the NF-κB signaling pathway inhibitor curcumenol reversed the expression of NLRP3 inflammasomes caused by phenylephrine in H9C2 cells. In vivo experiments, the protein expression level of Kir2.1 in the phenylephrine group was significantly decreased, and the activation of Kir2.1 by zacopride reduced cardiac inflammation. In short, Kir2.1 is related to α1 -AR overactivation, which induces cardiac inflammation, through the NF-κB signaling pathway, and activating Kir2.1 can downregulate NLRP3 inflammation and exert cardioprotective effects by zacopride. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ling Chen
- The 3rd Department of Cardiology, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence, Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Wenbo Wang
- The 3rd Department of Cardiology, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence, Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Xiangyang Peng
- The 3rd Department of Cardiology, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence, Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Luqian Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence, Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Aimei Zhang
- The 3rd Department of Cardiology, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence, Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence, Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence, Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Li Wang
- The 3rd Department of Cardiology, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence, Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| |
Collapse
|
27
|
Gulletta S, Della Bella P, Pannone L, Falasconi G, Cianfanelli L, Altizio S, Cinel E, Da Prat V, Napolano A, D'Angelo G, Brugliera L, Agricola E, Landoni G, Tresoldi M, Rovere PQ, Ciceri F, Zangrillo A, Vergara P. QTc interval prolongation, inflammation, and mortality in patients with COVID-19. J Interv Card Electrophysiol 2022; 63:441-448. [PMID: 34291390 PMCID: PMC8295006 DOI: 10.1007/s10840-021-01033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Systemic inflammation has been associated with corrected QT (QTc) interval prolongation. The role of inflammation on QTc prolongation in COVID-19 patients was investigated. METHODS Patients with a laboratory-confirmed SARS-CoV-2 infection admitted to IRCCS San Raffaele Scientific Institute (Milan, Italy) between March 14, 2020, and March 30, 2020 were included. QTc-I was defined as the QTc interval by Bazett formula in the first ECG performed during the hospitalization, before any new drug treatment; QTc-II was the QTc in the ECG performed after the initiation of hydroxychloroquine drug treatment. RESULTS QTc-I was long in 45 patients (45%) and normal in 55 patients (55%). Patients with long QTc-I were older and more frequently males. C-Reactive protein (CRP) and white blood cell (WBC) count at hospitalization were higher in patients with long QTc-I and long QTc-II. QTc-I was significantly correlated with CRP levels at hospitalization. After a median follow-up of 83 days, 14 patients (14%) died. There were no deaths attributed to ventricular arrhythmias. Patients with long QTc-I and long QTc-II had a shorter survival, compared with normal QTc-I and QTc-II patients, respectively. In Cox multivariate analysis, independent predictors of mortality were age (HR = 1.1, CI 95% 1.04-1.18, p = 0.002) and CRP at ECG II (HR 1.1, CI 95% 1.0-1.1, p = 0.02). CONCLUSIONS QTc at hospitalization is a simple risk marker of mortality risk in COVID-19 patients and reflects the myocardial inflammatory status.
Collapse
Affiliation(s)
- Simone Gulletta
- Arrhythmia Unit and Electrophysiology Laboratories, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Della Bella
- Arrhythmia Unit and Electrophysiology Laboratories, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Pannone
- IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giulio Falasconi
- IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Lorenzo Cianfanelli
- IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Savino Altizio
- IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Elena Cinel
- IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Valentina Da Prat
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Napolano
- IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giuseppe D'Angelo
- Arrhythmia Unit and Electrophysiology Laboratories, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigia Brugliera
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eustachio Agricola
- IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
- Cardiac Imaging Unit, Cardio-Thoracic Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Landoni
- IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Moreno Tresoldi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Querini Rovere
- IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
- Department of Hematology and Stem Cell Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Zangrillo
- IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pasquale Vergara
- Arrhythmia Unit and Electrophysiology Laboratories, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
28
|
Wilcox NS, Rotz SJ, Mullen M, Song EJ, Hamilton BK, Moslehi J, Armenian S, Wu JC, Rhee JW, Ky B. Sex-Specific Cardiovascular Risks of Cancer and Its Therapies. Circ Res 2022; 130:632-651. [PMID: 35175846 PMCID: PMC8915444 DOI: 10.1161/circresaha.121.319901] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In both cardiovascular disease and cancer, there are established sex-based differences in prevalence and outcomes. Males and females may also differ in terms of risk of cardiotoxicity following cancer therapy, including heart failure, cardiomyopathy, atherosclerosis, thromboembolism, arrhythmias, and myocarditis. Here, we describe sex-based differences in the epidemiology and pathophysiology of cardiotoxicity associated with anthracyclines, hematopoietic stem cell transplant (HCT), hormone therapy and immune therapy. Relative to males, the risk of anthracycline-induced cardiotoxicity is higher in prepubertal females, lower in premenopausal females, and similar in postmenopausal females. For autologous hematopoietic cell transplant, several studies suggest an increased risk of late heart failure in female lymphoma patients, but sex-based differences have not been shown for allogeneic hematopoietic cell transplant. Hormone therapies including GnRH (gonadotropin-releasing hormone) modulators, androgen receptor antagonists, selective estrogen receptor modulators, and aromatase inhibitors are associated with cardiotoxicity, including arrhythmia and venous thromboembolism. However, sex-based differences have not yet been elucidated. Evaluation of sex differences in cardiotoxicity related to immune therapy is limited, in part, due to low participation of females in relevant clinical trials. However, some studies suggest that females are at increased risk of immune checkpoint inhibitor myocarditis, although this has not been consistently demonstrated. For each of the aforementioned cancer therapies, we consider sex-based differences according to cardiotoxicity management. We identify knowledge gaps to guide future mechanistic and prospective clinical studies. Furthering our understanding of sex-based differences in cancer therapy cardiotoxicity can advance the development of targeted preventive and therapeutic cardioprotective strategies.
Collapse
Affiliation(s)
- Nicholas S. Wilcox
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seth J. Rotz
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - McKay Mullen
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Evelyn J. Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Betty Ky Hamilton
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Javid Moslehi
- Section of Cardio-Oncology & Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Saro Armenian
- Department of Population Sciences, City of Hope Comprehensive Cancer Center; Duarte, CA, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - June Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center; Duarte, CA, USA
| | - Bonnie Ky
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Sunkak S, Argun M, Celik B, Tasci O, Ozturk AB, Inan DB, Dogan M. Effects of azithromycin on ventricular repolarization in children with COVID-19. Rev Port Cardiol 2022; 41:551-556. [PMID: 35221464 PMCID: PMC8858685 DOI: 10.1016/j.repc.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/18/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Azithromycin is used to treat pediatric COVID-19 patients. It can also prolong the QT interval in adults. This study assessed the effects of azithromycin on ventricular repolarization in children with COVID-19. Method The study prospectively enrolled children with COVID-19 who received azithromycin between July and August 2020. An electrocardiogram was performed before, one, three, and five days post-treatment. Using ImageJ®, the following parameters were measured: QT max, QT min, Tp-e max, and Tp-e min. The parameters QTc max, QTc min, Tp-ec max, Tp-ec min, QTcd, Tp-ecd, and the QTc/Tp-ec ratio were calculated using Bazett's formula. Results The study included 105 pediatric patients (mean age 9.8±5.3 years). The pretreatment heart rate was higher than after treatment (before 92 [79–108]/min vs. Day 1 82 [69–108)]/min vs. Day 3 80 [68–92.2]/min vs. Day 5 81 [70–92]/min; p=0.05). Conclusion Azithromycin does not affect the ventricular repolarization parameters on ECG in pediatric COVID-19 cases.
Collapse
|
30
|
Geronikolou SA, Takan I, Pavlopoulou A, Mantzourani M, Chrousos GP. Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia. Int J Mol Med 2022; 49:35. [PMID: 35059730 PMCID: PMC8815408 DOI: 10.3892/ijmm.2022.5090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
The highly heterogeneous symptomatology and unpredictable progress of COVID-19 triggered unprecedented intensive biomedical research and a number of clinical research projects. Although the pathophysiology of the disease is being progressively clarified, its complexity remains vast. Moreover, some extremely infrequent cases of thrombotic thrombocytopenia following vaccination against SARS-CoV-2 infection have been observed. The present study aimed to map the signaling pathways of thrombocytopenia implicated in COVID-19, as well as in vaccine-induced thrombotic thrombocytopenia (VITT). The biomedical literature database, MEDLINE/PubMed, was thoroughly searched using artificial intelligence techniques for the semantic relations among the top 50 similar words (>0.9) implicated in COVID-19-mediated human infection or VITT. Additionally, STRING, a database of primary and predicted associations among genes and proteins (collected from diverse resources, such as documented pathway knowledge, high-throughput experimental studies, cross-species extrapolated information, automated text mining results, computationally predicted interactions, etc.), was employed, with the confidence threshold set at 0.7. In addition, two interactomes were constructed: i) A network including 119 and 56 nodes relevant to COVID-19 and thrombocytopenia, respectively; and ii) a second network containing 60 nodes relevant to VITT. Although thrombocytopenia is a dominant morbidity in both entities, three nodes were observed that corresponded to genes (AURKA, CD46 and CD19) expressed only in VITT, whilst ADAM10, CDC20, SHC1 and STXBP2 are silenced in VITT, but are commonly expressed in both COVID-19 and thrombocytopenia. The calculated average node degree was immense (11.9 in COVID-19 and 6.43 in VITT), illustrating the complexity of COVID-19 and VITT pathologies and confirming the importance of cytokines, as well as of pathways activated following hypoxic events. In addition, PYCARD, NLP3 and P2RX7 are key potential therapeutic targets for all three morbid entities, meriting further research. This interactome was based on wild-type genes, revealing the predisposition of the body to hypoxia-induced thrombosis, leading to the acute COVID-19 phenotype, the 'long-COVID syndrome', and/or VITT. Thus, common nodes appear to be key players in illness prevention, progression and treatment.
Collapse
Affiliation(s)
- Styliani A Geronikolou
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Işil Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey
| | | | - Marina Mantzourani
- First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - George P Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
31
|
Zhu X, Wang Y, Xiao Y, Gao Q, Gao L, Zhang W, Xin X, Chen K, Srivastava U, Ginjupalli VKM, Cupelli M, Lazzerini PE, Capecchi PL, Chen L, Boutjdir M. Arrhythmogenic mechanisms of interleukin-6 combination with hydroxychloroquine and azithromycin in inflammatory diseases. Sci Rep 2022; 12:1075. [PMID: 35058480 PMCID: PMC8776801 DOI: 10.1038/s41598-022-04852-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammatory diseases including COVID-19 are associated with a cytokine storm characterized by high interleukin-6 (IL-6) titers. In particular, while recent studies examined COVID-19 associated arrhythmic risks from cardiac injury and/or from pharmacotherapy such as the combination of azithromycin (AZM) and hydroxychloroquine (HCQ), the role of IL-6 per se in increasing the arrhythmic risk remains poorly understood. The objective is to elucidate the electrophysiological basis of inflammation-associated arrhythmic risk in the presence of AZM and HCQ. IL-6, AZM and HCQ were concomitantly administered to guinea pigs in-vivo and in-vitro. Electrocardiograms, action potentials and ion-currents were analyzed. IL-6 alone or the combination AZM + HCQ induced mild to moderate reduction in heart rate, PR-interval and corrected QT (QTc) in-vivo and in-vitro. Notably, IL-6 alone was more potent than the combination of the two drugs in reducing heart rate, increasing PR-interval and QTc. In addition, the in-vivo or in-vitro combination of IL-6 + AZM + HCQ caused severe bradycardia, conduction abnormalities, QTc prolongation and asystole. These electrocardiographic abnormalities were attenuated in-vivo by tocilizumab (TCZ), a monoclonal antibody against IL-6 receptor, and are due in part to the prolongation of action potential duration and selective inhibition of Na+, Ca2+ and K+ currents. Inflammation confers greater risk for arrhythmia than the drug combination therapy. As such, in the setting of elevated IL-6 during inflammation caution must be taken when co-administering drugs known to predispose to fatal arrhythmias and TCZ could be an important player as a novel anti-arrhythmic agent. Thus, identifying inflammation as a critical culprit is essential for proper management.
Collapse
|
32
|
Lazzerini PE, Cantara S, Bertolozzi I, Accioli R, Salvini V, Cartocci A, D'Errico A, Sestini F, Bisogno S, Cevenini G, Capecchi M, Laghi-Pasini F, Castagna MG, Acampa M, Boutjdir M, Capecchi PL. Transient Hypogonadism Is Associated With Heart Rate-Corrected QT Prolongation and Torsades de Pointes Risk During Active Systemic Inflammation in Men. J Am Heart Assoc 2021; 11:e023371. [PMID: 34935398 PMCID: PMC9075210 DOI: 10.1161/jaha.121.023371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Systemic inflammation and male hypogonadism are 2 increasingly recognized “nonconventional” risk factors for long‐QT syndrome and torsades de pointes (TdP). Specifically, inflammatory cytokines prolong, while testosterone shortens the heart rate–corrected QT interval (QTc) via direct electrophysiological effects on cardiomyocytes. Moreover, several studies demonstrated important interplays between inflammation and reduced gonad function in men. We hypothesized that, during inflammatory activation in men, testosterone levels decrease and that this enhances TdP risk by contributing to the overall prolonging effect of inflammation on QTc. Methods and Results We investigated (1) the levels of sex hormones and their relationship with inflammatory markers and QTc in male patients with different types of inflammatory diseases, during active phase and recovery; and (2) the association between inflammatory markers and sex hormones in a cohort of male patients who developed extreme QTc prolongation and TdP, consecutively collected over 10 years. In men with active inflammatory diseases, testosterone levels were significantly reduced, but promptly normalized in association with the decrease in C‐reactive protein and interleukin‐6 levels. Reduction of testosterone levels, which also inversely correlated with 17‐β estradiol over time, significantly contributed to inflammation‐induced QTc prolongation. In men with TdP, both active systemic inflammation and hypogonadism were frequently present, with significant correlations between C‐reactive protein, testosterone, and 17‐β estradiol levels; in these patients, increased C‐reactive protein and reduced testosterone were associated with a worse short‐term outcome of the arrhythmia. Conclusions During systemic inflammatory activation, interleukin‐6 elevation is associated with reduced testosterone levels in males, possibly deriving from an enhanced androgen‐to‐estrogen conversion. While transient, inflammatory hypotestosteronemia is significantly associated with an increased long‐QT syndrome/TdP risk in men.
Collapse
Affiliation(s)
| | - Silvia Cantara
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | - Iacopo Bertolozzi
- Cardiology Intensive Therapy Unit Department of Internal Medicine Nuovo Ospedale San Giovanni di Dio Florence Italy
| | - Riccardo Accioli
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | - Viola Salvini
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | | | - Antonio D'Errico
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | - Fausta Sestini
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | - Stefania Bisogno
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | | | - Matteo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | | | | | - Mohamed Boutjdir
- VA New York Harbor Healthcare SystemSUNY Downstate Health Sciences University New York NY.,NYU School of Medicine New York NY
| | | |
Collapse
|
33
|
Anand P, Mayfield JJ, He B, Khaira KB. Unusual T-wave Changes and Extreme QTc Prolongation in a 71-year-old man with Asymptomatic COVID Infection. HeartRhythm Case Rep 2021; 8:99-101. [PMID: 34804796 PMCID: PMC8596657 DOI: 10.1016/j.hrcr.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Priyanka Anand
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Jacob J. Mayfield
- Division of Cardiology, University of Washington School of Medicine, Seattle, Washington
| | - Beixin He
- Division of Cardiology, University of Washington School of Medicine, Seattle, Washington
- Division of Cardiology, VA Puget Sound Health Care System, Seattle, Washington
| | - Kavita B. Khaira
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Division of Cardiology, University of Washington School of Medicine, Seattle, Washington
- Division of Cardiology, VA Puget Sound Health Care System, Seattle, Washington
- Address reprint requests and correspondence: Dr Kavita B. Khaira, VA Puget Sound Healthcare System, University of Washington, 1660 S Columbia Way, Seattle, WA 98108.
| |
Collapse
|
34
|
Zhang S, Lu W, Wei Z, Zhang H. Air Pollution and Cardiac Arrhythmias: From Epidemiological and Clinical Evidences to Cellular Electrophysiological Mechanisms. Front Cardiovasc Med 2021; 8:736151. [PMID: 34778399 PMCID: PMC8581215 DOI: 10.3389/fcvm.2021.736151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and kills over 17 million people per year. In the recent decade, growing epidemiological evidence links air pollution and cardiac arrhythmias, suggesting a detrimental influence of air pollution on cardiac electrophysiological functionality. However, the proarrhythmic mechanisms underlying the air pollution-induced cardiac arrhythmias are not fully understood. The purpose of this work is to provide recent advances in air pollution-induced arrhythmias with a comprehensive review of the literature on the common air pollutants and arrhythmias. Six common air pollutants of widespread concern are discussed, namely particulate matter, carbon monoxide, hydrogen sulfide, sulfur dioxide, nitrogen dioxide, and ozone. The epidemiological and clinical reports in recent years are reviewed by pollutant type, and the recently identified mechanisms including both the general pathways and the direct influences of air pollutants on the cellular electrophysiology are summarized. Particularly, this review focuses on the impaired ion channel functionality underlying the air pollution-induced arrhythmias. Alterations of ionic currents directly by the air pollutants, as well as the alterations mediated by intracellular signaling or other more general pathways are reviewed in this work. Finally, areas for future research are suggested to address several remaining scientific questions.
Collapse
Affiliation(s)
- Shugang Zhang
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Weigang Lu
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Zhiqiang Wei
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
35
|
Lazzerini PE, Acampa M, Cupelli M, Gamberucci A, Srivastava U, Nanni C, Bertolozzi I, Vanni F, Frosali A, Cantore A, Cartocci A, D'Errico A, Salvini V, Accioli R, Verrengia D, Salvadori F, Dokollari A, Maccherini M, El-Sherif N, Laghi-Pasini F, Capecchi PL, Boutjdir M. Unravelling Atrioventricular Block Risk in Inflammatory Diseases: Systemic Inflammation Acutely Delays Atrioventricular Conduction via a Cytokine-Mediated Inhibition of Connexin43 Expression. J Am Heart Assoc 2021; 10:e022095. [PMID: 34713715 PMCID: PMC8751850 DOI: 10.1161/jaha.121.022095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Recent data suggest that systemic inflammation can negatively affect atrioventricular conduction, regardless of acute cardiac injury. Indeed, gap‐junctions containing connexin43 coupling cardiomyocytes and inflammation‐related cells (macrophages) are increasingly recognized as important factors regulating the conduction in the atrioventricular node. The aim of this study was to evaluate the acute impact of systemic inflammatory activation on atrioventricular conduction, and elucidate underlying mechanisms. Methods and Results We analyzed: (1) the PR‐interval in patients with inflammatory diseases of different origins during active phase and recovery, and its association with inflammatory markers; (2) the existing correlation between connexin43 expression in the cardiac tissue and peripheral blood mononuclear cells (PBMC), and the changes occurring in patients with inflammatory diseases over time; (3) the acute effects of interleukin(IL)‐6 on atrioventricular conduction in an in vivo animal model, and on connexin43 expression in vitro. In patients with elevated C‐reactive protein levels, atrioventricular conduction indices are increased, but promptly normalized in association with inflammatory markers reduction, particularly IL‐6. In these subjects, connexin43 expression in PBMC, which is correlative of that measured in the cardiac tissue, inversely associated with IL‐6 changes. Moreover, direct IL‐6 administration increased atrioventricular conduction indices in vivo in a guinea pig model, and IL‐6 incubation in both cardiomyocytes and macrophages in culture, significantly reduced connexin43 proteins expression. Conclusions The data evidence that systemic inflammation can acutely worsen atrioventricular conduction, and that IL‐6‐induced down‐regulation of cardiac connexin43 is a mechanistic pathway putatively involved in the process. Though reversible, these alterations could significantly increase the risk of severe atrioventricular blocks during active inflammatory processes.
Collapse
Affiliation(s)
| | | | - Michael Cupelli
- VA New York Harbor Healthcare System SUNY Downstate Medical Center New York NY.,NYU School of Medicine New York NY
| | | | - Ujala Srivastava
- VA New York Harbor Healthcare System SUNY Downstate Medical Center New York NY
| | - Claudio Nanni
- Department of Molecular and Developmental Medicine University of Siena Italy
| | - Iacopo Bertolozzi
- Department of Internal Medicine Cardiology Intensive Therapy Unit Nuovo Ospedale San Giovanni di Dio Florence Italy
| | - Francesca Vanni
- Department of Medical Sciences Surgery and Neurosciences University of Siena Italy
| | - Alessandro Frosali
- Department of Medical Sciences Surgery and Neurosciences University of Siena Italy
| | - Anna Cantore
- Department of Medical Sciences Surgery and Neurosciences University of Siena Italy
| | | | - Antonio D'Errico
- Department of Medical Sciences Surgery and Neurosciences University of Siena Italy
| | - Viola Salvini
- Department of Medical Sciences Surgery and Neurosciences University of Siena Italy
| | - Riccardo Accioli
- Department of Medical Sciences Surgery and Neurosciences University of Siena Italy
| | - Decoroso Verrengia
- Department of Medical Sciences Surgery and Neurosciences University of Siena Italy
| | - Fabio Salvadori
- Department of Medical Sciences Surgery and Neurosciences University of Siena Italy
| | - Aleksander Dokollari
- Department of Cardiac Surgery University Hospital of Siena Italy.,Department of Cardiovascular Surgery Saint Michael HospitalUniversity of Toronto Ontario Canada
| | | | - Nabil El-Sherif
- VA New York Harbor Healthcare System SUNY Downstate Medical Center New York NY
| | - Franco Laghi-Pasini
- Department of Medical Sciences Surgery and Neurosciences University of Siena Italy
| | | | - Mohamed Boutjdir
- VA New York Harbor Healthcare System SUNY Downstate Medical Center New York NY.,NYU School of Medicine New York NY
| |
Collapse
|
36
|
Milovanovic B, Djajic V, Bajic D, Djokovic A, Krajnovic T, Jovanovic S, Verhaz A, Kovacevic P, Ostojic M. Assessment of Autonomic Nervous System Dysfunction in the Early Phase of Infection With SARS-CoV-2 Virus. Front Neurosci 2021; 15:640835. [PMID: 34234638 PMCID: PMC8256172 DOI: 10.3389/fnins.2021.640835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We are facing the outburst of coronavirus disease 2019 (COVID-19) defined as a serious, multisystem, disorder, including various neurological manifestations in its presentation. So far, autonomic dysfunction (AD) has not been reported in patients with COVID-19 infection. AIM Assessment of AD in the early phase of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 virus). PATIENTS AND METHODS We analyzed 116 PCR positive COVID-19 patients. After the exclusion of 41 patients with associate diseases (CADG), partitioned to patients with diabetes mellitus, hypertension, and syncope, the remaining patients were included into a severe group (45 patients with confirmed interstitial pneumonia) and mild group (30 patients). Basic cardiovascular autonomic reflex tests (CART) were performed, followed by beat-to-beat heart rate variability (HRV) and systolic and diastolic blood pressure variability (BPV) analysis, along with baroreceptor sensitivity (BRS). Non-linear analysis of HRV was provided by Poincare Plot. Results were compared to 77 sex and age-matched controls. RESULTS AD (sympathetic, parasympathetic, or both) in our study has been revealed in 51.5% of severe, 78.0% of mild COVID-19 patients, and the difference compared to healthy controls was significant (p = 0.018). Orthostatic hypotension has been established in 33.0% COVID-19 patients compared to 2.6% controls (p = 0.001). Most of the spectral parameters of HRV and BPV confirmed AD, most prominent in the severe COVID-19 group. BRS was significantly lower in all patients (severe, mild, CADG), indicating significant sudden cardiac death risk. CONCLUSION Cardiovascular autonomic neuropathy should be taken into account in COVID-19 patients' assessment. It can be an explanation for a variety of registered manifestations, enabling a comprehensive diagnostic approach and further treatment.
Collapse
Affiliation(s)
- Branislav Milovanovic
- Neurocardiology Lab, Department of Cardiology, University Hospital Medical Center Bezanijska kosa, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vlado Djajic
- Neurology Clinic, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Dragana Bajic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandra Djokovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Division of Interventional Cardiology, Department of Cardiology, University Hospital Medical Center Bezanijska kosa, Belgrade, Serbia
| | | | | | - Antonija Verhaz
- Neurology Clinic, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Pedja Kovacevic
- Neurology Clinic, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Miodrag Ostojic
- Neurology Clinic, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| |
Collapse
|
37
|
Otherwise Unexplained Transient QTc Prolongation in a Patient Admitted with COVID Disease. Case Rep Cardiol 2021; 2021:9931405. [PMID: 34158979 PMCID: PMC8168475 DOI: 10.1155/2021/9931405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 11/18/2022] Open
Abstract
Background. Several cardiovascular manifestations of coronavirus disease 2019 (COVID-19) have been previously described. QT prolongation has been reported in COVID-19 infection in association with medications such as azithromycin, hydroxychloroquine, and chloroquine but has not previously been reported as a direct result of COVID-19 infection. Case summary. We report the case of a 65-year-old female who developed a prolonged corrected QT interval (QTc) during a hospital admission with COVID-19. This patient was not on any QT prolonging treatment, serum electrolytes were normal, and there was no identifiable reversible cause for the QTc lengthening. Daily serial ECGs during admission showed resolution of the ventricular repolarization abnormality in synchronization with resolution of her COVID-19 viral illness. Discussions. Although there have been reports of QTc prolongation in COVID-19 patients, previous reports of this are for patients receiving medication that causes QT prolongation. This case uniquely demonstrates the development and resolution of this temporary ventricular repolarization abnormality in a patient with a structurally normal heart with no evidence of myocardial fibrosis or edema on cardiac MRI, that is unexplained by other confounding factors, such as medication. This suggests there may be a direct association between COVID-19 and temporary QTc prolongation.
Collapse
|
38
|
D'Imperio S, Monasky MM, Micaglio E, Negro G, Pappone C. Early Morning QT Prolongation During Hypoglycemia: Only a Matter of Glucose? Front Cardiovasc Med 2021; 8:688875. [PMID: 34046442 PMCID: PMC8144311 DOI: 10.3389/fcvm.2021.688875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sara D'Imperio
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Gabriele Negro
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
39
|
Campana C, Dariolli R, Boutjdir M, Sobie EA. Inflammation as a Risk Factor in Cardiotoxicity: An Important Consideration for Screening During Drug Development. Front Pharmacol 2021; 12:598549. [PMID: 33953668 PMCID: PMC8091045 DOI: 10.3389/fphar.2021.598549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/31/2021] [Indexed: 01/08/2023] Open
Abstract
Numerous commonly prescribed drugs, including antiarrhythmics, antihistamines, and antibiotics, carry a proarrhythmic risk and may induce dangerous arrhythmias, including the potentially fatal Torsades de Pointes. For this reason, cardiotoxicity testing has become essential in drug development and a required step in the approval of any medication for use in humans. Blockade of the hERG K+ channel and the consequent prolongation of the QT interval on the ECG have been considered the gold standard to predict the arrhythmogenic risk of drugs. In recent years, however, preclinical safety pharmacology has begun to adopt a more integrative approach that incorporates mathematical modeling and considers the effects of drugs on multiple ion channels. Despite these advances, early stage drug screening research only evaluates QT prolongation in experimental and computational models that represent healthy individuals. We suggest here that integrating disease modeling with cardiotoxicity testing can improve drug risk stratification by predicting how disease processes and additional comorbidities may influence the risks posed by specific drugs. In particular, chronic systemic inflammation, a condition associated with many diseases, affects heart function and can exacerbate medications’ cardiotoxic effects. We discuss emerging research implicating the role of inflammation in cardiac electrophysiology, and we offer a perspective on how in silico modeling of inflammation may lead to improved evaluation of the proarrhythmic risk of drugs at their early stage of development.
Collapse
Affiliation(s)
- Chiara Campana
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rafael Dariolli
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
40
|
Rubin GA, Desai AD, Chai Z, Wang A, Chen Q, Wang AS, Kemal C, Baksh H, Biviano A, Dizon JM, Yarmohammadi H, Ehlert F, Saluja D, Rubin DA, Morrow JP, Avula UMR, Berman JP, Kushnir A, Abrams MP, Hennessey JA, Elias P, Poterucha TJ, Uriel N, Kubin CJ, LaSota E, Zucker J, Sobieszczyk ME, Schwartz A, Garan H, Waase MP, Wan EY. Cardiac Corrected QT Interval Changes Among Patients Treated for COVID-19 Infection During the Early Phase of the Pandemic. JAMA Netw Open 2021; 4:e216842. [PMID: 33890991 PMCID: PMC8065381 DOI: 10.1001/jamanetworkopen.2021.6842] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPORTANCE Critical illness, a marked inflammatory response, and viruses such as SARS-CoV-2 may prolong corrected QT interval (QTc). OBJECTIVE To evaluate baseline QTc interval on 12-lead electrocardiograms (ECGs) and ensuing changes among patients with and without COVID-19. DESIGN, SETTING, AND PARTICIPANTS This cohort study included 3050 patients aged 18 years and older who underwent SARS-CoV-2 testing and had ECGs at Columbia University Irving Medical Center from March 1 through May 1, 2020. Patients were analyzed by treatment group over 5 days, as follows: hydroxychloroquine with azithromycin, hydroxychloroquine alone, azithromycin alone, and neither hydroxychloroquine nor azithromycin. ECGs were manually analyzed by electrophysiologists masked to COVID-19 status. Multivariable modeling evaluated clinical associations with QTc prolongation from baseline. EXPOSURES COVID-19, hydroxychloroquine, azithromycin. MAIN OUTCOMES AND MEASURES Mean QTc prolongation, percentage of patients with QTc of 500 milliseconds or greater. RESULTS A total of 965 patients had more than 2 ECGs and were included in the study, with 561 (58.1%) men, 198 (26.2%) Black patients, and 191 (19.8%) aged 80 years and older. There were 733 patients (76.0%) with COVID-19 and 232 patients (24.0%) without COVID-19. COVID-19 infection was associated with significant mean QTc prolongation from baseline by both 5-day and 2-day multivariable models (5-day, patients with COVID-19: 20.81 [95% CI, 15.29 to 26.33] milliseconds; P < .001; patients without COVID-19: -2.01 [95% CI, -17.31 to 21.32] milliseconds; P = .93; 2-day, patients with COVID-19: 17.40 [95% CI, 12.65 to 22.16] milliseconds; P < .001; patients without COVID-19: 0.11 [95% CI, -12.60 to 12.81] milliseconds; P = .99). COVID-19 infection was independently associated with a modeled mean 27.32 (95% CI, 4.63-43.21) millisecond increase in QTc at 5 days compared with COVID-19-negative status (mean QTc, with COVID-19: 450.45 [95% CI, 441.6 to 459.3] milliseconds; without COVID-19: 423.13 [95% CI, 403.25 to 443.01] milliseconds; P = .01). More patients with COVID-19 not receiving hydroxychloroquine and azithromycin had QTc of 500 milliseconds or greater compared with patients without COVID-19 (34 of 136 [25.0%] vs 17 of 158 [10.8%], P = .002). Multivariable analysis revealed that age 80 years and older compared with those younger than 50 years (mean difference in QTc, 11.91 [SE, 4.69; 95% CI, 2.73 to 21.09]; P = .01), severe chronic kidney disease compared with no chronic kidney disease (mean difference in QTc, 12.20 [SE, 5.26; 95% CI, 1.89 to 22.51; P = .02]), elevated high-sensitivity troponin levels (mean difference in QTc, 5.05 [SE, 1.19; 95% CI, 2.72 to 7.38]; P < .001), and elevated lactate dehydrogenase levels (mean difference in QTc, 5.31 [SE, 2.68; 95% CI, 0.06 to 10.57]; P = .04) were associated with QTc prolongation. Torsades de pointes occurred in 1 patient (0.1%) with COVID-19. CONCLUSIONS AND RELEVANCE In this cohort study, COVID-19 infection was independently associated with significant mean QTc prolongation at days 5 and 2 of hospitalization compared with day 0. More patients with COVID-19 had QTc of 500 milliseconds or greater compared with patients without COVID-19.
Collapse
Affiliation(s)
- Geoffrey A. Rubin
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Amar D. Desai
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Zilan Chai
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Aijin Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Qixuan Chen
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Amy S. Wang
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Cameron Kemal
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Haajra Baksh
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Angelo Biviano
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jose M. Dizon
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Hirad Yarmohammadi
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Frederick Ehlert
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Deepak Saluja
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - David A. Rubin
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - John P. Morrow
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Uma Mahesh R. Avula
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jeremy P. Berman
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alexander Kushnir
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Mark P. Abrams
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jessica A. Hennessey
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Pierre Elias
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Timothy J. Poterucha
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Nir Uriel
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Christine J. Kubin
- Division of Infectious Disease, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Elijah LaSota
- Division of Infectious Disease, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jason Zucker
- Division of Infectious Disease, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Magdalena E. Sobieszczyk
- Division of Infectious Disease, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Allan Schwartz
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Hasan Garan
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Marc P. Waase
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Elaine Y. Wan
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
41
|
Pinocembrin alleviates lipopolysaccharide-induced myocardial injury and cardiac dysfunction in rats by inhibiting p38/JNK MAPK pathway. Life Sci 2021; 277:119418. [PMID: 33781824 DOI: 10.1016/j.lfs.2021.119418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022]
Abstract
AIM Recent studies have shown that, with its excellent anti-inflammatory and antioxidant effects, pinocembrin can reduce the occurrence of arrhythmia in myocardial infarction rats. However, whether it can alleviate lipopolysaccharide (LPS)-induced myocardial injury in rats has not been reported. Therefore, the purpose of this study was to investigate whether pinocembrin could alleviate myocardial injury and arrhythmia in rats with sepsis. MATERIALS AND METHODS Rats were intraperitoneally injected with LPS to simulate animal sepsis, and the caudal vein was injected with pinocembrin or normal saline for intervention. Transthoracic echocardiography, inflammatory factors, electrophysiological recording, histological analysis, and western-blot analysis were performed. KEY FINDINGS Compared with the control group, the rats in the LPS group had myocardial injury and cardiac dysfunction, and the incidence of ventricular arrhythmia increased. In addition, LPS resulted in the increase of p-c-Jun N-terminal kinase (JNK), p-p38 proteins in the myocardium, the levels of inflammatory factors in the blood and the apoptosis rate of left ventricular cardiomyocytes. And all these adverse effects were eliminated, thus confirming that pinocembrin has an excellent protective effect on the heart. SIGNIFICANCE Reducing the inflammatory response and cell apoptosis by inhibiting p38/JNK mitogen-activated protein kinase (MAPK) signaling pathway, pinocembrin can alleviate myocardial injury, cardiac dysfunction, and ventricular arrhythmia induced by LPS.
Collapse
|
42
|
Grouthier V, Moey MYY, Gandjbakhch E, Waintraub X, Funck-Brentano C, Bachelot A, Salem JE. Sexual Dimorphisms, Anti-Hormonal Therapy and Cardiac Arrhythmias. Int J Mol Sci 2021; 22:ijms22031464. [PMID: 33540539 PMCID: PMC7867204 DOI: 10.3390/ijms22031464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Significant variations from the normal QT interval range of 350 to 450 milliseconds (ms) in men and 360 to 460 ms in women increase the risk for ventricular arrhythmias. This difference in the QT interval between men and women has led to the understanding of the influence of sex hormones on the role of gender-specific channelopathies and development of ventricular arrhythmias. The QT interval, which represents the duration of ventricular repolarization of the heart, can be affected by androgen levels, resulting in a sex-specific predilection for acquired and inherited channelopathies such as acquired long QT syndrome in women and Brugada syndrome and early repolarization syndrome in men. Manipulation of the homeostasis of these sex hormones as either hormonal therapy for certain cancers, recreational therapy or family planning and in transgender treatment has also been shown to affect QT interval duration and increase the risk for ventricular arrhythmias. In this review, we highlight the effects of endogenous and exogenous sex hormones in the physiological and pathological states on QTc variation and predisposition to gender-specific pro-arrhythmias.
Collapse
Affiliation(s)
- Virginie Grouthier
- Department of Endocrinology, Diabetes and Nutrition, Centre Hospitalier Universitaire de Bordeaux, Haut Leveque Hospital, F-33000 Bordeaux, France;
| | - Melissa Y. Y. Moey
- Department of Cardiovascular Disease, Vidant Medical Center/East Carolina University, Greenville, NC 27834, USA;
| | - Estelle Gandjbakhch
- APHP, Pitié-Salpêtrière Hospital, Institute of Cardiology, Centre de Référence des Maladies Cardiaques Héréditaires, Institute of Cardiometabolism and Nutrition (ICAN), UPMC Univ Paris 06, INSERM 1166, Sorbonne Universités, F-75013 Paris, France; (E.G.); (X.W.)
| | - Xavier Waintraub
- APHP, Pitié-Salpêtrière Hospital, Institute of Cardiology, Centre de Référence des Maladies Cardiaques Héréditaires, Institute of Cardiometabolism and Nutrition (ICAN), UPMC Univ Paris 06, INSERM 1166, Sorbonne Universités, F-75013 Paris, France; (E.G.); (X.W.)
| | - Christian Funck-Brentano
- INSERM, CIC-1901, AP-HP, Pitié-Salpêtrière Hospital, Regional Pharmacovigilance Center, UNICO-GRECO Cardio-Oncology Program, Department of Pharmacology and Clinical Investigation Center, CLIP2 Galilée, Sorbonne Université, F-75013 Paris, France;
| | - Anne Bachelot
- AP-HP, Pitié-Salpêtrière Hospital, IE3M, and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, and Centre de Référence des Pathologies Gynécologiques Rares, Department of Endocrinology and Reproductive Medicine, Sorbonne Université, F-75013 Paris, France;
| | - Joe-Elie Salem
- INSERM, CIC-1901, AP-HP, Pitié-Salpêtrière Hospital, Regional Pharmacovigilance Center, UNICO-GRECO Cardio-Oncology Program, Department of Pharmacology and Clinical Investigation Center, CLIP2 Galilée, Sorbonne Université, F-75013 Paris, France;
- Cardio-Oncology Program, Department of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +33-1-42-17-85-31 or +1-(615)-322-0067
| |
Collapse
|
43
|
Bonanad C, Díez-Villanueva P, García-Blas S, Martínez-Sellés M. [Main challenges of electrolyte imbalance in older patients with COVID-19 and risk of QT prolongation. Response]. Rev Esp Cardiol 2021; 74:199-200. [PMID: 32982010 PMCID: PMC7500888 DOI: 10.1016/j.recesp.2020.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Clara Bonanad
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Valencia, España
| | | | - Sergio García-Blas
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Valencia, España
| | - Manuel Martínez-Sellés
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Universidad Europea, Universidad Complutense, Madrid, España
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), España
| |
Collapse
|
44
|
Bonanad C, Díez-Villanueva P, García-Blas S, Martínez-Sellés M. Main challenges of electrolyte imbalance in older patients with COVID-19 and risk of QT prolongation. Response. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2021; 74:199-200. [PMID: 33069612 PMCID: PMC7528876 DOI: 10.1016/j.rec.2020.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Clara Bonanad
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | - Sergio García-Blas
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Manuel Martínez-Sellés
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Universidad Europea, Universidad Complutense, Madrid, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
45
|
Milovanovic B, Djajic V, Bajic D, Djokovic A, Krajnovic T, Jovanovic S, Verhaz A, Kovacevic P, Ostojic M. Assessment of Autonomic Nervous System Dysfunction in the Early Phase of Infection With SARS-CoV-2 Virus. Front Neurosci 2021; 15:640835. [PMID: 34234638 DOI: 10.3389/fnins.2021.640835/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/25/2021] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND We are facing the outburst of coronavirus disease 2019 (COVID-19) defined as a serious, multisystem, disorder, including various neurological manifestations in its presentation. So far, autonomic dysfunction (AD) has not been reported in patients with COVID-19 infection. AIM Assessment of AD in the early phase of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 virus). PATIENTS AND METHODS We analyzed 116 PCR positive COVID-19 patients. After the exclusion of 41 patients with associate diseases (CADG), partitioned to patients with diabetes mellitus, hypertension, and syncope, the remaining patients were included into a severe group (45 patients with confirmed interstitial pneumonia) and mild group (30 patients). Basic cardiovascular autonomic reflex tests (CART) were performed, followed by beat-to-beat heart rate variability (HRV) and systolic and diastolic blood pressure variability (BPV) analysis, along with baroreceptor sensitivity (BRS). Non-linear analysis of HRV was provided by Poincare Plot. Results were compared to 77 sex and age-matched controls. RESULTS AD (sympathetic, parasympathetic, or both) in our study has been revealed in 51.5% of severe, 78.0% of mild COVID-19 patients, and the difference compared to healthy controls was significant (p = 0.018). Orthostatic hypotension has been established in 33.0% COVID-19 patients compared to 2.6% controls (p = 0.001). Most of the spectral parameters of HRV and BPV confirmed AD, most prominent in the severe COVID-19 group. BRS was significantly lower in all patients (severe, mild, CADG), indicating significant sudden cardiac death risk. CONCLUSION Cardiovascular autonomic neuropathy should be taken into account in COVID-19 patients' assessment. It can be an explanation for a variety of registered manifestations, enabling a comprehensive diagnostic approach and further treatment.
Collapse
Affiliation(s)
- Branislav Milovanovic
- Neurocardiology Lab, Department of Cardiology, University Hospital Medical Center Bezanijska kosa, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vlado Djajic
- Neurology Clinic, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Dragana Bajic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandra Djokovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Division of Interventional Cardiology, Department of Cardiology, University Hospital Medical Center Bezanijska kosa, Belgrade, Serbia
| | | | | | - Antonija Verhaz
- Neurology Clinic, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Pedja Kovacevic
- Neurology Clinic, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Miodrag Ostojic
- Neurology Clinic, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| |
Collapse
|
46
|
Yasmin Kusumawardhani N, Huang I, Martanto E, Sihite TA, Nugraha ES, Prodjosoewojo S, Hamijoyo L, Hartantri Y. Lethal Arrhythmia ( Torsade de Pointes) in COVID-19: An Event Synergistically Induced by Viral Associated Cardiac Injury, Hyperinflammatory Response, and Treatment Drug? CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2020; 13:1179547620972397. [PMID: 33402858 PMCID: PMC7739200 DOI: 10.1177/1179547620972397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023]
Abstract
Arrhythmias in patients with coronavirus disease 2019 (COVID-19) are prevalent and deserve special attention because they are associated with an increased risk of fatal outcome. The mechanism of arrhythmia in COVID-19 remains unclear. Here, we report our first case of confirmed COVID-19 with documented Torsade de Pointes (TdP). A 64-year-old woman, previously healthy, presented to our emergency department with progressive shortness of breath, dry cough, and 1 week of fever. She was treated with chloroquine phosphate, meropenem, and ciprofloxacin. After 5 days of admission, her condition deteriorated and she was admitted to the intensive care unit. The patient had two episodes of malignant arrhythmias within 24 hours. The former was TdP, and the latter was a fatal pulseless ventricular tachycardia that occured even after chloroquine was discontinued. There was evidence of cardiac injury shown by increased serum level of troponin I. We propose a synergistic concept of lethal arrhythmia due to direct severe acute respiratory syndrome coronavirus (SARS-CoV)-2-associated cardiac injury, hyperinflammatory response, and drug-induced arrhythmia.
Collapse
Affiliation(s)
- Nuraini Yasmin Kusumawardhani
- Department of Internal Medicine, Faculty of Medicine Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Ian Huang
- Department of Internal Medicine, Faculty of Medicine Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Erwan Martanto
- Department of Internal Medicine, Faculty of Medicine Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Teddy Arnold Sihite
- Department of Internal Medicine, Faculty of Medicine Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Eka Surya Nugraha
- Department of Internal Medicine, Faculty of Medicine Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Susantina Prodjosoewojo
- Department of Internal Medicine, Faculty of Medicine Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Laniyati Hamijoyo
- Department of Internal Medicine, Faculty of Medicine Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Yovita Hartantri
- Department of Internal Medicine, Faculty of Medicine Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
47
|
Rodriguez-Gonzalez M, Castellano-Martinez A, Cascales-Poyatos HM, Perez-Reviriego AA. Cardiovascular impact of COVID-19 with a focus on children: A systematic review. World J Clin Cases 2020; 8:5250-5283. [PMID: 33269260 PMCID: PMC7674714 DOI: 10.12998/wjcc.v8.i21.5250] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 10/13/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Since the beginning of the pandemic, coronavirus disease-2019 (COVID-19) in children has shown milder cases and a better prognosis than adults. Although the respiratory tract is the primary target for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cardiovascular involvement is emerging as one of the most significant and life-threatening complications of SARS-CoV-2 infection in adults. AIM To summarize the current knowledge about the potential cardiovascular involvement in pediatric COVID-19 in order to give a perspective on how to take care of them during the current pandemic emergency. METHODS Multiple searches in MEDLINE, PubMed were performed using the search terms "COVID-19" or "SARS-CoV-2" were used in combination with "myocardial injury" or "arrhythmia" or "cardiovascular involvement" or "heart disease" or "congenital heart disease" or "pulmonary hypertension" or "long QT" or "cardiomyopathies" or "channelopathies" or "Multisystem inflammatory system" or "PMIS" or "MIS-C" or "Pediatric multisystem inflammatory syndrome" or "myocarditis" or "thromboembolism to identify articles published in English language from January 1st, 2020 until July 31st, 2020. The websites of World Health Organization, Centers for Disease control and Prevention, and the Johns Hopkins Coronavirus Resource Center were reviewed to provide up to date numbers and infection control recommendations. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts concerning the subject were reviewed by the authors, and the data were extracted using a standardized collection tool. Data were subsequently analyzed with descriptive statistics. For Pediatric multisystemic inflammatory syndrome temporally associated with COVID-19 (PMIS), multiple meta-analyses were conducted to summarize the pooled mean proportion of different cardiovascular variables in this population in pseudo-cohorts of observed patients. RESULTS A total of 193 articles were included. Most publications used in this review were single case reports, small case series, and observational small-sized studies or literature reviews. The meta-analysis of 16 studies with size > 10 patients and with complete data about cardiovascular involvement in children with PMIS showed that PMIS affects mostly previously healthy school-aged children and adolescents presenting with Kawasaki disease-like features and multiple organ failure with a focus on the heart, accounting for most cases of pediatric COVID-19 mortality. They frequently presented cardiogenic shock (53%), ECG alterations (27%), myocardial dysfunction (52%), and coronary artery dilation (15%). Most cases required PICU admission (75%) and inotropic support (57%), with the rare need for extracorporeal membrane oxygenation (4%). Almost all of these children wholly recovered in a few days, although rare deaths have been reported (2%). Out of PMIS cases we identified 10 articles reporting sporadic cases of myocarditis, pulmonary hypertension and cardiac arrythmias in previously healthy children. We also found another 10 studies reporting patients with pre-existing heart diseases. Most cases consisted in children with severe COVID-19 infection with full recovery after intensive care support, but cases of death were also identified. The management of different cardiac conditions are provided based on current guidelines and expert panel recommendations. CONCLUSION There is still scarce data about the role of cardiovascular involvement in COVID-19 in children. Based on our review, children (previously healthy or with pre-existing heart disease) with acute COVID-19 requiring hospital admission should undergo a cardiac workup and close cardiovascular monitoring to identify and treat timely life-threatening cardiac complications.
Collapse
Affiliation(s)
- Moises Rodriguez-Gonzalez
- Pediatric Cardiology Division, Puerta del Mar University Hospital, Cadiz 11009, Spain
- Biomedical Research and Innovation Institute of Cadiz, Puerta del Mar University Hospital, Cadiz 11009, Spain
| | - Ana Castellano-Martinez
- Pediatric Nephrology Division, Puerta del Mar University Hospital, Cadiz 11009, Spain
- Biomedical Research and Innovation Institute of Cadiz, Puerta del Mar University Hospital, Cadiz 11009, Spain
| | | | | |
Collapse
|
48
|
Mavraganis G, Aivalioti E, Chatzidou S, Patras R, Paraskevaidis I, Kanakakis I, Stamatelopoulos K, Dimopoulos MA. Cardiac arrest and drug-related cardiac toxicity in the Covid-19 era. Epidemiology, pathophysiology and management. Food Chem Toxicol 2020; 145:111742. [PMID: 32916218 PMCID: PMC7833119 DOI: 10.1016/j.fct.2020.111742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 (Covid-19) infection has recently become a worldwide challenge with dramatic global economic and health consequences. As the pandemic is still spreading, new data concerning Covid-19 complications and related mechanisms become increasingly available. Accumulating data suggest that the incidence of cardiac arrest and its outcome are adversely affected during the Covid-19 period. This may be further exacerbated by drug-related cardiac toxicity of Covid-19 treatment regimens. Elucidating the underlying mechanisms that lead to Covid-19 associated cardiac arrest is imperative, not only in order to improve its effective management but also to maximize preventive measures. Herein we discuss available epidemiological data on cardiac arrest during the Covid-19 pandemic as well as possible associated causes and pathophysiological mechanisms and highlight gaps in evidence warranting further investigation. The risk of transmission during cardiopulmonary resuscitation (CPR) is also discussed in this review. Finally, we summarize currently recommended guidelines on CPR for Covid-19 patients including CPR in patients with cardiac arrest due to suspected drug-related cardiac toxicity in an effort to underscore the most important common points and discuss discrepancies proposed by established international societies.
Collapse
Affiliation(s)
- Georgios Mavraganis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Chatzidou
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Raphael Patras
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Paraskevaidis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kanakakis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
49
|
Medzikovic L, Cunningham CM, Li M, Amjedi M, Hong J, Ruffenach G, Eghbali M. Sex differences underlying preexisting cardiovascular disease and cardiovascular injury in COVID-19. J Mol Cell Cardiol 2020; 148:25-33. [PMID: 32835666 PMCID: PMC7442559 DOI: 10.1016/j.yjmcc.2020.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
The novel 2019 coronavirus disease (COVID-19), resulting from severe acute respiratory syndrome coronarvirus-2 (SARS-CoV-2) infection, typically leads to respiratory failure in severe cases; however, cardiovascular injury is reported to contribute to a substantial proportion of COVID-19 deaths. Preexisting cardiovascular disease (CVD) is among the most common risk factors for hospitalization and death in COVID-19 patients, and the pathogenic mechanisms of COVID-19 disease progression itself may promote the development of cardiovascular injury, increasing risk of in-hospital death. Sex differences in COVID-19 are becoming more apparent as mounting data indicate that males seem to be disproportionately at risk of severe COVID-19 outcome due to preexisting CVD and COVID-19-related cardiovascular injury. In this review, we will provide a basic science perspective on current clinical observations in this rapidly evolving field and discuss the interplay sex differences, preexisting CVD and COVID-19-related cardiac injury.
Collapse
Affiliation(s)
- Lejla Medzikovic
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Christine M Cunningham
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Min Li
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Marjan Amjedi
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Hong
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Department of Medicine, Division of Pulmonary and Critical Care, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Gregoire Ruffenach
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|