1
|
Kalwick M, Roth M. A Comprehensive Review of the Genetics of Dyslipidemias and Risk of Atherosclerotic Cardiovascular Disease. Nutrients 2025; 17:659. [PMID: 40004987 PMCID: PMC11858766 DOI: 10.3390/nu17040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Dyslipidemias are often diagnosed based on an individual's lipid panel that may or may not include Lp(a) or apoB. But these values alone omit key information that can underestimate risk and misdiagnose disease, which leads to imprecise medical therapies that reduce efficacy with unnecessary adverse events. For example, knowing whether an individual's dyslipidemia is monogenic can granularly inform risk and create opportunities for precision therapeutics. This review explores the canonical and non-canonical causes of dyslipidemias and how they impact atherosclerotic cardiovascular disease (ASCVD) risk. This review emphasizes the multitude of genetic causes that cause primary hypercholesterolemia, hypertriglyceridemia, and low or elevated high-density lipoprotein (HDL)-cholesterol levels. Within each of these sections, this review will explore the evidence linking these genetic conditions with ASCVD risk. Where applicable, this review will summarize approved therapies for a particular genetic condition.
Collapse
Affiliation(s)
| | - Mendel Roth
- GBinsight, GB Healthwatch, San Diego, CA 92122, USA;
| |
Collapse
|
2
|
Bedoya C, Thomas R, Bjarvin A, Ji W, Samara H, Tai J, Green L, Frost PH, Malloy MJ, Pullinger CR, Kane JP, Péterfy M. Identification and functional analysis of novel homozygous LMF1 variants in severe hypertriglyceridemia. J Clin Lipidol 2025; 19:95-104. [PMID: 39537501 DOI: 10.1016/j.jacl.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The genetic basis of hypertriglyceridemia (HTG) is complex and includes variants in lipase maturation factor 1 (LMF1), an endoplasmic reticulum (ER)-chaperone involved in the post-translational activation of lipoprotein lipase (LPL). OBJECTIVE The objective of this study was to identify and functionally characterize biallelic LMF1 variants in patients with HTG. METHODS Genomic DNA sequencing was used to identify biallelic LMF1 variants in HTG patients without deleterious variants in LPL, apolipoprotein C-II (APOC2), glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) or apolipoprotein A-V (APOA5). LMF1 variants were functionally evaluated by in silico analyses and assessing their impact on LPL activity, LMF1 protein expression, and specific activity in transiently transfected HEK293 cells. RESULTS We identified four homozygous LMF1 variants in patients with severe HTG: two novel rare variants (p.Asn147Lys and p.Pro246Arg) and two low-frequency variants (p.Arg354Trp and p.Arg364Gln) previously reported at heterozygosity. We demonstrate that all four variants reduce the secretion of enzymatically active LPL by impairing the specific activity of LMF1, whereas p.Asn147Lys also diminishes LMF1 protein expression. CONCLUSION This study extends the role of LMF1 as a genetic determinant in severe HTG and demonstrates that rare and low-frequency LMF1 variants can underlie this condition through distinct molecular mechanisms. The clinical phenotype of patients affected by partial loss of LMF1 function is consistent with multifactorial chylomicronemia syndrome (MCS) and suggests that secondary factors and additional genetic determinants contribute to HTG in these subjects.
Collapse
Affiliation(s)
- Candy Bedoya
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy)
| | - Rishi Thomas
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy)
| | - Anna Bjarvin
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy)
| | - Wilbur Ji
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy)
| | - Hanien Samara
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy)
| | - Jody Tai
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy)
| | - Laurie Green
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA (Drs Green, Malloy, Pullinger, and Kane)
| | - Philip H Frost
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA (Drs Green, Malloy, Pullinger, and Kane)
| | - Mary J Malloy
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA (Drs Green, Malloy, Pullinger, and Kane)
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA (Drs Green, Malloy, Pullinger, and Kane)
| | - John P Kane
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA (Drs Green, Malloy, Pullinger, and Kane)
| | - Miklós Péterfy
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy).
| |
Collapse
|
3
|
Cao C, Liu Y, Liu L, Wang X. Identification of a Compound Heterozygous LMF1 Variants in a Patient with Severe Hypertriglyceridemia - Case Report and Literature Review. J Atheroscler Thromb 2024; 31:1106-1111. [PMID: 38462482 PMCID: PMC11224691 DOI: 10.5551/jat.64697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/28/2024] [Indexed: 03/12/2024] Open
Abstract
Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia (MCM), characterized by highly variable triglyceride levels with acute episodes of severe hypertriglyceridemia (HTG), are caused by rare variants in genes associated with the catabolism of circulating lipoprotein triglycerides, mainly including LPL, APOC2, APOA5, GPIHBP1, and LMF1. Among them, the LMF1 gene only accounts for 1%. This study described a Chinese patient with severe HTG carrying compound heterozygous variants of a rare nonsense variant p.W168X in exon 3 and a missense variant p.R416Q in exon 9 in the LMF1 gene. These heterozygous variants account for his family's decreased lipase activity and mass, which caused the FCS phenotype.
Collapse
Affiliation(s)
- Conghui Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of
Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Yuqi Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of
Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Lu Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of
Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Xiaoli Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of
Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
4
|
Alves M, Laranjeira F, Correia-da-Silva G. Understanding Hypertriglyceridemia: Integrating Genetic Insights. Genes (Basel) 2024; 15:190. [PMID: 38397180 PMCID: PMC10887881 DOI: 10.3390/genes15020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertriglyceridemia is an exceptionally complex metabolic disorder characterized by elevated plasma triglycerides associated with an increased risk of acute pancreatitis and cardiovascular diseases such as coronary artery disease. Its phenotype expression is widely heterogeneous and heavily influenced by conditions as obesity, alcohol consumption, or metabolic syndromes. Looking into the genetic underpinnings of hypertriglyceridemia, this review focuses on the genetic variants in LPL, APOA5, APOC2, GPIHBP1 and LMF1 triglyceride-regulating genes reportedly associated with abnormal genetic transcription and the translation of proteins participating in triglyceride-rich lipoprotein metabolism. Hypertriglyceridemia resulting from such genetic abnormalities can be categorized as monogenic or polygenic. Monogenic hypertriglyceridemia, also known as familial chylomicronemia syndrome, is caused by homozygous or compound heterozygous pathogenic variants in the five canonical genes. Polygenic hypertriglyceridemia, also known as multifactorial chylomicronemia syndrome in extreme cases of hypertriglyceridemia, is caused by heterozygous pathogenic genetic variants with variable penetrance affecting the canonical genes, and a set of common non-pathogenic genetic variants (polymorphisms, using the former nomenclature) with well-established association with elevated triglyceride levels. We further address recent progress in triglyceride-lowering treatments. Understanding the genetic basis of hypertriglyceridemia opens new translational opportunities in the scope of genetic screening and the development of novel therapies.
Collapse
Affiliation(s)
- Mara Alves
- Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Francisco Laranjeira
- CGM—Centro de Genética Médica Jacinto de Magalhães, Centro Hospitalar Universitário de Santo António (CHUdSA), 4099-028 Porto, Portugal;
- UMIB—Unit for Multidisciplinary Research in Biomedicine, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-346 Porto, Portugal
- ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO Applied Molecular Biosciences Unit and Associate Laboratory i4HB—Institute for Health and Bioeconomy Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Al-Bustan SA, Alrashid MH, Al-Serri AE, Annice BG, Bahbahani HM. Sequence Variant Analysis of the APOCII Locus among an Arab Cohort. Int J Mol Sci 2023; 24:16293. [PMID: 38003484 PMCID: PMC10671382 DOI: 10.3390/ijms242216293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Apolipoprotein CII (ApocII) plays a key role in regulating lipoprotein lipase (LPL) in lipid metabolism and transport. Numerous polymorphisms within APOCII are reportedly associated with type 2 diabetes mellitus (T2DM), dyslipidemia, and aberrant plasma lipid levels. Few studies have investigated sequence variants at APOCII loci and their association with metabolic disorders. This study aimed to identify and characterize genetic variants by sequencing the full APOCII locus and its flanking sequences in a sample of the Kuwaiti Arab population, including patients with T2DM, hypertriglyceridemia, non-Arab patients with T2DM, and healthy Arab controls. A total of 52 variants were identified in the noncoding sequences: 45 single nucleotide polymorphisms, wherein five were novel, and seven insertion deletions. The minor allele frequency (MAF) of the 47 previously reported variants was similar to the global MAF and to that reported in major populations. Sequence variant analysis predicted a conserved role for APOCII with a potential role for rs5120 in T2DM and rs7133873 as an informative ethnicity marker. This study adds to the ongoing research that attempts to identify ethnicity-specific variants in the apolipoprotein gene loci and associated LPL genes to elucidate the molecular mechanisms of metabolic disorders.
Collapse
Affiliation(s)
- Suzanne A. Al-Bustan
- Department of Biological Sciences, College of Science, Kuwait University, Farwaniya 85700, Kuwait; (M.H.A.); (B.G.A.); (H.M.B.)
| | - Maryam H. Alrashid
- Department of Biological Sciences, College of Science, Kuwait University, Farwaniya 85700, Kuwait; (M.H.A.); (B.G.A.); (H.M.B.)
| | - Ahmad E. Al-Serri
- Unit of Human Genetics, Department of Pathology, Faculty of Medicine, Kuwait University, Hawally 46300, Kuwait;
| | - Babitha G. Annice
- Department of Biological Sciences, College of Science, Kuwait University, Farwaniya 85700, Kuwait; (M.H.A.); (B.G.A.); (H.M.B.)
| | - Hussain M. Bahbahani
- Department of Biological Sciences, College of Science, Kuwait University, Farwaniya 85700, Kuwait; (M.H.A.); (B.G.A.); (H.M.B.)
| |
Collapse
|
6
|
Biochemical, Clinical, and Genetic Characteristics of Mexican Patients with Primary Hypertriglyceridemia, Including the First Case of Hyperchylomicronemia Syndrome Due to GPIHBP1 Deficiency. Int J Mol Sci 2022; 24:ijms24010465. [PMID: 36613909 PMCID: PMC9820378 DOI: 10.3390/ijms24010465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022] Open
Abstract
Primary hypertriglyceridemia (PHTG) is characterized by a high concentration of triglycerides (TG); it is divided between familial hyperchylomicronemia syndrome and multifactorial chylomicronemia syndrome. In Mexico, hypertriglyceridemia constitutes a health problem in which the genetic bases have been scarcely explored; therefore, our objective was to describe biochemical-clinical characteristics and variants in the APOA5, GPIHBP1, LMF1, and LPL genes in patients with primary hypertriglyceridemia. Thirty DNA fragments were analyzed using PCR and Sanger sequencing in 58 unrelated patients. The patients' main clinical-biochemical features were hypoalphalipoproteinemia (77.6%), pancreatitis (18.1%), and a TG median value of 773.9 mg/dL. A total of 74 variants were found (10 in APOA5, 16 in GPIHBP1, 34 in LMF1, and 14 in LPL), of which 15 could be involved in the development of PHTG: 3 common variants with significative odds and 12 heterozygous rare pathogenic variants distributed in 12 patients. We report on the first Mexican patient with hyperchylomicronemia syndrome due to GPIHBP1 deficiency caused by three variants: p.R145*, p.A154_G155insK, and p.A154Rfs*152. Moreover, eleven patients were heterozygous for the rare variants described as causing PHTG and also presented common variants of risk, which could partially explain their phenotype. In terms of findings, two novel genetic variants, c.-40_-22del LMF1 and p.G242Dfs*10 LPL, were identified.
Collapse
|
7
|
FACI Is a Novel CREB-H-Induced Protein That Inhibits Intestinal Lipid Absorption and Reverses Diet-Induced Obesity. Cell Mol Gastroenterol Hepatol 2022; 13:1365-1391. [PMID: 35093589 PMCID: PMC8938335 DOI: 10.1016/j.jcmgh.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS CREB-H is a key liver-enriched transcription factor governing lipid metabolism. Additional targets of CREB-H remain to be identified and characterized. Here, we identified a novel fasting- and CREB-H-induced (FACI) protein that inhibits intestinal lipid absorption and alleviates diet-induced obesity in mice. METHODS FACI was identified by reanalysis of existing transcriptomic data. Faci-/- mice were generated by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated genome engineering. RNA sequencing was performed to identify differentially expressed genes in Faci-/- mice. Lipid accumulation in the villi was assessed by triglyceride measurement and Oil red O staining. In vitro fatty acid uptake assay was performed to verify in vivo findings. RESULTS FACI expression was enriched in liver and intestine. FACI is a phospholipid-binding protein that localizes to plasma membrane and recycling endosomes. Hepatic transcription of Faci was regulated by not only CREB-H, but also nutrient-responsive transcription factors sterol regulatory element-binding protein 1 (SREBP1), hepatocyte nuclear factor 4α (HNF4α), peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α), and CREB, as well as fasting-related cyclic adenosine monophosphate (cAMP) signaling. Genetic knockout of Faci in mice showed an increase in intestinal fat absorption. In accordance with this, Faci deficiency aggravated high-fat diet-induced obesity, hyperlipidemia, steatosis, and other obesity-related metabolic dysfunction in mice. CONCLUSIONS FACI is a novel CREB-H-induced protein. Genetic disruption of Faci in mice showed its inhibitory effect on fat absorption and obesity. Our findings shed light on a new target of CREB-H implicated in lipid homeostasis.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Hypertriglyceridemia is a common dyslipidemia associated with an increased risk of cardiovascular disease and pancreatitis. Severe hypertriglyceridemia may sometimes be a monogenic condition. However, in the vast majority of patients, hypertriglyceridemia is due to the cumulative effect of multiple genetic risk variants along with lifestyle factors, medications, and disease conditions that elevate triglyceride levels. In this review, we will summarize recent progress in the understanding of the genetic basis of hypertriglyceridemia. RECENT FINDINGS More than 300 genetic loci have been identified for association with triglyceride levels in large genome-wide association studies. Studies combining the loci into polygenic scores have demonstrated that some hypertriglyceridemia phenotypes previously attributed to monogenic inheritance have a polygenic basis. The new genetic discoveries have opened avenues for the development of more effective triglyceride-lowering treatments and raised interest towards genetic screening and tailored treatments against hypertriglyceridemia. The discovery of multiple genetic loci associated with elevated triglyceride levels has led to improved understanding of the genetic basis of hypertriglyceridemia and opened new translational opportunities.
Collapse
Affiliation(s)
- Germán D. Carrasquilla
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Mærsk Building, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Malene Revsbech Christiansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Mærsk Building, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Mærsk Building, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Candás-Estébanez B, Padró-Miquel A, Esteve-Luque V. Genetic basis of hypertriglyceridemies. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2021; 33 Suppl 2:14-19. [PMID: 34006349 DOI: 10.1016/j.arteri.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 11/19/2022]
Abstract
Diagnosis and treatment of triglyceride metabolism disorders: from pathophysiology to clinical practice. Hypertriglyceridaemia (HTG) affects 15%-20% of the world's population, and is frequently discovered as an incidental finding in a laboratory test. Disorders of triglyceride (TG) metabolism have a complex genetic basis. New genetic tools that allow a more precise approach to the disorders have made it possible to redefine and classify HTG into two groups: monogenic HTG (TG>10 mmol/L) and polygenic HTG (2 mmol/L<TG<10 mmol/L) with a milder phenotype, but with a clear genetic influence. In approximately 50% of patients with severe HTG a genetic cause has not yet been found. In addition to the inclusion of ever more genes in studies, statistical models are now also being examined that consider complex gene-environment interactions that could explain why the presence of a set of apparently benign variants may cause HTG in the presence of a triggering factor such as adiposity. Knowledge of the genetic nature of HTG has also helped identify targets for pharmacological treatments, thus avoiding a strict diet with a fat content of less than 20%, which is difficult to maintain. Accurate diagnosis of these disorders is essential for correct treatment according to the inherent risk of each HTG, since, as has been shown in multiple studies, high fasting and postprandial TG concentrations are an independent risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Beatriz Candás-Estébanez
- Laboratorio Clínico, Hospital de Barcelona, IDIBELL, Hospital Universitari de Bellvitge, Barcelona, España; Laboratorio Clínico, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, España.
| | - Ariadna Padró-Miquel
- Laboratorio Clínico, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, España; Unidad de Riesgo Cardiovascular, Hospital Universitari de Bellvitge, Barcelona, España
| | - Virginia Esteve-Luque
- Laboratorio Clínico, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, España; Unidad de Riesgo Cardiovascular, Hospital Universitari de Bellvitge, Barcelona, España
| |
Collapse
|
10
|
Yeung E, Daniels SR, Patel SS. Dyslipidemia in childhood and adolescence: from screening to management. Curr Opin Endocrinol Diabetes Obes 2021; 28:152-158. [PMID: 33394719 DOI: 10.1097/med.0000000000000607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW To summarize types of dyslipidemia frequently encountered during childhood and adolescence, with a focus on screening, diagnosis, and management. RECENT FINDINGS It is important that screening for atherosclerotic cardiovascular disease (ASCVD) begin in childhood. Genetic testing allows for increased awareness of dyslipidemia and more targeted intervention. Pharmacologic treatment of pediatric dyslipidemias has a good safety profile and can reduce adult ASCVD risk. SUMMARY Much of what is known about pediatric dyslipidemia has been extrapolated from adult data, but recently, there have been increasing investigations within the pediatric population to better guide diagnosis and management of these disorders.
Collapse
Affiliation(s)
- Elizabeth Yeung
- Section of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | |
Collapse
|
11
|
Pirim D, Bunker CH, Hokanson JE, Hamman RF, Demirci FY, Kamboh MI. Hepatic lipase (LIPC) sequencing in individuals with extremely high and low high-density lipoprotein cholesterol levels. PLoS One 2020; 15:e0243919. [PMID: 33326441 PMCID: PMC7743991 DOI: 10.1371/journal.pone.0243919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Common variants in the hepatic lipase (LIPC) gene have been shown to be associated with plasma lipid levels; however, the distribution and functional features of rare and regulatory LIPC variants contributing to the extreme lipid phenotypes are not well known. This study was aimed to catalogue LIPC variants by resequencing the entire LIPC gene in 95 non-Hispanic Whites (NHWs) and 95 African blacks (ABs) with extreme HDL-C levels followed by in silico functional analyses. A total of 412 variants, including 43 novel variants were identified; 56 were unique to NHWs and 234 were unique to ABs. Seventy-eight variants in NHWs and 89 variants in ABs were present either in high HDL-C group or low HDL-C group. Two non-synonymous variants (p.S289F, p.T405M), found in NHWs with high HDL-C group were predicted to have damaging effect on LIPC protein by SIFT, MT2 and PP2. We also found several non-coding variants that possibly reside in the circRNA and lncRNA binding sites and may have regulatory potential, as identified in rSNPbase and RegulomeDB databases. Our results shed light on the regulatory nature of rare and non-coding LIPC variants as well as suggest their important contributions in affecting the extreme HDL-C phenotypes.
Collapse
Affiliation(s)
- Dilek Pirim
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, Bursa Uludag University, Gorukle, Bursa, Turkey
| | - Clareann H. Bunker
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John E. Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Richard F. Hamman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, United States of America
| | - F. Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
12
|
Miyashita K, Lutz J, Hudgins LC, Toib D, Ashraf AP, Song W, Murakami M, Nakajima K, Ploug M, Fong LG, Young SG, Beigneux AP. Chylomicronemia from GPIHBP1 autoantibodies. J Lipid Res 2020; 61:1365-1376. [PMID: 32948662 PMCID: PMC7604722 DOI: 10.1194/jlr.r120001116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Some cases of chylomicronemia are caused by autoantibodies against glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1), an endothelial cell protein that shuttles LPL to the capillary lumen. GPIHBP1 autoantibodies prevent binding and transport of LPL by GPIHBP1, thereby disrupting the lipolytic processing of triglyceride-rich lipoproteins. Here, we review the "GPIHBP1 autoantibody syndrome" and summarize clinical and laboratory findings in 22 patients. All patients had GPIHBP1 autoantibodies and chylomicronemia, but we did not find a correlation between triglyceride levels and autoantibody levels. Many of the patients had a history of pancreatitis, and most had clinical and/or serological evidence of autoimmune disease. IgA autoantibodies were present in all patients, and IgG4 autoantibodies were present in 19 of 22 patients. Patients with GPIHBP1 autoantibodies had low plasma LPL levels, consistent with impaired delivery of LPL into capillaries. Plasma levels of GPIHBP1, measured with a monoclonal antibody-based ELISA, were very low in 17 patients, reflecting the inability of the ELISA to detect GPIHBP1 in the presence of autoantibodies (immunoassay interference). However, GPIHBP1 levels were very high in five patients, indicating little capacity of their autoantibodies to interfere with the ELISA. Recently, several GPIHBP1 autoantibody syndrome patients were treated successfully with rituximab, resulting in the disappearance of GPIHBP1 autoantibodies and normalization of both plasma triglyceride and LPL levels. The GPIHBP1 autoantibody syndrome should be considered in any patient with newly acquired and unexplained chylomicronemia.
Collapse
Affiliation(s)
- Kazuya Miyashita
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
- Immuno-Biological Laboratories (IBL), Fujioka, Gunma, Japan
| | - Jens Lutz
- Medical Clinic, Nephrology-Infectious Diseases, Central Rhine Hospital Group, Koblenz, Germany
| | - Lisa C Hudgins
- Rogosin Institute, Weill Cornell Medical College, New York, NY, USA
| | - Dana Toib
- Department of Pediatrics, Drexel University, Philadelphia, PA, USA
- Section of Pediatric Rheumatology, St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Ambika P Ashraf
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Biotechnology Research Innovation Center, Copenhagen University, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Wade H, Pan K, Su Q. CREBH: A Complex Array of Regulatory Mechanisms in Nutritional Signaling, Metabolic Inflammation, and Metabolic Disease. Mol Nutr Food Res 2020; 65:e2000771. [DOI: 10.1002/mnfr.202000771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Henry Wade
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| | - Kaichao Pan
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| | - Qiaozhu Su
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| |
Collapse
|
14
|
Hegele RA, Dron JS. 2019 George Lyman Duff Memorial Lecture: Three Decades of Examining DNA in Patients With Dyslipidemia. Arterioscler Thromb Vasc Biol 2020; 40:1970-1981. [PMID: 32762461 DOI: 10.1161/atvbaha.120.313065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dyslipidemias include both rare single gene disorders and common conditions that have a complex underlying basis. In London, ON, there is fortuitous close physical proximity between the Lipid Genetics Clinic and the London Regional Genomics Centre. For >30 years, we have applied DNA sequencing of clinical samples to help answer scientific questions. More than 2000 patients referred with dyslipidemias have participated in an ongoing translational research program. In 2013, we transitioned to next-generation sequencing; our targeted panel is designed to concurrently assess both monogenic and polygenic contributions to dyslipidemias. Patient DNA is screened for rare variants underlying 25 mendelian dyslipidemias, including familial hypercholesterolemia, hepatic lipase deficiency, abetalipoproteinemia, and familial chylomicronemia syndrome. Furthermore, polygenic scores for LDL (low-density lipoprotein) and HDL (high-density lipoprotein) cholesterol, and triglycerides are calculated for each patient. We thus simultaneously document both rare and common genetic variants, allowing for a broad view of genetic predisposition for both individual patients and cohorts. For instance, among patients referred with severe hypertriglyceridemia, defined as ≥10 mmol/L (≥885 mg/dL), <1% have a mendelian disorder (ie, autosomal recessive familial chylomicronemia syndrome), ≈15% have heterozygous rare variants (a >3-fold increase over normolipidemic individuals), and ≈35% have an extreme polygenic score (a >3-fold increase over normolipidemic individuals). Other dyslipidemias show a different mix of genetic determinants. Genetic results are discussed with patients and can support clinical decision-making. Integrating DNA testing into clinical care allows for a bidirectional flow of information, which facilitates scientific discoveries and clinical translation.
Collapse
Affiliation(s)
- Robert A Hegele
- From the Department of Medicine (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biochemistry (R.A.H., J.S.D.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (R.A.H., J.S.D.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jacqueline S Dron
- Department of Biochemistry (R.A.H., J.S.D.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (R.A.H., J.S.D.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
15
|
Dron JS, Dilliott AA, Lawson A, McIntyre AD, Davis BD, Wang J, Cao H, Movsesyan I, Malloy MJ, Pullinger CR, Kane JP, Hegele RA. Loss-of-Function
CREB3L3
Variants in Patients With Severe Hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2020; 40:1935-1941. [DOI: 10.1161/atvbaha.120.314168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective:
Genetic determinants of severe hypertriglyceridemia include both common variants with small effects (assessed using polygenic risk scores) plus heterozygous and homozygous rare variants in canonical genes directly affecting triglyceride metabolism. Here, we broadened our scope to detect associations with rare loss-of-function variants in genes affecting noncanonical pathways, including those known to affect triglyceride metabolism indirectly.
Approach and Results:
From targeted next-generation sequencing of 69 metabolism-related genes in 265 patients of European descent with severe hypertriglyceridemia (≥10 mmol/L or ≥885 mg/dL) and 477 normolipidemic controls, we focused on the association of rare heterozygous loss-of-function variants in individual genes. We observed that compared with controls, severe hypertriglyceridemia patients were 20.2× (95% CI, 1.11–366.1;
P
=0.03) more likely than controls to carry a rare loss-of-function variant in
CREB3L3
, which encodes a transcription factor that regulates several target genes with roles in triglyceride metabolism.
Conclusions:
Our findings indicate that rare variants in a noncanonical gene for triglyceride metabolism, namely
CREB3L3
, contribute significantly to severe hypertriglyceridemia. Secondary genes and pathways should be considered when evaluating the genetic architecture of this complex trait.
Collapse
Affiliation(s)
- Jacqueline S. Dron
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
- Department of Biochemistry (J.S.D., A.A.D., A.L., R.A.H.), Western University, London, ON, Canada
| | - Allison A. Dilliott
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
- Department of Biochemistry (J.S.D., A.A.D., A.L., R.A.H.), Western University, London, ON, Canada
| | - Arden Lawson
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
- Department of Biochemistry (J.S.D., A.A.D., A.L., R.A.H.), Western University, London, ON, Canada
| | - Adam D. McIntyre
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
| | - Brent D. Davis
- Schulich School of Medicine and Dentistry, and Department of Computer Science (B.D.D.), Western University, London, ON, Canada
| | - Jian Wang
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
| | - Henian Cao
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
| | - Irina Movsesyan
- Cardiovascular Research Institute, University of California, San Francisco (I.M., M.J.M., C.R.P., J.P.K.)
| | - Mary J. Malloy
- Cardiovascular Research Institute, University of California, San Francisco (I.M., M.J.M., C.R.P., J.P.K.)
| | - Clive R. Pullinger
- Cardiovascular Research Institute, University of California, San Francisco (I.M., M.J.M., C.R.P., J.P.K.)
| | - John P. Kane
- Cardiovascular Research Institute, University of California, San Francisco (I.M., M.J.M., C.R.P., J.P.K.)
| | - Robert A. Hegele
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
- Department of Biochemistry (J.S.D., A.A.D., A.L., R.A.H.), Western University, London, ON, Canada
- Department of Medicine (R.A.H.), Western University, London, ON, Canada
| |
Collapse
|
16
|
Li G, Zhang J, Jiang Q, Liu B, Xu K. CREBH knockout accelerates hepatic fibrosis in mouse models of diet-induced nonalcoholic fatty liver disease. Life Sci 2020; 254:117795. [PMID: 32417373 DOI: 10.1016/j.lfs.2020.117795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
AIMS The primary focus of this study was to explore the effects of cyclic AMP response element-binding protein H (CREBH) on the development of nonalcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS CREBH knockout (KO) and wildtype (WT) mice were averagely divided into a methionine and choline-deficient (MCD) or high fat (HF) diet group and respective chow diet (CD) groups. Mice were sacrificed after 4-week treatment for MCD model and 24-week treatment for HF model. KEY FINDINGS Characteristics of nonalcoholic steatohepatitis-related liver fibrosis in KO-MCD/HF group were verified by hepatic histological analyses. Compared with WT-MCD/HF group, levels of plasma ALT and hepatic hydroxyproline increased in KO-MCD/HF group. Significantly higher levels of MCP-1, αSMA, Desmin, COL-1, TIMP-1, TGF-β1, TGF-β2 were found while MMP-9 and FGF21 mRNA levels decreased in KO-MCD/HF group. There was also a distinct difference of mRNA levels of TNFα, CTGF and CCND1 in KO-HF group compared with controls. Protein levels of MCP-1, BAX, αSMA, COL-1, TGF-β1 and SMAD2/3 significantly increased in KO-MCD/HF group and CCND1 was also upregulated in KO-HF group compared to their counterparts. SIGNIFICANCE CREBH knockout may primarily regulate the TGF-β1 signaling pathway via TGF-β2 and FGF21 resulting in more severe inflammation and fibrosis in NAFLD.
Collapse
Affiliation(s)
- Guixin Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junli Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianqian Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Beibei Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
17
|
Plengpanich W, Muanpetch S, Charoen S, Kiateprungvej A, Khovidhunkit W. Genetic and functional studies of the LMF1 gene in Thai patients with severe hypertriglyceridemia. Mol Genet Metab Rep 2020; 23:100576. [PMID: 32190547 PMCID: PMC7068683 DOI: 10.1016/j.ymgmr.2020.100576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/23/2022] Open
Abstract
Severe hypertriglyceridemia (HTG) due to chylomicronemia is associated with acute pancreatitis and is related to genetic disturbances in several proteins involved in triglyceride (TG) metabolism. Lipase maturation factor 1 (LMF1) is a protein essential for the maturation of lipoprotein lipase (LPL). In this study, we examined the genetic spectrum of the LMF1 gene among subjects with severe HTG and investigated the functional significance of 6 genetic variants in vitro. All 11 exons of the LMF1 gene were sequenced in 101 Thai subjects with severe HTG. For an in vitro study, we performed site-directed mutagenesis, transient expression in cld cells, and measured LPL protein and LPL activity. We identified 2 common variants [p.(Gly36Asp) and p.(Pro562Arg)] and 12 rare variants [p.(Thr143Met), p.(Asn249Ser), p.(Ala287Val), p.(Met346Val), p.(Thr395Ile), p.(Gly410Arg), p.(Asp433Asn), p.(Asp491Asn), p.(Asn501Tyr), p.(Ala504Val), p.(Arg523His), and p.(Leu563Arg)] in 29 patients. In vitro study of the p.(Gly36Asp), p.(Asn249Ser), p.(Ala287Val), p.(Asn501Tyr), p.(Pro562Arg) and p.(Leu563Arg) variants, however, revealed that both LPL mass and LPL activity in each of the transfected cells were not significantly different from those in the wild type LMF1 transfected cells, suggesting that these variants might not play a significant role in severe HTG phenotype in our subjects. Among 101 subjects with severe hypertriglyceridemia (HTG), 2 common and 12 rare variants in the LMF1 gene were identified None of the 6 missense variants studied were associated with a reduction in lipoprotein mass or activity These rare variants in the LMF1 gene may not play an important role in severe HTG phenotypes in the Thai population
Collapse
Affiliation(s)
- Wanee Plengpanich
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | - Suwanna Muanpetch
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | - Supannika Charoen
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | - Arunrat Kiateprungvej
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | - Weerapan Khovidhunkit
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Dron JS, Wang J, McIntyre AD, Cao H, Hegele RA. The polygenic nature of mild-to-moderate hypertriglyceridemia. J Clin Lipidol 2020; 14:28-34.e2. [PMID: 32033914 DOI: 10.1016/j.jacl.2020.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Patients with mild-to-moderate hypertriglyceridemia (HTG) are thought to share specific genetic susceptibility factors that are also present in patients with severe HTG, but no data have been reported on this issue. OBJECTIVE The objective of this study was to characterize genetic profiles of patients with mild-to-moderate HTG and compare them to patients with severe HTG. METHODS DNA from patients with mild-to-moderate HTG was sequenced using our targeted sequencing panel, "LipidSeq". For each patient, we assessed 1) rare variants disrupting five TG metabolism genes and 2) the accumulation of 16 common single-nucleotide polymorphisms (SNPs) using a polygenic risk score. The genetic profiles for these patients were then compared with normolipidemic controls from the 1000 Genomes Project and with patients with severe HTG. RESULTS Across 134 patients with mild-to-moderate HTG, 9.0% carried heterozygous rare variants and 26.9% had an excess accumulation of common SNPs. Patients with mild-to-moderate HTG were 2.38 times (95% CI [1.13-4.99]; P = .021) more likely to carry a rare variant and 3.26 times (95% CI [2.02-5.26]; P < .0001) more likely to have an extreme polygenic risk score compared with the 1000 Genomes Project. In addition, patients with severe HTG were 1.86 times (95% CI [0.98-3.51]; P = .032) more likely to carry a rare variant and 1.63 times (95% CI [1.07-2.48]; P = .013) more likely to have an extreme polygenic risk score than patients with mild-to-moderate HTG. CONCLUSIONS We report an increased prevalence of genetic determinants in patients with an increased severity of the HTG phenotype when considering either rare variants disrupting TG metabolism genes or an excess accumulation of common SNPs. As well, the findings confirm that the most prevalent genetic contributor to HTG, regardless of severity, is polygenic SNP accumulation.
Collapse
Affiliation(s)
- Jacqueline S Dron
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Henian Cao
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
19
|
Abstract
Hypertriglyceridemia, a commonly encountered phenotype in cardiovascular and metabolic clinics, is surprisingly complex. A range of genetic variants, from single-nucleotide variants to large-scale copy number variants, can lead to either the severe or mild-to-moderate forms of the disease. At the genetic level, severely elevated triglyceride levels resulting from familial chylomicronemia syndrome (FCS) are caused by homozygous or biallelic loss-of-function variants in LPL, APOC2, APOA5, LMF1, and GPIHBP1 genes. In contrast, susceptibility to multifactorial chylomicronemia (MCM), which has an estimated prevalence of ~1 in 600 and is at least 50-100-times more common than FCS, results from two different types of genetic variants: (1) rare heterozygous variants (minor allele frequency <1%) with variable penetrance in the five causal genes for FCS; and (2) common variants (minor allele frequency >5%) whose individually small phenotypic effects are quantified using a polygenic score. There is indirect evidence of similar complex genetic predisposition in other clinical phenotypes that have a component of hypertriglyceridemia, such as combined hyperlipidemia and dysbetalipoproteinemia. Future considerations include: (1) evaluation of whether the specific type of genetic predisposition to hypertriglyceridemia affects medical decisions or long-term outcomes; and (2) searching for other genetic contributors, including the role of genome-wide polygenic scores, novel genes, non-linear gene-gene or gene-environment interactions, and non-genomic mechanisms including epigenetics and mitochondrial DNA.
Collapse
|
20
|
Basu D, Bornfeldt KE. Hypertriglyceridemia and Atherosclerosis: Using Human Research to Guide Mechanistic Studies in Animal Models. Front Endocrinol (Lausanne) 2020; 11:504. [PMID: 32849290 PMCID: PMC7423973 DOI: 10.3389/fendo.2020.00504] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Human studies support a strong association between hypertriglyceridemia and atherosclerotic cardiovascular disease (CVD). However, whether a causal relationship exists between hypertriglyceridemia and increased CVD risk is still unclear. One plausible explanation for the difficulty establishing a clear causal role for hypertriglyceridemia in CVD risk is that lipolysis products of triglyceride-rich lipoproteins (TRLs), rather than the TRLs themselves, are the likely mediators of increased CVD risk. This hypothesis is supported by studies of rare mutations in humans resulting in impaired clearance of such lipolysis products (remnant lipoprotein particles; RLPs). Several animal models of hypertriglyceridemia support this hypothesis and have provided additional mechanistic understanding. Mice deficient in lipoprotein lipase (LPL), the major vascular enzyme responsible for TRL lipolysis and generation of RLPs, or its endothelial anchor GPIHBP1, are severely hypertriglyceridemic but develop only minimal atherosclerosis as compared with animal models deficient in apolipoprotein (APO) E, which is required to clear TRLs and RLPs. Likewise, animal models convincingly show that increased clearance of TRLs and RLPs by LPL activation (achieved by inhibition of APOC3, ANGPTL3, or ANGPTL4 action, or increased APOA5) results in protection from atherosclerosis. Mechanistic studies suggest that RLPs are more atherogenic than large TRLs because they more readily enter the artery wall, and because they are enriched in cholesterol relative to triglycerides, which promotes pro-atherogenic effects in lesional cells. Other mechanistic studies show that hepatic receptors (LDLR and LRP1) and APOE are critical for RLP clearance. Thus, studies in animal models have provided additional mechanistic insight and generally agree with the hypothesis that RLPs derived from TRLs are highly atherogenic whereas hypertriglyceridemia due to accumulation of very large TRLs in plasma is not markedly atherogenic in the absence of TRL lipolysis products.
Collapse
Affiliation(s)
- Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, United States
| | - Karin E. Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- *Correspondence: Karin E. Bornfeldt
| |
Collapse
|
21
|
D'Erasmo L, Di Costanzo A, Cassandra F, Minicocci I, Polito L, Montali A, Ceci F, Arca M. Spectrum of Mutations and Long-Term Clinical Outcomes in Genetic Chylomicronemia Syndromes. Arterioscler Thromb Vasc Biol 2019; 39:2531-2541. [PMID: 31619059 DOI: 10.1161/atvbaha.119.313401] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the prototypes of monogenic and polygenic conditions underlying genetically based severe hypertriglyceridemia. These conditions have been only partially investigated so that a systematic comparison of their characteristics remains incomplete. We aim to compare genetic profiles and clinical outcomes in FCS and MCS. Approach and Results: Thirty-two patients with severe hypertriglyceridemia (triglyceride >1000 mg/dL despite lipid-lowering treatments with or without history of acute pancreatitis) were enrolled. Rare and common variants were screened using a panel of 18 triglyceride-raising genes, including the canonical LPL, APOC2, APOA5, GP1HBP1, and LMF1. Clinical information was collected retrospectively for a median period of 44 months. Across the study population, 37.5% were classified as FCS due to the presence of biallelic, rare mutations and 59.4% as MCS due to homozygosity for nonpathogenic or heterozygosity for pathogenic variants in canonical genes, as well as for rare and low frequency variants in noncanonical genes. As compared with MCS, FCS patients showed a lower age of hypertriglyceridemia onset, higher levels of on-treatment triglycerides, and 3-fold higher incidence rate of acute pancreatitis. CONCLUSIONS Our data indicate that the genetic architecture and natural history of FCS and MCS are different. FCS expressed the most severe clinical phenotype as determined by resistance to triglyceride-lowering medications and higher incidence of acute pancreatitis episodes. The most common genetic abnormality underlying FCS was represented by biallelic mutations in LPL while APOA5 variants, in combination with high rare polygenic burden, were the most frequent genotype of MCS.
Collapse
Affiliation(s)
- Laura D'Erasmo
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| | - Alessia Di Costanzo
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| | - Francesca Cassandra
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| | - Ilenia Minicocci
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| | - Luca Polito
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| | - Anna Montali
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| | - Fabrizio Ceci
- Department of Experimental Medicine (F. Ceci), Sapienza University of Rome, Italy
| | - Marcello Arca
- From the Department of Internal Medicine and Medical Specialties (L.D., A.D.C., F. Cassandra, I.M., L.P., A.M., M.A.), Sapienza University of Rome, Italy
| |
Collapse
|
22
|
Dron JS, Wang J, McIntyre AD, Cao H, Robinson JF, Duell PB, Manjoo P, Feng J, Movsesyan I, Malloy MJ, Pullinger CR, Kane JP, Hegele RA. Partial LPL deletions: rare copy-number variants contributing towards severe hypertriglyceridemia. J Lipid Res 2019; 60:1953-1958. [PMID: 31519763 DOI: 10.1194/jlr.p119000335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/09/2019] [Indexed: 01/31/2023] Open
Abstract
Severe hypertriglyceridemia (HTG) is a relatively common form of dyslipidemia with a complex pathophysiology and serious health complications. HTG can develop in the presence of rare genetic factors disrupting genes involved in the triglyceride (TG) metabolic pathway, including large-scale copy-number variants (CNVs). Improvements in next-generation sequencing technologies and bioinformatic analyses have better allowed assessment of CNVs as possible causes of or contributors to severe HTG. We screened targeted sequencing data of 632 patients with severe HTG and identified partial deletions of the LPL gene, encoding the central enzyme involved in the metabolism of TG-rich lipoproteins, in four individuals (0.63%). We confirmed the genomic breakpoints in each patient with Sanger sequencing. Three patients carried an identical heterozygous deletion spanning the 5' untranslated region (UTR) to LPL exon 2, and one patient carried a heterozygous deletion spanning the 5'UTR to LPL exon 1. All four heterozygous CNV carriers were determined to have multifactorial severe HTG. The predicted null nature of our identified LPL deletions may contribute to relatively higher TG levels and a more severe clinical phenotype than other forms of genetic variation associated with the disease, particularly in the polygenic state. The identification of novel CNVs in patients with severe HTG suggests that methods for CNV detection should be included in the diagnostic workup and molecular genetic evaluation of patients with high TG levels.
Collapse
Affiliation(s)
- Jacqueline S Dron
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada.,Departments of Biochemistry Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - Henian Cao
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - John F Robinson
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| | - P Barton Duell
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239
| | - Priya Manjoo
- Department of Medicine, Gordon and Leslie Diamond Centre, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - James Feng
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158
| | - Irina Movsesyan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158
| | - Mary J Malloy
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158
| | - John P Kane
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada .,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada.,Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
23
|
The Role of Genetics in Cardiovascular Risk Reduction: Findings From a Single Lipid Clinic and Review of the Literature. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2019; 21:200-204. [PMID: 31153847 DOI: 10.1016/j.carrev.2019.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Genetic information is not routinely obtained in the management of most lipid disorders or in primary or secondary prevention of cardiovascular disease (CVD). We sought to determine the prevalence of pathogenic variants associated with lipoprotein metabolism or coronary artery disease (CAD) in a single lipid clinic and discuss the future use of genetic information in CVD prevention. METHODS Genetic testing was offered to patients with hypertriglyceridemia (defined as pre-treatment fasting triglycerides ≥150 mg/dL), elevated LDL-C (defined as pre-treatment ≥190 mg/dL), low HDL-C (defined as ≤40 mg/dL), elevated lipoprotein (a) (defined as ≥50 mg/dL or 100 nmol/L) or premature CAD (defined as an acute coronary syndrome or revascularization before age 40 years in men and 50 years in women) using next-generation DNA sequencing of 327 exons and selected variants in 129 genes known or suspected to be associated with lipoprotein metabolism or CAD. RESULTS 82 of 84 patients (97.6%) were found to have a variant associated with abnormal lipid metabolism or CAD. The most common pathogenic or likely pathogenic variants included those of the LDL receptor (15 patients) and lipoprotein lipase (9 patients). Other common variants included those of apolipoprotein A5 (14 patients) and variants associated with elevated lipoprotein (a) (25 patients). CONCLUSIONS The majority of patients presenting to a single lipid clinic were found to have at least one variant associated with abnormal lipoprotein metabolism or CAD. Incorporating genetic information, including the use of genetic risk scores, is anticipated in the future care of lipid disorders and CVD prevention.
Collapse
|
24
|
Xiao W, Gong C, Liu X, Liu Y, Peng S, Luo D, Wang R, Li T, Zhao J, Xiong C, Liang S, Xu H. Association of P2X7R gene with serum lipid profiles in Chinese postmenopausal women with osteoporosis. Climacteric 2019; 22:498-506. [DOI: 10.1080/13697137.2019.1604654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- W. Xiao
- Department of Pathology, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - C. Gong
- Department of Science and Education, Chest Hospital of Jiangxi Province, Nanchang, Jiangxi, China
| | - X. Liu
- Clinical Medical College, JiangXi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Y. Liu
- Department of Physiology, JiangXi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - S. Peng
- Basic Medical College, JiangXi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - D. Luo
- Basic Medical College, JiangXi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - R. Wang
- Department of Physiology, JiangXi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - T. Li
- Clinical Medical College, JiangXi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - J. Zhao
- Clinical Medical College, JiangXi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - C. Xiong
- Department of Nursing, The Second Affliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - S. Liang
- Department of Physiology, JiangXi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - H. Xu
- Department of Physiology, JiangXi Medical College of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Kim H, Williams D, Qiu Y, Song Z, Yang Z, Kimler V, Goldberg A, Zhang R, Yang Z, Chen X, Wang L, Fang D, Lin JD, Zhang K. Regulation of hepatic autophagy by stress-sensing transcription factor CREBH. FASEB J 2019; 33:7896-7914. [PMID: 30912978 DOI: 10.1096/fj.201802528r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy, a lysosomal degradative pathway in response to nutrient limitation, plays an important regulatory role in lipid homeostasis upon energy demands. Here, we demonstrated that the endoplasmic reticulum-tethered, stress-sensing transcription factor cAMP-responsive element-binding protein, hepatic-specific (CREBH) functions as a major transcriptional regulator of hepatic autophagy and lysosomal biogenesis in response to nutritional or circadian signals. CREBH deficiency led to decreased hepatic autophagic activities and increased hepatic lipid accumulation upon starvation. Under unfed or during energy-demanding phases of the circadian cycle, CREBH is activated to drive expression of the genes encoding the key enzymes or regulators in autophagosome formation or autophagic process, including microtubule-associated protein 1B-light chain 3, autophagy-related protein (ATG)7, ATG2b, and autophagosome formation Unc-51 like kinase 1, and the genes encoding functions in lysosomal biogenesis and homeostasis. Upon nutrient starvation, CREBH regulates and interacts with peroxisome proliferator-activated receptor α (PPARα) and PPARγ coactivator 1α to synergistically drive expression of the key autophagy genes and transcription factor EB, a master regulator of lysosomal biogenesis. Furthermore, CREBH regulates rhythmic expression of the key autophagy genes in the liver in a circadian-dependent manner. In summary, we identified CREBH as a key transcriptional regulator of hepatic autophagy and lysosomal biogenesis for the purpose of maintaining hepatic lipid homeostasis under nutritional stress or circadian oscillation.-Kim, H., Williams, D., Qiu, Y., Song, Z., Yang, Z., Kimler, V., Goldberg, A., Zhang, R., Yang, Z., Chen, X., Wang, L., Fang, D., Lin, J. D., Zhang, K. Regulation of hepatic autophagy by stress-sensing transcription factor CREBH.
Collapse
Affiliation(s)
- Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dreana Williams
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yining Qiu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhao Yang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Victoria Kimler
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Andrew Goldberg
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zengquan Yang
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | - Xuequn Chen
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Li Wang
- Department of Physiology and Neurobiology-Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA.,Department of Internal Medicine, Liver Center, Yale University, New Haven, Connecticut, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jiandie D Lin
- Life Sciences Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA.,Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
26
|
Severe hypertriglyceridemia is primarily polygenic. J Clin Lipidol 2019; 13:80-88. [DOI: 10.1016/j.jacl.2018.10.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
|
27
|
Okopień B, Bułdak Ł, Bołdys A. Benefits and risks of the treatment with fibrates––a comprehensive summary. Expert Rev Clin Pharmacol 2018; 11:1099-1112. [DOI: 10.1080/17512433.2018.1537780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
28
|
Benes LB, Brandt DJ, Brandt EJ, Davidson MH. How Genomics Is Personalizing the Management of Dyslipidemia and Cardiovascular Disease Prevention. Curr Cardiol Rep 2018; 20:138. [DOI: 10.1007/s11886-018-1079-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Péterfy M, Bedoya C, Giacobbe C, Pagano C, Gentile M, Rubba P, Fortunato G, Di Taranto MD. Characterization of two novel pathogenic variants at compound heterozygous status in lipase maturation factor 1 gene causing severe hypertriglyceridemia. J Clin Lipidol 2018; 12:1253-1259. [PMID: 30172716 DOI: 10.1016/j.jacl.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/07/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Severe hypertriglyceridemia is a rare disease characterized by triglyceride levels higher than 1000 mg/dL (11.3 mmol/L) and acute pancreatitis. The disease is caused by pathogenic variants in genes encoding lipoprotein lipase (LPL), apolipoprotein A5, apolipoprotein C2, glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1, and lipase maturation factor 1 (LMF1). OBJECTIVE We aim to identify the genetic cause of severe hypertriglyceridemia and characterize the new variants in a patient with severe hypertriglyceridemia. METHODS The proband was a male showing severe hypertriglyceridemia (triglycerides 1416 mg/dL, 16.0 mmol/L); proband's relatives were also screened. Genetic screening included direct sequencing of the above genes and identification of large rearrangements in the LPL gene. Functional characterization of mutant LMF1 variants was performed by complementing LPL maturation in transfected LMF1-deficient mouse fibroblasts. RESULTS The proband and his affected brother were compound heterozygotes for variants in the LMF1 gene never identified as causative of severe hypertriglyceridemia c.[157delC;1351C>T];[410C>T], p.[(Arg53Glyfs*5)];[(Ser137Leu)]. Functional analysis demonstrated that the p.(Arg53Glyfs*5) truncation completely abolished and the p.(Ser137Leu) missense variant dramatically diminished the lipase maturation activity of LMF1. CONCLUSIONS In addition to a novel truncating variant, we describe for the first time a missense variant functionally demonstrated affecting the lipase maturation function of LMF1. This is the first case in which compound heterozygous variants in LMF1 were functionally demonstrated as causative of severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Miklós Péterfy
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Candy Bedoya
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy
| | - Carmen Pagano
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Marco Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Paolo Rubba
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy
| | - Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy.
| |
Collapse
|
30
|
Serveaux Dancer M, Di Filippo M, Marmontel O, Valéro R, Piombo Rivarola MDC, Peretti N, Caussy C, Krempf M, Vergès B, Mahl M, Marçais C, Moulin P, Charrière S. New rare genetic variants of LMF1 gene identified in severe hypertriglyceridemia. J Clin Lipidol 2018; 12:1244-1252. [PMID: 30037590 DOI: 10.1016/j.jacl.2018.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The LMF1 (lipase maturation factor 1) gene encodes a protein involved in lipoprotein lipase and hepatic lipase maturation. Homozygous mutations in LMF1 leading to severe hypertriglyceridemia (SHTG) are rare in the literature. A few additional rare LMF1 variants have been described with poor functional studies. OBJECTIVE The aim of this study was to assess the frequency of LMF1 variants in a cohort of 385 patients with SHTG, without homozygous or compound heterozygous deleterious mutations identified in lipoprotein lipase (LPL), apolipoprotein A5 (APOA5), apolipoprotein C2 (APOC2), glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) genes, and to determine their functionality. METHODS LMF1 coding variants were screened using denaturing high-performance liquid chromatography followed by direct sequencing. In silico studies of LMF1 variants were performed, followed by in vitro functional studies using human embryonic kidney 293T (HEK-293T) cells cotransfected with vectors encoding human LPL and LMF1 cDNA. LPL activity was measured in cell culture medium after heparin addition using human VLDL-TG as substrate. RESULTS Nineteen nonsynonymous coding LMF1 variants were identified in 65 patients; 10 variants were newly described in SHTG. In vitro, p.Gly172Arg, p.Arg354Trp, p.Arg364Gln, and p.Arg537Trp LMF1 variants decreased LPL activity, and the p.Trp464Ter variant completely abolished LPL activity. We identified a young girl heterozygote for the p.Trp464Ter variant and a homozygote carrier of the p.Gly172Arg variant with a near 50% decreased LPL activity in vitro and in vivo. CONCLUSION The study confirms the rarity of LMF1 variants in a large cohort of patients with SHTG. LMF1 variants are likely to be involved in multifactorial hyperchylomicronemia. Partial LMF1 defects could be associated with intermittent phenotype as described for p.Gly172Arg homozygous and p.Trp464Ter heterozygous carriers.
Collapse
Affiliation(s)
- Marine Serveaux Dancer
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Centre de Biologie Sud, Laboratoire de Biochimie moléculaire et métabolique, Pierre-Bénite, France
| | - Mathilde Di Filippo
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Service de Biochimie et Biologie moléculaire Grand Est, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Oriane Marmontel
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Service de Biochimie et Biologie moléculaire Grand Est, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - René Valéro
- Université d'Aix-Marseille, C2VN, INSERM UMR1062, INRA UMR1260, APHM, service de nutrition, maladies métaboliques, endocrinologie Hôpital La Conception, Marseille, France
| | | | - Noël Peretti
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Service d'Hépato-Gastroentérologie Nutrition pédiatrique, Bron, France
| | - Cyrielle Caussy
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'endocrinologie, diabète, nutrition, Centre Intégré de l'Obésité Rhône-Alpes, Fédération Hospitalo-Universitaire DO-iT, Lyon, Pierre-Bénite, France
| | - Michel Krempf
- CHU de Nantes, Hôpital de l'Hôtel Dieu, Service d'endocrinologie, maladies métaboliques et nutrition, Institut du thorax, Centre de Recherche en Nutrition Humaine, INRA, UMR 1280, Physiologie des Adaptations Nutritionnelles, Nantes, France
| | - Bruno Vergès
- CHU de Dijon, Service d'endocrinologie-diabétologie, INSERM LNC-UMR 1231, Dijon, France
| | - Murielle Mahl
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Centre de Biologie Sud, Laboratoire de Biochimie moléculaire et métabolique, Pierre-Bénite, France
| | - Christophe Marçais
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Centre de Biologie Sud, Laboratoire de Biochimie moléculaire et métabolique, Pierre-Bénite, France
| | - Philippe Moulin
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Hôpital Louis Pradel, Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Bron, France
| | - Sybil Charrière
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Hôpital Louis Pradel, Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Bron, France.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Rare large-effect genetic variants underlie monogenic dyslipidemias, whereas common small-effect genetic variants - single nucleotide polymorphisms (SNPs) - have modest influences on lipid traits. Over the past decade, these small-effect SNPs have been shown to cumulatively exert consistent effects on lipid phenotypes under a polygenic framework, which is the focus of this review. RECENT FINDINGS Several groups have reported polygenic risk scores assembled from lipid-associated SNPs, and have applied them to their respective phenotypes. For lipid traits in the normal population distribution, polygenic effects quantified by a score that integrates several common polymorphisms account for about 20-30% of genetic variation. Among individuals at the extremes of the distribution, that is, those with clinical dyslipidemia, the polygenic component includes both rare variants with large effects and common polymorphisms: depending on the trait, 20-50% of susceptibility can be accounted for by this assortment of genetic variants. SUMMARY Accounting for polygenic effects increases the numbers of dyslipidemic individuals who can be explained genetically, but a substantial proportion of susceptibility remains unexplained. Whether documenting the polygenic basis of dyslipidemia will affect outcomes in clinical trials or prospective observational studies remains to be determined.
Collapse
|
32
|
Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO, Remaley AT. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 2017; 267:49-60. [PMID: 29100061 DOI: 10.1016/j.atherosclerosis.2017.10.025] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/03/2017] [Accepted: 10/19/2017] [Indexed: 02/08/2023]
Abstract
Apolipoprotein C-II (apoC-II) is a small exchangeable apolipoprotein found on triglyceride-rich lipoproteins (TRL), such as chylomicrons (CM) and very low-density lipoproteins (VLDL), and on high-density lipoproteins (HDL), particularly during fasting. ApoC-II plays a critical role in TRL metabolism by acting as a cofactor of lipoprotein lipase (LPL), the main enzyme that hydrolyses plasma triglycerides (TG) on TRL. Here, we present an overview of the role of apoC-II in TG metabolism, emphasizing recent novel findings regarding its transcriptional regulation and biochemistry. We also review the 24 genetic mutations in the APOC2 gene reported to date that cause hypertriglyceridemia (HTG). Finally, we describe the clinical presentation of apoC-II deficiency and assess the current therapeutic approaches, as well as potential novel emerging therapies.
Collapse
Affiliation(s)
- Anna Wolska
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Richard L Dunbar
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ICON plc, North Wales, PA, USA; Cardiometabolic and Lipid Clinic, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Lita A Freeman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masako Ueda
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo J Amar
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Denis O Sviridov
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Target sequencing of 307 deafness genes identifies candidate genes implicated in microtia. Oncotarget 2017; 8:63324-63332. [PMID: 28968992 PMCID: PMC5609924 DOI: 10.18632/oncotarget.18803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/29/2017] [Indexed: 01/24/2023] Open
Abstract
Microtia is a congenital malformation of the external ear caused by genetic and/or environmental factors. However, no causal genetic mutations have been identified in isolated microtia patients. In this study, we utilized targeted genomic capturing combined with next-generation sequencing to screen for mutations in 307 deafness genes in 32 microtia patients. Forty-two rare heterozygous mutations in 25 genes, including 22 novel mutations in 24 isolated unilateral microtia cases were identified. Pathway analysis found five pathways especially focal adhesion pathway and ECM-receptor interaction pathway were significantly associated with microtia. The low-frequency variants association study was used and highlighted several strong candidate genes MUC4, MUC6, COL4A4, MYO7A, AKAP12, COL11A1, DSPP, ESPN, GPR98, PCDH15, BSN, CACNA1D, TPRN, and USH1C for microtia (P = 2.51 × 10-4). Among these genes, COL4A4 and COL11A1 may lead to microtia through focal adhesion pathway and ECM-receptor interaction pathway which are connected to the downstream Wnt signaling pathway. The present results indicate that certain genes may affect both external/middle and inner ear development, and demonstrate the benefits of using a capture array in microtia patients.
Collapse
|
34
|
Yang Z, Kim H, Ali A, Zheng Z, Zhang K. Interaction between stress responses and circadian metabolism in metabolic disease. LIVER RESEARCH 2017; 1:156-162. [PMID: 29430321 PMCID: PMC5805151 DOI: 10.1016/j.livres.2017.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circadian rhythms play crucial roles in orchestrating diverse physiological processes that are critical for health and disease. Dysregulated circadian rhythms are closely associated with various human metabolic diseases, including type 2 diabetes, cardiovascular disease, and non-alcoholic fatty liver disease. Modern lifestyles are frequently associated with an irregular circadian rhythm, which poses a significant risk to public health. While the central clock has a set periodicity, circadian oscillators in peripheral organs, particularly in the liver, can be entrained by metabolic alterations or stress cues. At the molecular level, the signal transduction pathways that mediate stress responses interact with, and are often integrated with, the key determinants of circadian oscillation, to maintain metabolic homeostasis under physiological or pathological conditions. In the liver, a number of nuclear receptors or transcriptional regulators, which are regulated by metabolites, hormones, the circadian clock, or environmental stressors, serve as direct links between stress responses and circadian metabolism. In this review, we summarize recent advances in the understanding of the interactions between stress responses (the endoplasmic reticulum (ER) stress response, the oxidative stress response, and the inflammatory response) and circadian metabolism, and the role of these interactions in the development of metabolic diseases.
Collapse
Affiliation(s)
- Zhao Yang
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA
| | - Arushana Ali
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA
| | - Ze Zheng
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA,Department of Microbiology, Immunology, and Biochemistry, Wayne State University, MI, USA,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA,Corresponding author. Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. (K. Zhang)
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Plasma triglycerides are routinely measured with a lipid profile, and elevated plasma triglycerides are commonly encountered in the clinic. The confounded nature of this trait, which is correlated with numerous other metabolic perturbations, including depressed high-density lipoprotein cholesterol (HDL-C), has thwarted efforts to directly implicate triglycerides as causal in atherogenesis. Human genetic approaches involving large-scale populations and high-throughput genomic assessment under a Mendelian randomization framework have undertaken to sort out questions of causality. RECENT FINDINGS We review recent large-scale meta-analyses of cohorts and population-based sequencing studies designed to address whether common and rare variants in genes whose products are determinants of plasma triglycerides are also associated with clinical cardiovascular endpoints. The studied loci include genes encoding lipoprotein lipase and proteins that interact with it, such as apolipoprotein (apo) A-V, apo C-III and angiopoietin-like proteins 3 and 4, and common polymorphisms identified in genome-wide association studies. Triglyceride-raising variant alleles of these genes showed generally strong associations with clinical cardiovascular endpoints. However, in most cases, a second lipid disturbance-usually depressed HDL-C-was concurrently associated. While the findings collectively shift our understanding towards a potential causal role for triglycerides, we still cannot rule out the possibilities that triglycerides are a component of a joint phenotype with low HDL-C or that they are but markers of deeper causal metabolic disturbances that are not routinely measured in epidemiological-scale genetic studies.
Collapse
Affiliation(s)
- Jacqueline S. Dron
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7 Canada
| | - Robert A. Hegele
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7 Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
| |
Collapse
|
36
|
Connolly S, Anney R, Gallagher L, Heron EA. A genome-wide investigation into parent-of-origin effects in autism spectrum disorder identifies previously associated genes including SHANK3. Eur J Hum Genet 2017; 25:234-239. [PMID: 27876814 PMCID: PMC5255953 DOI: 10.1038/ejhg.2016.153] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/28/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is known to be a heritable neurodevelopmental disorder affecting more than 1% of the population but in the majority of ASD cases, the genetic cause has not been identified. Parent-of-origin effects have been highlighted as an important mechanism in the pathology of neurodevelopmental disorders such as Prader-Willi and Angelman syndrome, with individuals with these syndromes often exhibiting ASD symptoms. Consequently, systematic investigation of these effects in ASD is clearly an important line of investigation in elucidating the underlying genetic mechanisms. Using estimation of maternal, imprinting and interaction effects using multinomial modelling (EMIM), we simultaneously investigated imprinting, maternal genetic effects and associations in the Autism Genome Project and Simons Simplex Consortium genome-wide association data sets. To avoid using the overly stringent genome-wide association study significance level, we used a Bayesian threshold that takes into account the sample size, allele frequency and any available prior knowledge. Between the two data sets, we identified a total of 18 imprinting effects and 68 maternal genetic effects that met this Bayesian threshold criteria, but none met the threshold in both data sets. We identified imprinting and maternal genetic effects for regions that have previously shown evidence for parent-of-origin effects in ASD. Together with these findings, we have identified maternal genetic effects not previously identified in ASD at a locus in SHANK3 on chromosome 22 and a locus in WBSCR17 on chromosome 7 (associated with Williams syndrome). Both genes have previously been associated with ASD.
Collapse
Affiliation(s)
- Siobhan Connolly
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, Dublin, Ireland
| | - Richard Anney
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, Dublin, Ireland
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Cathays, Cardiff, UK
| | - Louise Gallagher
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, Dublin, Ireland
| | - Elizabeth A Heron
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, Dublin, Ireland
| |
Collapse
|
37
|
Cefalù AB, Spina R, Noto D, Ingrassia V, Valenti V, Giammanco A, Fayer F, Misiano G, Cocorullo G, Scrimali C, Palesano O, Altieri GI, Ganci A, Barbagallo CM, Averna MR. Identification of a novel LMF1 nonsense mutation responsible for severe hypertriglyceridemia by targeted next-generation sequencing. J Clin Lipidol 2017; 11:272-281.e8. [PMID: 28391895 DOI: 10.1016/j.jacl.2017.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Severe hypertriglyceridemia (HTG) may result from mutations in genes affecting the intravascular lipolysis of triglyceride (TG)-rich lipoproteins. OBJECTIVE The aim of this study was to develop a targeted next-generation sequencing panel for the molecular diagnosis of disorders characterized by severe HTG. METHODS We developed a targeted customized panel for next-generation sequencing Ion Torrent Personal Genome Machine to capture the coding exons and intron/exon boundaries of 18 genes affecting the main pathways of TG synthesis and metabolism. We sequenced 11 samples of patients with severe HTG (TG>885 mg/dL-10 mmol/L): 4 positive controls in whom pathogenic mutations had previously been identified by Sanger sequencing and 7 patients in whom the molecular defect was still unknown. RESULTS The customized panel was accurate, and it allowed to confirm genetic variants previously identified in all positive controls with primary severe HTG. Only 1 patient of 7 with HTG was found to be carrier of a homozygous pathogenic mutation of the third novel mutation of LMF1 gene (c.1380C>G-p.Y460X). The clinical and molecular familial cascade screening allowed the identification of 2 additional affected siblings and 7 heterozygous carriers of the mutation. CONCLUSIONS We showed that our targeted resequencing approach for genetic diagnosis of severe HTG appears to be accurate, less time consuming, and more economical compared with traditional Sanger resequencing. The identification of pathogenic mutations in candidate genes remains challenging and clinical resequencing should mainly intended for patients with strong clinical criteria for monogenic severe HTG.
Collapse
Affiliation(s)
- Angelo B Cefalù
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy; Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy.
| | - Rossella Spina
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy; Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy
| | - Davide Noto
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Valeria Ingrassia
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy; Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy
| | - Vincenza Valenti
- Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy
| | - Antonina Giammanco
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Francesca Fayer
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Gabriella Misiano
- Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy
| | - Gianfranco Cocorullo
- Unit of Emergency and General Surgery, Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Chiara Scrimali
- Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy
| | - Ornella Palesano
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Grazia I Altieri
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Antonina Ganci
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Carlo M Barbagallo
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Maurizio R Averna
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy; Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy.
| |
Collapse
|
38
|
Zheng Z, Kim H, Qiu Y, Chen X, Mendez R, Dandekar A, Zhang X, Zhang C, Liu AC, Yin L, Lin JD, Walker PD, Kapatos G, Zhang K. CREBH Couples Circadian Clock With Hepatic Lipid Metabolism. Diabetes 2016; 65:3369-3383. [PMID: 27507854 PMCID: PMC5079639 DOI: 10.2337/db16-0298] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/02/2016] [Indexed: 01/31/2023]
Abstract
The circadian clock orchestrates diverse physiological processes critical for health and disease. CREB, hepatocyte specific (CREBH) is a liver-enriched, endoplasmic reticulum (ER)-tethered transcription factor known to regulate the hepatic acute phase response and energy homeostasis under stress conditions. We demonstrate that CREBH is regulated by the circadian clock and functions as a circadian regulator of hepatic lipid metabolism. Proteolytic activation of CREBH in the liver exhibits typical circadian rhythmicity controlled by the core clock oscillator BMAL1 and AKT/glycogen synthase kinase 3β (GSK3β) signaling pathway. GSK3β-mediated phosphorylation of CREBH modulates the association between CREBH and the coat protein complex II transport vesicle and thus controls the ER-to-Golgi transport and subsequent proteolytic cleavage of CREBH in a circadian manner. Functionally, CREBH regulates circadian expression of the key genes involved in triglyceride (TG) and fatty acid (FA) metabolism and is required to maintain circadian amplitudes of blood TG and FA in mice. During the circadian cycle, CREBH rhythmically regulates and interacts with the hepatic nuclear receptors peroxisome proliferator-activated receptor α and liver X receptor α as well as with the circadian oscillation activator DBP and the repressor E4BP4 to modulate CREBH transcriptional activities. In conclusion, these studies reveal that CREBH functions as a circadian-regulated liver transcriptional regulator that integrates energy metabolism with circadian rhythm.
Collapse
Affiliation(s)
- Ze Zheng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Yining Qiu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Xuequn Chen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Mendez
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Aditya Dandekar
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI
| | - Xuebao Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Chunbin Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Andrew C Liu
- Department of Biological Sciences, University of Memphis, Memphis, TN
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Paul D Walker
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Gregory Kapatos
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
39
|
Hegele RA. Multidimensional regulation of lipoprotein lipase: impact on biochemical and cardiovascular phenotypes. J Lipid Res 2016; 57:1601-7. [PMID: 27412676 DOI: 10.1194/jlr.c070946] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
40
|
Cheng Y, Gao WW, Tang HMV, Deng JJ, Wong CM, Chan CP, Jin DY. β-TrCP-mediated ubiquitination and degradation of liver-enriched transcription factor CREB-H. Sci Rep 2016; 6:23938. [PMID: 27029215 PMCID: PMC4814919 DOI: 10.1038/srep23938] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
CREB-H is an endoplasmic reticulum-resident bZIP transcription factor which critically regulates lipid homeostasis and gluconeogenesis in the liver. CREB-H is proteolytically activated by regulated intramembrane proteolysis to generate a C-terminally truncated form known as CREB-H-ΔTC, which translocates to the nucleus to activate target gene expression. CREB-H-ΔTC is a fast turnover protein but the mechanism governing its destruction was not well understood. In this study, we report on β-TrCP-dependent ubiquitination and proteasomal degradation of CREB-H-ΔTC. The degradation of CREB-H-ΔTC was mediated by lysine 48-linked polyubiquitination and could be inhibited by proteasome inhibitor. CREB-H-ΔTC physically interacted with β-TrCP, a substrate recognition subunit of the SCFβ-TrCP E3 ubiquitin ligase. Forced expression of β-TrCP increased the polyubiquitination and decreased the stability of CREB-H-ΔTC, whereas knockdown of β-TrCP had the opposite effect. An evolutionarily conserved sequence, SDSGIS, was identified in CREB-H-ΔTC, which functioned as the β-TrCP-binding motif. CREB-H-ΔTC lacking this motif was stabilized and resistant to β-TrCP-induced polyubiquitination. This motif was a phosphodegron and its phosphorylation was required for β-TrCP recognition. Furthermore, two inhibitory phosphorylation sites close to the phosphodegron were identified. Taken together, our work revealed a new intracellular signaling pathway that controls ubiquitination and degradation of the active form of CREB-H transcription factor.
Collapse
Affiliation(s)
- Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei-Wei Gao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hei-Man Vincent Tang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Jian-Jun Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Food Science and Engineering, College of Chemical Engineering, Northwestern University, Xi'an 710069, China
| | - Chi-Ming Wong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China.,Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
41
|
Clinical and genetic features of 3 patients with familial chylomicronemia due to mutations in GPIHBP1 gene. J Clin Lipidol 2016; 10:915-921.e4. [PMID: 27578123 DOI: 10.1016/j.jacl.2016.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Familial chylomicronemia is a recessive disorder that may be due to mutations in lipoprotein lipase (LPL) and in other proteins such as apolipoprotein C-II and apolipoprotein A-V (activators of LPL), GPIHBP1 (the molecular platform required for LPL activity on endothelial surface), and LMF1 (a factor required for intracellular formation of active LPL). METHODS We sequenced the familial chylomicronemia candidate genes in 2 adult females presenting long-standing hypertriglyceridemia and a history of acute pancreatitis. RESULTS Both probands had plasma triglyceride >10 mmol/L but no mutations in the LPL gene. The sequence of the other candidate genes showed that one patient was homozygous for a novel missense mutation p.(Cys83Arg), and the other was homozygous for a previously reported nonsense mutation p.(Cys 89*), respectively, in GPIHBP1. Family screening showed that the hypertriglyceridemic brother of the p.(Cys83Arg) homozygote was also homozygous for this mutation. He had no history of pancreatitis. The p.(Cys83Arg) heterozygous carriers had normal triglyceride levels. The substitution of a cysteine residue in the Ly6 domain of GPIHBP1 is predicted to abolish one of the disulfide bridges required to maintain the structure of GPIHBP1. The p.(Cys89*) mutation results in a truncated protein devoid of function. CONCLUSIONS Both mutant GPIHBP1 proteins are expected to be incapable of transferring LPL from the subendothelial space to the endothelial surface.
Collapse
|
42
|
De Castro-Orós I, Civeira F, Pueyo MJ, Mateo-Gallego R, Bolado-Carrancio A, Lamíquiz-Moneo I, Álvarez-Sala L, Fabiani F, Cofán M, Cenarro A, Rodríguez-Rey JC, Ros E, Pocoví M. Rare genetic variants with large effect on triglycerides in subjects with a clinical diagnosis of familial vs nonfamilial hypertriglyceridemia. J Clin Lipidol 2016; 10:790-797. [PMID: 27578109 DOI: 10.1016/j.jacl.2016.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Most primary severe hypertriglyceridemias (HTGs) are diagnosed in adults, but their molecular foundations have not been completely elucidated. OBJECTIVE We aimed to identify rare dysfunctional mutations in genes encoding regulators of lipoprotein lipase (LPL) function in patients with familial and non-familial primary HTG. METHODS We sequenced promoters, exons, and exon-intron boundaries of LPL, APOA5, LMF1, and GPIHBP1 in 118 patients with severe primary HTG (triglycerides >500 mg/dL) and 53 normolipidemic controls. Variant functionality was analyzed using predictive software and functional assays for mutations in regulatory regions. RESULTS We identified 29 rare variants, 10 of which had not been previously described: c.(-16A>G), c.(1018+2G>A), and p.(His80Arg) in LPL; p.(Arg143Alafs*57) in APOA5; p.(Val140Ile), p.(Leu235Ile), p.(Lys520*), and p.(Leu552Arg) in LMF1; and c.(-83G>A) and c.(-192A>G) in GPIHBP1. The c.(1018+2G>A) variant led to deletion of exon 6 in LPL cDNA, whereas the c.(-16A>G) analysis showed differences in the affinity for nuclear proteins. Overall, 20 (17.0%) of the patients carried at least one allele with a rare pathogenic variant in LPL, APOA5, LMF1, or GPIHBP1. The presence of a rare pathogenic variant was not associated with lipid values, family history of HTG, clinical diagnosis, or previous pancreatitis. CONCLUSIONS Less than one in five subjects with triglycerides >500 mg/dL and no major secondary cause for HTG may carry a rare pathogenic mutation in LPL, APOA5, LMF1, or GPIHBP1. The presence of a rare pathogenic variant is not associated with a differential phenotype.
Collapse
Affiliation(s)
- Isabel De Castro-Orós
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Dpto. Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Jesús Pueyo
- Dpto. Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Rocío Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Alfonso Bolado-Carrancio
- Dpto. Biología Molecular. Facultad de Medicina, Universidad de Cantabria and Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Santander, Cantabria, Spain
| | - Itziar Lamíquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Luis Álvarez-Sala
- Lipid Unit, Medicina Interna, Hospital Universitario Gregorio Marañón, RIC, Instituto de Salud Carlos III (ISCIII), Instituto de Investigación Sanitaria Gregorio Marañón and Dpto. Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Fernando Fabiani
- Departamento de Bioquímica Clínica, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Sevilla, Spain
| | - Montserrat Cofán
- Servei d'Endocrinologia i Nutrició, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona and Ciber Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - José Carlos Rodríguez-Rey
- Dpto. Biología Molecular. Facultad de Medicina, Universidad de Cantabria and Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Santander, Cantabria, Spain
| | - Emilio Ros
- Servei d'Endocrinologia i Nutrició, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona and Ciber Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Miguel Pocoví
- Dpto. Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
43
|
Julve J, Martín-Campos JM, Escolà-Gil JC, Blanco-Vaca F. Chylomicrons: Advances in biology, pathology, laboratory testing, and therapeutics. Clin Chim Acta 2016; 455:134-48. [PMID: 26868089 DOI: 10.1016/j.cca.2016.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/01/2016] [Accepted: 02/06/2016] [Indexed: 01/17/2023]
Abstract
The adequate absorption of lipids is essential for all mammalian species due to their inability to synthesize some essential fatty acids and fat-soluble vitamins. Chylomicrons (CMs) are large, triglyceride-rich lipoproteins that are produced in intestinal enterocytes in response to fat ingestion, which function to transport the ingested lipids to different tissues. In addition to the contribution of CMs to postprandial lipemia, their remnants, the degradation products following lipolysis by lipoprotein lipase, are linked to cardiovascular disease. In this review, we will focus on the structure-function and metabolism of CMs. Second, we will analyze the impact of gene defects reported to affect CM metabolism and, also, the role of CMs in other pathologies, such as atherothrombotic cardiovascular disease and diabetes mellitus. Third, we will provide an overview of the laboratory tests currently used to study CM disorders, and, finally, we will highlight current treatments in diseases affecting CMs.
Collapse
Affiliation(s)
- Josep Julve
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
| | - Jesús M Martín-Campos
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Francisco Blanco-Vaca
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain; Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica, Barcelona, Spain
| |
Collapse
|
44
|
Pirim D, Wang X, Niemsiri V, Radwan ZH, Bunker CH, Hokanson JE, Hamman RF, Barmada MM, Demirci FY, Kamboh MI. Resequencing of the CETP gene in American whites and African blacks: Association of rare and common variants with HDL-cholesterol levels. Metabolism 2016; 65:36-47. [PMID: 26683795 PMCID: PMC4684899 DOI: 10.1016/j.metabol.2015.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/06/2015] [Accepted: 09/08/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cholesteryl ester transfer protein (CETP) plays a crucial role in lipid metabolism. Associations of common CETP variants with variation in plasma lipid levels, and/or CETP mass/activity have been extensively studied and well-documented; however, the effects of uncommon/rare CETP variants on plasma lipid profile remain undefined. Hence, resequencing of the gene in extreme phenotypes and follow-up rare-variant association analyses are essential to fill this gap. OBJECTIVE To identify common and uncommon/rare variants in the CETP gene by resequencing the entire gene and test the effects of both common and uncommon/rare CETP variants on plasma lipid traits in two genetically distinct populations. METHODS AND RESULTS The entire CETP gene plus flanking regions were resequenced in 190 individuals comprising 95 non-Hispanic whites (NHWs) and 95 African blacks with extreme HDL-C levels. A total of 279 sequence variants were identified, of which 25 were novel. Selected variants were genotyped in the entire samples of 623 NHWs and 788 African blacks and 184 QC-passed variants were tested in relation to plasma lipid traits by using gene-based, single-site, haplotype and rare variant association analyses (SKAT-O). Two novel and independent associations of rs1968905 and rs289740 with HDL-C were identified in African blacks. Using SKAT-O analysis, we also identified rare variants with minor allele frequency <0.01 to be associated with HDL-C in both NHWs (P=0.024) and African blacks (P=0.009). CONCLUSIONS Our results point out that in addition to the common CETP variants, rare genetic variants in the CETP gene also contribute to the phenotypic variation of HDL-C in the general population.
Collapse
Affiliation(s)
- Dilek Pirim
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xingbin Wang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vipavee Niemsiri
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zaheda H Radwan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Clareann H Bunker
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Richard F Hamman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - M Michael Barmada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - F Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Rodrigues R, Artieda M, Tejedor D, Martínez A, Konstantinova P, Petry H, Meyer C, Corzo D, Sundgreen C, Klor HU, Gouni-Berthold I, Westphal S, Steinhagen-Thiessen E, Julius U, Winkler K, Stroes E, Vogt A, Hardt P, Prophet H, Otte B, Nordestgaard BG, Deeb SS, Brunzell JD. Pathogenic classification of LPL gene variants reported to be associated with LPL deficiency. J Clin Lipidol 2015; 10:394-409. [PMID: 27055971 DOI: 10.1016/j.jacl.2015.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Lipoprotein lipase (LPL) deficiency is a serious lipid disorder of severe hypertriglyceridemia (SHTG) with chylomicronemia. A large number of variants in the LPL gene have been reported but their influence on LPL activity and SHTG has not been completely analyzed. Gaining insight into the deleterious effect of the mutations is clinically essential. METHODS We used gene sequencing followed by in-vivo/in-vitro and in-silico tools for classification. We classified 125 rare LPL mutations in 33 subjects thought to have LPL deficiency and in 314 subjects selected for very SHTG. RESULTS Of the 33 patients thought to have LPL deficiency, only 13 were homozygous or compound heterozygous for deleterious mutations in the LPL gene. Among the 314 very SHTG patients, 3 were compound heterozygous for pathogenic mutants. In a third group of 51,467 subjects, from a general population, carriers of common variants, Asp9Asn and Asn291Ser, were associated with mild increase in triglyceride levels (11%-35%). CONCLUSION In total, 39% of patients clinically diagnosed as LPL deficient had 2 deleterious variants. Three patients selected for very SHTG had LPL deficiency. The deleterious mutations associated with LPL deficiency will assist in the diagnosis and selection of patients as candidates for the presently approved LPL gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hans U Klor
- Director of the German HITRIG, Third Medical Department and Policlinic, Giessen University Hospital, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Sabine Westphal
- Institute of Clinical Chemistry, Lipid Clinic, Magdeburg, Germany
| | | | - Ulrich Julius
- Universitätsklinikum Carl Gustav Carus an der Technischen Universität, Medizinische Klinik III, Dresden, Germany
| | - Karl Winkler
- Institute of Clinical Chemistry and Laboratory Medicine and Lipid Outpatient Clinic, University Hospital Freiburg, Freiburg, Germany
| | - Erik Stroes
- Department of Vascular Medicine, Amsterdam Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Vogt
- LMU Klinikum der Universität München, Medizinische Klinik und Poliklinik 4, München, Germany
| | - Phillip Hardt
- Gießen and Marburg University Hospital, Giessen, Germany
| | | | - Britta Otte
- Universitätsklinikum Münster, Medizinische Klinik D, Med. Clinic, Münster, Münster, Germany
| | - Borge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samir S Deeb
- Department of Medicine (Division of Medical Genetics), University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - John D Brunzell
- Department of Medicine (Division of Metabolism, Endocrinology and Nutrition), University of Washington, Seattle, WA, USA
| |
Collapse
|
46
|
Khovidhunkit W, Charoen S, Kiateprungvej A, Chartyingcharoen P, Muanpetch S, Plengpanich W. Rare and common variants in LPL and APOA5 in Thai subjects with severe hypertriglyceridemia: A resequencing approach. J Clin Lipidol 2015; 10:505-511.e1. [PMID: 27206937 DOI: 10.1016/j.jacl.2015.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Severe hypertriglyceridemia usually results from a combination of genetic and environmental factors. Few data exist on the genetics of severe hypertriglyceridemia in Asian populations. OBJECTIVE To examine the genetic variants of 3 candidate genes known to influence triglyceride metabolism, LPL, APOC2, and APOA5, which encode lipoprotein lipase, apolipoprotein C-II, and apolipoprotein A-V, respectively, in a large group of Thai subjects with severe hypertriglyceridemia. METHODS We identified sequence variants of LPL, APOC2, and APOA5 by sequencing exons and exon-intron junctions in 101 subjects with triglyceride levels ≥ 10 mmol/L (886 mg/dL) and compared with those of 111 normotriglyceridemic subjects. RESULTS Six different rare variants in LPL were found in 13 patients, 2 of which were novel (1 heterozygous missense variant: p.Arg270Gly and 1 frameshift variant: p.Asp308Glyfs*3). Four previously identified heterozygous missense variants in LPL were p.Ala98Thr, p.Leu279Val, p.Leu279Arg, and p.Arg432Thr. Collectively, these rare variants were found only in the hypertriglyceridemic group but not in the control group (13% vs 0%, P < .0001). One common variant in APOA5 (p.Gly185Cys, rs2075291) was found at a higher frequency in the hypertriglyceridemic group compared with the control group (25% vs 6%, respectively, P < .0005). Altogether, rare variants in LPL or APOA5 and/or the common APOA5 p.Gly185Cys variant were found in 37% of the hypertriglyceridemic group vs 6% in the controls (P = 3.1 × 10(-8)). No rare variant in APOC2 was identified. CONCLUSIONS Rare variants in LPL and a common variant in APOA5 were more commonly found in Thai subjects with severe hypertriglyceridemia. A common p.Gly185Cys APOA5 variant, in particular, was quite prevalent and potentially contributed to hypertriglyceridemia in this group of patients.
Collapse
Affiliation(s)
- Weerapan Khovidhunkit
- Hormonal and Metabolic Disorders Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Medicine, Excellence Center for Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| | - Supannika Charoen
- Hormonal and Metabolic Disorders Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Arunrat Kiateprungvej
- Hormonal and Metabolic Disorders Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Palm Chartyingcharoen
- Hormonal and Metabolic Disorders Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Medicine, Excellence Center for Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Suwanna Muanpetch
- Hormonal and Metabolic Disorders Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Medicine, Excellence Center for Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Wanee Plengpanich
- Hormonal and Metabolic Disorders Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Medicine, Excellence Center for Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
47
|
Cefalù AB, Spina R, Noto D, Valenti V, Ingrassia V, Giammanco A, Panno MD, Ganci A, Barbagallo CM, Averna MR. Novel CREB3L3 Nonsense Mutation in a Family With Dominant Hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2015; 35:2694-9. [PMID: 26427795 DOI: 10.1161/atvbaha.115.306170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/18/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Cyclic AMP responsive element-binding protein 3-like 3 (CREB3L3) is a novel candidate gene for dominant hypertriglyceridemia. To date, only 4 kindred with dominant hypertriglyceridemia have been found to be carriers of 2 nonsense mutations in CREB3L3 gene (245fs and W46X). We investigated a family in which hypertriglyceridemia displayed an autosomal dominant pattern of inheritance. APPROACH AND RESULTS The proband was a 49-year-old woman with high plasma triglycerides (≤1300 mg/dL; 14.68 mmol/L). Her father had a history of moderate hypertriglyceridemia, and her 51-year-old brother had triglycerides levels as high as 1600 mg/dL (18.06 mmol/L). To identify the causal mutation in this family, we analyzed the candidate genes of recessive and dominant forms of primary hypertriglyceridemia by direct sequencing. The sequencing of CREB3L3 gene led to the discovery of a novel minute frame shift mutation in exon 3 of CREB3L3 gene, predicted to result in the formation of a truncated protein devoid of function (c.359delG-p.K120fsX20). Heterozygosity for the c.359delG mutation resulted in a severe phenotype occurring later in life in the proband and her brother and a good response to diet and a hypotriglyceridemic treatment. The same mutation was detected in a 13-year-old daughter who to date is normotriglyceridemic. CONCLUSIONS We have identified a novel pathogenic mutation in CREB3L3 gene in a family with dominant hypertriglyceridemia with a variable pattern of penetrance.
Collapse
Affiliation(s)
- Angelo B Cefalù
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Rossella Spina
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Davide Noto
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Vincenza Valenti
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Valeria Ingrassia
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Antonina Giammanco
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Maria D Panno
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Antonina Ganci
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Carlo M Barbagallo
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Maurizio R Averna
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.).
| |
Collapse
|
48
|
Tada H, Kawashiri MA, Konno T, Yamagishi M, Hayashi K. Common and Rare Variant Association Study for Plasma Lipids and Coronary Artery Disease. J Atheroscler Thromb 2015; 23:241-56. [PMID: 26347050 DOI: 10.5551/jat.31393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Blood lipid levels are highly heritable and modifiable risk factors for coronary artery disease (CAD), and are the leading cause of death worldwide. These facts have motivated human genetic association studies that have the substantial potential to define the risk factors that are causal and to identify pathways and therapeutic targets for lipids and CAD.The success of the HapMap project that provided an extensive catalog of human genetic variations and the development of microarray based genotyping chips (typically containing variations with allele frequencies > 5%) facilitated common variant association study (CVAS; formerly termed genome-wide association study, GWAS) identifying disease-associated variants in a genome-wide manner. To date, 157 loci associated with blood lipids and 46 loci with CAD have been successfully identified, accounting for approximately 12%-14% of heritability for lipids and 10% of heritability for CAD. However, there is yet a major challenge termed "missing heritability problem," namely the observation that loci detected by CVAS explain only a small fraction of the inferred genetic variations. To explain such missing portions, focuses in genetic association studies have shifted from common to rare variants. However, it is challenging to apply rare variant association study (RVAS) in an unbiased manner because such variants typically lack the sufficient number to be identified statistically.In this review, we provide a current understanding of the genetic architecture mostly derived from CVAS, and several updates on the progress and limitations of RVAS for lipids and CAD.
Collapse
Affiliation(s)
- Hayato Tada
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine
| | | | | | | | | |
Collapse
|
49
|
Valdivielso P. [Hypertriglyceridemia and LMF 1: Another piece of the puzzle]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2015; 27:253-255. [PMID: 26398545 DOI: 10.1016/j.arteri.2015.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Pedro Valdivielso
- Unidad de Lípidos, Hospital Virgen de la Victoria,, Málaga, España; Departamento de Medicina y Dermatología, Instituto de Biomedicina de Málaga (IBIMA), Universidad de Málaga, Málaga, España.
| |
Collapse
|
50
|
Lamiquiz-Moneo I, Bea AM, Mateo-Gallego R, Baila-Rueda L, Cenarro A, Pocoví M, Civeira F, de Castro-Orós I. [Identification of variants in LMF1 gene associated with primary hypertriglyceridemia]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2015; 27:246-252. [PMID: 25817768 DOI: 10.1016/j.arteri.2015.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
The majority of severe primary hypertriglyceridemia (HTG) are diagnosed in adults, and their molecular bases have not yet been fully defined. The promoter, coding regions and intron-exon boundaries of LMF1 were sequenced in 112 patients with severe primary hipertrigliceridemia (defined as TG above 500mg/dl). Five patients (4.46%) were carriers of four rare variants in the LMF1 gene associated with HTG, which participate in lipoprotein lipase (LpL) function. Also, we have identified two common variants, c.194-28 T>G and c.729+18C>G that were associated with HTG, with a different allelic frequency to that observed in the general population. A bioinformatic analysis of all found variants was conducted, defining the following as potentially harmful: p.Arg364Gln, p.Arg451Trp, p.Pro562Arg and p.Leu85Leu. Our results suggest that LMF1 mutations are involved in a substantial proportion of cases with severe HTG, putting together the moderate-aggressive effect of rare mutations with polymorphisms classically associated with this disease.
Collapse
Affiliation(s)
- Itziar Lamiquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España.
| | - Ana M Bea
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Rocío Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Lucía Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Miguel Pocoví
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| | - Isabel de Castro-Orós
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza, España
| |
Collapse
|