1
|
Wang HW, Huang YC, Fang YW, Jang TN, Chen M, Tsai MH. Investigating long-term risk of aortic aneurysm and dissection from fluoroquinolones and the key contributing factors using machine learning methods. Sci Rep 2025; 15:13130. [PMID: 40240493 PMCID: PMC12003681 DOI: 10.1038/s41598-025-97787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
The connection between fluoroquinolones and severe heart conditions, such as aortic aneurysm (AA) and aortic dissection (AD), has been acknowledged, but the full extent of long-term risks remains uncertain. Addressing this knowledge deficit, a retrospective cohort study was conducted in Taiwan, utilizing data from the National Health Insurance Research Database spanning from 2004 to 2010, with follow-up lasting until 2019. The study included 232,552 people who took fluoroquinolones and the same number of people who didn't, matched for age, sex, and index year. The Cox regression model was enlisted to calculate the hazard ratio (HR) for AA/AD onset. Additionally, five machine learning algorithms assisted in pinpointing critical determinants for AA/AD among those with fluoroquinolones. Intriguingly, within the longest follow-up duration of 16 years, exposed patients presented with a markedly higher incidence of AA/AD unexposed patients (80 vs. 30 per 100,000 person-years). After adjusting for multiple factors, exposure to fluoroquinolones was linked to a higher risk of AA/AD (HR 1.62, 95%CI 1.45-1.78). Machine learning identified ten factors that significantly affected AA/AD risk in those exposed. The findings illustrate a 62% elevation in the long-term risk of adverse outcomes associated with AA/AD following the administration of fluoroquinolones and concurrently delineate the salient factors contributing to AA/AD, underscoring the imperative for healthcare practitioners to meticulously evaluate the implications of prescribing these antibiotics in light of the associated risks and determinants.
Collapse
Affiliation(s)
- Hsiao-Wei Wang
- Division of Infectious Disease, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yen-Chun Huang
- Department of Artificial Intelligence, Tamkang University, No.151, Yingzhuan Rd., Tamsui Dist, New Taipei City, Taiwan
| | - Yu-Wei Fang
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, No. 95, Wen-Chang Rd, Shih-Lin Dist, Taipei, 11101, Taiwan
- Department of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Tsrang-Neng Jang
- Division of Infectious Disease, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Mingchih Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ming-Hsien Tsai
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, No. 95, Wen-Chang Rd, Shih-Lin Dist, Taipei, 11101, Taiwan.
- Department of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Qi Y, Jiang H, Lun Y, Gang Q, Shen S, Zhang H, Liu M, Wang Y, Zhang J. Protein Drug Targets for Abdominal Aortic Aneurysm and Proteomic Associations Between Modifiable Risk Factors and Abdominal Aortic Aneurysm. J Am Heart Assoc 2025; 14:e037802. [PMID: 40008516 DOI: 10.1161/jaha.124.037802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a severe aortic disease for which no pharmacological interventions have yet been developed. This investigation focused on identifying protein-based therapeutic targets and assessing how proteins mediate the interplay between modifiable risk factors and AAA development. METHODS Causal inferences between plasma proteins and AAA were drawn using 2-sample Mendelian randomization, followed by comprehensive sensitivity testing, colocalization, and replication efforts. Further analyses included database interrogation, single-cell RNA data analysis, enrichment analysis, protein-protein interaction networks, and immunohistochemistry to map the tissue-specific expression of these proteins, their expression within AAA tissues, and their biological roles. Mediation Mendelian randomization was employed to evaluate the mediating effects of AAA-related proteins on the associations between AAA and 3 risk factors: hypertension, smoking, and obesity. RESULTS A total of 43 proteins were identified as having causal links to AAA. Colocalization analysis pinpointed 13 proteins with strong evidence of colocalization with AAA. Of these, the causal involvement of 10 proteins was substantiated by external validation data. Consistent evidence for PCSK9 (proprotein convertase subtilisin/kexin type 9), IL6R (interleukin-6R), ECM1 (extracellular matrix protein 1), and ANGPTL4 (angiopoietin-related protein 4) was further validated through tissue immunohistochemistry and blood data. Moreover, Mendelian randomization analysis identified 10 proteins as mediators of the influence of hypertension, smoking, and obesity on AAA development. CONCLUSIONS This analysis identifies 4 proteins (PCSK9, IL6R, ECM1, and ANGPTL4) as high-priority therapeutic targets for AAA and emphasizes the intermediary role of plasma proteins in linking hypertension, smoking, obesity, and AAA. Further investigations are needed to clarify the specific roles of these proteins in AAA pathology.
Collapse
Affiliation(s)
- Yao Qi
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Han Jiang
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Yu Lun
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Qingwei Gang
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Shikai Shen
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Han Zhang
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Mingyu Liu
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Yixian Wang
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Jian Zhang
- Department of Vascular and Thyroid Surgery The First Hospital of China Medical University Shenyang Liaoning China
| |
Collapse
|
3
|
Burgess S, Cronjé HT, deGoma E, Chyung Y, Gill D. Human Genetic Evidence to Inform Clinical Development of IL-6 Signaling Inhibition for Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2025; 45:323-331. [PMID: 39633572 PMCID: PMC7617413 DOI: 10.1161/atvbaha.124.321988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) represents a significant cause of mortality, yet no medical therapies have proven efficacious. The aim of the current study was to leverage human genetic evidence to inform clinical development of IL-6 (interleukin-6) signaling inhibition for the treatment of AAA. METHODS Associations of rs2228145, a missense variant in the IL6R gene region, are expressed per additional copy of the C allele, corresponding to the genetically predicted effect of IL-6 signaling inhibition. We consider genetic associations with AAA risk in the AAAgen consortium (39 221 cases and 1 086 107 controls) and UK Biobank (1963 cases and 365 680 controls). To validate against known effects of IL-6 signaling inhibition, we present associations with rheumatoid arthritis, polymyalgia rheumatica, and severe COVID-19. To explore mechanism specificity, we present associations with thoracic aortic aneurysm, intracranial aneurysm, and coronary artery disease. We further explored genetic associations in clinically relevant subgroups of the population. RESULTS We observed strong genetic associations with AAA risk in the AAAgen consortium, UK Biobank, and FinnGen (odds ratios: 0.91 [95% CI, 0.90-0.92], P=4×10-30; 0.90 [95% CI, 0.84-0.96], P=0.001; and 0.86 [95% CI, 0.82-0.91], P=7×10-9, respectively). The association was similar for fatal AAA but with greater uncertainty due to the lower number of events. The association with AAA was of greater magnitude than associations with coronary artery disease and even rheumatological disorders for which IL-6 inhibitors have been approved. No strong associations were observed with thoracic aortic aneurysm or intracranial aneurysm. Associations attenuated toward the null in populations with concomitant rheumatological or connective tissue disease. CONCLUSIONS Inhibition of IL-6 signaling is a promising strategy for treating AAA but not other types of aneurysmal disease. These findings serve to help inform clinical development of IL-6 signaling inhibition for AAA treatment.
Collapse
Affiliation(s)
- Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
- Sequoia Genetics, London, United Kingdom
| | - Héléne T. Cronjé
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Sequoia Genetics, London, United Kingdom
| | | | | | | |
Collapse
|
4
|
Stougiannou TM, Christodoulou KC, Karangelis D. Olfactory Receptors and Aortic Aneurysm: Review of Disease Pathways. J Clin Med 2024; 13:7778. [PMID: 39768700 PMCID: PMC11727755 DOI: 10.3390/jcm13247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Aortic aneurysm, the pathological dilatation of the aorta at distinct locations, can be attributed to many different genetic and environmental factors. The resulting pathobiological disturbances generate a complex interplay of processes affecting cells and extracellular molecules of the tunica interna, media and externa. In short, aortic aneurysm can affect processes involving the extracellular matrix, lipid trafficking/atherosclerosis, vascular smooth muscle cells, inflammation, platelets and intraluminal thrombus formation, as well as various endothelial functions. Many of these processes are interconnected, potentiating one another. Newer discoveries, including the involvement of odorant olfactory receptors in these processes, have further shed light on disease initiation and pathology. Olfactory receptors are a varied group of G protein coupled-receptors responsible for the recognition of chemosensory information. Although they comprise many different subgroups, some of which are not well-characterized or identified in humans, odorant olfactory receptors, in particular, are most commonly associated with recognition of olfactory information. They can also be ectopically localized and thus carry out additional functions relevant to the tissue in which they are identified. It is thus the purpose of this narrative review to summarize and present pathobiological processes relevant to the initiation and propagation of aortic aneurysm, while also incorporating evidence associating these ectopically functioning odorant olfactory receptors with the overall pathology.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
5
|
Koo HY, Cho IY, Han K, Lee KN, Cho MH, Jin SM, Cho YH, Lee JH, Park YJ, Shin DW. Editor's Choice - Glycaemic Status and Risk of Abdominal Aortic Aneurysm: A Nationwide Cohort Study of Four Million Adults using Korean National Health Screening Data. Eur J Vasc Endovasc Surg 2024; 68:479-487. [PMID: 38844129 DOI: 10.1016/j.ejvs.2024.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE This retrospective cohort study aimed to confirm the previously reported inverse association between diabetes mellitus (DM) and abdominal aortic aneurysm (AAA) using large population based data. It also investigated the associations between AAA and impaired fasting glucose (IFG) and new onset DM (not yet treated). METHODS A representative dataset was obtained from the Korean National Health Insurance Service. Participants who were aged ≥ 50 years and received a national health examination in 2009 were included and followed until 31 December 2019. Glycaemic status was defined based on fasting plasma glucose level and the relevant diagnostic codes. AAA was ascertained using medical facility use records with relevant diagnostic codes or aneurysm repair surgery. A Cox proportional hazards model was used to examine the association between glycaemic status and AAA, with adjustment for confounders. Additionally, the interactions between glycaemic status and subgroups based on baseline characteristics were examined. RESULTS The study population comprised 4 162 640 participants. Participants with IFG or DM were significantly more likely to be male, older, and have comorbidities compared with normoglycaemic participants at baseline. The incidence of AAA was lower in participants with IFG or DM compared with normoglycaemic participants. The AAA risk was lower in patients with DM than in patients with IFG, and decreased linearly according to glycaemic status: the adjusted hazard ratio was 0.88 (95% confidence interval [CI] 0.85 - 0.91) for IFG, 0.72 (95% CI 0.67 - 0.78) for newly diagnosed DM, 0.65 (95% CI 0.61 - 0.69) for DM duration < 5 years, and 0.47 (95% CI 0.44 - 0.51) for DM duration ≥ 5 years compared with the normoglycaemia group. Both IFG and DM were related to reduced AAA risk in all subgroups, suggesting an independent association. CONCLUSION Both IFG and DM, even when not treated with antihyperglycaemic medication, were associated with a lower incidence of AAA. The AAA risk decreased linearly according to DM duration.
Collapse
Affiliation(s)
- Hye Yeon Koo
- Department of Family Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Family Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In Young Cho
- Department of Family Medicine & Supportive Care Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Kyu Na Lee
- Department of Biomedicine and Health Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi Hee Cho
- Samsung C&T Medical Clinic, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang-Man Jin
- Division of Endocrinology, Department of Medicine, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yang Hyun Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Thoracic and Cardiovascular Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yang-Jin Park
- Division of Vascular Surgery, Department of Surgery, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Wook Shin
- Department of Family Medicine & Supportive Care Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation/Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Zhang X, Chen H, Pang T, Liang K, Mei J, Zhu Y, Yang J. A preliminary study of sirtuin-1 on angiotensin II-induced senescence and inflammation in abdominal aortic aneurysms. Cytojournal 2024; 21:32. [PMID: 39411167 PMCID: PMC11474752 DOI: 10.25259/cytojournal_80_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Recent evidence suggests the involvement of senescence and inflammation in abdominal aortic aneurysm (AAA). Considering the role of sirtuin-1 (SIRT1) in delaying senescence, we aimed to preliminarily investigate the potential mechanism underlying the effects of SIRT1 in senescence and inflammation during AAA. Material and Methods A cell AAA model was established using angiotensin II (Ang II) as the inducer, which was applied to treat human aortic vascular smooth muscle cells (HASMCs). The senescence and cell cycle of treated HASMCs were evaluated based on senescence-associated (SA)-b-galactosidase (b-gal) assay and flow cytometry, respectively. The levels of inflammatory cytokines and proteins related to senescence-associated secretory phenotype (SASP), along with nuclear factor-kappa B (NF-kB) and mitogen-activated protein kinases (MAPK) pathways, as well as SIRT1, were gauged. The correlation between SIRT1 and NF-kB and MAPK pathway-related proteins was further estimated. Results In Ang II-treated HASMCs, reduced SIRT1 and B-cell lymphoma-2 levels yet increased levels of SASP-related proteins P16 and P21, inflammatory cytokines, as well as Bax and caspases were all visible. In the meantime, Ang II exposure enhanced the number of b-gal-positive HASMCs and promoted cell cycle arrest. SIRT1 was also repressed following Ang II treatment and negatively correlated with NF-kB and MAPK pathway-related proteins (P < 0.05). Furthermore, the overexpression of SIRT1 diminished the levels of SASP-related proteins and reduced the phosphorylation of extracellular regulated kinase 1/2 and P65 in Ang II-treated HASMCs (P < 0.05). Conclusion Taken together, our results indicate that SIRT1 overexpression attenuates the inflammatory and senescent responses of HASMCs in the Ang II-induced AAA cell model. This finding suggests that SIRT1 can be a highly promising target for clinical treatment of AAA.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanhuan Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianshu Pang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhua Mei
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuefeng Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Wang MJ, Zhang HL, Chen F, Guo XJ, Liu QG, Hou J. The double-edged effects of IL-6 in liver regeneration, aging, inflammation, and diseases. Exp Hematol Oncol 2024; 13:62. [PMID: 38890694 PMCID: PMC11184755 DOI: 10.1186/s40164-024-00527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine and exerts its complex biological functions mainly through three different signal modes, called cis-, trans-, and cluster signaling. When IL-6 binds to its membrane or soluble receptors, the co-receptor gp130 is activated to initiate downstream signaling and induce the expression of target genes. In the liver, IL-6 can perform its anti-inflammatory activities to promote hepatocyte reprogramming and liver regeneration. On the contrary, IL-6 also exerts the pro-inflammatory functions to induce liver aging, fibrosis, steatosis, and carcinogenesis. However, understanding the roles and underlying mechanisms of IL-6 in liver physiological and pathological processes is still an ongoing process. So far, therapeutic agents against IL‑6, IL‑6 receptor (IL‑6R), IL-6-sIL-6R complex, or IL-6 downstream signal transducers have been developed, and determined to be effective in the intervention of inflammatory diseases and cancers. In this review, we summarized and highlighted the understanding of the double-edged effects of IL-6 in liver homeostasis, aging, inflammation, and chronic diseases, for better shifting the "negative" functions of IL-6 to the "beneficial" actions, and further discussed the potential therapeutic effects of targeting IL-6 signaling in the clinics.
Collapse
Affiliation(s)
- Min-Jun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China.
| | - Hai-Ling Zhang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University (Naval Medical University), Shanghai, China
- Department of Neurology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xiao-Jing Guo
- Department of Health Statistics, Faculty of Health Service, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Qing-Gui Liu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University (Naval Medical University), Shanghai, China.
| |
Collapse
|
8
|
Zhang K, Li R, Matniyaz Y, Yu R, Pan J, Liu W, Wang D. Liraglutide attenuates angiotensin II-induced aortic dissection and aortic aneurysm via inhibiting M1 macrophage polarization in APOE -/- mice. Biochem Pharmacol 2024; 223:116170. [PMID: 38548245 DOI: 10.1016/j.bcp.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Aortic Aneurysm and Dissection (AAD) are severe cardiovascular conditions with potentially lethal consequences such as aortic rupture. Existing studies suggest that liraglutide, a long-acting glucagon-like peptide receptor (GLP-1R) agonist, offers protective benefits across various cardiovascular diseases. However, the efficacy of liraglutide in mitigating AAD development is yet to be definitively elucidated. METHODS Ang II (Angiotension II) infusion of APOE-/- mouse model with intraperitoneal injection of liraglutide (200 μg/kg) to study the role of GLP-1R in AAD formation. Bone Marrow Derived Macrophages (BMDM) and Raw264.7 were incubated with LPS, liraglutide, exendin 9-39 or LY294002 alone or in combination. SMC phenotype switching was examined in a macrophage and vascular smooth muscle cell (VSMC) co-culture system. An array of analytical methods, including Western Blot, Immunofluorescence Staining, Enzyme-LinkedImmunosorbent Assay, Real-Time Quantitative Polymerase Chain Reaction, RNA-seq, and so on were employed. RESULTS Our investigation revealed a significant increase in M1 macrophage polarization and GLP-1R expression in aortas of AD patients and Ang II-induced AAD APOE-/- mice. Administering liraglutide in APOE-/- mice notably reduced Ang II-induced AAD incidence and mortality. It was found that liraglutide inhibits M1 macrophage polarization primarily via GLP-1R activation, and subsequently modulates vascular smooth muscle cell phenotypic switching was the primary mechanism. RNA-Seq and subsequent KEGG enrichment analysis identified CXCL3, regulated by the PI3K/AKT signaling pathway, as a key element in liraglutide's modulation of M1 macrophage polarization. CONCLUSION Our study found liraglutide exhibits protective effects against AAD by modulating M1 macrophage polarization, suppressing CXCL3 expression through the PI3K/AKT signaling pathway. This makes it a promising therapeutic target for AAD, offering a new avenue in AAD management.
Collapse
Affiliation(s)
- Keyin Zhang
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ruisha Li
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yusanjan Matniyaz
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ronghuang Yu
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jun Pan
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Wenxue Liu
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - DongJin Wang
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Li J, Liu Y, Wei Z, Cheng J, Wu Y. The occurrence and development of abdominal aortic aneurysm may be related to the energy metabolism disorder and local inflammation. Heliyon 2024; 10:e27912. [PMID: 38496900 PMCID: PMC10944252 DOI: 10.1016/j.heliyon.2024.e27912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Background The cellular mechanism of the formation of abdominal aortic aneurysm (AAA) is very complicated. A series of sophisticated events eventually led to significant pathological changes in the anatomical structure and function of the arterial wall and they are still not clear nowadays. Methods We pooled publicly available GEO datasets (GSE57691 and GSE47472) to get a comprehensive comparisons between normal tissues and AAA tissues to try to reveal molecular mechanism underlying the disease. Total 63 AAA samples and 18 normal tissue samples were compared and we fond that there were 784 significantly different gene (DEGs, threshold set as adjusted P < 0.05 and Log FC < 1) were identified. At the same time, we validate the possible signaling factor expression of AAA by comparing the normal tissue of the human body with the AAA tissue. Results In the pathway enrichment, we found that FOXP3 related signaling pathways, inflammation-related cytokine signaling pathways, interleukin-8-CXCR1 related signaling pathways and VEGFA and FGFR1 related signal pathway were significantly enrichmented. In Weighted gene co-expression network analysis (WGCNA), we found that the key hub genes were significantly related to lipid catabolic metabolism, which further verified the possibility that AAA might relate to energy metabolism disorders. Conclusion Based on the comprehensive analysis of previous high-throughput data and the validation of basic experiments, we found that the occurrence of AAA may be related to energy metabolism disorders and local inflammation.
Collapse
Affiliation(s)
- Jun Li
- Department of Endovascular and Vascular Surgery, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yang Liu
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhitao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jie Cheng
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yongfa Wu
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
10
|
Kazaleh M, Gioscia-Ryan R, Ailawadi G, Salmon M. Oxidative Stress and the Pathogenesis of Aortic Aneurysms. Biomedicines 2023; 12:3. [PMID: 38275364 PMCID: PMC10813769 DOI: 10.3390/biomedicines12010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Aortic aneurysms are responsible for significant morbidity and mortality. Despite their clinical significance, there remain critical knowledge gaps in the pathogenesis of aneurysm disease and the mechanisms involved in aortic rupture. Recent studies have drawn attention to the role of reactive oxygen species (ROS) and their down-stream effectors in chronic cardiovascular diseases and specifically in the pathogenesis of aortic aneurysm formation. This review will discuss current mechanisms of ROS in mediating aortic aneurysms, the failure of endogenous antioxidant systems in chronic vascular diseases, and their relation to the development of aortic aneurysms.
Collapse
Affiliation(s)
- Matthew Kazaleh
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.); (G.A.)
| | - Rachel Gioscia-Ryan
- Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Gorav Ailawadi
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.); (G.A.)
- Frankel Cardiovascular Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.); (G.A.)
- Frankel Cardiovascular Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med 2023; 55:2519-2530. [PMID: 38036736 PMCID: PMC10766996 DOI: 10.1038/s12276-023-01130-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Aortic aneurysm is a chronic disease characterized by localized expansion of the aorta, including the ascending aorta, arch, descending aorta, and abdominal aorta. Although aortic aneurysms are generally asymptomatic, they can threaten human health by sudden death due to aortic rupture. Aortic aneurysms are estimated to lead to 150,000 ~ 200,000 deaths per year worldwide. Currently, there are no effective drugs to prevent the growth or rupture of aortic aneurysms; surgical repair or endovascular repair is the only option for treating this condition. The pathogenic mechanisms and therapeutic targets for aortic aneurysms have been examined over the past decade; however, there are unknown pathogenic mechanisms involved in cellular heterogeneity and plasticity, the complexity of the transforming growth factor-β signaling pathway, inflammation, cell death, intramural neovascularization, and intercellular communication. This review summarizes the latest research findings and current pathogenic mechanisms of aortic aneurysms, which may enhance our understanding of aortic aneurysms.
Collapse
Affiliation(s)
- Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mi-Ran Lee
- Department of Biomedical Laboratory Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
12
|
Wang Y, Sargisson O, Nguyen DT, Parker K, Pyke SJR, Alramahi A, Thihlum L, Fang Y, Wallace ME, Berzins SP, Oqueli E, Magliano DJ, Golledge J. Effect of Hydralazine on Angiotensin II-Induced Abdominal Aortic Aneurysm in Apolipoprotein E-Deficient Mice. Int J Mol Sci 2023; 24:15955. [PMID: 37958938 PMCID: PMC10650676 DOI: 10.3390/ijms242115955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The rupture of an abdominal aortic aneurysm (AAA) causes about 200,000 deaths worldwide each year. However, there are currently no effective drug therapies to prevent AAA formation or, when present, to decrease progression and rupture, highlighting an urgent need for more research in this field. Increased vascular inflammation and enhanced apoptosis of vascular smooth muscle cells (VSMCs) are implicated in AAA formation. Here, we investigated whether hydralazine, which has anti-inflammatory and anti-apoptotic properties, inhibited AAA formation and pathological hallmarks. In cultured VSMCs, hydralazine (100 μM) inhibited the increase in inflammatory gene expression and apoptosis induced by acrolein and hydrogen peroxide, two oxidants that may play a role in AAA pathogenesis. The anti-apoptotic effect of hydralazine was associated with a decrease in caspase 8 gene expression. In a mouse model of AAA induced by subcutaneous angiotensin II infusion (1 µg/kg body weight/min) for 28 days in apolipoprotein E-deficient mice, hydralazine treatment (24 mg/kg/day) significantly decreased AAA incidence from 80% to 20% and suprarenal aortic diameter by 32% from 2.26 mm to 1.53 mm. Hydralazine treatment also significantly increased the survival rate from 60% to 100%. In conclusion, hydralazine inhibited AAA formation and rupture in a mouse model, which was associated with its anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Owen Sargisson
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Dinh Tam Nguyen
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Ketura Parker
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Stephan J. R. Pyke
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Ahmed Alramahi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Liam Thihlum
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Yan Fang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Morgan E. Wallace
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Stuart P. Berzins
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (O.S.); (D.T.N.); (M.E.W.); (S.P.B.)
| | - Ernesto Oqueli
- Cardiology Department, Grampians Health Ballarat, Ballarat, VIC 3350, Australia;
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3220, Australia
| | - Dianna J. Magliano
- Diabetes and Population Health, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
- Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, QLD 4811, Australia
| |
Collapse
|
13
|
Nugroho NT, Herten M, Torsello GF, Osada N, Marchiori E, Sielker S, Torsello GB. Association of Genetic Polymorphisms with Abdominal Aortic Aneurysm in the Processes of Apoptosis, Inflammation, and Cholesterol Metabolism. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1844. [PMID: 37893562 PMCID: PMC10608078 DOI: 10.3390/medicina59101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: This study aims to identify the minor allele of the single nucleotide polymorphisms (SNPs) DAB2IP rs7025486, IL6R rs2228145, CDKN2BAS rs10757278, LPA rs3798220, LRP1 rs1466535, and SORT1 rs599839 in order to assess the risk of abdominal aortic aneurysm (AAA) formation and define the linkage among these SNPs. Materials and Methods: A case-control study with AAA patients (AAA group) and non-AAA controls (control group) was carried out in a study population. DNA was isolated from whole blood samples; the SNPs were amplified using PCR and sequenced. Results: In the AAA group of 148 patients, 87.2% of the patients were male, 64.2% had a history of smoking, and 18.2% had relatives with AAA. The mean ± SD of age, BMI, and aneurysmal diameter in the AAA group were 74.8 ± 8.3 years, 27.6 ± 4.6 kg/m2, and 56.2 ± 11.8 mm, respectively. In comparison with 50 non-AAA patients, there was a significantly elevated presence of the SNPs DAB2IP rs7025486[A], CDKN2BAS rs10757278[G], and SORT1 rs599839[G] in the AAA group (p-values 0.040, 0.024, 0.035, respectively), while LPA rs3798220[C] was significantly higher in the control group (p = 0.049). A haplotype investigation showed that the SNPs DAB2IP, CDKN2BAS, and IL6R rs2228145[C] were significantly elevated in the AAA group (p = 0.037, 0.037, and 0.046) with minor allele frequencies (MAF) of 25.5%, 10.6%, and 15.4%, respectively. Only DAB2IP and CDKN2BAS showed significantly higher occurrences of a mutation (p = 0.028 and 0.047). Except for LPA, all SNPs were associated with a large aortic diameter in AAA (p < 0.001). Linkage disequilibrium detection showed that LPA to DAB2IP, to IL6R, to CDKN2BAS, and to LRP1 rs1466535[T] had D' values of 70.9%, 80.4%, 100%, and 100%, respectively. IL6R to LRP1 and to SORT1 had values for the coefficient of determination (r2) of 3.9% and 2.2%, respectively. Conclusions: In the investigated study population, the SNPs CDKN2BAS rs10757278, LPA rs3798220, SORT1 rs599839, DAB2IP rs7025486, and IL6R rs2228145 were associated with the development of abdominal aortic aneurysms. Individuals with risk factors for atherosclerosis and/or a family history of AAA should be evaluated using genetic analysis.
Collapse
Affiliation(s)
- Nyityasmono Tri Nugroho
- Department of Vascular and Endovascular Surgery, University Hospital Münster, 48149 Münster, Germany
- Vascular and Endovascular Division, Department of Surgery, Cipto Mangunkusumo National Hospital, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| | - Monika Herten
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Duisburg-Essen, 45147 Essen, Germany
| | | | - Nani Osada
- Department of Vascular and Endovascular Surgery, University Hospital Münster, 48149 Münster, Germany
| | - Elena Marchiori
- Department of Vascular and Endovascular Surgery, University Hospital Münster, 48149 Münster, Germany
| | - Sonja Sielker
- Research Unit Vascular Biology of Oral Structures (VABOS), Department of Cranio-Maxillofacial Surgery, University Hospital Münster, 48149 Münster, Germany
| | - Giovanni B. Torsello
- Institute for Vascular Research, St. Franziskus Hospital, 48145 Münster, Germany;
| |
Collapse
|
14
|
Rose-John S, Jenkins BJ, Garbers C, Moll JM, Scheller J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat Rev Immunol 2023; 23:666-681. [PMID: 37069261 PMCID: PMC10108826 DOI: 10.1038/s41577-023-00856-y] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
Interleukin-6 (IL-6) is a key immunomodulatory cytokine that affects the pathogenesis of diverse diseases, including autoimmune diseases, chronic inflammatory conditions and cancer. Classical IL-6 signalling involves the binding of IL-6 to the membrane-bound IL-6 receptor α-subunit (hereafter termed 'mIL-6R') and glycoprotein 130 (gp130) signal-transducing subunit. By contrast, in IL-6 trans-signalling, complexes of IL-6 and the soluble form of IL-6 receptor (sIL-6R) signal via membrane-bound gp130. A third mode of IL-6 signalling - known as cluster signalling - involves preformed complexes of membrane-bound IL-6-mIL-6R on one cell activating gp130 subunits on target cells. Antibodies and small molecules have been developed that block all three forms of IL-6 signalling, but in the past decade, IL-6 trans-signalling has emerged as the predominant pathway by which IL-6 promotes disease pathogenesis. The first selective inhibitor of IL-6 trans-signalling, sgp130, has shown therapeutic potential in various preclinical models of disease and olamkicept, a sgp130Fc variant, had promising results in phase II clinical studies for inflammatory bowel disease. Technological developments have already led to next-generation sgp130 variants with increased affinity and selectivity towards IL-6 trans-signalling, along with indirect strategies to block IL-6 trans-signalling. Here, we summarize our current understanding of the biological outcomes of IL-6-mediated signalling and the potential for targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Medical Faculty, Christian-Albrechts-University, Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
15
|
Li H, Feng W, Wang Q, Li C, Zhu J, Sun T, Wu J. Inclusion of interleukin-6 improved the performance of postoperative acute lung injury prediction for patients undergoing surgery for thoracic aortic disease. Front Cardiovasc Med 2023; 10:1093616. [PMID: 37636294 PMCID: PMC10457658 DOI: 10.3389/fcvm.2023.1093616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background We studied acute lung injury (ALI) in thoracic aortic disease (TAD) patients and investigated the predictive effect of interleukin-6 (IL-6) in acute lung injury after thoracic aortic disease. Methods Data on 188 TAD patients, who underwent surgery between January 2016 to December 2021 at our hospital, were enrolled in. We analyzed acute lung injury using two patient groups. Patients with No-ALI were 65 and those with ALI were 123. Univariate logistic, LASSO binary logistic regression model and multivariable logistic regression analysis were performed for acute lung injury. Results Preoperative IL-6 level was lower (15.80[3.10,43.30] vs. 47.70[21.40,91.60] pg/ml, p < 0.001) in No-ALI group than in ALI group. The cut-off points, determined by the ROC curve, were preoperative IL-6 > 18 pg/ml (area under the curve: AUC = 0.727). Univariate logistic regression analysis showed 19 features for TAD appeared to be early postoperative risk factors of acute lung injury. Using LASSO binary logistic regression, 19 features were reduced to 9 potential predictors (i.e., Scrpost + PLTpost + CPB > 182 min + D-dimerpost + D-dimerpre + Hypertension + Age > 58 years + IL6 > 18 pg/ml + IL6). Multivariable logistic regression analysis showed that Postoperative creatinine, CPB > 182 min and IL-6 > 18 pg/ml were early postoperative risk factors for ALI after TAD, and the odds ratios (ORs) of postoperative creatinine, CPB > 182 min and IL-6 > 18 pg/ml were 1.006 (1.002-1.01), 4.717 (1.306-19.294) and 2.96 (1.184-7.497), respectively. When postoperative creatinine, CPB > 182 min and IL-6 > 18 pg/ml (AUC = 0.819), the 95% confidence interval [CI] was 0.741 to 0.898. Correction curves were nearly diagonal, suggesting that the nomogram fit well. The DCA curve was then drawn to demonstrate clinical applicability. The DCA curve showed that the threshold probability of a patient is in the range of 30% to 90%. Conclusions The inclusion of interleukin-6 demonstrated good performance in predicting ALI after TAD surgery.
Collapse
Affiliation(s)
- Huili Li
- Correspondence: Huili Li Jinlin Wu
| | | | | | | | | | | | - Jinlin Wu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
16
|
Hamwi S, Alebaji MB, Mahboub AE, Alkaabi EH, Alkuwaiti NS. Multiple Systemic Arterial Aneurysms in Kawasaki Disease. Cureus 2023; 15:e42714. [PMID: 37654939 PMCID: PMC10466075 DOI: 10.7759/cureus.42714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Kawasaki disease is a self-limiting systemic vasculitis that can lead to various cardiac complications, including coronary dilatation and aneurysms. However, systemic aneurysms are uncommon and only occur in rare cases. In this instance, we present the case of an eight-week-old infant who presented to the emergency department with fever, loose motion, and neck swelling, ultimately diagnosed with Kawasaki disease accompanied by multiple systemic arterial aneurysms. This case highlights the potential for Kawasaki disease to cause systemic aneurysms and emphasizes the importance of recognizing and monitoring this rare complication in patients diagnosed with Kawasaki disease.
Collapse
Affiliation(s)
- Sara Hamwi
- Pediatric Medicine, Tawam Hospital, Al Ain, ARE
| | | | | | | | | |
Collapse
|
17
|
Golledge J, Thanigaimani S, Powell JT, Tsao PS. Pathogenesis and management of abdominal aortic aneurysm. Eur Heart J 2023:ehad386. [PMID: 37387260 PMCID: PMC10393073 DOI: 10.1093/eurheartj/ehad386] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) causes ∼170 000 deaths annually worldwide. Most guidelines recommend asymptomatic small AAAs (30 to <50 mm in women; 30 to <55 mm in men) are monitored by imaging and large asymptomatic, symptomatic, and ruptured AAAs are considered for surgical repair. Advances in AAA repair techniques have occurred, but a remaining priority is therapies to limit AAA growth and rupture. This review outlines research on AAA pathogenesis and therapies to limit AAA growth. Genome-wide association studies have identified novel drug targets, e.g. interleukin-6 blockade. Mendelian randomization analyses suggest that treatments to reduce low-density lipoprotein cholesterol such as proprotein convertase subtilisin/kexin type 9 inhibitors and smoking reduction or cessation are also treatment targets. Thirteen placebo-controlled randomized trials have tested whether a range of antibiotics, blood pressure-lowering drugs, a mast cell stabilizer, an anti-platelet drug, or fenofibrate slow AAA growth. None of these trials have shown convincing evidence of drug efficacy and have been limited by small sample sizes, limited drug adherence, poor participant retention, and over-optimistic AAA growth reduction targets. Data from some large observational cohorts suggest that blood pressure reduction, particularly by angiotensin-converting enzyme inhibitors, could limit aneurysm rupture, but this has not been evaluated in randomized trials. Some observational studies suggest metformin may limit AAA growth, and this is currently being tested in randomized trials. In conclusion, no drug therapy has been shown to convincingly limit AAA growth in randomized controlled trials. Further large prospective studies on other targets are needed.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, 100 Angus Smith Drive, Douglas, QLD, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
| | - Janet T Powell
- Department of Surgery & Cancer, Imperial College London, Fulham Palace Road, London, UK
| | - Phil S Tsao
- Department of Cardiovascular Medicine, Stanford University, 450 Serra Mall, Stanford, CA, USA
- VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University, 450 Serra Mall, Stanford, CA, USA
| |
Collapse
|
18
|
Integrating oculomics with genomics reveals imaging biomarkers for preventive and personalized prediction of arterial aneurysms. EPMA J 2023; 14:73-86. [PMID: 36866161 PMCID: PMC9971392 DOI: 10.1007/s13167-023-00315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/15/2023] [Indexed: 02/15/2023]
Abstract
Objective Arterial aneurysms are life-threatening but usually asymptomatic before requiring hospitalization. Oculomics of retinal vascular features (RVFs) extracted from retinal fundus images can reflect systemic vascular properties and therefore were hypothesized to provide valuable information on detecting the risk of aneurysms. By integrating oculomics with genomics, this study aimed to (i) identify predictive RVFs as imaging biomarkers for aneurysms and (ii) evaluate the value of these RVFs in supporting early detection of aneurysms in the context of predictive, preventive and personalized medicine (PPPM). Methods This study involved 51,597 UK Biobank participants who had retinal images available to extract oculomics of RVFs. Phenome-wide association analyses (PheWASs) were conducted to identify RVFs associated with the genetic risks of the main types of aneurysms, including abdominal aortic aneurysm (AAA), thoracic aneurysm (TAA), intracranial aneurysm (ICA) and Marfan syndrome (MFS). An aneurysm-RVF model was then developed to predict future aneurysms. The performance of the model was assessed in both derivation and validation cohorts and was compared with other models employing clinical risk factors. An RVF risk score was derived from our aneurysm-RVF model to identify patients with an increased risk of aneurysms. Results PheWAS identified a total of 32 RVFs that were significantly associated with the genetic risks of aneurysms. Of these, the number of vessels in the optic disc ('ntreeA') was associated with both AAA (β = -0.36, P = 6.75e-10) and ICA (β = -0.11, P = 5.51e-06). In addition, the mean angles between each artery branch ('curveangle_mean_a') were commonly associated with 4 MFS genes (FBN1: β = -0.10, P = 1.63e-12; COL16A1: β = -0.07, P = 3.14e-09; LOC105373592: β = -0.06, P = 1.89e-05; C8orf81/LOC441376: β = 0.07, P = 1.02e-05). The developed aneurysm-RVF model showed good discrimination ability in predicting the risks of aneurysms. In the derivation cohort, the C-index of the aneurysm-RVF model was 0.809 [95% CI: 0.780-0.838], which was similar to the clinical risk model (0.806 [0.778-0.834]) but higher than the baseline model (0.739 [0.733-0.746]). Similar performance was observed in the validation cohort, with a C-index of 0.798 (0.727-0.869) for the aneurysm-RVF model, 0.795 (0.718-0.871) for the clinical risk model and 0.719 (0.620-0.816) for the baseline model. An aneurysm risk score was derived from the aneurysm-RVF model for each study participant. The individuals in the upper tertile of the aneurysm risk score had a significantly higher risk of aneurysm compared to those in the lower tertile (hazard ratio = 17.8 [6.5-48.8], P = 1.02e-05). Conclusion We identified a significant association between certain RVFs and the risk of aneurysms and revealed the impressive capability of using RVFs to predict the future risk of aneurysms by a PPPM approach. Our finds have great potential to support not only the predictive diagnosis of aneurysms but also a preventive and more personalized screening plan which may benefit both patients and the healthcare system. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00315-7.
Collapse
|
19
|
Garbers C, Rose-John S. Dissecting Interleukin-6 Classic and Trans-signaling in Inflammation and Cancer. Methods Mol Biol 2023; 2691:207-224. [PMID: 37355548 DOI: 10.1007/978-1-0716-3331-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine synthesized by many cells in the human body. IL-6 binds to a membrane-bound receptor (IL-6R), which is only present on hepatocytes, some epithelial cells, and some leukocytes. The complex of IL-6 and IL-6R binds to the ubiquitously expressed receptor subunit gp130, which forms a homodimer and thereby initiates intracellular signaling, e.g., the JAK/STAT and MAPK pathways. Proteases can cleave the membrane-bound IL-6R from the cell surface and generate a soluble IL-6R (sIL-6R), which retains its ability to bind IL-6. The IL-6/sIL-6R complex associates with gp130 and induces signaling even on cells which do not express the IL-6R. This paradigm has been called IL-6 trans-signaling, whereas signaling via the membrane-bound IL-6R is referred to as classic signaling. We have generated several molecular tools to differentiate between both pathways and to analyze the consequences of cellular IL-6 signaling in vivo. One of these tools is soluble gp130Fc, which selectively inhibits IL-6 trans-signaling. This protein under the WHO name Olamkicept has successfully undergone phase II clinical trials in patients with autoimmune diseases. Here, in this chapter, we describe several molecular tools to differentiate between IL-6 classic and trans-signaling and to analyze the consequences of cellular IL-6 signaling in vivo.
Collapse
Affiliation(s)
- Christoph Garbers
- Medical Faculty, Department of Pathology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany.
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany.
| | | |
Collapse
|
20
|
Ling X, Jie W, Qin X, Zhang S, Shi K, Li T, Guo J. Gut microbiome sheds light on the development and treatment of abdominal aortic aneurysm. Front Cardiovasc Med 2022; 9:1063683. [PMID: 36505348 PMCID: PMC9732037 DOI: 10.3389/fcvm.2022.1063683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high disability and mortality. Its susceptible risk factors include old age, being male, smoking, hypertension, and aortic atherosclerosis. With the improvement of screening techniques, AAA incidence and number of deaths caused by aneurysm rupture increase annually, attracting much clinical attention. Due to the lack of non-invasive treatment, early detection and development of novel treatment of AAA is an urgent clinical concern. The pathophysiology and progression of AAA are characterized by inflammatory destruction. The gut microbiota is an "invisible organ" that directly or indirectly affects the vascular wall inflammatory cell infiltration manifested with enhanced arterial wall gut microbiota and metabolites, which plays an important role in the formation and progression of AAA. As such, the gut microbiome may become an important risk factor for AAA. This review summarizes the direct and indirect effects of the gut microbiome on the pathogenesis of AAA and highlights the gut microbiome-mediated inflammatory responses and discoveries of relevant therapeutic targets that may help manage the development and rupture of AAA.
Collapse
Affiliation(s)
- Xuebin Ling
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Wei Jie
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xue Qin
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shuya Zhang
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Kaijia Shi
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tianfa Li
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Junli Guo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
21
|
Potential of Disease-Modifying Anti-Rheumatic Drugs to Limit Abdominal Aortic Aneurysm Growth. Biomedicines 2022; 10:biomedicines10102409. [PMID: 36289670 PMCID: PMC9598733 DOI: 10.3390/biomedicines10102409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammation is strongly implicated in the pathogenesis of abdominal aortic aneurysms (AAA). This review examined the potential role of biologic disease-modifying anti-rheumatic drugs (bDMARDs) as repurposed drugs for treating AAA. Published evidence from clinical and preclinical studies was examined. Findings from animal models suggested that a deficiency or inhibition of tumour necrosis factor-α (TNF-α) (standard mean difference (SMD): −8.37, 95% confidence interval (CI): −9.92, −6.82), interleukin (IL)-6 (SMD: −1.44, 95% CI: −2.85, −0.04) and IL-17 (SMD: −3.36, 95% CI: −4.21, −2.50) led to a significantly smaller AAA diameter compared to controls. Human AAA tissue samples had significantly increased TNF-α (SMD: 1.68, 95% CI: 0.87, 2.49), IL-1β (SMD: 1.93, 95% CI: 1.08, 2.79), IL-6 (SMD: 2.56, 95% CI: 1.79, 3.33) and IL-17 (SMD: 6.28, 95% CI: 3.57, 8.99) levels compared to non-AAA controls. In human serum, TNF-α (SMD: 1.11, 95% CI: 0.25, 1.97) and IL-6 (SMD: 1.42, 95% CI: 0.91, 1.92) levels were significantly elevated compared to non-AAA controls. These findings implicate TNF-α, IL-17 and IL-6 in AAA pathogenesis. Randomised controlled trials testing the value of bDMARDs in limiting AAA growth may be warranted.
Collapse
|
22
|
Stepien KL, Bajdak-Rusinek K, Fus-Kujawa A, Kuczmik W, Gawron K. Role of Extracellular Matrix and Inflammation in Abdominal Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms231911078. [PMID: 36232377 PMCID: PMC9569530 DOI: 10.3390/ijms231911078] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is one of the most dangerous cardiovascular diseases, occurring mainly in men over the age of 55 years. As it is asymptomatic, patients are diagnosed very late, usually when they suffer pain in the abdominal cavity. The late detection of AAA contributes to the high mortality rate. Many environmental, genetic, and molecular factors contribute to the development and subsequent rupture of AAA. Inflammation, apoptosis of smooth muscle cells, and degradation of the extracellular matrix in the AAA wall are believed to be the major molecular processes underlying AAA formation. Until now, no pharmacological treatment has been implemented to prevent the formation of AAA or to cure the disease. Therefore, it is important that patients are diagnosed at a very early stage of the disease. Biomarkers contribute to the assessment of the concentration level, which will help to determine the level and rate of AAA development. The potential biomarkers today include homocysteine, cathepsins, osteopontin, and osteoprotegerin. In this review, we describe the major aspects of molecular processes that take place in the aortic wall during AAA formation. In addition, biomarkers, the monitoring of which will contribute to the prompt diagnosis of AAA patients over the age of 55 years, are described.
Collapse
Affiliation(s)
- Karolina L. Stepien
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-32-208-8388
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Agnieszka Fus-Kujawa
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Wacław Kuczmik
- Department of General, Vascular Surgery, Angiology and Phlebology, Medical University of Silesia, Katowice, Ziolowa 45/47 Street, 40-635 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| |
Collapse
|
23
|
Neuroprotective and Anti-inflammatory Effects of Pioglitazone on Traumatic Brain Injury. Mediators Inflamm 2022; 2022:9860855. [PMID: 35757108 PMCID: PMC9232315 DOI: 10.1155/2022/9860855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is still a major cause of concern for public health, and out of all the trauma-related injuries, it makes the highest contribution to death and disability worldwide. Patients of TBI continue to suffer from brain injury through an intricate flow of primary and secondary injury events. However, when treatment is provided in a timely manner, there is a significant window of opportunity to avoid a few of the serious effects. Pioglitazone (PG), which has a neuroprotective impact and can decrease inflammation after TBI, activates peroxisome proliferator-activated receptor-gamma (PPARγ). The objective of the study is to examine the existing literature to assess the neuroprotective and anti-inflammatory impact of PG in TBI. It also discusses the part played by microglia and cytokines in TBI. According to the findings of this study, PG has the ability to enhance neurobehavior, decrease brain edema and neuronal injury following TBI. To achieve the protective impact of PG the following was required: (1) stimulating PPARγ; (2) decreasing oxidative stress; (3) decreasing nuclear factor kappa B (NF-κB), interleukin 6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), and C-C motif chemokine ligand 20 (CCL20) expression; (4) limiting the increase in the number of activated microglia; and (5) reducing mitochondrial dysfunction. The findings indicate that when PIG is used clinically, it may serve as a neuroprotective anti-inflammatory approach in TBI.
Collapse
|
24
|
Exploring the Effect and Mechanism of Si-Miao-Yong-An Decoction on Abdominal Aortic Aneurysm Based on Mice Experiment and Bioinformatics Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4766987. [PMID: 35685724 PMCID: PMC9173986 DOI: 10.1155/2022/4766987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022]
Abstract
Background Abdominal aortic aneurysm (AAA) is a fatal disease characterized by high morbidity and mortality in old population. Globally, effective drugs for AAA are still limited. Si-Miao-Yong-An decoction (SMYAD), a traditional Chinese medicine (TCM) formula with a high medical value, was reported to be successfully used in an old AAA patient. Thus, we reason that SMYAD may serve as a potential anti-AAA regime. Objective The exact effects and detailed mechanisms of SMYAD on AAA were explored by using the experimental study and bioinformatics analysis. Methods Firstly, C57BL/6N mice induced by Bap and Ang II were utilized to reproduce the AAA model, and the effects of SMYAD were systematically assessed according to histology, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA). Then, network pharmacology was applied to identify the biological processes, pathways, and hub targets of SMYAD against AAA; moreover, molecular docking was utilized to identify the binding ability and action targets. Results In an animal experiment, SMYAD was found to effectively alleviate the degree of pathological expansion of abdominal aorta and reduce the incidence of Bap/Ang II-induced AAA, along with reducing the damage to elastic lamella, attenuating infiltration of macrophage, and lowering the circulating IL-6 level corresponding to the animal study, and network pharmacology revealed the detailed mechanisms of SMYAD on AAA that were related to pathways of inflammatory response, defense response, apoptotic, cell migration and adhesion, and reactive oxygen species metabolic process. Then, seven targets, IL-6, TNF, HSP90AA1, RELA, PTGS2, ESR1, and MMP9, were identified as hub targets of SMYAD against AAA. Furthermore, molecular docking verification revealed that the active compounds of SMYAD had good binding ability and clear binding site with core targets related to AAA formation. Conclusion SMYAD can suppress AAA development through multicompound, multitarget, and multipathway, which provides a research direction for further study.
Collapse
|
25
|
Puchenkova OA, Soldatov VO, Belykh AE, Bushueva O, Piavchenko GA, Venediktov AA, Shakhpazyan NK, Deykin AV, Korokin MV, Pokrovskiy MV. Cytokines in Abdominal Aortic Aneurysm: Master Regulators With Clinical Application. Biomark Insights 2022; 17:11772719221095676. [PMID: 35492378 PMCID: PMC9052234 DOI: 10.1177/11772719221095676] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/04/2022] [Indexed: 01/05/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a potentially life-threatening disorder with a mostly asymptomatic course where the abdominal aorta is weakened and bulged. Cytokines play especially important roles (both positive and negative) among the molecular actors of AAA development. All the inflammatory cascades, extracellular matrix degradation and vascular smooth muscle cell apoptosis are driven by cytokines. Previous studies emphasize an altered expression and a changed epigenetic regulation of key cytokines in AAA tissue samples. Such cytokines as IL-6, IL-10, IL-12, IL-17, IL-33, IL-1β, TGF-β, TNF-α, IFN-γ, and CXCL10 seem to be crucial in AAA pathogenesis. Some data obtained in animal studies show a protective function of IL-10, IL-33, and canonical TGF-β signaling, as well as a dual role of IL-4, IFN-γ and CXCL10, while TNF-α, IL-1β, IL-6, IL-12/IL-23, IL-17, CCR2, CXCR2, CXCR4 and the TGF-β noncanonical pathway are believed to aggravate the disease. Altogether data highlight significance of cytokines as informative markers and predictors of AAA. Pathologic serum/plasma concentrations of IL-1β, IL-2, IL-6, TNF-α, IL-10, IL-8, IL-17, IFN-γ, and PDGF have been already found in AAA patients. Some of the changes correlate with the size of aneurysms. Moreover, the risk of AAA is associated with polymorphic variants of genes encoding cytokines and their receptors: CCR2 (rs1799864), CCR5 (Delta-32), IL6 (rs1800796 and rs1800795), IL6R (rs12133641), IL10 (rs1800896), TGFB1 (rs1800469), TGFBR1 (rs1626340), TGFBR2 (rs1036095, rs4522809, rs1078985), and TNFA (rs1800629). Finally, 5 single-nucleotide polymorphisms in gene coding latent TGF-β-binding protein (LTBP4) and an allelic variant of TGFB3 are related to a significantly slower AAA annual growth rate.
Collapse
Affiliation(s)
- Olesya A Puchenkova
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Vladislav O Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Department of Pathophysiology, Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - OlgaYu Bushueva
- Department of Biology, Medical Genetics and Ecology, Laboratory of Genomic Research at the Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Gennadii A Piavchenko
- Department of Histology, Cytology and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Cell Pathology in Critical State, State Research Institute of General Reanimatology, Moscow, Russia
| | - Artem A Venediktov
- Department of Histology, Cytology and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| |
Collapse
|
26
|
Nikol S, Nikol L. Update Aortenerkrankungen. AKTUELLE KARDIOLOGIE 2022. [DOI: 10.1055/a-1746-8079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfassungDie vorliegende Arbeit berichtet über die neuesten wissenschaftlichen Erkenntnisse im Zusammenhang mit Aortenaneurysmen und -dissektionen. Schwerpunkt hierbei sind die Pathophysiologie und
Genetik, der Einfluss von Fluorochinolonen auf Aortenaneurysmen und -dissektionen sowie Marker der Aortitis. Ferner werden die wichtigsten aktuellen Leitlinienempfehlungen aus den Jahren
2017 bis 2020 zusammengefasst – der Fokus liegt hierbei auf dem Screening, der Diagnostik, den Grenzwerten für die Therapieindikationen, der Art und den technischen Details der Behandlung
sowie Nachsorge von Aneurysmen der Aorta ascendens, des Aortenbogens, der Aorta descendens und abdominalis, Penetrating aortic Ulcers, bei genetisch bedingten Bindegewebserkrankungen mit
Aortenbeteiligungen, Aortitis und mykotischen Aneurysmen.
Collapse
Affiliation(s)
- Sigrid Nikol
- Klinische und Interventionelle Angiologie, Asklepios Kliniken Hamburg GmbH, Hamburg, Deutschland
| | | |
Collapse
|
27
|
Feng Y, Ye D, Wang Z, Pan H, Lu X, Wang M, Xu Y, Yu J, Zhang J, Zhao M, Xu S, Pan W, Yin Z, Ye J, Wan J. The Role of Interleukin-6 Family Members in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:818890. [PMID: 35402550 PMCID: PMC8983865 DOI: 10.3389/fcvm.2022.818890] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is one of the main causes of human mortality. Cytokines play crucial roles in the development of cardiovascular disease. Interleukin (IL)-6 family members are a series of cytokines, including IL-6, IL-11, IL-30, IL-31, OSM, LIF, CNTF, CT-1, CT-2, and CLC, that regulate multiple biological effects. Experimental and clinical evidence shows that IL-6 family members are closely related to cardiovascular diseases such as atherosclerosis, hypertension, aortic dissection, cardiac fibrosis, and cardiomyopathy. This review mainly discusses the role of IL-6 family members in cardiovascular disease for the sake of identifying possible intervention targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
28
|
Meng J, Wen H, Li X, Luan B, Gong S, Wen J, Wang Y, Wang L. POU class 2 homeobox associating factor 1 (POU2AF1) participates in abdominal aortic aneurysm enlargement based on integrated bioinformatics analysis. Bioengineered 2021; 12:8980-8993. [PMID: 34637689 PMCID: PMC8806937 DOI: 10.1080/21655979.2021.1990822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is life-threatening, its natural course is progressively sac expansion and rupture. Elegant studies have been conducted to investigate the molecular markers associated with AAA growth and expansion, this topic however, still needs to be further elucidated. This study aimed to identify potential genes for AAA growth and expansion based on comprehensive bioinformatics approaches. Firstly, 29 up-regulated genes were identified through DEGs analysis between large AAA and small AAA in GSE57691. Secondly, signed WGCNA analysis was conducted based on GSE57691 and the green module was found to exhibit the topmost correlation with large AAA as well as AAA, 133 WGCNA hub genes were further identified. Merged gene set including 29 up-regulated DEGs and 858 green module genes was subjected to constructing a PPI network where 195 PPI hub genes were identified. Subsequently, 4 crucial genes including POU2AF1, FCRLA, CD79B, HLA-DOB were recognized by Venn plot. In addition, by using GSE7084 and GSE98278 for verification, POU2AF1 showed potential diagnostic value between AAA and normal groups, and exhibited a significant higher expression level in large AAA samples compared with small AAA samples. Furthermore, immunohistochemistry results indicated up-regulation of POU2AF1 in large AAA samples than small AAA samples, which implies POU2AF1 may be a key regulator in AAA enlargement and growth. In summary, this study indicates that POU2AF1 has great predictive value for the expansion of AAA, and may contribute to the further exploration of pathogenesis and progression of AAA.
Collapse
Affiliation(s)
- Jinze Meng
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Hao Wen
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xintong Li
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Boyang Luan
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shiqiang Gong
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Jie Wen
- Department of Ultrasonography, Inner Mongolia Baotou City Central Hospital, Baotou, China
| | - Yifei Wang
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Lei Wang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| |
Collapse
|
29
|
Multiomics and digital monitoring during lifestyle changes reveal independent dimensions of human biology and health. Cell Syst 2021; 13:241-255.e7. [PMID: 34856119 DOI: 10.1016/j.cels.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 01/04/2023]
Abstract
We explored opportunities for personalized and predictive health care by collecting serial clinical measurements, health surveys, genomics, proteomics, autoantibodies, metabolomics, and gut microbiome data from 96 individuals who participated in a data-driven health coaching program over a 16-month period with continuous digital monitoring of activity and sleep. We generated a resource of >20,000 biological samples from this study and a compendium of >53 million primary data points for 558,032 distinct features. Multiomics factor analysis revealed distinct and independent molecular factors linked to obesity, diabetes, liver function, cardiovascular disease, inflammation, immunity, exercise, diet, and hormonal effects. For example, ethinyl estradiol, a common oral contraceptive, produced characteristic molecular and physiological effects, including increased levels of inflammation and impact on thyroid, cortisol levels, and pulse, that were distinct from other sources of variability observed in our study. In total, this work illustrates the value of combining deep molecular and digital monitoring of human health. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
|
30
|
Schumertl T, Lokau J, Rose-John S, Garbers C. Function and proteolytic generation of the soluble interleukin-6 receptor in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119143. [PMID: 34626681 DOI: 10.1016/j.bbamcr.2021.119143] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
The pleiotropic cytokine interleukin-6 (IL-6) is involved in numerous physiological and pathophysiological functions that include development, immune cell differentiation, inflammation and cancer. IL-6 can signal via the membrane-bound IL-6 receptor (IL-6R, classic signaling) or via soluble forms of the IL-6R (sIL-6R, trans-signaling). Both modes of signaling induce the formation of a homodimer of the signal transducing β-receptor glycoprotein 130 (gp130) and the activation of several intracellular signaling cascades, e.g. the Jak/STAT pathway. Intriguingly, only IL-6 trans-signaling is required for the pro-inflammatory properties of IL-6, while regenerative and anti-inflammatory functions are mediated via classic signaling. The sIL-6R is generated by different molecular mechanisms, including alternative mRNA splicing, proteolysis of the membrane-bound IL-6R and the release of extracellular vesicles. In this review, we give an in-depth overview on these molecular mechanisms with a special emphasize on IL-6R cleavage by the metalloprotease ADAM17 and other proteases. We discuss the biological functions of the sIL-6R and highlight attempts to selectively block IL-6 trans-signaling in pre-clinical animal models as well as in clinical studies in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Tim Schumertl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | | | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
31
|
Tanaka H, Xu B, Xuan H, Ge Y, Wang Y, Li Y, Wang W, Guo J, Zhao S, Glover KJ, Zheng X, Liu S, Inuzuka K, Fujimura N, Furusho Y, Ikezoe T, Shoji T, Wang L, Fu W, Huang J, Unno N, Dalman RL. Recombinant Interleukin-19 Suppresses the Formation and Progression of Experimental Abdominal Aortic Aneurysms. J Am Heart Assoc 2021; 10:e022207. [PMID: 34459250 PMCID: PMC8649236 DOI: 10.1161/jaha.121.022207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Interleukin-19 is an immunosuppressive cytokine produced by immune and nonimmune cells, but its role in abdominal aortic aneurysm (AAA) pathogenesis is not known. This study aimed to investigate interleukin-19 expression in, and influences on, the formation and progression of experimental AAAs. Methods and Results Human specimens were obtained at aneurysm repair surgery or from transplant donors. Experimental AAAs were created in 10- to 12-week-old male mice via intra-aortic elastase infusion. Influence and potential mechanisms of interleukin-19 treatment on AAAs were assessed via ultrasonography, histopathology, flow cytometry, and gene expression profiling. Immunohistochemistry revealed augmented interleukin-19 expression in both human and experimental AAAs. In mice, interleukin-19 treatment before AAA initiation via elastase infusion suppressed aneurysm formation and progression, with attenuation of medial elastin degradation, smooth-muscle depletion, leukocyte infiltration, neoangiogenesis, and matrix metalloproteinase 2 and 9 expression. Initiation of interleukin-19 treatment after AAA creation limited further aneurysmal degeneration. In additional experiments, interleukin-19 treatment inhibited murine macrophage recruitment following intraperitoneal thioglycolate injection. In classically or alternatively activated macrophages in vitro, interleukin-19 downregulated mRNA expression of inducible nitric oxide synthase, chemokine C-C motif ligand 2, and metalloproteinases 2 and 9 without apparent effect on cytokine-expressing helper or cytotoxic T-cell differentiation, nor regulatory T cellularity, in the aneurysmal aorta or spleen of interleukin-19-treated mice. Interleukin-19 also suppressed AAAs created via angiotensin II infusion in hyperlipidemic mice. Conclusions Based on human evidence and experimental modeling observations, interleukin-19 may influence the development and progression of AAAs.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA.,Division of Vascular Surgery Hamamatsu University School of Medicine Hamamatsu Shizuoka Japan
| | - Baohui Xu
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Haojun Xuan
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Yingbin Ge
- Department of Physiology Nanjing Medical University Nanjing Jiangsu China
| | - Yan Wang
- Peking University Third HospitalMedical Research Center Haidian Beijing China
| | - Yankui Li
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Wei Wang
- Department of Surgery Xiangya HospitalSouth Central University School of Medicine Changsha Hunan China
| | - Jia Guo
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Sihai Zhao
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Keith J Glover
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Xiaoya Zheng
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Shuai Liu
- Department of Surgery Xiangya HospitalSouth Central University School of Medicine Changsha Hunan China
| | - Kazunori Inuzuka
- Division of Vascular Surgery Hamamatsu University School of Medicine Hamamatsu Shizuoka Japan
| | - Naoki Fujimura
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Yuko Furusho
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Toru Ikezoe
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Takahiro Shoji
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| | - Lixin Wang
- Department of Vascular Surgery Zhongshan HospitalFudan University Shanghai China
| | - Weiguo Fu
- Department of Vascular Surgery Zhongshan HospitalFudan University Shanghai China
| | - Jianhua Huang
- Department of Surgery Xiangya HospitalSouth Central University School of Medicine Changsha Hunan China
| | - Naoki Unno
- Division of Vascular Surgery Hamamatsu University School of Medicine Hamamatsu Shizuoka Japan
| | - Ronald L Dalman
- Divison of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA
| |
Collapse
|
32
|
Rose-John S. Blocking only the bad side of IL-6 in inflammation and cancer. Cytokine 2021; 148:155690. [PMID: 34474215 DOI: 10.1016/j.cyto.2021.155690] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is considered an inflammatory cytokine, which is involved not only in most inflammatory states but it also plays a prominent role in inflammation associated cancers. The response of cells to the cytokine strictly depends on the presence of the IL-6 receptor (IL-6R),which presents IL-6 to the signal transducing receptor subunit gp130, which is expressed on all cells of the body. The expression of IL-6R is limited to some cells, which are therefore IL-6 target cells. The IL-6R can be cleaved by proteases and the thus generated soluble IL-6R (sIL-6R) still binds the ligand IL-6. The complex of IL-6 and sIL-6R can bind to gp130 on any cell, induce dimerization of gp130 and intracellular signaling. This process has been named IL-6 trans-signaling. A fusion protein of soluble gp130 with the constant portion of human IgG1 (sgp130Fc) turned out to be a potent and specific inhibitor of IL-6 trans-signaling. In many animal models of human diseases the significance of IL-6 trans-signaling has been analyzed. It turned out that the activities of IL-6 mediated by the sIL-6R are the pro-inflammatory activities of the cytokine whereas activities of IL-6 mediated by the membrane-bound IL-6R are rather protective and regenerative. The sgp130Fc protein has recently been developed into a biologic. The possible consequences of a specific IL-6 trans-signaling blockade is discussed in the light of the recent successfully concluded phase II clinical trials in patients with inflammatory bowel disease.
Collapse
|
33
|
Parikh RR, Folsom AR, Poudel K, Lutsey PL, Demmer RT, Pankow JS, Chen LY, Tang W. Association of Differential Leukocyte Count With Incident Abdominal Aortic Aneurysm Over 22.5 Years: The ARIC Study. Arterioscler Thromb Vasc Biol 2021; 41:2342-2351. [PMID: 34134517 PMCID: PMC9612423 DOI: 10.1161/atvbaha.121.315903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE: Leukocytes contribute to the development of abdominal aortic aneurysm (AAA). We evaluated whether associations of differential leukocyte counts with AAA persist after accounting for traditional risk factors of AAA. APPROACH AND RESULTS: Among 11 217 adults from the Atherosclerosis Risk in Communities Study, we evaluated associations of differential leukocyte counts at baseline (1987–1989) with incident AAAs over a median follow-up of 22.5 years, using Cox proportional hazards regression. Each differential leukocyte count was categorized into 5 groups—below normal, tertiles within the normal range, and above normal, with the first tertile serving as the referent. We identified 377 incident AAAs through 2011, using hospital discharge diagnoses, linked Medicare records, or death certificates. At baseline, higher neutrophil, monocyte, and eosinophil counts were associated with higher risk of AAA, independent of smoking, other differential leukocyte counts, and other traditional risk factors. The association with incident AAA was the strongest for above normal neutrophil count, with an adjusted hazard ratio (95% CI) of 2.17 (1.29–3.64). Below normal neutrophil, lymphocyte, eosinophil and basophil counts were associated with higher risk of AAA with adjusted hazard ratio (95% CI) between 1.86 (1.04–3.35) and 1.62 (1.10–2.39). CONCLUSIONS: Higher neutrophil, monocyte, and eosinophil counts in midlife are associated with higher risk of AAA, even after accounting for traditional risk factors such as smoking, obesity, and atherosclerosis. This suggests the need to identify nontraditional risk factors and treatment strategies to mitigate the residual risk of AAA conferred by midlife inflammation. Whether immunosuppression is associated with higher risk of AAA needs further investigation.
Collapse
Affiliation(s)
- Romil R. Parikh
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Aaron R. Folsom
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kripa Poudel
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Pamela L. Lutsey
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Ryan T. Demmer
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - James S. Pankow
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Lin Y. Chen
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Weihong Tang
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
34
|
Lu HY, Shih CM, Sung SH, Wu ATH, Cheng TM, Lin YC, Shih CC. Galectin-3 as a Biomarker for Stratifying Abdominal Aortic Aneurysm Size in a Taiwanese Population. Front Cardiovasc Med 2021; 8:663152. [PMID: 34136544 PMCID: PMC8200414 DOI: 10.3389/fcvm.2021.663152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) ruptures are unpredictable and lethal. A biomarker predicting AAA rupture risk could help identify patients with small, screen-detected AAAs. Galectin-3 (Gal-3), a β-galactosidase–binding lectin, is involved in inflammatory processes and may be associated with AAA incidence. We investigated whether Gal-3 can be used as a biomarker of AAA size. Plasma Gal-3 protein concentrations were examined in patients with AAA (n = 151) and control patients (n = 195) using Human ProcartaPlex multiplex and simplex kits. Circulating Gal-3 levels were significantly higher in patients with AAA than in control patients. The area under the receiver operating characteristic curve for Gal-3 was 0.91. Multivariate logistic regression analysis revealed a significant association between Gal-3 level and the presence of AAA. Circulating Gal-3 levels were significantly correlated with aortic diameter in a concentration-dependent manner. In conclusion, higher plasma Gal-3 concentrations may be a useful biomarker of AAA progression.
Collapse
Affiliation(s)
- Hsin-Ying Lu
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Hsien Sung
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Mu Cheng
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chung Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Che Shih
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
35
|
Rose-John S. Therapeutic targeting of IL-6 trans-signaling. Cytokine 2021; 144:155577. [PMID: 34022535 DOI: 10.1016/j.cyto.2021.155577] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine, which is involved in innate and acquired immunity, in neural cell maintenance and in metabolism. IL-6 can be synthesized by many different cells including myeloid cells, fibroblasts, endothelial cells and lymphocytes. The synthesis of IL-6 is strongly stimulated by Toll like receptors and by IL-1. Therefore, IL-6 levels in the body are high during infection and inflammatory processes. Moreover, IL-6 is a prominent growth factor of tumor cells and plays a major role in inflammation associated cancer. On target cells, IL-6 binds to an IL-6 receptor, which is not signaling competent. The complex of IL-6 and IL-6 receptor associate with a second receptor subunit, glycoprotein gp130, which dimerizes and initiates intracellular signaling. Cells, which do not express the IL-6 receptor are not responsive to IL-6. They can, however, be stimulated by the complex of IL-6 and a soluble form of the IL-6 receptor, which is generated by limited proteolysis and to a lesser extent by translation from an alternatively spliced mRNA. This process has been named IL-6 trans-signaling. This review article will explain the biology of IL-6 trans-signaling and the specific inhibition of this mode of signaling, which has been recognized to be fundamental in inflammation and cancer.
Collapse
|
36
|
Libby P. Targeting Inflammatory Pathways in Cardiovascular Disease: The Inflammasome, Interleukin-1, Interleukin-6 and Beyond. Cells 2021; 10:951. [PMID: 33924019 PMCID: PMC8073599 DOI: 10.3390/cells10040951] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
Recent clinical trials have now firmly established that inflammation participates causally in human atherosclerosis. These observations point the way toward novel treatments that add to established therapies to help stem the growing global epidemic of cardiovascular disease. Fortunately, we now have a number of actionable targets whose clinical exploration will help achieve the goal of optimizing beneficial effects while avoiding undue interference with host defenses or other unwanted actions. This review aims to furnish the foundation for this quest by critical evaluation of the current state of anti-inflammatory interventions within close reach of clinical application, with a primary focus on innate immunity. In particular, this paper highlights the pathway from the inflammasome, through interleukin (IL)-1 to IL-6 supported by a promising body of pre-clinical, clinical, and human genetic data. This paper also considers the use of biomarkers to guide allocation of anti-inflammatory therapies as a step toward realizing the promise of precision medicine. The validation of decades of experimental work and association studies in humans by recent clinical investigations provides a strong impetus for further efforts to target inflammation in atherosclerosis to address the considerable risk that remains despite current therapies.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
Nana P, Dakis K, Brodis A, Spanos K, Kouvelos G. Circulating Biomarkers for the Prediction of Abdominal Aortic Aneurysm Growth. J Clin Med 2021; 10:1718. [PMID: 33923412 PMCID: PMC8072679 DOI: 10.3390/jcm10081718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Abdominal aortic aneurysm represents a distinct group of vascular lesions, in terms of surveillance and treatment. Screening and follow-up of patients via duplex ultrasound has been well established and proposed by current guidelines. However, serum circulating biomarkers could earn a position in individualized patient surveillance, especially in cases of aggressive AAA growth rates. A systematic review was conducted to assess the correlation of AAA expansion rates with serum circulating biomarkers. METHODS A data search of English medical literature was conducted, using PubMed, EMBASE, and CENTRAL, until 7 March 2021, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement (PRISMA) guidelines. Studies reporting on humans, on abdominal aortic aneurysm growth rates and on serum circulating biomarkers were included. No statistical analysis was conducted. RESULTS A total of 25 studies with 4753 patients were included. Studies were divided in two broad categories: Those reporting on clinically applicable (8 studies) and those reporting on experimental (17 studies) biomarkers. Twenty-three out of 25 studies used duplex ultrasound (DUS) for following patients. Amongst clinically applicable biomarkers, D-dimers, LDL-C, HDL-C, TC, ApoB, and HbA1c were found to bear the most significant association with AAA growth rates. In terms of the experimental biomarkers, PIIINP, osteopontin, tPA, osteopontin, haptoglobin polymorphisms, insulin-like growth factor I, thioredoxin, neutrophil extracellular traps (NETs), and genetic factors, as polymorphisms and microRNAs were positively correlated with increased AAA expansion rates. CONCLUSION In the presence of future robust data, specific serum biomarkers could potentially form the basis of an individualized surveillance strategy of patients presenting with increased AAA growth rates.
Collapse
Affiliation(s)
- Petroula Nana
- Vascular Surgery Department, Larissa University Hospital, Faculty of Medicine, School of Health Sciences, University of Thessaly, Mezourlo, 41110 Larissa, Greece; (K.D.); (K.S.); (G.K.)
| | - Konstantinos Dakis
- Vascular Surgery Department, Larissa University Hospital, Faculty of Medicine, School of Health Sciences, University of Thessaly, Mezourlo, 41110 Larissa, Greece; (K.D.); (K.S.); (G.K.)
| | - Alexandros Brodis
- Department of Neurosurgery, Larissa University Hospital, Faculty of Medicine, School of Health Sciences, University of Thessaly, Mezourlo, 41110 Larissa, Greece;
| | - Konstantinos Spanos
- Vascular Surgery Department, Larissa University Hospital, Faculty of Medicine, School of Health Sciences, University of Thessaly, Mezourlo, 41110 Larissa, Greece; (K.D.); (K.S.); (G.K.)
| | - George Kouvelos
- Vascular Surgery Department, Larissa University Hospital, Faculty of Medicine, School of Health Sciences, University of Thessaly, Mezourlo, 41110 Larissa, Greece; (K.D.); (K.S.); (G.K.)
| |
Collapse
|
38
|
Cullen JM, Shannon AH, Lu G, Su G, Spinosa MD, Montgomery WG, Ailawadi G, Salmon M, Upchurch GR. Sex-Based Differences Among Experimental Swine Abdominal Aortic aneurysms. J Surg Res 2021; 260:488-498. [PMID: 33341252 PMCID: PMC7946779 DOI: 10.1016/j.jss.2020.11.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 10/15/2020] [Accepted: 11/01/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Female sex protects against abdominal aortic aneurysms (AAAs); however, the mechanisms behind these sex-based differences remain unknown. The purpose of this study was to explore the role of sex and sex hormones in AAA formation among swine. MATERIALS AND METHODS Using a previous validated model, infrarenal AAA were surgically created in uncastrated male (n = 8), female (n = 5), and castrated male (n = 4) swine. Aortic dilation was measured on postoperative day 28 during the terminal procedure and compared to initial aortic diameter measured during the index procedure. Tissue was analyzed for immunohistochemistry, cytokine array, gelatin zymography, serum 17β-estradiol, and testosterone assay. RESULTS Uncastrated males had significantly larger maximal aortic dilation compared to castrated males (113.5% ± 11.4% versus 38.1% ± 4.5%, P = 0.0012). Females had significantly higher mean aortic dilation compared to castrated males (96.2% ± 7.5% versus 38.1% ± 4.5%, P = 0.0004). Aortic diameters between females and uncastrated males were not significantly different on day 28. Female swine had significantly higher concentrations of 17β-estradiol compared with uncastrated males (1590 ± 873.3 ng/mL versus 95.2 ± 2.3 ng/mL, P = 0.047), with no significant difference between females and castrated males. Uncastrated male AAA demonstrated significantly more elastin degradation compared with female and castrated males (P = 0.01 and <0 .01, respectively). No differences existed for T-cells or smooth muscle cells between groups. Multiple proinflammatory cytokines were elevated within uncastrated male aortic walls compared to females and castrated males. CONCLUSIONS Sex hormones, specifically 17β-estradiol and testosterone, influence experimental swine AAA formation as demonstrated by increased aneurysm size, collagen turnover, and elastolysis in uncastrated males in processes reflective of human disease.
Collapse
Affiliation(s)
- J Michael Cullen
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | | | - Guanyi Lu
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Michael D Spinosa
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | | | - Gorav Ailawadi
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Morgan Salmon
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | | |
Collapse
|
39
|
Golledge J, Krishna SM, Wang Y. Mouse models for abdominal aortic aneurysm. Br J Pharmacol 2020; 179:792-810. [PMID: 32914434 DOI: 10.1111/bph.15260] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently, the only treatment for AAA is surgical repair; however, this is only indicated for large asymptomatic, symptomatic or ruptured aneurysms, is not always durable, and is associated with a risk of serious perioperative complications. As a result, patients with small asymptomatic aneurysms or who are otherwise unfit for surgery are treated conservatively, but up to 70% of small aneurysms continue to grow, increasing the risk of rupture. There is thus an urgent need to develop drug therapies effective at slowing AAA growth. This review describes the commonly used mouse models for AAA. Recent research in these models highlights key roles for pathways involved in inflammation and cell turnover in AAA pathogenesis. There is also evidence for long non-coding RNAs and thrombosis in aneurysm pathology. Further well-designed research in clinically relevant models is expected to be translated into effective AAA drugs.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Smriti Murali Krishna
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Yutang Wang
- Discipline of Life Sciences, School of Health and Life Sciences, Federation University Australia, Ballarat, Victoria, Australia
| |
Collapse
|
40
|
Nikol S, Mathias K, Olinic DM, Blinc A, Espinola-Klein C. Aneurysms and dissections - What is new in the literature of 2019/2020 - a European Society of Vascular Medicine annual review. VASA 2020; 49:1-36. [PMID: 32856993 DOI: 10.1024/0301-1526/a000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
More than 6,000 publications were found in PubMed concerning aneurysms and dissections, including those Epub ahead of print in 2019, printed in 2020. Among those publications 327 were selected and considered of particular interest.
Collapse
Affiliation(s)
- Sigrid Nikol
- Department of Angiology, ASKLEPIOS Klinik St. Georg, Hamburg, Germany.,University of Münster, Germany
| | - Klaus Mathias
- World Federation for Interventional Stroke Treatment (WIST), Hamburg, Germany
| | - Dan Mircea Olinic
- Medical Clinic No. 1, University of Medicine and Pharmacy and Interventional Cardiology Department, Emergency Hospital, Cluj-Napoca, Romania
| | - Aleš Blinc
- Department of Vascular Diseases, University Medical Centre Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Slovenia
| | | |
Collapse
|
41
|
Abstract
Biochemically, interleukin-6 belongs to the class of four-helical cytokines. The cytokine can be synthesised and secreted by many cells. It acts via a cell surface-expressed interleukin-6 receptor, which is not signalling competent. This receptor, when complexed with interleukin-6, associates with the signalling receptor glycoprotein 130 kDa (gp130), which becomes dimerised and initiates intracellular signalling via the Janus kinase/signal transducer and activator of transcription and rat sarcoma proto oncogene/mitogen-activated protein kinase/phosphoinositide-3 kinase pathways. Physiologically, interleukin-6 is involved in the regulation of haematopoiesis and the coordination of the innate and acquired immune systems. Additionally, interleukin-6 plays an important role in the regulation of metabolism, in neural development and survival, and in the development and maintenance of various cancers. Although interleukin-6 is mostly regarded as a pro-inflammatory cytokine, there are numerous examples of protective and regenerative functions of this cytokine. This review will explain the molecular mechanisms of the, in part opposing, activities of the cytokine interleukin-6.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-Universitaet zu Kiel, Olshausenstrasse 40, D24098 Kiel, Germany
| |
Collapse
|
42
|
Golledge J, Moxon JV, Singh TP, Bown MJ, Mani K, Wanhainen A. Lack of an effective drug therapy for abdominal aortic aneurysm. J Intern Med 2020; 288:6-22. [PMID: 31278799 DOI: 10.1111/joim.12958] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abdominal aortic aneurysm (AAA) rupture is a common cause of death in adults. Current AAA treatment is by open surgical or endovascular aneurysm repair. Rodent model and human epidemiology, and genetic and observational studies over the last few decades have highlighted the potential of a number of drug therapies, including medications that lower blood pressure, correct dyslipidaemia, or inhibit thrombosis, inflammation or matrix remodelling, as approaches to managing small AAA. This review summarizes prior AAA pathogenesis data from animal and human studies aimed at identifying targets for the development of drug therapies. The review also systematically assesses past randomized placebo-controlled drug trials in patients with small AAAs. Eleven previously published randomized-controlled clinical trials testing different drug therapies aimed at slowing AAA progression were identified. Five of the trials tested antibiotics and three trials assessed medications that lower blood pressure. Meta-analyses of these trials suggested that neither of these approaches limit AAA growth. Allocation to blood pressure-lowering medication was associated with a small reduction in AAA rupture or repair, compared to placebo (relative risk 0.94, 95% confidence intervals 0.89, 1.00, P = 0.047). Three further trials assessed the effect of a mast cell inhibitor, fibrate or platelet aggregation inhibition and reported no effect on AAA growth or clinical events. Past trials were noted to have a number of design issues, particularly small sample sizes and limited follow-up. Much larger trials are needed to properly test potential therapeutic approaches if a convincingly effective medical therapy for AAA is to be identified.
Collapse
Affiliation(s)
- J Golledge
- From the, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Qld, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Qld, Australia.,Centre for Molecular Therapeutics, The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Qld, Australia
| | - J V Moxon
- From the, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Qld, Australia.,Centre for Molecular Therapeutics, The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Qld, Australia
| | - T P Singh
- From the, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Qld, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Qld, Australia
| | - M J Bown
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - K Mani
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - A Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Deng Y, Jiang X, Deng X, Chen H, Xu J, Zhang Z, Liu G, Yong Z, Yuan C, Sun X, Wang C. Pioglitazone ameliorates neuronal damage after traumatic brain injury via the PPARγ/NF-κB/IL-6 signaling pathway. Genes Dis 2020; 7:253-265. [PMID: 32215295 PMCID: PMC7083749 DOI: 10.1016/j.gendis.2019.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is the major cause of high mortality and disability rates worldwide. Pioglitazone is an activator of peroxisome proliferator-activated receptor-gamma (PPARγ) that can reduce inflammation following TBI. Clinically, neuroinflammation after TBI lacks effective treatment. Although there are many studies on PPARγ in TBI animals, only few could be converted into clinical, since TBI mechanisms in humans and animals are not completely consistent. The present study, provided a potential theoretical basis and therapeutic target for neuroinflammation treatment after TBI. First, we detected interleukin-6 (IL-6), nitric oxide (NO) and Caspase-3 in TBI clinical specimens, confirming a presence of a high expression of inflammatory factors. Western blot (WB), quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC) were used to detect PPARγ, IL-6, and p-NF-κB to identify the mechanisms of neuroinflammation. Then, in the rat TBI model, neurobehavioral and cerebral edema levels were investigated after intervention with pioglitazone (PPARγ activator) or T0070907 (PPARγ inhibitor), and PPARγ, IL-6 and p-NF-κB were detected again by qRT-PCR, WB and immunofluorescence (IF). The obtained results revealed that: 1) increased expression of IL-6, NO and Caspase-3 in serum and cerebrospinal fluid in patients after TBI, and decreased PPARγ in brain tissue; 2) pioglitazone could improve neurobehavioral and reduce brain edema in rats after TBI; 3) the protective effect of pioglitazone was achieved by activating PPARγ and reducing NF-κB and IL-6. The neuroprotective effect of pioglitazone on TBI was mediated through the PPARγ/NF-κB/IL-6 pathway.
Collapse
Affiliation(s)
- Yongbing Deng
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Yixueyuan Road #1, Chongqing, 400016, PR China
- Department of Neurosurgery of the Chongqing Emergency Medical Center, Jiankang Road #1, Chongqing, 400014, PR China
| | - Xue Jiang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Yixueyuan Road #1, Chongqing, 400016, PR China
| | - Xiaoyan Deng
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Yixueyuan Road #1, Chongqing, 400016, PR China
| | - Hong Chen
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Yixueyuan Road #1, Chongqing, 400016, PR China
| | - Jie Xu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Yixueyuan Road #1, Chongqing, 400016, PR China
| | - Zhaosi Zhang
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Yixueyuan Road #1, Chongqing, 400016, PR China
| | - Geli Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Yixueyuan Road #1, Chongqing, 400016, PR China
| | - Zhu Yong
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei, 443002, PR China
| | - Xiaochuan Sun
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Yixueyuan Road #1, Chongqing, 400016, PR China
| | - Changdong Wang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Yixueyuan Road #1, Chongqing, 400016, PR China
| |
Collapse
|
44
|
Li Z, Kong W. Cellular signaling in Abdominal Aortic Aneurysm. Cell Signal 2020; 70:109575. [PMID: 32088371 DOI: 10.1016/j.cellsig.2020.109575] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are highly lethal cardiovascular diseases without effective medications. However, the molecular and signaling mechanisms remain unclear. A series of pathological cellular processes have been shown to contribute to AAA formation, including vascular extracellular matrix remodeling, inflammatory and immune responses, oxidative stress, and dysfunction of vascular smooth muscle cells. Each cellular process involves complex cellular signaling, such as NF-κB, MAPK, TGFβ, Notch and inflammasome signaling. In this review, we discuss how cellular signaling networks function in various cellular processes during the pathogenesis and progression of AAA. Understanding the interaction of cellular signaling networks with AAA pathogenesis as well as the crosstalk of different signaling pathways is essential for the development of novel therapeutic approaches to and personalized treatments of AAA diseases.
Collapse
Affiliation(s)
- Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
45
|
Hsieh MJ, Lee CH, Tsai ML, Kao CF, Lan WC, Huang YT, Tseng WY, Wen MS, Chang SH. Biologic Agents Reduce Cardiovascular Events in Rheumatoid Arthritis Not Responsive to Tumour Necrosis Factor Inhibitors: A National Cohort Study. Can J Cardiol 2020; 36:1739-1746. [PMID: 32603700 DOI: 10.1016/j.cjca.2020.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tumour necrosis factor inhibitors (TNFis) improve joints outcomes and reduce cardiovascular (CV) risk in patients with rheumatoid arthritis (RA). However, 20%-45% of RA patients are TNFi poor responders and have a significantly higher risk of CV events. In these TNFi nonresponders, the use of second-line biologic agents to improve synovial outcomes is supported by clinical trials and real-world experience. However, it remains unknown what kind of immune-mediated agent has the best CV prevention effect in this high-risk population. METHODS A nationwide RA cohort obtained from Taiwan's National Health Insurance claims database was constructed. RA patients first treated with TNFis who then received either rituximab, tocilizumab, or abatacept were enrolled and followed for 2 years. RESULTS A total of 89,973 RA patients were screened and 1,584 patients ultimately included. The incidences of major adverse cardiac events (MACE) at 2 years in the rituximab, tocilizumab, and abatacept groups were 7.17%, 2.75% and 2.38%, respectively. Multivariate adjusted Cox analysis showed that tocilizumab had significantly lower risk than rituximab in myocardial infarction (hazard ratio [HR] 0.12, 95% confidence interval [CI] 0.02-0.56; P = 0.008), and MACE (HR 0.41, 95% CI 0.23-0.72; P = 0.002). In addition, abatacept also had significant lower adjusted risk than rituximab in stroke (HR 0.18, 95% CI 0.05-0.64; P = 0.008), heart failure (HR 0.20, 95% CI 0.05-0.83; P = 0.027), and MACE (HR 0.25, 95% CI 0.11-0.55; P < 0.001) in multivariate analysis. CONCLUSIONS TNFi-nonresponder patients with RA who received second-line tocilizumab or abatacept had more benefit on CV events prevention compared with those who received rituximab.
Collapse
Affiliation(s)
- Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Lung Tsai
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chang-Fu Kao
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Ching Lan
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yu-Tung Huang
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Wen-Yi Tseng
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung Branch, Taiwan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Graduate Institute of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
46
|
ADAM17 Activity and IL-6 Trans-Signaling in Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11111736. [PMID: 31694340 PMCID: PMC6895846 DOI: 10.3390/cancers11111736] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023] Open
Abstract
All ligands of the epidermal growth factor receptor (EGF-R) are transmembrane proteins, which need to be proteolytically cleaved in order to be systemically active. The major protease responsible for this cleavage is the membrane metalloprotease ADAM17, which also has been implicated in cleavage of TNFα and interleukin-6 (IL-6) receptor. It has been recently shown that in the absence of ADAM17, the main protease for EGF-R ligand processing, colon cancer formation is largely abrogated. Intriguingly, colon cancer formation depends on EGF-R activity on myeloid cells rather than on intestinal epithelial cells. A major activity of EGF-R on myeloid cells is the stimulation of IL-6 synthesis. Subsequently, IL-6 together with the ADAM17 shed soluble IL-6 receptor acts on intestinal epithelial cells via IL-6 trans-signaling to induce colon cancer formation, which can be blocked by the inhibitor of IL-6 trans-signaling, sgp130Fc. Blockade of IL-6 trans-signaling therefore offers a new therapeutic window downstream of the EGF-R for the treatment of colon cancer and possibly of other EGF-R related neoplastic diseases.
Collapse
|
47
|
Ziegler L, Frumento P, Wallén H, de Faire U, Gigante B. The predictive role of interleukin 6 trans-signalling in middle-aged men and women at low-intermediate risk of cardiovascular events. Eur J Prev Cardiol 2019; 27:122-129. [DOI: 10.1177/2047487319869694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Interleukin 6 trans-signalling is independently associated with the risk of cardiovascular events. The aim of this study was to investigate if interleukin 6 trans-signalling can identify individuals at risk for cardiovascular events (coronary artery disease and ischaemic stroke) among those at-low–intermediate risk. Methods In a cohort of 60-year-olds ( n = 4232, incident cardiovascular events n = 525), interleukin 6 trans-signalling was estimated by a ratio between the pro-inflammatory interleukin 6: soluble interleukin 6 receptor binary receptor complex and the inactivated interleukin 6: soluble interleukin 6 receptor: sgp130 ternary complex (B/T ratio). Risk associated with B/T ratio >median was investigated in individuals with low-density lipoprotein cholesterol ≤4.0 (mmol/l) and in those at low-intermediate risk according to the Framingham risk score (FRS) using Cox regression and expressed as hazard ratio and 95% confidence interval. Difference in time to event (years; 95% confidence interval) was analysed with quantile regression. The interaction between low-density lipoprotein cholesterol and B/T ratio was estimated on the additive scale. Incremental discriminatory value of the B/T ratio if low-density lipoprotein cholesterol ≤4.0 was compared to that of the FRS and interleukin 6. Results B/T ratio >median was associated with increased cardiovascular event risk when low-density lipoprotein cholesterol ≤4.0 (hazard ratio 1.59; 95% confidence interval 1.24–2.05) or FRS ≤ 10%, >10–≤20% (hazard ratio 1.27; 95% confidence interval 1.00–1.61 and hazard ratio 1.78; 95% confidence interval 1.36–2.34, respectively). B/T ratio >median and low-density lipoprotein cholesterol ≤4.0 were associated with early cardiovascular events, particularly ischaemic stroke. No interaction was observed between low-density lipoprotein cholesterol and the B/T ratio, both factors increasing cardiovascular event risk by 60%. In the presence of low-density lipoprotein cholesterol ≤4.0, the B/T ratio slightly improved discrimination measures. Conclusions Interleukin 6 trans-signalling increases cardiovascular event risk in middle-aged men and women otherwise classified at low-intermediate cardiovascular risk.
Collapse
Affiliation(s)
- Louise Ziegler
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Sweden
- Division of Internal Medicine, Danderyd Hospital, Sweden
| | | | - Håkan Wallén
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Sweden
- Division of Cardiovascular Medicine, Danderyd Hospital, Sweden
| | - Ulf de Faire
- Cardiovascular and Nutritional Epidemiology Unit, Karolinska Institutet, Sweden
| | - Bruna Gigante
- Department of Medicine, Cardiovascular Medicine Division, Karolinska Institutet, Sweden
| |
Collapse
|
48
|
Inflammation and Vascular Ageing: From Telomeres to Novel Emerging Mechanisms. High Blood Press Cardiovasc Prev 2019; 26:321-329. [DOI: 10.1007/s40292-019-00331-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
|