1
|
Ldlr-Deficient Mice with an Atherosclerosis-Resistant Background Develop Severe Hyperglycemia and Type 2 Diabetes on a Western-Type Diet. Biomedicines 2022; 10:biomedicines10061429. [PMID: 35740449 PMCID: PMC9220196 DOI: 10.3390/biomedicines10061429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/10/2023] Open
Abstract
Apoe-/- and Ldlr-/- mice are two animal models extensively used for atherosclerosis research. We previously reported that Apoe-/- mice on certain genetic backgrounds, including C3H/HeJ (C3H), develop type 2 diabetes when fed a Western diet. We sought to characterize diabetes-related traits in C3H-Ldlr-/- mice through comparing with C3H-Apoe-/- mice. On a chow diet, Ldlr-/- mice had lower plasma total and non-HDL cholesterol levels but higher HDL levels than Apoe-/- mice. Fasting plasma glucose was much lower in Ldlr-/- than Apoe-/- mice (male: 122.5 ± 5.9 vs. 229.4 ± 17.5 mg/dL; female: 144.1 ± 12.4 vs. 232.7 ± 6.4 mg/dL). When fed a Western diet, Ldlr-/- and Apoe-/- mice developed severe hypercholesterolemia and also hyperglycemia with fasting plasma glucose levels exceeding 250 mg/dL. Both knockouts had similar non-HDL cholesterol and triglyceride levels, and their fasting glucose levels were also similar. Male Ldlr-/- mice exhibited greater glucose tolerance and insulin sensitivity compared to their Apoe-/- counterpart. Female mice showed similar glucose tolerance and insulin sensitivity though Ldlr-/- mice had higher non-fasting glucose levels. Male Ldlr-/- and Apoe-/- mice developed moderate obesity on the Western diet, but female mice did not. These results indicate that the Western diet and ensuing hyperlipidemia lead to the development of type 2 diabetes, irrespective of underlying genetic causes.
Collapse
|
2
|
Korshunov VA, Smolock EM, Wines-Samuelson ME, Faiyaz A, Mickelsen DM, Quinn B, Pan C, Dugbartey GJ, Yan C, Doyley MM, Lusis AJ, Berk BC. Natriuretic Peptide Receptor 2 Locus Contributes to Carotid Remodeling. J Am Heart Assoc 2020; 9:e014257. [PMID: 32394795 PMCID: PMC7660849 DOI: 10.1161/jaha.119.014257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Carotid artery intima/media thickness (IMT) is a hallmark trait associated with future cardiovascular events. The goal of this study was to map new genes that regulate carotid IMT by genome-wide association. Methods and Results We induced IMT by ligation procedure of the left carotid artery in 30 inbred mouse strains. Histologic reconstruction revealed significant variation in left carotid artery intima, media, adventitia, external elastic lamina volumes, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio in inbred mice. The carotid remodeling trait was regulated by distinct genomic signatures with a dozen common single-nucleotide polymorphisms associated with left carotid artery intima volume, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio. Among genetic loci on mouse chromosomes 1, 4, and 12, there was natriuretic peptide receptor 2 (Npr2), a strong candidate gene. We observed that only male, not female, mice heterozygous for a targeted Npr2 deletion (Npr2+/-) exhibited defective carotid artery remodeling compared with Npr2 wild-type (Npr2+/+) littermates. Fibrosis in carotid IMT was significantly increased in Npr2+/- males compared with Npr2+/- females or Npr2+/+ mice. We also detected decreased Npr2 expression in human atherosclerotic plaques, similar to that seen in studies in Npr2+/- mice. Conclusions We found that components of carotid IMT were regulated by distinct genetic factors. We also showed a critical role for Npr2 in genetic regulation of vascular fibrosis associated with defective carotid remodeling.
Collapse
Affiliation(s)
| | - Elaine M Smolock
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | | | - Abrar Faiyaz
- Department of Electrical & Computer Engineering University of Rochester and Hajim School of Engineering & Applied Sciences Rochester NY
| | - Deanne M Mickelsen
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Breandan Quinn
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Calvin Pan
- Department of Medicine David Geffen School of Medicine University of California Los Angeles Los Angeles CA
| | - George J Dugbartey
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Chen Yan
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Marvin M Doyley
- Department of Electrical & Computer Engineering University of Rochester and Hajim School of Engineering & Applied Sciences Rochester NY
| | - Aldons J Lusis
- Department of Medicine David Geffen School of Medicine University of California Los Angeles Los Angeles CA
| | - Bradford C Berk
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY.,University of Rochester Neurorestoration Institute University of Rochester School of Medicine and Dentistry Rochester NY
| |
Collapse
|
3
|
Fuller DT, Grainger AT, Manichaikul A, Shi W. Data on genetic linkage of oxidative stress with cardiometabolic traits in an intercross derived from hyperlipidemic mouse strains. Data Brief 2020; 29:105165. [PMID: 32025547 PMCID: PMC6997804 DOI: 10.1016/j.dib.2020.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 11/30/2022] Open
Abstract
The data presented here are related to the research article, entitled Genetic linkage of oxidative stress with cardiometabolic traits in an intercross derived from hyperlipidemic mouse strains, published in Atherosclerosis 2019 Dec 3;293:1–10 (D. Fuller, A.T. Grainger, A. Manichaikul, W. Shi). The supporting materials include original genotypic and phenotypic data obtained from 266 female F2 mice derived from an intercross between C57BL/6 (B6) and BALB/cJ (BALB) Apoe−/- mice. F2 mice were fed 12 weeks of Western diet, starting at 6 weeks of age. Plasma levels of HDL, LDL cholesterol, triglycerides, glucose and malondialdehyde (MDA) and atherosclerosis in the aortic root and the left carotid artery were measured. 127 microsatellite markers across the entire genome were genotyped. The data is provided in the format ready for QTL analysis with J/qtl and MapManager QTX.
Collapse
Affiliation(s)
- Daniela T Fuller
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Grainger
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Ani Manichaikul
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA.,Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Weibin Shi
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.,Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Zhao J, Huangfu C, Chang Z, Grainger AT, Liu Z, Shi W. Atherogenesis in the Carotid Artery with and without Interrupted Blood Flow of Two Hyperlipidemic Mouse Strains. J Vasc Res 2019; 56:241-254. [PMID: 31536996 DOI: 10.1159/000502691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Atherosclerosis in the carotid arteries is a common cause of ischemic stroke. We examined atherogenesis in the left carotid artery with and without interrupted blood flow of C57BL/6 (B6) and C3H-Apoe-deficient (Apoe-/-) mouse strains. METHODS Blood flow was interrupted by ligating the common carotid artery near its bifurcation in one group of mice and another group was not interrupted. RESULTS Without interference with blood flow, C3H-Apoe-/- mice developed no atherosclerosis in the carotid artery, while B6-Apoe-/- mice formed advanced atherosclerotic lesions (98,019 ± 10,594 μm2/section) after 12 weeks of a Western diet. When blood flow was interrupted by ligating the common carotid artery near its bifurcation, C3H-Apoe-/- mice showed fatty streak lesions 2 weeks after ligation, and by 4 weeks fibrous lesions had formed, although they were smaller than in B6-Apoe-/- mice. Neutrophil adhesion to endothelium and infiltration in lesions was observed in ligated arteries of both strains. Treatment of B6-Apoe-/- mice with antibody against neutrophils had little effect on lesion size. CONCLUSIONS These findings demonstrate the dramatic influences of genetic backgrounds and blood flow on atherogenesis in the carotid artery of hyperlipidemic mice.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaoji Huangfu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Center for Disease Control and Prevention, Western Theater Command, Lanzhou, China
| | - Zhihui Chang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Andrew T Grainger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA, .,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA,
| |
Collapse
|
5
|
Chang Z, Huangfu C, Grainger AT, Zhang J, Guo Q, Shi W. Accelerated atherogenesis in completely ligated common carotid artery of apolipoprotein E-deficient mice. Oncotarget 2017; 8:110289-110299. [PMID: 29299147 PMCID: PMC5746382 DOI: 10.18632/oncotarget.22685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/05/2017] [Indexed: 12/22/2022] Open
Abstract
Complete ligation of the common carotid artery near its bifurcation induces neointimal formation due to smooth muscle cell proliferation in normolipidemic wild-type mice, but it was unknown what would happen to hyperlipidemic apolipoprotein E-deficient (Apoe-/-) mice. Examination of these mice revealed rapid development of atherosclerotic lesions in completely ligated carotid arteries within 4 weeks. Mice were fed a Western diet, starting 1 week before ligation, or a chow diet. Foam cell lesions formed as early as 1 week after ligation in mice fed the Western diet and 2 weeks in mice fed the chow diet. Fibrous lesions comprised of foam cells and smooth muscle cells and more advance lesions containing neovessels occurred at 2 and 4 weeks after ligation, respectively, in the Western diet group. Lesions were larger and more advanced in the Western diet group than the chow group. Neutrophil infiltration was observed in growing intimal lesions in both diet groups, while CD8+ T cells were found in lesions of chow-fed mice. This study demonstrates that Apoe-/- mice develop the entire spectrum of atherosclerosis in ligated carotid arteries in an accelerated manner and this model could be a valuable tool for investigating the development and therapy of atherosclerosis.
Collapse
Affiliation(s)
- Zhihui Chang
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaoji Huangfu
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Andrew T. Grainger
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Jingang Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weibin Shi
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Polygenic Control of Carotid Atherosclerosis in a BALB/cJ × SM/J Intercross and a Combined Cross Involving Multiple Mouse Strains. G3-GENES GENOMES GENETICS 2017; 7:731-739. [PMID: 28040783 PMCID: PMC5295616 DOI: 10.1534/g3.116.037879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atherosclerosis in the carotid arteries is a major cause of ischemic stroke, which accounts for 85% of all stroke cases. Genetic factors contributing to carotid atherosclerosis remain poorly understood. The aim of this study was to identify chromosomal regions harboring genes contributing to carotid atherosclerosis in mice. From an intercross between BALB/cJ (BALB) and SM/J (SM) apolipoprotein E-deficient (Apoe-/-) mice, 228 female F2 mice were generated and fed a "Western" diet for 12 wk. Atherosclerotic lesion sizes in the left carotid artery were quantified. Across the entire genome, 149 genetic markers were genotyped. Quantitative trait locus (QTL) analysis revealed eight loci for carotid lesion sizes, located on chromosomes 1, 5, 12, 13, 15, 16, and 18. Combined cross-linkage analysis using data from this cross, and two previous F2 crosses derived from BALB, C57BL/6J and C3H/HeJ strains, identified five significant QTL on chromosomes 5, 9, 12, and 13, and nine suggestive QTL for carotid atherosclerosis. Of them, the QTL on chromosome 12 had a high LOD score of 9.95. Bioinformatic analysis prioritized Arhgap5, Akap6, Mipol1, Clec14a, Fancm, Nin, Dact1, Rtn1, and Slc38a6 as probable candidate genes for this QTL. Atherosclerotic lesion sizes were significantly correlated with non-HDL cholesterol levels (r = 0.254; p = 0.00016) but inversely correlated with HDL cholesterol levels (r = -0.134; p = 0.049) in the current cross. Thus, we demonstrated the polygenic control of carotid atherosclerosis in mice. The correlations of carotid lesion sizes with non-HDL and HDL suggest that genetic factors exert effects on carotid atherosclerosis partially through modulation of lipoprotein homeostasis.
Collapse
|
7
|
Shi W, Wang Q, Choi W, Li J. Mapping and Congenic Dissection of Genetic Loci Contributing to Hyperglycemia and Dyslipidemia in Mice. PLoS One 2016; 11:e0148462. [PMID: 26859786 PMCID: PMC4747551 DOI: 10.1371/journal.pone.0148462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/18/2016] [Indexed: 01/01/2023] Open
Abstract
Background Patients with dyslipidemia have an increased risk of developing type 2 diabetes, and diabetic patients often have dyslipidemia. Potential genetic connections of fasting plasma glucose with plasma lipid profile were evaluated using hyperlipidemic mice. Methods 225 male F2 mice were generated from BALB/cJ (BALB) and SM/J(SM) Apoe-deficient (Apoe−/−) mice and fed a Western diet for 5 weeks. Fasting plasma glucose and lipid levels of F2 mice were measured before and after 5 weeks of Western diet and quantitative trait locus (QTL) analysis was performed using data collected from these two time points. 144 SNP(single nucleotide polymorphism) markers across the entire genome were typed. Results One major QTL (logarithm of odds ratio (LOD): 6.46) peaked at 12.7 cM on chromosome 9,Bglu16, and 3 suggestive QTLs on chromosomes 15, 18 and X were identified for fasting glucose, and over 10 loci identified for lipid traits. Bglu16 was adjacent to a major QTL, Hdlq17, for high-density lipoprotein (HDL) cholesterol (LOD: 6.31, peak: 19.1 cM). A congenic strain with a donor chromosomal region harboring Bglu16 and Hdlq17 on the Apoe−/− background showed elevations in plasma glucose and HDL levels. Fasting glucose levels were significantly correlated with non-HDL cholesterol and triglyceride levels, especially on the Western diet, but only marginally correlated with HDL levels in F2 mice. Conclusions We have demonstrated a correlative relationship between fasting glucose and plasma lipids in a segregating F2 population under hyperlipidemic conditions, and this correlation is partially due to genetic linkage between the two disorders.
Collapse
Affiliation(s)
- Weibin Shi
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America.,Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Qian Wang
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Wonseok Choi
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jing Li
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
8
|
Wang Q, Grainger AT, Manichaikul A, Farber E, Onengut-Gumuscu S, Shi W. Genetic linkage of hyperglycemia and dyslipidemia in an intercross between BALB/cJ and SM/J Apoe-deficient mouse strains. BMC Genet 2015; 16:133. [PMID: 26555648 PMCID: PMC4641414 DOI: 10.1186/s12863-015-0292-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Individuals with dyslipidemia often develop type 2 diabetes, and diabetic patients often have dyslipidemia. It remains to be determined whether there are genetic connections between the 2 disorders. METHODS A female F2 cohort, generated from BALB/cJ (BALB) and SM/J (SM) Apoe-deficient (Apoe(-/-)) strains, was started on a Western diet at 6 weeks of age and maintained on the diet for 12 weeks. Fasting plasma glucose and lipid levels were measured before and after 12 weeks of Western diet. 144 genetic markers across the entire genome were used for quantitative trait locus (QTL) analysis. RESULTS One significant QTL on chromosome 9, named Bglu17 [26.4 cM, logarithm of odds ratio (LOD): 5.4], and 3 suggestive QTLs were identified for fasting glucose levels. The suggestive QTL near the proximal end of chromosome 9 (2.4 cM, LOD: 3.12) was replicated at both time points and named Bglu16. Bglu17 coincided with a significant QTL for HDL (high-density lipoprotein) and a suggestive QTL for non-HDL cholesterol levels. Plasma glucose levels were inversely correlated with HDL but positively correlated with non-HDL cholesterol levels in F2 mice on either chow or Western diet. A significant correlation between fasting glucose and triglyceride levels was also observed on the Western diet. Haplotype analysis revealed that "lipid genes" Sik3, Apoa1, and Apoc3 were probable candidates for Bglu17. CONCLUSIONS We have identified multiple QTLs for fasting glucose and lipid levels. The colocalization of QTLs for both phenotypes and the sharing of potential candidate genes demonstrate genetic connections between dyslipidemia and type 2 diabetes.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology & Medical Imaging, University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA. .,University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA.
| | - Andrew T Grainger
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA. .,University of Virginia, Charlottesville, VA, USA.
| | - Ani Manichaikul
- Center for Public Health and Genomics, University of Virginia, Charlottesville, VA, USA.
| | - Emily Farber
- Center for Public Health and Genomics, University of Virginia, Charlottesville, VA, USA.
| | - Suna Onengut-Gumuscu
- Center for Public Health and Genomics, University of Virginia, Charlottesville, VA, USA.
| | - Weibin Shi
- Department of Radiology & Medical Imaging, University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA. .,University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA.
| |
Collapse
|
9
|
Dale MA, Suh MK, Zhao S, Meisinger T, Gu L, Swier VJ, Agrawal DK, Greiner TC, Carson JS, Baxter BT, Xiong W. Background differences in baseline and stimulated MMP levels influence abdominal aortic aneurysm susceptibility. Atherosclerosis 2015; 243:621-9. [PMID: 26546710 DOI: 10.1016/j.atherosclerosis.2015.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/10/2015] [Accepted: 10/05/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Evidence has demonstrated profound influence of genetic background on cardiovascular phenotypes. Murine models in Marfan syndrome (MFS) have shown that genetic background-related variations affect thoracic aortic aneurysm formation, rupture, and lifespan of mice. MFS mice with C57Bl/6 genetic background are less susceptible to aneurysm formation compared to the 129/SvEv genetic background. In this study, we hypothesize that susceptibility to abdominal aortic aneurysm (AAA) will be increased in 129/SvEv mice versus C57Bl/6 mice. We tested this hypothesis by assessing differences in aneurysm size, tissue properties, immune response, and MMP expression. METHODS Mice of C57Bl/6 or 129/SvEv background underwent AAA induction by periaortic application of CaCl2. Baseline aortic diameters, tissue properties and MMP levels were measured. After aneurysm induction, diameters, MMP expression, and immune response (macrophage infiltration and bone marrow transplantation) were measured. RESULTS Aneurysms were larger in 129/SvEv mice than C57Bl/6 mice (83.0% ± 13.6 increase compared to 57.8% ± 6.4). The aorta was stiffer in the 129/SvEv mice compared to C57Bl/6 mice (952.5 kPa ± 93.6 versus 621.4 kPa ± 84.2). Baseline MMP-2 and post-aneurysm MMP-2 and -9 levels were higher in 129/SvEv aortas compared to C57Bl/6 aortas. Elastic lamella disruption/fragmentation and macrophage infiltration were increased in 129/SvEv mice. Myelogenous cell reversal by bone marrow transplantation did not affect aneurysm size. CONCLUSIONS These data demonstrate that 129/SvEv mice are more susceptible to AAA compared to C57Bl/6 mice. Intrinsic properties of the aorta between the two strains of mice, including baseline expression of MMP-2, influence susceptibility to AAA.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/immunology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/pathology
- Bone Marrow Transplantation
- Calcium Chloride
- Dilatation, Pathologic
- Disease Models, Animal
- Elastic Modulus
- Genetic Predisposition to Disease
- Macrophages/enzymology
- Macrophages/immunology
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice, 129 Strain
- Mice, Inbred C57BL
- Pancreatic Elastase/metabolism
- Species Specificity
- Tropoelastin/metabolism
- Up-Regulation
- Vascular Stiffness
Collapse
Affiliation(s)
- Matthew A Dale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Melissa K Suh
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shijia Zhao
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Trevor Meisinger
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Linxia Gu
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Vicki J Swier
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey S Carson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - B Timothy Baxter
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wanfen Xiong
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
10
|
Zhang Y, Kundu B, Zhong M, Huang T, Li J, Chordia MD, Chen MH, Pan D, He J, Shi W. PET imaging detection of macrophages with a formyl peptide receptor antagonist. Nucl Med Biol 2015; 42:381-6. [PMID: 25532700 PMCID: PMC4405787 DOI: 10.1016/j.nucmedbio.2014.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/04/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Macrophages are a major inflammatory cell type involved in the development and progression of many important chronic inflammatory diseases. We previously found that apolipoprotein E-deficient (Apoe(-/-)) mice with the C57BL/6 (B6) background develop type 2 diabetes mellitus (T2DM) and accelerated atherosclerosis when fed a Western diet and that there are increased macrophage infiltrations in pancreatic islets and aorta. The formyl peptide receptor 1 (FPR1) is abundantly expressed on the surface of macrophages. The purpose of this study was to evaluate the applicability of cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF), a natural FPR1 antagonist, to detection of macrophages in the pancreatic islets and aorta. (64)Cu labeled cFLFLF and (18)F-fluorodeoxyglucose (FDG) were administered to mice with or without T2DM. Diabetic mice showed an increased (18)FDG uptake in the subcutaneous fat compared with control mice, but pancreatic uptake was minimal for either group. In contrast, diabetic mice exhibited visually noticeable more cFLFLF-(64)Cu retention in pancreas and liver than control mice. The heart and pancreas isolated from diabetic mice contained more macrophages and showed stronger PET signals than those of control mice. Flow cytometry analysis revealed the presence of macrophages but not neutrophils in pancreatic islets. Real-time PCR analysis revealed much higher FPR1 expression in pancreatic islets of diabetic over control mice. Autoradiography and immunohistochemical analysis confirmed abundant FPR1 expression in atherosclerotic lesions. Thus, (64)Cu-labeled cFLFLF peptide is a more effective PET agent for detecting macrophages compared to FDG.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Bijoy Kundu
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Min Zhong
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Tao Huang
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Jing Li
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Mahendra D Chordia
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Mei-Hua Chen
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Dongfeng Pan
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Jiang He
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Weibin Shi
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908.
| |
Collapse
|
11
|
Smolock EM, Burke RM, Wang C, Thomas T, Batchu SN, Qiu X, Zettel M, Fujiwara K, Berk BC, Korshunov VA. Intima modifier locus 2 controls endothelial cell activation and vascular permeability. Physiol Genomics 2014; 46:624-33. [PMID: 24986958 DOI: 10.1152/physiolgenomics.00048.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carotid intima formation is a significant risk factor for cardiovascular disease. C3H/FeJ (C3H/F) and SJL/J (SJL) inbred mouse strains differ in susceptibility to immune and vascular traits. Using a congenic approach we demonstrated that the Intima modifier 2 (Im2) locus on chromosome 11 regulates leukocyte infiltration. We sought to determine whether inflammation was due to changes in circulating immune cells or activation of vascular wall cells in genetically pure Im2 (C3H/F.SJL.11.1) mice. Complete blood counts showed no differences in circulating monocytes between C3H/F and C3H/F.SJL.11.1 compared with SJL mice. Aortic vascular cell adhesion molecule-1 (VCAM-1) total protein levels were dramatically increased in SJL and C3H/F.SJL.11.1 compared with C3H/F mice. Immunostaining of aortic endothelial cells (EC) showed a significant increase in VCAM-1 expression in SJL and C3H/F.SJL.11.1 compared with C3H/F under steady flow conditions. Immunostaining of EC membranes revealed a significant decrease in EC size in SJL and C3H/F.SJL.11.1 vs. C3H/F in regions of disturbed flow. Vascular permeability was significantly higher in C3H/F.SJL.11.1 compared with C3H/F. Our results indicate that Im2 regulation of leukocyte infiltration is mediated by EC inflammation and permeability. RNA sequencing and pathway analyses comparing genes in the Im2 locus to C3H/F provide insight into candidate genes that regulate vascular wall inflammation and permeability highlighting important genetic mechanisms that control vascular intima in response to injury.
Collapse
Affiliation(s)
- Elaine M Smolock
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Ryan M Burke
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Chenjing Wang
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; Function Teaching and Research Section, Medical College of Northwest University for Nationalities, Lanzhou, China
| | - Tamlyn Thomas
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Sri N Batchu
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Martha Zettel
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Keigi Fujiwara
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Bradford C Berk
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Vyacheslav A Korshunov
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| |
Collapse
|
12
|
Kayashima Y, Tomita H, Zhilicheva S, Kim S, Kim HS, Bennett BJ, Maeda N. Quantitative trait loci affecting atherosclerosis at the aortic root identified in an intercross between DBA2J and 129S6 apolipoprotein E-null mice. PLoS One 2014; 9:e88274. [PMID: 24586312 PMCID: PMC3930552 DOI: 10.1371/journal.pone.0088274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/09/2014] [Indexed: 12/23/2022] Open
Abstract
Apolipoprotein E-null mice on a DBA/2J genetic background (DBA-apoE) are highly susceptible to atherosclerosis in the aortic root area compared with those on a 129S6 background (129-apoE). To explore atherosclerosis-responsible genetic regions, we performed a quantitative trait locus (QTL) analysis using 172 male and 137 female F2 derived from an intercross between DBA-apoE and 129-apoE mice. A genome-wide scan identified two significant QTL for the size of lesions at the root: one is Ath44 on Chromosome (Chr) 1 at 158 Mb, and the other Ath45 on Chr 2 at 162 Mb. Ath44 co-localizes with but appears to be independent of a previously reported QTL, Ath1, while Ath45 is a novel QTL. DBA alleles of both Ath44 and Ath45 confer atherosclerosis-susceptibility. In addition, a QTL on Chr 14 at 73 Mb was found significant only in males, and 129 allele conferring susceptibility. Further analysis detected female-specific interactions between a second QTL on Chr 1 at 73 Mb and a QTL on Chr 3 at 21 Mb, and between Chr 7 at 84 Mb and Chr 12 at 77 Mb. These loci for the root atherosclerosis were independent of QTLs for plasma total cholesterol and QTLs for triglycerides, but a QTL for HDL (Chr 1 at 126 Mb) overlapped with the Ath44. Notably, haplotype analysis among 129S6, DBA/2J and C57BL/6 genomes and their gene expression data narrowed the candidate regions for Ath44 and Ath45 to less than 5 Mb intervals where multiple genome wide associations with cardiovascular phenotypes have also been reported in humans. SNPs in or near Fmo3, Sele and Selp for Ath44, and Lbp and Pkig for Ath45 were suggested for further investigation as potential candidates underlying the atherosclerosis susceptibility.
Collapse
Affiliation(s)
- Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hirofumi Tomita
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Svetlana Zhilicheva
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shinja Kim
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hyung-Suk Kim
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brian J. Bennett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kawakami-Schulz SV, Sattler SG, Doebley AL, Ikeda A, Ikeda S. Genetic modification of corneal neovascularization in Dstn (corn1) mice. Mamm Genome 2013; 24:349-57. [PMID: 23929036 PMCID: PMC3802551 DOI: 10.1007/s00335-013-9468-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
Mutations in the gene for destrin (Dstn), an actin depolymerizing factor, lead to corneal abnormalities in mice. A null mutation in Dstn, termed Dstn (corn1) , isolated and maintained in the A.BY background (A.BY Dstn (corn1) ), results in corneal epithelial hyperproliferation, inflammation, and neovascularization. We previously reported that neovascularization in the cornea of Dstn (corn1) mice on the C57BL/6 background (B6.A.BY-Dstn (corn1) ) is significantly reduced when compared to A.BY Dstn (corn1) mice, suggesting the existence of genetic modifier(s). The purpose of this study is to identify the genetic basis of the difference in corneal neovascularization between A.BY Dstn (corn1) and B6.A.BY-Dstn (corn1) mice. We generated N2 mice for a whole-genome scan by backcrossing F1 progeny (A.BY Dstn (corn1) × B6.A.BY-Dstn (corn1) ) to B6.A.BY-Dstn (corn1) mice. N2 progeny were quantitatively phenotyped for the extent of corneal neovascularization and genotyped for markers across the mouse genome. We identified significant association of variability in corneal neovascularization with a locus on chromosome 3 (Chr3). The validity of the identified quantitative trait locus (QTL) was tested using B6 consomic mice carrying Chr3 from A/J mice. Dstn (corn1) mice from F1 and F2 intercrosses (B6.A.BY-Dstn (corn1) × C57BL/6J-Chr3(A/J)/NaJ) were phenotyped for the extent of corneal neovascularization. This analysis showed that mice carrying the A/J allele at the QTL show significantly increased neovascularization. Our results indicate the existence of a modifier that genetically interacts with the Dstn gene. This modifier demonstrates allelic differences between C57BL6 and A.BY or A/J. The modifier is sufficient to increase neovascularization in Dstn (corn1) mice.
Collapse
Affiliation(s)
| | - Shannon G. Sattler
- Department of Medical Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Anna-Lisa Doebley
- Department of Medical Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
14
|
Rowlan JS, Li Q, Manichaikul A, Wang Q, Matsumoto AH, Shi W. Atherosclerosis susceptibility Loci identified in an extremely atherosclerosis-resistant mouse strain. J Am Heart Assoc 2013; 2:e000260. [PMID: 23938286 PMCID: PMC3828785 DOI: 10.1161/jaha.113.000260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background C3H/HeJ (C3H) mice are extremely resistant to atherosclerosis, especially males. To understand the underlying genetic basis, we performed quantitative trait locus (QTL) analysis on a male F2 (the second generation from an intercross between 2 inbred strains) cohort derived from an intercross between C3H and C57BL/6 (B6) apolipoprotein E–deficient (Apoe−/−) mice. Methods and Results Two hundred forty‐six male F2 mice were started on a Western diet at 8 weeks of age and kept on the diet for 5 weeks. Atherosclerotic lesions in the aortic root and fasting plasma lipid levels were measured. One hundred thirty‐four microsatellite markers across the entire genome were genotyped. Four significant QTLs on chromosomes (Chr) 2, 4, 9, and 15 and 4 suggestive loci on Chr1, Chr4, and Chr7 were identified for atherosclerotic lesions. Unexpectedly, the C3H allele was associated with increased lesion formation for 2 of the 4 significant QTLs. Six loci for high‐density lipoprotein (HDL), 6 for non‐HDL cholesterol, and 3 for triglycerides were also identified. The QTL for atherosclerosis on Chr9 replicated Ath29, originally mapped in a female F2 cohort derived from B6 and C3H Apoe−/− mice. This locus coincided with a QTL for HDL, and there was a moderate, but statistically significant, correlation between atherosclerotic lesion sizes and plasma HDL cholesterol levels in F2 mice. Conclusions These data indicate that most atherosclerosis susceptibility loci are distinct from those for plasma lipids except for the Chr9 locus, which exerts effect through interactions with HDL.
Collapse
Affiliation(s)
- Jessica S. Rowlan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
| | - Qiongzhen Li
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
| | - Ani Manichaikul
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA (A.M.)
| | - Qian Wang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
| | - Alan H. Matsumoto
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA (J.S.R., Q.L., Q.W., A.H.M., W.S.)
- Department Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA (W.S.)
- Correspondence to: Weibin Shi, University of Virginia, Box 801339, Snyder 266, 480 Ray C Hunt Drive, Charlottesville, VA 22908. E‐mail:
| |
Collapse
|
15
|
Rowlan JS, Zhang Z, Wang Q, Fang Y, Shi W. New quantitative trait loci for carotid atherosclerosis identified in an intercross derived from apolipoprotein E-deficient mouse strains. Physiol Genomics 2013; 45:332-42. [PMID: 23463770 PMCID: PMC3633429 DOI: 10.1152/physiolgenomics.00099.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carotid atherosclerosis is the primary cause of ischemic stroke. To identify genetic factors contributing to carotid atherosclerosis, we performed quantitative trait locus (QTL) analysis using female mice derived from an intercross between C57BL/6J (B6) and BALB/cJ (BALB) apolipoprotein E (Apoe−/−) mice. We started 266 F2 mice on a Western diet at 6 wk of age and fed them the diet for 12 wk. Atherosclerotic lesions in the left carotid bifurcation and plasma lipid levels were measured. We genotyped 130 microsatellite markers across the entire genome. Three significant QTLs, Cath1 on chromosome (Chr) 12, Cath2 on Chr5, and Cath3 on Chr13, and four suggestive QTLs on Chr6, Chr9, Chr17, and Chr18 were identified for carotid lesions. The Chr6 locus replicated a suggestive QTL and was named Cath4. Six QTLs for HDL, three QTLs for non-HDL cholesterol, and three QTLs for triglyceride were found. Of these, a significant QTL for non-HDL on Chr1 at 60.3 cM, named Nhdl13, and a suggestive QTL for HDL on ChrX were new. A significant locus for HDL (Hdlq5) was overlapping with a suggestive locus for carotid lesions on Chr9. A significant correlation between carotid lesion sizes and HDL cholesterol levels was observed in the F2 population (R = −0.153, P = 0.0133). Thus, we have identified several new QTLs for carotid atherosclerosis and the locus on Chr9 may exert effect through interactions with HDL.
Collapse
Affiliation(s)
- Jessica S Rowlan
- Departments of Radiology & Medical Imaging and Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
16
|
Smolock EM, Machleder DE, Korshunov VA, Berk BC. Identification of a genetic locus on chromosome 11 that regulates leukocyte infiltration in mouse carotid artery. Arterioscler Thromb Vasc Biol 2013; 33:1014-9. [PMID: 23448970 DOI: 10.1161/atvbaha.112.301129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We demonstrated that inflammatory cells and intima-media thickening are increased in carotids exposed to low-blood flow in the SJL/J (SJL) strain compared with other mouse strains. We hypothesized that the extent of inflammation associated with intima-media thickening is a genetically regulated trait. APPROACH AND RESULTS We performed a whole genome approach to measure leukocyte infiltration in the carotid intima as a quantitative trait in a genetic cross between C3HeB/FeJ (C3H/F) and SJL mice. Immunostaining for CD45(+) (a pan-specific leukocyte marker) was performed on carotids from C3H/F, SJL, F1, and N2 progeny to measure leukocyte infiltration. We identified a nearly significant quantitative trait locus for CD45(+) on chromosome (chr) 11 (17 cM, LOD=2.3; significance was considered at threshold P=0.05). Interval mapping showed that the CD45(+) locus on chr 11 accounted for 8% of the variation in the logarithm of odds backcross. Importantly, the CD45(+) locus colocalized with the intima-modifier 2 (Im2) locus, which controls 17% of intima variation. We created 2 Im2 congenic lines of mice (C3H/F.SJL.11.1 and C3H/F.SJL.11.2) to better understand the regulation of intima-media thickening by the chr 11 locus. The C3H/F.SJL.11.1 congenic mouse showed ≈30% of the SJL trait, confirming that CD45(+) cell infiltration contributed to the intima trait. CONCLUSIONS We discovered a novel locus on chr 11 that controls leukocyte infiltration in the carotid. Importantly, this locus overlaps with our previously published Im2 locus on chr 11. Our study reveals a potential mechanistic relationship between leukocyte infiltration and intima-media thickening in response to decreased blood flow.
Collapse
Affiliation(s)
- Elaine M Smolock
- University of Rochester, Aab Cardiovascular Research Institute, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
17
|
Smolock EM, Korshunov VA, Glazko G, Qiu X, Gerloff J, Berk BC. Ribosomal protein L17, RpL17, is an inhibitor of vascular smooth muscle growth and carotid intima formation. Circulation 2012; 126:2418-27. [PMID: 23065385 DOI: 10.1161/circulationaha.112.125971] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Carotid intima-media thickening is associated with increased cardiovascular risk in humans. We discovered that intima formation and cell proliferation in response to carotid injury is greater in SJL/J (SJL) in comparison with C3HeB/FeJ (C3H/F) mice. The purpose of this study was to identify candidate genes contributing to intima formation. METHODS AND RESULTS We performed microarray and bioinformatic analyses of carotid arteries from C3H/F and SJL mice. Kyoto Encyclopedia of Genes and Genomes analysis showed that the ribosome pathway was significantly up-regulated in C3H/F in comparison with SJL mice. Expression of a ribosomal protein, RpL17, was >40-fold higher in C3H/F carotids in comparison with SJL. Aortic vascular smooth muscle cells from C3H/F grew slower in comparison to SJL. To determine the role of RpL17 in vascular smooth muscle cell growth regulation, we analyzed the relationship between RpL17 expression and cell cycle progression. Cultured vascular smooth muscle cells from mice, rats, and humans showed that RpL17 expression inversely correlated with growth as shown by decreased cells in S phase and increased cells in G(0)/G(1). To prove that RpL17 acted as a growth inhibitor in vivo, we used pluronic gel delivery of RpL17 small interfering RNA to C3H/F carotid arteries. This resulted in an 8-fold increase in the number of proliferating cells. Furthermore, following partial carotid ligation in SJL mice, RpL17 expression in the intima and media decreased, but the number of proliferating cells increased. CONCLUSIONS RpL17 acts as a vascular smooth muscle cell growth inhibitor (akin to a tumor suppressor) and represents a potential therapeutic target to limit carotid intima-media thickening.
Collapse
Affiliation(s)
- Elaine M Smolock
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Zhang Z, Rowlan JS, Wang Q, Shi W. Genetic analysis of atherosclerosis and glucose homeostasis in an intercross between C57BL/6 and BALB/cJ apolipoprotein E-deficient mice. ACTA ACUST UNITED AC 2012; 5:190-201. [PMID: 22294616 DOI: 10.1161/circgenetics.111.961649] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Diabetic patients have an increased risk of developing atherosclerosis and related complications compared with nondiabetic individuals. The increased cardiovascular risk associated with diabetes is due in part to genetic variations that influence both glucose homeostasis and atherosclerotic lesion growth. Mouse strains C57BL/6J (B6) and BALB/cJ (BALB) exhibit distinct differences in fasting plasma glucose and atherosclerotic lesion size when deficient in apolipoprotein E (Apoe(-/-)). Quantitative trait locus (QTL) analysis was performed to determine genetic factors influencing the 2 phenotypes. METHODS AND RESULTS Female F(2) mice (n=266) were generated from an intercross between B6.Apoe(-/-) and BALB.Apoe(-/-) mice and fed a Western diet for 12 weeks. Atherosclerotic lesions in the aortic root, fasting plasma glucose, and body weight were measured. 130 microsatellite markers across the entire genome were genotyped. Four significant QTLs, Ath1 on chromosome (Chr) 1, Ath41 on Chr2, Ath42 on Chr5, and Ath29 on Chr9, and 1 suggestive QTL on Chr4, were identified for atherosclerotic lesion size. Four significant QTLs, Bglu3 and Bglu12 on Chr1, Bglu13 on Chr5, Bglu15 on Chr12, and 2 suggestive QTLs on Chr9 and Chr15 were identified for fasting glucose levels on the chow diet. Two significant QTLs, Bglu3 and Bglu13, and 1 suggestive locus on Chr8 were identified for fasting glucose on the Western diet. One significant locus on Chr1 and 2 suggestive loci on Chr9 and Chr19 were identified for body weight. Ath1 and Ath42 coincided with Bglu3 and Bglu13, respectively, in the confidence interval. CONCLUSIONS We have identified novel QTLs that have major influences on atherosclerotic lesion size and glucose homeostasis. The colocalization of QTLs for atherosclerosis and diabetes suggests possible genetic connections between the 2 diseases.
Collapse
Affiliation(s)
- Zhimin Zhang
- Departments of Radiology and Medical Imaging and of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
19
|
Kozel BA, Knutsen RH, Ye L, Ciliberto CH, Broekelmann TJ, Mecham RP. Genetic modifiers of cardiovascular phenotype caused by elastin haploinsufficiency act by extrinsic noncomplementation. J Biol Chem 2011; 286:44926-36. [PMID: 22049077 PMCID: PMC3248007 DOI: 10.1074/jbc.m111.274779] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/15/2011] [Indexed: 12/21/2022] Open
Abstract
Elastin haploinsufficiency causes the cardiovascular complications associated with Williams-Beuren syndrome and isolated supravalvular aortic stenosis. Significant variability exists in the vascular pathology in these individuals. Using the Eln(+/-) mouse, we sought to identify the source of this variability. Following outcrossing of C57Bl/6J Eln(+/-), two backgrounds were identified whose cardiovascular parameters deviated significantly from the parental strain. F1 progeny of the C57Bl/6J; Eln(+/-)x129X1/SvJ were more hypertensive and their arteries less compliant. In contrast, Eln(+/-) animals crossed to DBA/2J were protected from the pathologic changes associated with elastin insufficiency. Among the crosses, aortic elastin and collagen content did not correlate with quantitative vasculopathy traits. Quantitative trait locus analysis performed on F2 C57; Eln(+/-)x129 intercrosses identified highly significant peaks on chromosome 1 (LOD 9.7) for systolic blood pressure and on chromosome 9 (LOD 8.7) for aortic diameter. Additional peaks were identified that affect only Eln(+/-), including a region upstream of Eln on chromosome 5 (LOD 4.5). Bioinformatic analysis of the quantitative trait locus peaks revealed several interesting candidates, including Ren1, Ncf1, and Nos1; genes whose functions are unrelated to elastic fiber assembly, but whose effects may synergize with elastin insufficiency to predispose to hypertension and stiffer blood vessels. Real time RT-PCR studies show background-specific increased expression of Ncf1 (a subunit of the NOX2 NAPDH oxidase) that parallel the presence of increased oxidative stress in Eln(+/-) aortas. This finding raises the possibility that polymorphisms in genes affecting the generation of reactive oxygen species alter cardiovascular function in individuals with elastin haploinsufficiency through extrinsic noncomplementation.
Collapse
Affiliation(s)
| | - Russell H. Knutsen
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Li Ye
- From the Departments of Pediatrics and
| | - Christopher H. Ciliberto
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Thomas J. Broekelmann
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert P. Mecham
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
20
|
Li J, Wang Q, Chai W, Chen MH, Liu Z, Shi W. Hyperglycemia in apolipoprotein E-deficient mouse strains with different atherosclerosis susceptibility. Cardiovasc Diabetol 2011; 10:117. [PMID: 22204493 PMCID: PMC3273441 DOI: 10.1186/1475-2840-10-117] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/28/2011] [Indexed: 11/21/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is associated with an increased risk of atherosclerotic vascular disease, but it is unknown whether the other way around is true too. C57BL/6 (B6) and BALB/cJ (BALB) are two mouse strains that differ markedly in their susceptibility to atherosclerosis. In this study we investigated the development of diet-induced T2DM in these two strains. Methods and Results When deficient in apolipoprotein E (apoE-/-) and fed a Western diet for 12 weeks, atherosclerosis-susceptible B6 mice developed significant hyperglycemia. In contrast, atherosclerosis-resistant BALB apoE-/- mice had much lower plasma glucose levels than B6.apoE-/- mice on either chow or Western diet and during an intraperitoneal glucose tolerance test. In response to glucose BALB.apoE-/- mice displayed both the first and second phases of insulin secretion but the second phase of insulin secretion was absent in B6.apoE-/- mice. In response to insulin B6.apoE-/- mice showed a deeper and longer-lasting fall in blood glucose levels while BALB.apoE-/- mice showed little reduction in glucose levels. Pancreatic islet area of BALB.apoE-/- mice on light microscopy nearly doubled the area of B6.apoE-/- mice. Most circulating proinflammatory cytokines were lower in BALB.apoE-/- than in B6.apoE-/- mice on the Western diet, as determined by protein arrays. Increased macrophage infiltration in islets was observed in B6.apoE-/- mice by immunostaining for Mac2 and also by flow cytometry. Conclusion This study demonstrates that defects in insulin secretion rather than defects in insulin resistance explain the marketed difference in susceptibility to T2DM in the B6.apoE-/- and BALB.apoE-/- mouse model. A smaller islet mass and more prominent islet inflammation may explain the vulnerability of B6.apoE-/- mice to diet-induced diabetes.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
21
|
Lu Z, Yuan Z, Miyoshi T, Wang Q, Su Z, Chang CC, Shi W. Identification of Soat1 as a quantitative trait locus gene on mouse chromosome 1 contributing to hyperlipidemia. PLoS One 2011; 6:e25344. [PMID: 22022387 PMCID: PMC3194806 DOI: 10.1371/journal.pone.0025344] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/01/2011] [Indexed: 11/18/2022] Open
Abstract
We previously identified two closely linked quantitative trait loci (QTL) on distal chromosome 1 contributing to major variations in plasma cholesterol and triglyceride levels in an intercross derived from C57BL/6 (B6) and C3H/HeJ (C3H) apolipoprotein E-deficient (apoE−/−) mice. Soat1, encoding sterol o-acyltransferase 1, is a functional candidate gene located underneath the proximal linkage peak. We sequenced the coding region of Soat1 and identified four single nucleotide polymorphisms (SNPs) between B6 and C3H mice. Two of the SNPs resulted in amino-acid substitutions (Ile147Val and His205Tyr). Functional assay revealed an increased enzyme activity of Soat1 in peritoneal macrophages of C3H mice relative to those of B6 mice despite comparable protein expression levels. Allelic variants of Soat1 were associated with variations in plasma cholesterol and triglyceride levels in an intercross between B6.apoE−/− and C3H.apoE−/− mice. Inheritance of the C3H allele resulted in significantly higher plasma lipid levels than inheritance of the B6 allele. Soat1 variants were also significantly linked to major variations in plasma esterified cholesterol levels but not with free cholesterol levels. Trangenic expression of C3H Soat1 in B6.apoE−/− mice resulted in elevations of plasma cholesterol and triglyceride levels. These results indicate that Soat1 is a QTL gene contributing to hyperlipidemia.
Collapse
Affiliation(s)
- Zongji Lu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Zuobiao Yuan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Toru Miyoshi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Qian Wang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Zhiguang Su
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Catherine C. Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|