1
|
Kumar V, Kaur P, Ayasolla K, Jha A, Wiqas A, Vashistha H, Saleem MA, Popik W, Malhotra A, Gebeshuber CA, Skorecki K, Singhal PC. APOL1 Modulates Renin-Angiotensin System. Biomolecules 2024; 14:1575. [PMID: 39766282 PMCID: PMC11674849 DOI: 10.3390/biom14121575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Patients carrying APOL1 risk alleles (G1 and G2) have a higher risk of developing Focal Segmental Glomerulosclerosis (FSGS); we hypothesized that escalated levels of miR193a contribute to kidney injury by activating renin-angiotensin system (RAS) in the APOL1 milieus. Differentiated podocytes (DPDs) stably expressing vector (V/DPD), G0 (G0/DPDs), G1 (G1/DPDs), and G2 (G2/DPDs) were evaluated for renin, Vitamin D receptor (VDR), and podocyte molecular markers (PDMMs, including WT1, Podocalyxin, Nephrin, and Cluster of Differentiation [CD]2 associated protein [AP]). G0/DPDs displayed attenuated renin but an enhanced expression of VDR and Wilms Tumor [WT]1, including other PDMMs; in contrast, G1/DPDs and G2/DPDs exhibited enhanced expression of renin but decreased expression of VDR and WT1, as well as other PDMMs (at both the protein and mRNA levels). G1/DPDs and G2/DPDs also showed increased mRNA expression for Angiotensinogen and Angiotensin II Type 1 (AT1R) and 2 (AT2R) receptors. Protein concentrations of Brain Acid-Soluble Protein [BASP]1, Enhancer of Zeste Homolog [EZH]2, Histone Deacetylase [HDAC]1, and Histone 3 Lysine27 trimethylated [H3K27me3] in WT1-IP (immunoprecipitated proteins with WT1 antibody) fractions were significantly higher in G0/DPDs vs. G1/DPD and G2/DPDs. Moreover, DPD-silenced BASP1 displayed an increased expression of renin. Notably, VDR agonist-treated DPDs showed escalated levels of VDR and a higher expression of PDMMs, but an attenuated expression of renin. Human Embryonic Kidney (HEK) cells transfected with increasing APOL1(G0) plasmid concentrations showed a corresponding reduction in renin mRNA expression. Bioinformatics studies predicted the miR193a target sites in the VDR 3'UTR (untranslated region), and the luciferase assay confirmed the predicted sites. As expected, podocytes transfected with miR193a plasmid displayed a reduced VDR and an enhanced expression of renin. Renal cortical section immunolabeling in miR193a transgenic (Tr) mice showed renin-expressing podocytes. Kidney tissue extracts from miR193aTr mice also showed reduced expression of VDR and PDMMs, but enhanced expression of Renin. Blood Ang II levels were higher in miR193aTr, APOLG1, and APOL1G1/G2 mice when compared to control mice. Based on these findings, miR193a regulates the activation of RAS and podocyte molecular markers through modulation of VDR and WT1 in the APOL1 milieu.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA; (V.K.); (P.K.); (K.A.); (A.J.); (A.W.); (H.V.); (A.M.)
- Department of Nephrology and Dermatology, Postgraduate Institute for Medical Research, Chandigarh 160012, India
| | - Prabhjot Kaur
- Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA; (V.K.); (P.K.); (K.A.); (A.J.); (A.W.); (H.V.); (A.M.)
- Department of Nephrology and Dermatology, Postgraduate Institute for Medical Research, Chandigarh 160012, India
| | - Kameshwar Ayasolla
- Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA; (V.K.); (P.K.); (K.A.); (A.J.); (A.W.); (H.V.); (A.M.)
| | - Alok Jha
- Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA; (V.K.); (P.K.); (K.A.); (A.J.); (A.W.); (H.V.); (A.M.)
| | - Amen Wiqas
- Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA; (V.K.); (P.K.); (K.A.); (A.J.); (A.W.); (H.V.); (A.M.)
| | - Himanshu Vashistha
- Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA; (V.K.); (P.K.); (K.A.); (A.J.); (A.W.); (H.V.); (A.M.)
| | - Moin A. Saleem
- Department of Pediatrics, Bristol School of Medicine, University of Bristol, Bristol BS8 1UD, UK;
| | - Waldemar Popik
- Center for AIDS Health Disparity, Meharry Medical College, Nashville, TN 37208, USA;
| | - Ashwani Malhotra
- Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA; (V.K.); (P.K.); (K.A.); (A.J.); (A.W.); (H.V.); (A.M.)
| | | | - Karl Skorecki
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Pravin C. Singhal
- Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA; (V.K.); (P.K.); (K.A.); (A.J.); (A.W.); (H.V.); (A.M.)
| |
Collapse
|
2
|
Magavern EF, Kapil V, Saxena M, Gupta A, Caulfield MJ. Use of Genomics to Develop Novel Therapeutics and Personalize Hypertension Therapy. Arterioscler Thromb Vasc Biol 2024; 44:784-793. [PMID: 38385287 DOI: 10.1161/atvbaha.123.319220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Hypertension is a prevalent public health problem, contributing to >10 million deaths annually. Though multiple therapeutics exist, many patients suffer from treatment-resistant hypertension or try several medications before achieving blood pressure control. Genomic advances offer mechanistic understanding of blood pressure variability, therapeutic targets, therapeutic response, and promise a stratified approach to treatment of primary hypertension. Cyclic guanosine monophosphate augmentation, aldosterone synthase inhibitors, and angiotensinogen blockade with silencing RNA and antisense therapies are among the promising novel approaches. Pharmacogenomic studies have also been done to explore the genetic bases underpinning interindividual variability in response to existing therapeutics. A polygenic approach using risk scores is likely to be the next frontier in stratifying responses to existing therapeutics.
Collapse
Affiliation(s)
- Emma F Magavern
- Centre of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, United Kingdom
| | - Vikas Kapil
- Centre of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, United Kingdom
| | - Manish Saxena
- Centre of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, United Kingdom
| | - Ajay Gupta
- Centre of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, United Kingdom
| | - Mark J Caulfield
- Centre of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, United Kingdom
| |
Collapse
|
3
|
Eadon MT, Maddatu J, Moe SM, Sinha AD, Melo Ferreira R, Miller BW, Sher SJ, Su J, Pratt VM, Chapman AB, Skaar TC, Moorthi RN. Pharmacogenomics of Hypertension in CKD: The CKD-PGX Study. KIDNEY360 2022; 3:307-316. [PMID: 35342886 PMCID: PMC8953763 DOI: 10.34067/kid.0005362021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/08/2021] [Indexed: 01/12/2023]
Abstract
Background Patients with CKD often have uncontrolled hypertension despite polypharmacy. Pharmacogenomic drug-gene interactions (DGIs) may affect the metabolism or efficacy of antihypertensive agents. We report changes in hypertension control after providing a panel of 11 pharmacogenomic predictors of antihypertensive response. Methods A prospective cohort with CKD and hypertension was followed to assess feasibility of pharmacogenomic testing implementation, self-reported provider utilization, and BP control. The analysis population included 382 subjects with hypertension who were genotyped for cross-sectional assessment of DGIs, and 335 subjects followed for 1 year to assess systolic BP (SBP) and diastolic BP (DBP). Results Most participants (58%) with uncontrolled hypertension had a DGI reducing the efficacy of one or more antihypertensive agents. Subjects with a DGI had 1.85-fold (95% CI, 1.2- to 2.8-fold) higher odds of uncontrolled hypertension, as compared with those without a DGI, adjusted for race, health system (safety-net hospital versus other locations), and advanced CKD (eGFR <30 ml/min). CYP2C9-reduced metabolism genotypes were associated with losartan response and uncontrolled hypertension (odds ratio [OR], 5.2; 95% CI, 1.9 to 14.7). CYP2D6-intermediate or -poor metabolizers had less frequent uncontrolled hypertension compared with normal metabolizers taking metoprolol or carvedilol (OR, 0.55; 95% CI, 0.3 to 0.95). In 335 subjects completing 1-year follow-up, SBP (-4.0 mm Hg; 95% CI, 1.6 to 6.5 mm Hg) and DBP (-3.3 mm Hg; 95% CI, 2.0 to 4.6 mm Hg) were improved. No significant difference in SBP or DBP change were found between individuals with and without a DGI. Conclusions There is a potential role for the addition of pharmacogenomic testing to optimize antihypertensive regimens in patients with CKD.
Collapse
Affiliation(s)
- Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Judith Maddatu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sharon M. Moe
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Arjun D. Sinha
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Ricardo Melo Ferreira
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brent W. Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - S. Jawad Sher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Victoria M. Pratt
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Todd C. Skaar
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ranjani N. Moorthi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Yang X, Liu L, Xiong X, Zhang Y, Liu Y, Li H, Yao K, Wang J. Effects of Bushen-Jiangya granules on blood pressure and pharmacogenomic evaluation in low-to-medium-risk hypertensive patients: study protocol for a randomized double-blind controlled trial. Trials 2022; 23:37. [PMID: 35033168 PMCID: PMC8760657 DOI: 10.1186/s13063-022-05999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Hypertension is one of the most important risk factors for cardiovascular disease, and its control rates remain low worldwide. The most effective strategy is that patients with hypertension should be diagnosed and treated early. Preliminary studies showed that the Bushen Jiangya granule (BSJY) could suppress ventricular hypertrophy and inflammatory responses, lower blood pressure, and protect the target organs of hypertension. We designed a randomized, double-blind, placebo-controlled trial to evaluate the efficacy of BSJY in patients with low-to-medium risk hypertension. METHODS AND ANALYSIS This trial is a one-center, randomized, double-blind, placebo-controlled study. A total of 260 participants will be randomized in a 1:1 ratio to an experimental group (BSJY plus amlodipine) and a control group (placebo plus amlodipine). The trial cycle will last 8 weeks. The primary outcome is the change in 24-h average systolic and diastolic blood pressure. The secondary outcomes include heart rate variability, pharmacogenomic evaluation, improvement in TCM syndrome, and serum pro-inflammatory/anti-inflammatory cytokines between the two groups. The safety of medication will also be evaluated. All the data will be recorded in electronic case report forms and analyzed by SPSS V.22.0. ETHICS AND DISSEMINATION This study has been approved by the Research Ethics Committee of Guang'anmen Hospital, China Academy of Chinese Medical Sciences in Beijing, China (No. 2019-186-KY-01). The participants are volunteers, understand the process of this trial, and sign an informed consent. The results of this study will be disseminated to the public through peer-reviewed journals and academic conferences. DISCUSSION We hypothesize that patients with low-to-medium-risk hypertension will benefit from BSJY. If successful, this study will provide evidence-based recommendations for clinicians. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiMCTR1900002876. Registered in November 2019.
Collapse
Affiliation(s)
- Xiaochen Yang
- Department of Health Care, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lanping Liu
- Department of Health Care, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongzheng Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Department of Health Care, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Lanfear DE, Luzum JA, She R, Gui H, Donahue MP, O'Connor CM, Adams KF, Sanders-van Wijk S, Zeld N, Maeder MT, Sabbah HN, Kraus WE, Brunner-LaRocca HP, Li J, Williams LK. Polygenic Score for β-Blocker Survival Benefit in European Ancestry Patients With Reduced Ejection Fraction Heart Failure. Circ Heart Fail 2020; 13:e007012. [PMID: 33012170 DOI: 10.1161/circheartfailure.119.007012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND β-Blockers (BBs) are mainstay therapy for heart failure with reduced ejection fraction. However, individual patient responses to BB vary, which may be partially due to genetic variation. The goal of this study was to derive and validate the first polygenic response predictor (PRP) for BB survival benefit in heart failure with reduced ejection fraction patients. METHODS Derivation and validation analyses were performed in n=1436 total HF patients of European descent and with ejection fraction <50%. The PRP was derived in a random subset of the Henry Ford Heart Failure Pharmacogenomic Registry (n=248) and then validated in a meta-analysis of the remaining patients from Henry Ford Heart Failure Pharmacogenomic Registry (n=247), the TIME-CHF (Trial of Intensified Versus Standard Medical Therapy in Elderly Patients With Congestive Heart Failure; n=431), and HF-ACTION trial (Heart Failure: a Controlled Trial Investigating Outcomes of Exercise Training; n=510). The PRP was constructed from a genome-wide analysis of BB×genotype interaction predicting time to all-cause mortality, adjusted for Meta-Analysis Global Group in Chronic Heart Failure score, genotype, level of BB exposure, and BB propensity score. RESULTS Five-fold cross-validation summaries out to 1000 single-nucleotide polymorphisms identified optimal prediction with a 44 single-nucleotide polymorphism score and cutoff at the 30th percentile. In validation testing (n=1188), greater BB exposure was associated with reduced all-cause mortality in patients with low PRP score (n=251; hazard ratio, 0.19 [95% CI, 0.04-0.51]; P=0.0075) but not high PRP score (n=937; hazard ratio, 0.84 [95% CI, 0.53-1.3]; P=0.448)-a difference that was statistically significant (P interaction, 0.0235). Results were consistent regardless of atrial fibrillation, ejection fraction (≤40% versus 41%-50%), or when examining cardiovascular death. CONCLUSIONS Among patients of European ancestry with heart failure with reduced ejection fraction, a PRP distinguished patients who derived substantial survival benefit from BB exposure from a larger group that did not. Additional work is needed to prospectively test clinical utility and to develop PRPs for other population groups and other medications.
Collapse
Affiliation(s)
- David E Lanfear
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (D.E.L., J.A.L., R.S., H.G., N.Z., J.L., L.K.W.), Henry Ford Hospital, Detroit, MI.,Heart and Vascular Institute (D.E.L., H.N.S., J.L.), Henry Ford Hospital, Detroit, MI
| | - Jasmine A Luzum
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (D.E.L., J.A.L., R.S., H.G., N.Z., J.L., L.K.W.), Henry Ford Hospital, Detroit, MI.,Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor (J.A.L.)
| | - Ruicong She
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (D.E.L., J.A.L., R.S., H.G., N.Z., J.L., L.K.W.), Henry Ford Hospital, Detroit, MI.,Department of Public Health Sciences (R.S.), Henry Ford Hospital, Detroit, MI
| | - Hongsheng Gui
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (D.E.L., J.A.L., R.S., H.G., N.Z., J.L., L.K.W.), Henry Ford Hospital, Detroit, MI
| | - Mark P Donahue
- Division of Cardiology, Duke University, Durham, NC (M.P.D., W.E.K.)
| | | | - Kirkwood F Adams
- Division of Cardiology, University of North Carolina, Chapel Hill (K.F.A.)
| | | | - Nicole Zeld
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (D.E.L., J.A.L., R.S., H.G., N.Z., J.L., L.K.W.), Henry Ford Hospital, Detroit, MI
| | - Micha T Maeder
- Cardiology Department, Kantonsspital St. Gallen, Switzerland (M.T.M.)
| | - Hani N Sabbah
- Heart and Vascular Institute (D.E.L., H.N.S., J.L.), Henry Ford Hospital, Detroit, MI
| | - William E Kraus
- Division of Cardiology, Duke University, Durham, NC (M.P.D., W.E.K.)
| | | | - Jia Li
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (D.E.L., J.A.L., R.S., H.G., N.Z., J.L., L.K.W.), Henry Ford Hospital, Detroit, MI.,Heart and Vascular Institute (D.E.L., H.N.S., J.L.), Henry Ford Hospital, Detroit, MI
| | - L Keoki Williams
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research (D.E.L., J.A.L., R.S., H.G., N.Z., J.L., L.K.W.), Henry Ford Hospital, Detroit, MI
| |
Collapse
|
6
|
Rysz J, Franczyk B, Rysz-Górzyńska M, Gluba-Brzózka A. Pharmacogenomics of Hypertension Treatment. Int J Mol Sci 2020; 21:ijms21134709. [PMID: 32630286 PMCID: PMC7369859 DOI: 10.3390/ijms21134709] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Hypertension is one of the strongest modifiable cardiovascular risk factors, affecting an increasing number of people worldwide. Apart from poor medication adherence, the low efficacy of some therapies could also be related to inter-individual genetic variability. Genetic studies of families revealed that heritability accounts for 30% to 50% of inter-individual variation in blood pressure (BP). Genetic factors not only affect blood pressure (BP) elevation but also contribute to inter-individual variability in response to antihypertensive treatment. This article reviews the recent pharmacogenomics literature concerning the key classes of antihypertensive drugs currently in use (i.e., diuretics, β-blockers, ACE inhibitors, ARB, and CCB). Due to the numerous studies on this topic and the sometimes-contradictory results within them, the presented data are limited to several selected SNPs that alter drug response. Genetic polymorphisms can influence drug responses through genes engaged in the pathogenesis of hypertension that are able to modify the effects of drugs, modifications in drug–gene mechanistic interactions, polymorphisms within drug-metabolizing enzymes, genes related to drug transporters, and genes participating in complex cascades and metabolic reactions. The results of numerous studies confirm that genotype-based antihypertension therapies are the most effective and may help to avoid the occurrence of major adverse events, as well as decrease the costs of treatment. However, the genetic heritability of drug response phenotypes seems to remain hidden in multigenic and multifactorial complex traits. Therefore, further studies are required to analyze all associations and formulate final genome-based treatment recommendations.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
- Correspondence:
| |
Collapse
|
7
|
de las Fuentes L, Sung YJ, Sitlani CM, Avery CL, Bartz TM, Keyser CD, Evans DS, Li X, Musani SK, Ruiter R, Smith AV, Sun F, Trompet S, Xu H, Arnett DK, Bis JC, Broeckel U, Busch EL, Chen YDI, Correa A, Cummings SR, Floyd JS, Ford I, Guo X, Harris TB, Ikram MA, Lange L, Launer LJ, Reiner AP, Schwander K, Smith NL, Sotoodehnia N, Stewart JD, Stott DJ, Stürmer T, Taylor KD, Uitterlinden A, Vasan RS, Wiggins KL, Cupples LA, Gudnason V, Heckbert SR, Jukema JW, Liu Y, Psaty BM, Rao DC, Rotter JI, Stricker B, Wilson JG, Whitsel EA. Genome-wide meta-analysis of variant-by-diuretic interactions as modulators of lipid traits in persons of European and African ancestry. THE PHARMACOGENOMICS JOURNAL 2020; 20:482-493. [PMID: 31806883 PMCID: PMC7260079 DOI: 10.1038/s41397-019-0132-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 01/11/2023]
Abstract
Hypertension (HTN) is a significant risk factor for cardiovascular morbidity and mortality. Metabolic abnormalities, including adverse cholesterol and triglycerides (TG) profiles, are frequent comorbid findings with HTN and contribute to cardiovascular disease. Diuretics, which are used to treat HTN and heart failure, have been associated with worsening of fasting lipid concentrations. Genome-wide meta-analyses with 39,710 European-ancestry (EA) individuals and 9925 African-ancestry (AA) individuals were performed to identify genetic variants that modify the effect of loop or thiazide diuretic use on blood lipid concentrations. Both longitudinal and cross sectional data were used to compute cohort-specific interaction results, which were then combined through meta-analysis in each ancestry. These ancestry-specific results were further combined through trans-ancestry meta-analysis. Analysis of EA data identified two genome-wide significant (p < 5 × 10-8) loci with single nucleotide variant (SNV)-loop diuretic interaction on TG concentrations (including COL11A1). Analysis of AA data identified one genome-wide significant locus adjacent to BMP2 with SNV-loop diuretic interaction on TG concentrations. Trans-ancestry analysis strengthened evidence of association for SNV-loop diuretic interaction at two loci (KIAA1217 and BAALC). There were few significant SNV-thiazide diuretic interaction associations on TG concentrations and for either diuretic on cholesterol concentrations. Several promising loci were identified that may implicate biologic pathways that contribute to adverse metabolic side effects from diuretic therapy.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, USA.
| | - Y J Sung
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - C M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - C L Avery
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - T M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - C de Keyser
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D S Evans
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - X Li
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - S K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - R Ruiter
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - F Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - S Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - H Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - D K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KY, USA
| | - J C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - U Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - E L Busch
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Y-D I Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - A Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - S R Cummings
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - J S Floyd
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - I Ford
- Robertson Center for biostatistics, University of Glasgow, Glasgow, UK
| | - X Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - T B Harris
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - M A Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L Lange
- Department of Genetics, University of Colorado, Denver, Denver, CO, USA
| | - L J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - A P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - K Schwander
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - N L Smith
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center (ERIC), VA Cooperative Studies Program, VA Puget Sound Health Care System, Seattle, WA, USA
| | - N Sotoodehnia
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
- Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - J D Stewart
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - D J Stott
- Institute of cardiovascular and medical sciences, Faculty of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - T Stürmer
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Center for Pharmacoepidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - K D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - A Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R S Vasan
- The Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - K L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - L A Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - V Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - S R Heckbert
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - J W Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Y Liu
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University, Winston-, Salem, NC, USA
| | - B M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine, and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - D C Rao
- Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - J I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - B Stricker
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J G Wilson
- Biophysics and Physiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - E A Whitsel
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- School of Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Johnson R, Dludla P, Mabhida S, Benjeddou M, Louw J, February F. Pharmacogenomics of amlodipine and hydrochlorothiazide therapy and the quest for improved control of hypertension: a mini review. Heart Fail Rev 2020; 24:343-357. [PMID: 30645721 PMCID: PMC6476827 DOI: 10.1007/s10741-018-09765-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood pressure (BP) is a complex trait that is regulated by multiple physiological pathways and include but is not limited to extracellular fluid volume homeostasis, cardiac contractility, and vascular tone through renal, neural, or endocrine systems. Uncontrolled hypertension (HTN) has been associated with an increased mortality risk. Therefore, understanding the genetics that underpins and influence BP regulation will have a major impact on public health. Moreover, uncontrolled HTN has been linked to inter-individual variation in the drugs’ response and this has been associated with an individual’s genetics architecture. However, the identification of candidate genes that underpin the genetic basis of HTN remains a major challenge. To date, few variants associated with inter-individual BP regulation have been identified and replicated. Research in this field has accelerated over the past 5 years as a direct result of on-going genome-wide association studies (GWAS) and the progress in the identification of rare gene variants and mutations, epigenetic markers, and the regulatory pathways involved in the pathophysiology of BP. In this review we describe and enhance our current understanding of how genetic variants account for the observed variability in BP response in patients on first-line antihypertensive drugs, amlodipine and hydrochlorothiazide.
Collapse
Affiliation(s)
- Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| | - Phiwayinkosi Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
| | - Sihle Mabhida
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
- Department of Biotechnology, Faculty of Natural Science, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535 South Africa
| | - Mongi Benjeddou
- Department of Biotechnology, Faculty of Natural Science, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535 South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
| | - Faghri February
- Department of Haematology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| |
Collapse
|
9
|
Analytical validity of a genotyping assay for use with personalized antihypertensive and chronic kidney disease therapy. Pharmacogenet Genomics 2020; 29:18-22. [PMID: 30489456 DOI: 10.1097/fpc.0000000000000361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypertension and chronic kidney disease are inextricably linked. Hypertension is a well-recognized contributor to chronic kidney disease progression and, in turn, renal disease potentiates hypertension. A generalized approach to drug selection and dosage has not proven effective in managing these conditions, in part, because patients with heterogeneous kidney disease and hypertension etiologies are frequently grouped according to functional or severity classifications. Genetic testing may serve as an important tool in the armamentarium of clinicians who embrace precision medicine. Increasing scientific evidence has supported the utilization of genomic information to select efficacious antihypertensive therapy and understand hereditary contributors to chronic kidney disease progression. Given the wide array of antihypertensive agents available and diversity of genetic renal disease predictors, a panel-based approach to genotyping may be an efficient and economic means of establishing an individualized blood pressure response profile for patients with various forms of chronic kidney disease and hypertension. In this manuscript, we discuss the validation process of a Clinical Laboratory Improvement Amendments-approved genetic test to relay information on 72 genetic variants associated with kidney disease progression and hypertension therapy. These genomic-based interventions, in addition to routine clinical data, may help inform physicians to provide personalized therapy.
Collapse
|
10
|
Cunningham PN, Wang Z, Grove ML, Cooper-DeHoff RM, Beitelshees AL, Gong Y, Gums JG, Johnson JA, Turner ST, Boerwinkle E, Chapman AB. Hypertensive APOL1 risk allele carriers demonstrate greater blood pressure reduction with angiotensin receptor blockade compared to low risk carriers. PLoS One 2019; 14:e0221957. [PMID: 31532792 PMCID: PMC6750571 DOI: 10.1371/journal.pone.0221957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Hypertension (HTN) disproportionately affects African Americans (AAs), who respond better to thiazide diuretics than other antihypertensives. Variants of the APOL1 gene found in AAs are associated with a higher rate of kidney disease and play a complex role in cardiovascular disease. Methods AA subjects from four HTN trials (n = 961) (GERA1, GERA2, PEAR1, and PEAR2) were evaluated for blood pressure (BP) response based on APOL1 genotype after 4–9 weeks of monotherapy with thiazides, beta blockers, or candesartan. APOL1 G1 and G2 variants were determined by direct sequencing or imputation. Results Baseline systolic BP (SBP) and diastolic BP (DBP) levels did not differ based on APOL1 genotype. Subjects with 1–2 APOL1 risk alleles had a greater SBP response to candesartan (-12.2 +/- 1.2 vs -7.5 +/- 1.8 mmHg, p = 0.03; GERA2), and a greater decline in albuminuria with candesartan (-8.3 +/- 3.1 vs +3.7 +/- 4.3 mg/day, p = 0.02). APOL1 genotype did not associate with BP response to thiazides or beta blockers. GWAS was performed to determine associations with BP response to candesartan depending on APOL1 genotype. While no SNPs reached genome wide significance, SNP rs10113352, intronic in CSMD1, predicted greater office SBP response to candesartan (p = 3.7 x 10−7) in those with 1–2 risk alleles, while SNP rs286856, intronic in DPP6, predicted greater office SBP response (p = 3.2 x 10−7) in those with 0 risk alleles. Conclusions Hypertensive AAs without overt kidney disease who carry 1 or more APOL1 risk variants have a greater BP and albuminuria reduction in response to candesartan therapy. BP response to thiazides or beta blockers did not differ by APOL1 genotype. Future studies confirming this initial finding in an independent cohort are required.
Collapse
Affiliation(s)
- Patrick N. Cunningham
- Section of Nephrology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Zhiying Wang
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Rhonda M. Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research, College of Pharmacy and Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Amber L. Beitelshees
- Endocrinology, Diabetes, and Nutrition Division, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research, College of Pharmacy and Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - John G. Gums
- Department of Pharmacotherapy and Translational Research, College of Pharmacy and Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research, College of Pharmacy and Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Stephen T. Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Baylor College of Medicine, Human Genome Sequencing Center, Houston, Texas, United States of America
| | - Arlene B. Chapman
- Section of Nephrology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
11
|
Rapoport RM, Soleimani M. Mechanism of Thiazide Diuretic Arterial Pressure Reduction: The Search Continues. Front Pharmacol 2019; 10:815. [PMID: 31543812 PMCID: PMC6730501 DOI: 10.3389/fphar.2019.00815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Thiazide diuretic (TZD)-mediated chronic reduction of arterial pressure is thought to occur through decreased total peripheral vascular resistance. Further, the decreased peripheral vascular resistance is accomplished through TZD activation of an extrarenal target, resulting in inhibition of vascular constriction. However, despite greater than five decades of investigation, little progress has been made into the identification of the TZD extrarenal target. Proposed mechanisms range from direct inhibition of constrictor and activation of relaxant signaling pathways in the vascular smooth muscle to indirect inhibition through decreased neurogenic and hormonal regulatory pathways. Surprisingly, particularly in view of this lack of progress, comprehensive reviews of the subject are absent. Moreover, even though it is well recognized that 1) several types of hypertension are insensitive to TZD reduction of arterial pressure and, further, TZD fail to reduce arterial pressure in normotensive subjects and animals, and 2) different mechanisms underlie acute and chronic TZD, findings derived from these models and parameters remain largely undifferentiated. This review 1) comprehensively describes findings associated with TZD reduction of arterial pressure; 2) differentiates between observations in TZD-sensitive and TZD-insensitive hypertension, normotensive subjects/animals, and acute and chronic effects of TZD; 3) critically evaluates proposed TZD extrarenal targets; 4) proposes guiding parameters for relevant investigations into extrarenal TZD target identification; and 5) proposes a working model for TZD chronic reduction of arterial pressure through vascular dilation.
Collapse
Affiliation(s)
- Robert M Rapoport
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Manoocher Soleimani
- Research Service, Veterans Affairs Medical Center, Cincinnati, OH, United States.,Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Gong HT, Mu LY, Zhang T, Xu XY, Du FH. Association of mononucleotide polymorphisms of angiotensinogen gene at promoter region with antihypertensive response to angiotensin receptor blockers in hypertensive Chinese. J Renin Angiotensin Aldosterone Syst 2019; 20:1470320319827205. [PMID: 30798697 PMCID: PMC6362516 DOI: 10.1177/1470320319827205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: This study aimed to investigate whether mononucleotide polymorphisms of the
angiotensinogen gene at promoter were associated with the
blood-pressure-lowering response to telmisartan treatment. Materials and methods: After a two-week single-blind placebo run-in period, 148 patients with
mild-to-moderate primary hypertension received monotherapy with 80 mg/day of
telmisartan and then were followed up for eight weeks. The -6A/G and -20A/C
polymorphisms of the angiotensinogen gene at promoter were determined
through polymerase chain reaction and restriction fragment length
polymorphsim analysis. The relationship between these polymorphisms and
changes in blood pressure was observed and evaluated after eight weeks of
treatment. Results: There were no significant differences between -6A/G, -20A/C polymorphisms of
the angiotensinogen gene and blood pressure reductions after treatment,
p>0.05. Conclusion: It is suggested that angiotensinogen-6 A/G and angiotensinogen-20 A/C
polymorphisms were not associated with the antihypertensive response to
telmisartan treatment in Chinese patients with hypertension.
Collapse
Affiliation(s)
- Hong-Tao Gong
- Department of Cardiology, Beijing Tiantan Hospital, Capital University of Medical Science, People's Republic of China
| | - Li-Ying Mu
- Department of Cardiology, Beijing Tiantan Hospital, Capital University of Medical Science, People's Republic of China
| | - Tong Zhang
- Department of Cardiology, Beijing Tiantan Hospital, Capital University of Medical Science, People's Republic of China
| | - Xiu-Ying Xu
- Department of Cardiology, Beijing Tiantan Hospital, Capital University of Medical Science, People's Republic of China
| | - Feng-He Du
- Department of Cardiology, Beijing Tiantan Hospital, Capital University of Medical Science, People's Republic of China
| |
Collapse
|
13
|
Increasing the Precision of Hypertension Treatment Through Personalized Trials: a Pilot Study. J Gen Intern Med 2019; 34:839-845. [PMID: 30859504 PMCID: PMC6544735 DOI: 10.1007/s11606-019-04831-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/06/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND There are substantial differences in the effects of blood pressure (BP) medications in individual patients. Yet, the current standard approach to prescribing BP medications is not personalized. OBJECTIVE To determine the feasibility of individualizing the selection of BP medications through pragmatic personalized (i.e., N-of-1) trials. DESIGN Series of N-of-1 trials. SETTING Outpatient. PATIENTS Hypertensive adults prescribed none or one BP medication. INTERVENTION Participation in a flexible, open-label personalized trial of two to three BP medications (NCT02744456). MEASUREMENTS BP was measured twice per day with a validated home BP device. Frequency and severity of side effects were assessed at the end of the day via an electronic questionnaire. Patients' BP medication preference was assessed after reviewing BP lowering and side effect results with a study clinician. Feasibility was assessed by determining the proportion of patients who adhered to self-assessments. Benefit was assessed by asking patients to rate the helpfulness of participation and whether they would recommend personalized trials to other hypertensive patients. KEY RESULTS Of ten patients enrolled, two dropped out prior to initiation, one discovered white coat hypertension through ambulatory BP monitoring, and seven (mean age 58 years, 71% of women) completed personalized trials. All seven were compliant with home BP monitoring and side effect tracking. All seven recommended personalized trials of BP medications to others. Thiazides were preferred by three patients, renin-angiotensin system-blocking agents by two patients, a combination of thiazide and beta-blocker by one patient, and any of three classes by one patient. CONCLUSIONS Personalized trials of BP medications were feasible and led to improved treatment precision. Heterogeneity of patient preferences and of therapeutic BP response for first-line BP medications can be determined through a personalized trial approach.
Collapse
|
14
|
Phelps PK, Kelley EF, Walla DM, Ross JK, Simmons JJ, Bulock EK, Ayres A, Akre MK, Sprissler R, Olson TP, Snyder EM. Relationship between a Weighted Multi-Gene Algorithm and Blood Pressure Control in Hypertension. J Clin Med 2019; 8:jcm8030289. [PMID: 30823438 PMCID: PMC6463118 DOI: 10.3390/jcm8030289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/16/2019] [Accepted: 02/25/2019] [Indexed: 01/01/2023] Open
Abstract
Hypertension (HTN) is a complex disease with interactions among multiple organ systems, including the heart, vasculature, and kidney with a strong heritable component. Despite the multifactorial nature of HTN, no clinical guidelines utilize a multi-gene approach to guide blood pressure (BP) therapy. Non-smokers with a family history of HTN were included in the analysis (n = 384; age = 61.0 ± 0.9, 11% non-white). A total of 17 functional genotypes were weighted according to the previous effect size in the literature and entered into an algorithm. Pharmacotherapy was ranked from 1–4 as most to least likely to respond based on the algorithmic assessment of individual patient’s genotypes. Three-years of data were assessed at six-month intervals for BP and medication history. There was no difference in BP at diagnosis between groups matching the top drug recommendation using the multi-gene weighted algorithm (n = 92) vs. those who did not match (n = 292). However, from diagnosis to nadir, patients who matched the primary recommendation had a significantly greater drop in BP when compared to patients who did not. Further, the difference between diagnosis to current 1-year average BP was lower in the group that matched the top recommendation. These data suggest an association between a weighted multi-gene algorithm on the BP response to pharmacotherapy.
Collapse
Affiliation(s)
- Pamela K Phelps
- Medical Center, University of Minnesota, Fairview, Minneapolis, MN 55455, USA.
| | - Eli F Kelley
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Danielle M Walla
- Medical Center, University of Minnesota, Fairview, Minneapolis, MN 55455, USA.
| | - Jennifer K Ross
- Medical Center, University of Minnesota, Fairview, Minneapolis, MN 55455, USA.
| | - Jerad J Simmons
- Medical Center, University of Minnesota, Fairview, Minneapolis, MN 55455, USA.
| | - Emma K Bulock
- Medical Center, University of Minnesota, Fairview, Minneapolis, MN 55455, USA.
| | - Audrie Ayres
- Medical Center, University of Minnesota, Fairview, Minneapolis, MN 55455, USA.
| | | | - Ryan Sprissler
- Geneticure, Inc., Rochester, MN 55902, USA.
- University of Arizona Genomics Core, University of Arizona, Tucson, AZ 85705, USA.
| | - Thomas P Olson
- Geneticure, Inc., Rochester, MN 55902, USA.
- College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
15
|
Cunningham PN, Chapman AB. The future of pharmacogenetics in the treatment of hypertension. Pharmacogenomics 2019; 20:129-132. [PMID: 30808251 DOI: 10.2217/pgs-2018-0191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
16
|
Kelley EF, Snyder EM, Alkhatib NS, Snyder SC, Sprissler R, Olson TP, Akre MK, Abraham I. Economic evaluation of a pharmacogenomic multi-gene panel test to optimize anti-hypertension therapy: simulation study. J Med Econ 2018; 21:1246-1253. [PMID: 30280614 DOI: 10.1080/13696998.2018.1531011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Hypertension is the strongest modifiable risk factor for cardiovascular disease, affecting 80 million individuals in the US and responsible for ∼360,000 deaths, at total annual costs of $93.5 billion. Antihypertension therapies guided by single genotypes are clinically more effective and may avert more adverse events than the standard of care of layering anti-hypertensive drug therapies, thus potentially decreasing costs. This study aimed to determine the economic benefits of the implementation of multi-gene panel guided therapies for hypertension from the payer perspective within a 3-year time horizon. MATERIALS AND METHODS A simulation analysis was conducted for a panel of 10 million insured patients categorized clinically as untreated, treated but uncontrolled, and treated and controlled over a 3-year treatment period. Inputs included research data; empirical data from a 11-gene panel with known functional, heart, blood vessel, and kidney genotypes; and therapy efficacy and safety estimates from literature. Cost estimates were categorized as related to genetic testing, evaluation and management, medication, or adverse events. RESULTS Multi-gene panel guided therapy yielding savings of $6,256,607,500 for evaluation and management, $908,160,000 for medications, and $37,467,508,716 for adverse events, after accounting for incremental genetic testing costs of $2,355,540,000. This represents total 3-year savings of $42,276,736,216, or a 47% reduction, and 3-year savings of $4,228 and annual savings of $1,409 per covered patient. CONCLUSIONS A precision medicine approach to genetically guided therapy for hypertension patients using a multi-gene panel reduced total 3-year costs by 47%, yielding savings exceeding $42.3 billion in an insured panel of 10 million patients. Importantly, 89% of these savings are generated by averting specific adverse events and, thus, optimizing choice of therapy in function of both safety and efficacy.
Collapse
Affiliation(s)
- Eli F Kelley
- a University of Minnesota , Minneapolis , MN , USA
| | | | - Nimer S Alkhatib
- c University of Arizona, Center for Health Outcomes and Pharmaco Economic Research , Tucson , AZ , USA
| | | | - Ryan Sprissler
- b Geneticure, Inc. , Rochester , MN , USA
- d University of Arizona Genomics Core , Tucson , AZ , USA
- e University of Arizona, Center for Applied Genetics and Genomic Medicine , Tucson , AZ , USA
| | - Thomas P Olson
- f Mayo Clinic, College of Medicine , Rochester , MN , USA
| | | | - Ivo Abraham
- c University of Arizona, Center for Health Outcomes and Pharmaco Economic Research , Tucson , AZ , USA
- e University of Arizona, Center for Applied Genetics and Genomic Medicine , Tucson , AZ , USA
- g University of Arizona , Department of Family and Community Medicine , Tucson , AZ , USA
- h Matrix45 , Tucson , AZ , USA
| |
Collapse
|
17
|
Ng FL, Warren HR, Caulfield MJ. Hypertension genomics and cardiovascular prevention. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:291. [PMID: 30211179 DOI: 10.21037/atm.2018.06.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypertension continues to be a major risk factor for global mortality, and recent genome-wide association studies (GWAS) have expanded in size, leading to the identification of further genetic loci influencing blood pressure. In light of the new knowledge from the largest cardiovascular GWAS to date, we review the potential impact of genomics on discovering potential drug targets, risk stratification with genetic risk scores, drug selection with pharmacogenetics, and exploring insights provided by gene-environment interactions.
Collapse
Affiliation(s)
- Fu Liang Ng
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK.,Barts BP Centre of Excellence, Barts Heart Centre, The NIHR Biomedical Research Centre at Barts, St Bartholomew's Hospital, W Smithfield, London, UK
| | - Helen R Warren
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK.,Barts BP Centre of Excellence, Barts Heart Centre, The NIHR Biomedical Research Centre at Barts, St Bartholomew's Hospital, W Smithfield, London, UK
| |
Collapse
|
18
|
Sá ACC, Webb A, Gong Y, McDonough CW, Shahin MH, Datta S, Langaee TY, Turner ST, Beitelshees AL, Chapman AB, Boerwinkle E, Gums JG, Scherer SE, Cooper-DeHoff RM, Sadee W, Johnson JA. Blood pressure signature genes and blood pressure response to thiazide diuretics: results from the PEAR and PEAR-2 studies. BMC Med Genomics 2018; 11:55. [PMID: 29925376 PMCID: PMC6011347 DOI: 10.1186/s12920-018-0370-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/25/2018] [Indexed: 01/13/2023] Open
Abstract
Background Recently, 34 genes had been associated with differential expression relative to blood pressure (BP)/ hypertension (HTN). We hypothesize that some of the genes associated with BP/HTN are also associated with BP response to antihypertensive treatment with thiazide diuretics. Methods We assessed these 34 genes for association with differential expression to BP response to thiazide diuretics with RNA sequencing in whole blood samples from 150 hypertensive participants from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) and PEAR-2 studies. PEAR white and PEAR-2 white and black participants (n = 50 for each group) were selected based on the upper and lower quartile of BP response to hydrochlorothiazide (HCTZ) and to chlorthalidone. Results FOS, DUSP1 and PPP1R15A were differentially expressed across all cohorts (meta-analysis p-value < 2.0 × 10− 6), and responders to HCTZ or chlorthalidone presented up-regulated transcripts. Rs11065987 in chromosome 12, a trans-eQTL for expression of FOS, PPP1R15A and other genes, is also associated with BP response to HCTZ in PEAR whites (SBP: β = − 2.1; p = 1.7 × 10− 3; DBP: β = − 1.4; p = 2.9 × 10− 3). Conclusions These findings suggest FOS, DUSP1 and PPP1R15A as potential molecular determinants of antihypertensive response to thiazide diuretics. Trial registration NCT00246519, NCT01203852www.clinicaltrials.gov Electronic supplementary material The online version of this article (10.1186/s12920-018-0370-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Caroline C Sá
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, P.O.Box 100484, Gainesville, FL, 32610-0486, USA.,Graduate Program in Genetics and Genomics, University of Florida, Gainesville, FL, USA
| | - Amy Webb
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yan Gong
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, P.O.Box 100484, Gainesville, FL, 32610-0486, USA
| | - Caitrin W McDonough
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, P.O.Box 100484, Gainesville, FL, 32610-0486, USA
| | - Mohamed H Shahin
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, P.O.Box 100484, Gainesville, FL, 32610-0486, USA
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Taimour Y Langaee
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, P.O.Box 100484, Gainesville, FL, 32610-0486, USA
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amber L Beitelshees
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland, Baltimore, MD, USA
| | | | - Eric Boerwinkle
- Division of Epidemiology, University of Texas at Houston, Houston, TX, USA
| | - John G Gums
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, USA.,Department of Community Health and Family Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Rhonda M Cooper-DeHoff
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, P.O.Box 100484, Gainesville, FL, 32610-0486, USA.,Department of Medicine, Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, USA
| | - Wolfgang Sadee
- Department of Cancer Biology and Genetic, College of Medicine, Center for Pharmacogenomics, Ohio State University, Columbus, OH, USA
| | - Julie A Johnson
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, P.O.Box 100484, Gainesville, FL, 32610-0486, USA. .,Graduate Program in Genetics and Genomics, University of Florida, Gainesville, FL, USA. .,Department of Medicine, Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Abouelfath R, Habbal R, Laaraj A, Khay K, Harraka M, Nadifi S. ACE insertion/deletion polymorphism is positively associated with resistant hypertension in Morocco. Gene 2018; 658:178-183. [PMID: 29548858 DOI: 10.1016/j.gene.2018.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the association of I/D polymorphisms of ACE gene is associated with resistant hypertension and essential controlled hypertension. RESULTS Our results show that the homozygous mutant genotype DD was more represented among resistant than controlled (58.1% vs 41.9% respectively), however the homozygote wild was more represented among controlled than resistant (70.6% vs 29.4% respectively). But more heterozygous ID among controlled than resistant patients (63.6% vs 36.4% respectively). The difference was statistically significant (p = 0.04). Analysis of clinical parameters indicated that physical activity contributes to resistant hypertension (P < 0.05). Based on our findings, the homozygous mutant for DD of ACE gene is associated with resistant hypertension in our population. Further studies with larger sample sizes are needed to confirm the results of this study.
Collapse
Affiliation(s)
- R Abouelfath
- Genetics and Molecular Pathology Laboratory, Medical School of Casablanca, University Hassan II, 19 Rue Tarik Ibnou Ziad, BP. 9154 Casablanca, Morocco.
| | - R Habbal
- Department of Cardiology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - A Laaraj
- Department of Cardiology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - K Khay
- Department of Cardiology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - M Harraka
- Department of Cardiology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - S Nadifi
- Genetics and Molecular Pathology Laboratory, Medical School of Casablanca, University Hassan II, 19 Rue Tarik Ibnou Ziad, BP. 9154 Casablanca, Morocco
| |
Collapse
|
20
|
Eadon MT, Kanuri SH, Chapman AB. Pharmacogenomic studies of hypertension: paving the way for personalized antihypertensive treatment. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018; 3:33-47. [PMID: 29888336 DOI: 10.1080/23808993.2018.1420419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction Increasing clinical evidence supports the implementation of genotyping for anti-hypertensive drug dosing and selection. Despite robust evidence gleaned from clinical trials, the translation of genotype guided therapy into clinical practice faces significant challenges. Challenges to implementation include the small effect size of individual variants and the polygenetic nature of antihypertensive drug response, a lack of expert consensus on dosing guidelines even without genetic information, and proper definition of major antihypertensive drug toxicities. Balancing clinical benefit with cost, while overcoming these challenges, remains crucial. Areas covered This review presents the most impactful clinical trials and cohorts which continue to inform and guide future investigation. Variants were selected from among those identified in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR), the Genetic Epidemiology of Responses to Antihypertensives study (GERA), the Genetics of Drug Responsiveness in Essential Hypertension (GENRES) study, the SOPHIA study, the Milan Hypertension Pharmacogenomics of hydro-chlorothiazide (MIHYPHCTZ), the Campania Salute Network, the International Verapamil SR Trandolapril Study (INVEST), the Nordic Diltiazem (NORDIL) Study, GenHAT, and others. Expert Commentary The polygenic nature of antihypertensive drug response is a major barrier to clinical implementation. Further studies examining clinical effectiveness are required to support broad-based implementation of genotype-based prescribing in medical practice.
Collapse
Affiliation(s)
- Michael T Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sri H Kanuri
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
21
|
Whole Transcriptome Sequencing Analyses Reveal Molecular Markers of Blood Pressure Response to Thiazide Diuretics. Sci Rep 2017; 7:16068. [PMID: 29167564 PMCID: PMC5700078 DOI: 10.1038/s41598-017-16343-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/10/2017] [Indexed: 01/13/2023] Open
Abstract
Thiazide diuretics (TD) are commonly prescribed anti-hypertensives worldwide. However, <40% of patients treated with thiazide monotherapy achieve BP control. This study uses whole transcriptome sequencing to identify novel molecular markers associated with BP response to TD. We assessed global RNA expression levels in whole blood samples from 150 participants, representing patients in the upper and lower quartile of BP response to TD from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) (50 whites) and from PEAR-2 (50 whites and 50 blacks). In each study cohort, we performed poly-A RNA-sequencing in baseline samples from 25 responders and 25 non-responders to hydrochlorothiazide (HCTZ) or chlorthalidone. At FDR adjusted p-value < 0.05, 29 genes were differentially expressed in relation to HCTZ or chlorthalidone BP response in whites. For each differentially expressed gene, replication was attempted in the alternate white group and PEAR-2 blacks. CEBPD (meta-analysis p = 1.8 × 10−11) and TSC22D3 (p = 1.9 × 10−9) were differentially expressed in all 3 cohorts, and explain, in aggregate, 21.9% of response variability to TD. This is the first report of the use of transcriptome-wide sequencing data to identify molecular markers of antihypertensive drug response. These findings support CEBPD and TSC22D3 as potential biomarkers of BP response to TD.
Collapse
|
22
|
RAS Genetic Variants in Interaction with ACE Inhibitors Drugs Influences Essential Hypertension Control. Arch Med Res 2017; 48:88-95. [PMID: 28577874 DOI: 10.1016/j.arcmed.2017.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 02/02/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUNDS AND AIMS Essential Hypertension (EH) is a common disorder associated with increased cardiovascular morbidity and mortality in Malaysia. To investigate how genetic polymorphisms of the renin-angiotensin-aldosterone system (RAS) influence EH control with angiotensin-converting enzyme inhibitor drugs (ACEI). METHODS A case-control, cross-sectional population-based nested study (n = 142) included hypertensive subjects treated with ACEI drugs, either lisinopril or enalapril (20 mg, once daily) as monotherapy for 24 weeks. In total seven possible polymorphisms of RAS genes were genotyped. The association between those polymorphisms and the changes in blood pressure were observed in the 24 week treatment. RESULTS Statistically significant associations of I, G, T, M and G alleles of ACE (I/D, G2350A), AGT (M235T, T175M and G-6A) respectively were observed in essential hypertensive subjects. The decrease in systolic blood pressure and diastolic blood pressure after 24 weeks of treatment of the patients carrying II, GG, and TT genotypes were greater than the groups carrying DD, AA, MM, MM and GG of I/D, G2350A, M235T, T174M and G-6A genotypes respectively. In contrast, No significant difference was observed between renin gene polymorphisms (Bg/I and MboI) and hypertensives. CONCLUSIONS Although this study shows a possible association of polymorphisms of RAS genes with the risk of non-control of HT in ACEI-treated patients and indicates the importance of all this system's components in regulating HT, it needs to be replicated in other data sources.
Collapse
|
23
|
En route to precision medicine through the integration of biological sex into pharmacogenomics. Clin Sci (Lond) 2017; 131:329-342. [PMID: 28159880 DOI: 10.1042/cs20160379] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/15/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
Frequently, pharmacomechanisms are not fully elucidated. Therefore, drug use is linked to an elevated interindividual diversity of effects, whether therapeutic or adverse, and the role of biological sex has as yet unrecognized and underestimated consequences. A pharmacogenomic approach could contribute towards the development of an adapted therapy for each male and female patient, considering also other fundamental features, such as age and ethnicity. This would represent a crucial step towards precision medicine and could be translated into clinical routine. In the present review, we consider recent results from pharmacogenomics and the role of sex in studies that are relevant to cardiovascular therapy. We focus on genome-wide analyses, because they have obvious advantages compared with targeted single-candidate gene studies. For instance, genome-wide approaches do not necessarily depend on prior knowledge of precise molecular mechanisms of drug action. Such studies can lead to findings that can be classified into three categories: first, effects occurring in the pharmacokinetic properties of the drug, e.g. through metabolic and transporter differences; second, a pharmacodynamic or drug target-related effect; and last diverse adverse effects. We conclude that the interaction of sex with genetic determinants of drug response has barely been tested in large, unbiased, pharmacogenomic studies. We put forward the theory that, to contribute towards the realization of precision medicine, it will be necessary to incorporate sex into pharmacogenomics.
Collapse
|
24
|
Kayima J, Liang J, Natanzon Y, Nankabirwa J, Ssinabulya I, Nakibuuka J, Katamba A, Mayanja-Kizza H, Miron A, Li C, Zhu X. Association of genetic variation with blood pressure traits among East Africans. Clin Genet 2017; 92:487-494. [PMID: 28105631 DOI: 10.1111/cge.12974] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Genetic variation may play explain some of the disparity in prevalence and control of hypertension across Sub-Saharan Africa. However, there have been very few studies to characterize genetic variation of blood pressure traits. AIM To determine whether a set of blood pressure-associated genetic loci can be replicated among samples East African samples. METHODS Twenty-seven blood pressures (BP)-related single nucleotide polymorphisms (SNPs) were genotyped among 2881 samples from participants in the Medical Education Partnership Initiative for Cardiovascular Disease (MEPI-CVD) survey. Associations with known BP variants were evaluated for systolic blood pressure (SBP), diastolic blood pressure (DBP) and pulse pressure (PP) as continuous variables and for hypertension (HTN) as a binary variable. RESULTS Eleven SNPS were associated with at least 1 BP trait (P < .05). Four SNPs; rs2004776, rs7726475, rs11837544 and rs2681492, whose nearest genes are AGT, NPR3/SUB1, PLXNC1 and ATP2B1, respectively, were associated with SBP. Six SNPs, rs2004776, rs11977526, rs11191548, rs381815, rs2681492 and rs1327235, close to AGT, IGFBP3, CYP17A1, PLEKHA7, ATP2B1 and JAG, respectively, were associated with DBP while 2 SNPs located within AGT and IGFBP-3 genes associated with HTN. For PP, 4 variants rs1458038, rs11725861, rs7726475 and rs11953630 whose corresponding genes are FGF5, CHIC2, SUB1/NPR3 and EBF1 reached significance (P < .05). Eight SNPs were replicated in the same effect direction as the parent studies. Risk scores defined using published effect sizes were significantly associated with both SBP (P = .0026) and DBP (P = .0214). CONCLUSION The replication of multiple BP variants among East Africans suggests that these variants may have universal effects across ethnic populations.
Collapse
Affiliation(s)
- J Kayima
- Division of Adult Cardiology, Uganda Heart Institute, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - J Liang
- Department of Epidemiology & Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Y Natanzon
- Department of Epidemiology & Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - J Nankabirwa
- Clinical Epidemiology Unit, Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - I Ssinabulya
- Division of Adult Cardiology, Uganda Heart Institute, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - J Nakibuuka
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - A Katamba
- Clinical Epidemiology Unit, Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - H Mayanja-Kizza
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - A Miron
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - C Li
- Department of Epidemiology & Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - X Zhu
- Department of Epidemiology & Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
25
|
Salvi E, Wang Z, Rizzi F, Gong Y, McDonough CW, Padmanabhan S, Hiltunen TP, Lanzani C, Zaninello R, Chittani M, Bailey KR, Sarin AP, Barcella M, Melander O, Chapman AB, Manunta P, Kontula KK, Glorioso N, Cusi D, Dominiczak AF, Johnson JA, Barlassina C, Boerwinkle E, Cooper-DeHoff RM, Turner ST. Genome-Wide and Gene-Based Meta-Analyses Identify Novel Loci Influencing Blood Pressure Response to Hydrochlorothiazide. Hypertension 2017; 69:51-59. [PMID: 27802415 PMCID: PMC5145728 DOI: 10.1161/hypertensionaha.116.08267] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/26/2016] [Accepted: 10/07/2016] [Indexed: 12/28/2022]
Abstract
This study aimed to identify novel loci influencing the antihypertensive response to hydrochlorothiazide monotherapy. A genome-wide meta-analysis of blood pressure (BP) response to hydrochlorothiazide was performed in 1739 white hypertensives from 6 clinical trials within the International Consortium for Antihypertensive Pharmacogenomics Studies, making it the largest study to date of its kind. No signals reached genome-wide significance (P<5×10-8), and the suggestive regions (P<10-5) were cross-validated in 2 black cohorts treated with hydrochlorothiazide. In addition, a gene-based analysis was performed on candidate genes with previous evidence of involvement in diuretic response, in BP regulation, or in hypertension susceptibility. Using the genome-wide meta-analysis approach, with validation in blacks, we identified 2 suggestive regulatory regions linked to gap junction protein α1 gene (GJA1) and forkhead box A1 gene (FOXA1), relevant for cardiovascular and kidney function. With the gene-based approach, we identified hydroxy-delta-5-steroid dehydrogenase, 3 β- and steroid δ-isomerase 1 gene (HSD3B1) as significantly associated with BP response (P<2.28×10-4 ). HSD3B1 encodes the 3β-hydroxysteroid dehydrogenase enzyme and plays a crucial role in the biosynthesis of aldosterone and endogenous ouabain. By amassing all of the available pharmacogenomic studies of BP response to hydrochlorothiazide, and using 2 different analytic approaches, we identified 3 novel loci influencing BP response to hydrochlorothiazide. The gene-based analysis, never before applied to pharmacogenomics of antihypertensive drugs to our knowledge, provided a powerful strategy to identify a locus of interest, which was not identified in the genome-wide meta-analysis because of high allelic heterogeneity. These data pave the way for future investigations on new pathways and drug targets to enhance the current understanding of personalized antihypertensive treatment.
Collapse
Affiliation(s)
- Erika Salvi
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.).
| | - Zhiying Wang
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Federica Rizzi
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Yan Gong
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Caitrin W McDonough
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Sandosh Padmanabhan
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Timo P Hiltunen
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Chiara Lanzani
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Roberta Zaninello
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Martina Chittani
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Kent R Bailey
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Antti-Pekka Sarin
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Matteo Barcella
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Olle Melander
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Arlene B Chapman
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Paolo Manunta
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Kimmo K Kontula
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Nicola Glorioso
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Daniele Cusi
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Anna F Dominiczak
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Julie A Johnson
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Cristina Barlassina
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Eric Boerwinkle
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Rhonda M Cooper-DeHoff
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| | - Stephen T Turner
- From the Department of Health Sciences, University of Milan, Italy (E.S., F.R., M.C., M.B., C.B.); Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston (Z.W., E.B.); Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy (Y.G., C.W.M., J.A.J., R.M.C.-D.) and Division of Cardiovascular Medicine, Department of Medicine (J.A.J., R.M.C.-D.), University of Florida, Gainesville; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom (S.P., A.F.D.); Department of Medicine, University of Helsinki and Helsinki University Hospital, Finland (T.P.H., K.K.K.); Nephrology and Dialysis and Hypertension Unit, San Raffaele Scientific Institute, Università Vita Salute San Raffaele, Milano, Italy (C.L., P.M.); Hypertension and Related Disease Centre, AOU-University of Sassari, Italy (R.Z., N.G.); Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.B.) and Division of Nephrology and Hypertension, Department of Internal Medicine (S.T.T.), Mayo Clinic, Rochester, Minnesota; Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland (A.-P.S); Department of Clinical Sciences, Lund University, Malmö, Sweden (O.M.); Section of Nephrology, Department of Medicine, University of Chicago, Illinois (A.B.C.); Institute of Biomedical Technologies, National Research Centre of Italy, Segrate, Milan, Italy (D.C.); and Sanipedia srl, Bresso, Italy (D.C.)
| |
Collapse
|
26
|
Jiang S, Venners SA, Hsu YH, Weinstock J, Wang B, Xing H, Wang X, Xu X. Interactive Effect of the KCNJ11 Ile337Val Polymorphism and Cigarette Smoking on the Antihypertensive Response to Irbesartan in Chinese Hypertensive Patients. Am J Hypertens 2016; 29:553-9. [PMID: 26304961 DOI: 10.1093/ajh/hpv144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE This study was designed to detect the association of the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene polymorphism with antihypertensive therapeutic response to irbesartan in a large-scale Chinese hypertensive population. METHODS A total of 1,099 patients with essential hypertension were enrolled to receive a daily dose of 150 mg irbesartan for 27 days. Pretreatment baseline blood pressure (BP) and posttreatment BP on the 28th day were measured. Plasma irbesartan concentrations were measured by high-performance liquid chromatography-fluorescence. The KCNJ11 I337V gene polymorphism was determined using high-throughput TaqMan technology. RESULTS The HapMap data in the Han Chinese population showed that the I337V was used as a representative for 4 common functional polymorphisms. Our results showed that the association of antihypertensive response to irbesartan and the KCNJ11 genetic variant in the total sample was not significant. However, in nonsmokers, relative to the GG genotype, subjects with the homozygous AA genotype had a significantly higher therapeutic response to irbesartan (adjusted beta ± SE: 4.7±1.9 mm Hg, P = 0.015). In smokers, the subjects with the homozygous AA genotype had a significantly lower therapeutic response to irbesartan (adjusted beta ± SE: -5.6±2.5 mm Hg, P = 0.026). A multivariate linear regression model confirmed that there was a significant interactive effect between the KCNJ11 gene and smoking on irbesartan treatment (interaction P = 0.001). CONCLUSION The interactive effect of smoking status and the KCNJ11 genotype may influence the antihypertensive effects of irbesartan, which indicates a consideration for future individualized antihypertensive drug treatment.
Collapse
Affiliation(s)
- Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China; Institute of Biomedicine, Anhui Medical University, Hefei, China;
| | - Scott Alan Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yi-Hsiang Hsu
- Institute for Aging Research, HSL and Harvard Medical School, Boston, Massachusetts, USA; Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Justin Weinstock
- Department of Statistics, University of Virginia, Charlottesville, Virginia, USA
| | - Binyan Wang
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Houxun Xing
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Xiping Xu
- Institute of Biomedicine, Anhui Medical University, Hefei, China; Division of Epidemiology and Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, Illinois, USA
| |
Collapse
|
27
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
28
|
Abstract
In this review, we lay out 3 areas currently being evaluated for incorporation of genetic information into clinical practice related to atherosclerosis. The first, familial hypercholesterolemia, is the clearest case for utility of genetic testing in diagnosis and potentially guiding treatment. Already in use for confirmatory testing of familial hypercholesterolemia and for cascade screening of relatives, genetic testing is likely to expand to help establish diagnoses and facilitate research related to most effective therapies, including new agents, such as PCSK9 inhibitors. The second area, adding genetic information to cardiovascular risk prediction for primary prevention, is not currently recommended. Although identification of additional variants may add substantially to prediction in the future, combining known variants has not yet demonstrated sufficient improvement in prediction for incorporation into commonly used risk scores. The third area, pharmacogenetics, has utility for some therapies today. Future utility for pharmacogenetics will wax or wane depending on the nature of available drugs and therapeutic strategies.
Collapse
Affiliation(s)
- Nina P. Paynter
- From the Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Paul M Ridker
- From the Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Daniel I. Chasman
- From the Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
29
|
The effects of genes implicated in cardiovascular disease on blood pressure response to treatment among treatment-naive hypertensive African Americans in the GenHAT study. J Hum Hypertens 2016; 30:549-54. [PMID: 26791477 PMCID: PMC4956602 DOI: 10.1038/jhh.2015.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022]
Abstract
African Americans have the highest prevalence of hypertension in the United States. Blood-pressure control is important to reduce cardiovascular disease (CVD)-related morbidity and mortality in this ethnic group. Genetic variants have been found to be associated with BP response to treatment. Previous pharmacogenetic studies of blood-pressure response to treatment in African Americans suffer limitations of small sample size as well as a limited number of candidate genes, and often focused on one antihypertensive treatment. Using 1,131 African-American treatment naïve participants from the Genetics of Hypertension Associated Treatment (GenHAT) Study, we examined whether variants in 35 candidate genes might modulate blood-pressure response to four different antihypertensive medications, including an angiotensin converting enzyme (ACE) inhibitor (lisinopril), a calcium channel blocker (amlodipine), and an α-adrenergic blocker (doxazosin) as compared to a thiazide diuretic (chlorthalidone) after 6 months of follow-up. Several suggestive gene by treatment interactions were identified. For example, among participants with two minor alleles of REN rs6681776, diastolic blood-pressure response was much improved on doxazosin compared to chlorthalidone (on average −9.49 mmHg vs. −1.70 mmHg) (P=0.007). Although several suggestive loci were identified, none of the findings passed significance criteria after correction for multiple testing. Given the impact of hypertension and its sequelae in this population, this research highlights the potential for genetic factors to contribute to blood-pressure response to treatment. Continued concerted research efforts focused on genetics are needed to improve treatment response in this high risk group.
Collapse
|
30
|
Lupoli S, Salvi E, Barcella M, Barlassina C. Pharmacogenomics considerations in the control of hypertension. Pharmacogenomics 2015; 16:1951-64. [PMID: 26555875 DOI: 10.2217/pgs.15.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The response to antihypertensive therapy is very heterogeneous and the need by the physicians to account for it has driven much interest in pharmacogenomics of antihypertensive drugs. The Human Genome Project and the initiatives in genomics that followed, generated a huge number of genetic data that furnished the tools to explore the genotype-phenotype association in candidate genes and at genome-wide level. In spite of the efforts and the great number of publications, pharmacogenomics of antihypertensive drugs is far from being used in clinical practice. In this review, we analyze the main findings available in PubMed from 2010 to 2015, in relation to the major classes of antihypertensive drugs. We also describe a new Phase II drug that targets two specific hypertension predisposing mechanisms.
Collapse
Affiliation(s)
- Sara Lupoli
- Department of Health Sciences, Milan University, Via Rudinì 8, 20142 Milan & Filarete Foundation, Viale Ortles 22/4, 20139 Milan, Italy
| | - Erika Salvi
- Department of Health Sciences, Milan University, Via Rudinì 8, 20142 Milan & Filarete Foundation, Viale Ortles 22/4, 20139 Milan, Italy
| | - Matteo Barcella
- Department of Health Sciences, Milan University, Via Rudinì 8, 20142 Milan & Filarete Foundation, Viale Ortles 22/4, 20139 Milan, Italy
| | - Cristina Barlassina
- Department of Health Sciences, Milan University, Via Rudinì 8, 20142 Milan & Filarete Foundation, Viale Ortles 22/4, 20139 Milan, Italy
| |
Collapse
|
31
|
Bis JC, Sitlani C, Irvin R, Avery CL, Smith AV, Sun F, Evans DS, Musani SK, Li X, Trompet S, Krijthe BP, Harris TB, Quibrera PM, Brody JA, Demissie S, Davis BR, Wiggins KL, Tranah GJ, Lange LA, Sotoodehnia N, Stott DJ, Franco OH, Launer LJ, Stürmer T, Taylor KD, Cupples LA, Eckfeldt JH, Smith NL, Liu Y, Wilson JG, Heckbert SR, Buckley BM, Ikram MA, Boerwinkle E, Chen YDI, de Craen AJM, Uitterlinden AG, Rotter JI, Ford I, Hofman A, Sattar N, Slagboom PE, Westendorp RGJ, Gudnason V, Vasan RS, Lumley T, Cummings SR, Taylor HA, Post W, Jukema JW, Stricker BH, Whitsel EA, Psaty BM, Arnett D. Drug-Gene Interactions of Antihypertensive Medications and Risk of Incident Cardiovascular Disease: A Pharmacogenomics Study from the CHARGE Consortium. PLoS One 2015; 10:e0140496. [PMID: 26516778 PMCID: PMC4627813 DOI: 10.1371/journal.pone.0140496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/25/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Hypertension is a major risk factor for a spectrum of cardiovascular diseases (CVD), including myocardial infarction, sudden death, and stroke. In the US, over 65 million people have high blood pressure and a large proportion of these individuals are prescribed antihypertensive medications. Although large long-term clinical trials conducted in the last several decades have identified a number of effective antihypertensive treatments that reduce the risk of future clinical complications, responses to therapy and protection from cardiovascular events vary among individuals. METHODS Using a genome-wide association study among 21,267 participants with pharmaceutically treated hypertension, we explored the hypothesis that genetic variants might influence or modify the effectiveness of common antihypertensive therapies on the risk of major cardiovascular outcomes. The classes of drug treatments included angiotensin-converting enzyme inhibitors, beta-blockers, calcium channel blockers, and diuretics. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, each study performed array-based genome-wide genotyping, imputed to HapMap Phase II reference panels, and used additive genetic models in proportional hazards or logistic regression models to evaluate drug-gene interactions for each of four therapeutic drug classes. We used meta-analysis to combine study-specific interaction estimates for approximately 2 million single nucleotide polymorphisms (SNPs) in a discovery analysis among 15,375 European Ancestry participants (3,527 CVD cases) with targeted follow-up in a case-only study of 1,751 European Ancestry GenHAT participants as well as among 4,141 African-Americans (1,267 CVD cases). RESULTS Although drug-SNP interactions were biologically plausible, exposures and outcomes were well measured, and power was sufficient to detect modest interactions, we did not identify any statistically significant interactions from the four antihypertensive therapy meta-analyses (Pinteraction > 5.0×10-8). Similarly, findings were null for meta-analyses restricted to 66 SNPs with significant main effects on coronary artery disease or blood pressure from large published genome-wide association studies (Pinteraction ≥ 0.01). Our results suggest that there are no major pharmacogenetic influences of common SNPs on the relationship between blood pressure medications and the risk of incident CVD.
Collapse
Affiliation(s)
- Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Colleen Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Ryan Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christy L. Avery
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Fangui Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Solomon K. Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, The Netherlands
| | - Bouwe P. Krijthe
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tamara B. Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - P. Miguel Quibrera
- Collaborative Studies Coordinating Center, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Serkalem Demissie
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Barry R. Davis
- Department of Biostatistics, University of Texas School of Public Health, Houston, Texas, United States of America
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Leslie A. Lange
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, 27599, United States of America
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Cardiology Division, University of Washington, Seattle, Washington, United States of America
| | - David J. Stott
- Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lenore J. Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Til Stürmer
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
- University of North Carolina—GSK Center of Excellence in Pharmacoepidemiology, Chapel Hill, North Carolina, United States of America
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - John H. Eckfeldt
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Seattle Epidemiologic Research and Information Center of the Department of Veterans Affairs Office of Research and Development, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health, Seattle, Washington, United States of America
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health, Seattle, Washington, United States of America
| | - Brendan M. Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric Boerwinkle
- Institute for Molecular Medicine, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Anton J. M. de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, The Netherlands
| | - Andre G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, United Kingdom
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, United Kingdom
| | - P. Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rudi G. J. Westendorp
- Faculty of Health and Medical Sciences, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ramachandran S. Vasan
- The Framingham Heart Study, Framingham, Massachusetts, United States of America
- Boston University School of Medicine, Boston, Massachusetts, United States of America
- Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Thomas Lumley
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Steven R. Cummings
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Herman A. Taylor
- Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Wendy Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, The Netherlands
| | - Bruno H. Stricker
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Inspectorate for Health Care, the Hague, The Netherlands
| | - Eric A. Whitsel
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina United States of America
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Department of Health Services, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health, Seattle, Washington, United States of America
| | - Donna Arnett
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
32
|
Abstract
Resistant hypertension (RHTN), defined as an uncontrolled blood pressure despite the use of multiple antihypertensive medications, is an increasing clinical problem associated with increased cardiovascular (CV) risk, including stroke and target organ damage. Genetic variability in blood pressure (BP)-regulating genes and pathways may, in part, account for the variability in BP response to antihypertensive agents, when taken alone or in combination, and may contribute to the RHTN phenotype. Pharmacogenomics focuses on the identification of genetic factors responsible for inter-individual variability in drug response. Expanding pharmacogenomics research to include patients with RHTN taking multiple BP-lowering medications may identify genetic markers associated with RHTN. To date, the available evidence surrounding pharmacogenomics in RHTN is limited and primarily focused on candidate genes. In this review, we summarize the most current data in RHTN pharmacogenomics and offer some recommendations on how to advance the field.
Collapse
Affiliation(s)
- Nihal El Rouby
- Department of Pharmacotherapy and Translational Research, University of Florida, PO Box 100486, 1600 SW Archer Road, Gainesville, FL 32610-0486, USA
| | - Rhonda M. Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research, University of Florida, PO Box 100486, 1600 SW Archer Road, Gainesville, FL 32610-0486, USA
- Division of Cardiovascular Medicine, Colleges of Pharmacy and Medicine, University of Florida, PO Box 100486, 1600 SW Archer Road, Gainesville, FL 32610-0486, USA
| |
Collapse
|
33
|
Gladding PA, Patrick A, Manley P, Mash L, Shepherd P, Murphy R, Vilas-Boas S, Schlegel TT. Personalized hypertension management in practice. Per Med 2015; 12:297-311. [DOI: 10.2217/pme.14.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The revolution occurring in genomic and personalized medicine is likely to have a significant impact on the management of hypertension. However, from the perspective of translating new knowledge into clinical practice, progress has been slow. This review article summarizes recent advances in hypertension-related diagnostics while also offering new perspective on hypertension management for the future. Such new perspectives will likely require a paradigm shift toward more integrated and holistic approaches for better prevention and treatment of hypertension in both individuals and the population as a whole.
Collapse
Affiliation(s)
- Patrick A Gladding
- Theranostics Laboratory, North Shore Hospital, Shakespeare Rd, Auckland, New Zealand
| | | | - Paul Manley
- MacMurray Hypertension Clinic Ltd, Auckland, New Zealand
| | - Laura Mash
- MacMurray Hypertension Clinic Ltd, Auckland, New Zealand
| | | | - Rinki Murphy
- Department of Medicine, University of Auckland, New Zealand
| | - Silas Vilas-Boas
- Centre for Microbial Innovation, University of Auckland, New Zealand
| | | |
Collapse
|
34
|
Franceschini N, Chasman DI, Cooper-DeHoff RM, Arnett DK. Genetics, ancestry, and hypertension: implications for targeted antihypertensive therapies. Curr Hypertens Rep 2015; 16:461. [PMID: 24903233 DOI: 10.1007/s11906-014-0461-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hypertension is the most common chronic condition seen by physicians in ambulatory care and a condition for which life-long medications are commonly prescribed. There is evidence for genetic factors influencing blood pressure variation in populations and response to medications. This review summarizes recent genetic discoveries that surround blood pressure, hypertension, and antihypertensive drug response from genome-wide association studies, while highlighting ancestry-specific findings and any potential implication for drug therapy targets. Genome-wide association studies have identified several novel loci for inter-individual variation of blood pressure and hypertension risk in the general population. Evidence from pharmacogenetic studies suggests that genes influence the blood pressure response to antihypertensive drugs, although results are somewhat inconsistent across studies. There is still much work that remains to be done to identify genes both for efficacy and adverse events of antihypertensive medications.
Collapse
Affiliation(s)
- Nora Franceschini
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, 137 E. Franklin St., Suite 306, Chapel Hill, NC, USA,
| | | | | | | |
Collapse
|
35
|
Cabrera CP, Ng FL, Warren HR, Barnes MR, Munroe PB, Caulfield MJ. Exploring hypertension genome-wide association studies findings and impact on pathophysiology, pathways, and pharmacogenetics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:73-90. [DOI: 10.1002/wsbm.1290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/25/2014] [Accepted: 01/05/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Claudia P Cabrera
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| | - Fu Liang Ng
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Helen R Warren
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| | - Michael R Barnes
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| | - Patricia B Munroe
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| | - Mark J Caulfield
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| |
Collapse
|
36
|
Hiltunen TP, Donner KM, Sarin A, Saarela J, Ripatti S, Chapman AB, Gums JG, Gong Y, Cooper‐DeHoff RM, Frau F, Glorioso V, Zaninello R, Salvi E, Glorioso N, Boerwinkle E, Turner ST, Johnson JA, Kontula KK. Pharmacogenomics of hypertension: a genome‐wide, placebo‐controlled cross‐over study, using four classes of antihypertensive drugs. J Am Heart Assoc 2015. [PMID: 25622599 PMCID: PMC4330076 DOI: 10.1161/jaha.114.001521] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Identification of genetic markers of antihypertensive drug responses could assist in individualization of hypertension treatment. METHODS AND RESULTS We conducted a genome-wide association study to identify gene loci influencing the responsiveness of 228 male patients to 4 classes of antihypertensive drugs. The Genetics of Drug Responsiveness in Essential Hypertension (GENRES) study is a double-blind, placebo-controlled cross-over study where each subject received amlodipine, bisoprolol,hydrochlorothiazide, and losartan, each as a monotherapy, in a randomized order. Replication analyses were performed in 4 studies with patients of European ancestry (PEAR Study, N=386; GERA I and II Studies, N=196 and N=198; SOPHIA Study, N=372). We identified 3 single-nucleotide polymorphisms within the ACY3 gene that showed associations with bisoprolol response reaching genome-wide significance (P<5x10(-8))however, this could not be replicated in the PEAR Study using atenolol. In addition, 39 single-nucleotide polymorphisms showed P values of 10(-5) to 10(-7). The 20 top-associated single-nucleotide polymorphisms were different for each antihypertensive drug. None of these top single-nucleotide polymorphisms co-localized with the panel of >40 genes identified in genome-wide association studies of hypertension. Replication analyses of GENRES results provided suggestive evidence for a missense variant (rs3814995) in the NPHS1 (nephrin) gene influencing losartan response, and for 2 variants influencing hydrochlorothiazide response, located within or close to the ALDH1A3 (rs3825926) and CLIC5 (rs321329) genes. CONCLUSIONS These data provide some evidence for a link between biology of the glomerular protein nephrin and antihypertensive action of angiotensin receptor antagonists and encourage additional studies on aldehyde dehydrogenase–mediated reactions in antihypertensive drug action.
Collapse
Affiliation(s)
- Timo P. Hiltunen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (T.P.H., K.K.K.)
| | - Kati M. Donner
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland (K.M.D., A.P.S., J.S., S.R.)
| | - Antti‐Pekka Sarin
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland (K.M.D., A.P.S., J.S., S.R.)
- Public Health Genomics Unit, National Institute for Health and Welfare, University of Helsinki, Helsinki, Finland (A.P.S.)
| | - Janna Saarela
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland (K.M.D., A.P.S., J.S., S.R.)
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland (K.M.D., A.P.S., J.S., S.R.)
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland (S.R.)
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom (S.R.)
| | - Arlene B. Chapman
- Mayo Clinic, Rochester, MN (A.B.C.)
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, GA (A.B.C.)
| | - John G. Gums
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, University of Florida, Gainesville, FL (J.G.G., Y.G., R.M.C.D.H., J.A.J.)
- Department of Community Health and Family Medicine, Gainesville, FL (J.G.G.)
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, University of Florida, Gainesville, FL (J.G.G., Y.G., R.M.C.D.H., J.A.J.)
| | - Rhonda M. Cooper‐DeHoff
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, University of Florida, Gainesville, FL (J.G.G., Y.G., R.M.C.D.H., J.A.J.)
- Department of Medicine, Gainesville, FL (R.M.C.D.H.)
| | - Francesca Frau
- Department of Health Sciences, Genomics and Bioinformatics Unit, University of Milan and Filarete Foundation, Milan, Italy (F.F., E.S.)
| | - Valeria Glorioso
- Hypertension and Related Disease Centre, AOU‐University of Sassari, Sassari, Italy (V.G., R.Z., N.G.)
| | - Roberta Zaninello
- Hypertension and Related Disease Centre, AOU‐University of Sassari, Sassari, Italy (V.G., R.Z., N.G.)
| | - Erika Salvi
- Department of Health Sciences, Genomics and Bioinformatics Unit, University of Milan and Filarete Foundation, Milan, Italy (F.F., E.S.)
| | - Nicola Glorioso
- Hypertension and Related Disease Centre, AOU‐University of Sassari, Sassari, Italy (V.G., R.Z., N.G.)
| | - Eric Boerwinkle
- University of Florida, Gainesville, FL (E.B.)
- Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX (E.B.)
| | - Stephen T. Turner
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN (S.T.T.)
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, University of Florida, Gainesville, FL (J.G.G., Y.G., R.M.C.D.H., J.A.J.)
| | - Kimmo K. Kontula
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland (T.P.H., K.K.K.)
| |
Collapse
|
37
|
Keaney JF, Loscalzo J. Pharmacogenomics of hypertension: a genome‐wide, placebo‐controlled cross‐over study, using four classes of antihypertensive drugs. J Am Heart Assoc 2015; 4:e001778. [PMID: 25628411 PMCID: PMC4330084 DOI: 10.1161/jaha.115.001778] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Identification of genetic markers of antihypertensive drug responses could assist in individualization of hypertension treatment. METHODS AND RESULTS We conducted a genome-wide association study to identify gene loci influencing the responsiveness of 228 male patients to 4 classes of antihypertensive drugs. The Genetics of Drug Responsiveness in Essential Hypertension (GENRES) study is a double-blind, placebo-controlled cross-over study where each subject received amlodipine, bisoprolol,hydrochlorothiazide, and losartan, each as a monotherapy, in a randomized order. Replication analyses were performed in 4 studies with patients of European ancestry (PEAR Study, N=386; GERA I and II Studies, N=196 and N=198; SOPHIA Study, N=372). We identified 3 single-nucleotide polymorphisms within the ACY3 gene that showed associations with bisoprolol response reaching genome-wide significance (P<5x10(-8))however, this could not be replicated in the PEAR Study using atenolol. In addition, 39 single-nucleotide polymorphisms showed P values of 10(-5) to 10(-7). The 20 top-associated single-nucleotide polymorphisms were different for each antihypertensive drug. None of these top single-nucleotide polymorphisms co-localized with the panel of >40 genes identified in genome-wide association studies of hypertension. Replication analyses of GENRES results provided suggestive evidence for a missense variant (rs3814995) in the NPHS1 (nephrin) gene influencing losartan response, and for 2 variants influencing hydrochlorothiazide response, located within or close to the ALDH1A3 (rs3825926) and CLIC5 (rs321329) genes. CONCLUSIONS These data provide some evidence for a link between biology of the glomerular protein nephrin and antihypertensive action of angiotensin receptor antagonists and encourage additional studies on aldehyde dehydrogenase–mediated reactions in antihypertensive drug action.
Collapse
Affiliation(s)
- John F. Keaney
- UMass Medical School and UMass Memorial Medical Center, Worcester, MA (J.F.K.)
| | - Joseph Loscalzo
- Harvard Medical School and Brigham and Women's Hospital, Boston, MA (J.L.)
| |
Collapse
|
38
|
Fontana V, McDonough CW, Gong Y, El Rouby NM, Sá ACC, Taylor KD, Chen YDI, Gums JG, Chapman AB, Turner ST, Pepine CJ, Johnson JA, Cooper-DeHoff RM. Large-scale gene-centric analysis identifies polymorphisms for resistant hypertension. J Am Heart Assoc 2014; 3:e001398. [PMID: 25385345 PMCID: PMC4338734 DOI: 10.1161/jaha.114.001398] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Resistant hypertension (RHTN), defined by lack of blood pressure (BP) control despite treatment with at least 3 antihypertensive drugs, increases cardiovascular risk compared with controlled hypertension. Yet, there are few data on genetic variants associated with RHTN. Methods and Results We used a gene‐centric array containing ≈50 000 single‐nucleotide polymorphisms (SNPs) to identify polymorphisms associated with RHTN in hypertensive participants with coronary artery disease (CAD) from INVEST‐GENES (the INnternational VErapamil‐SR Trandolapril STudy—GENEtic Substudy). RHTN was defined as BP≥140/90 on 3 drugs, or any BP on 4 or more drugs. Logistic regression analysis was performed in European Americans (n=904) and Hispanics (n=837), using an additive model adjusted for age, gender, randomized treatment assignment, body mass index, principal components for ancestry, and other significant predictors of RHTN. Replication of the top SNP was conducted in 241 European American women from WISE (Women's Ischemia Syndrome Evaluation), where RHTN was defined similarly. To investigate the functional effect of rs12817819, mRNA expression was measured in whole blood. We found ATP2B1 rs12817819 associated with RHTN in both INVEST European Americans (P‐value=2.44×10−3, odds ratio=1.57 [1.17 to 2.01]) and INVEST Hispanics (P=7.69×10−4, odds ratio=1.76 [1.27 to 2.44]). A consistent trend was observed at rs12817819 in WISE, and the INVEST‐WISE meta‐analysis result reached chip‐wide significance (P=1.60×10−6, odds ratio=1.65 [1.36 to 1.95]). Expression analyses revealed significant differences in ATP2B1 expression by rs12817819 genotype. Conclusions The ATP2B1 rs12817819 A allele is associated with increased risk for RHTN in hypertensive participants with documented CAD or suspected ischemic heart disease. Clinical Trial Registration URL: www.clinicaltrials.gov; Unique identifiers: NCT00133692 (INVEST), NCT00000554 (WISE).
Collapse
Affiliation(s)
- Vanessa Fontana
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil (V.F.)
| | - Caitrin W McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL (C.W.M.D., Y.G., N.M.E.R., A.C.C., J.G.G., J.A.J., R.M.C.D.H.)
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL (C.W.M.D., Y.G., N.M.E.R., A.C.C., J.G.G., J.A.J., R.M.C.D.H.)
| | - Nihal M El Rouby
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL (C.W.M.D., Y.G., N.M.E.R., A.C.C., J.G.G., J.A.J., R.M.C.D.H.)
| | - Ana Caroline C Sá
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL (C.W.M.D., Y.G., N.M.E.R., A.C.C., J.G.G., J.A.J., R.M.C.D.H.)
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center, Torrance, CA (K.D.T., I.C.)
| | - Y-D Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center, Torrance, CA (K.D.T., I.C.)
| | - John G Gums
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL (C.W.M.D., Y.G., N.M.E.R., A.C.C., J.G.G., J.A.J., R.M.C.D.H.) Department of Community Health and Family Medicine, University of Florida College of Medicine, Gainesville, FL (J.G.G.)
| | - Arlene B Chapman
- The Renal Division, Department of Medicine, Emory University, Atlanta, GA (A.B.C.)
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (S.T.T.)
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL (C.J.P., J.A.J., R.M.C.D.H.)
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL (C.W.M.D., Y.G., N.M.E.R., A.C.C., J.G.G., J.A.J., R.M.C.D.H.) Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL (C.J.P., J.A.J., R.M.C.D.H.)
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL (C.W.M.D., Y.G., N.M.E.R., A.C.C., J.G.G., J.A.J., R.M.C.D.H.) Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL (C.J.P., J.A.J., R.M.C.D.H.)
| |
Collapse
|
39
|
An update on the pharmacogenetics of treating hypertension. J Hum Hypertens 2014; 29:283-91. [PMID: 25355012 DOI: 10.1038/jhh.2014.76] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/24/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023]
Abstract
Hypertension is a leading cause of cardiovascular mortality, but only one third of patients achieve blood pressure goals despite antihypertensive therapy. Genetic polymorphisms may partially account for the interindividual variability and abnormal response to antihypertensive drugs. Candidate gene and genome-wide approaches have identified common genetic variants associated with response to antihypertensive drugs. However, there is no currently available pharmacogenetic test to guide hypertension treatment in clinical practice. In this review, we aimed to summarize the recent findings on pharmacogenetics of the most commonly used antihypertensive drugs in clinical practice, including diuretics, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, beta-blockers and calcium channel blockers. Notably, only a small percentage of the genetic variability on response to antihypertensive drugs has been explained, and the vast majority of the genetic variants associated with antihypertensives efficacy and toxicity remains to be identified. Despite some genetic variants with evidence of association with the variable response related to these most commonly used antihypertensive drug classes, further replication is needed to confirm these associations in different populations. Further studies on epigenetics and regulatory pathways involved in the responsiveness to antihypertensive drugs might provide a deeper understanding of the physiology of hypertension, which may favor the identification of new targets for hypertension treatment and genetic predictors of antihypertensive response.
Collapse
|
40
|
Impact of TCF7L2 single nucleotide polymorphisms on hydrochlorothiazide-induced diabetes. Pharmacogenet Genomics 2014; 23:697-705. [PMID: 24128935 DOI: 10.1097/fpc.0000000000000012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Thiazide diuretics have been associated with increased risk for new onset diabetes (NOD), but pharmacogenetic markers of thiazide-induced NOD are not well studied. Single nucleotide polymorphisms (SNPs) in the transcription factor 7-like 2 gene (TCF7L2) represent the strongest and most reproducible genetic associations with diabetes. We investigated the association of tag SNPs in TCF7L2 with thiazide-induced NOD. METHODS We identified cases that developed NOD and age, sex, and race/ethnicity-matched controls from the INternational VErapamil SR-Trandolapril STudy (INVEST). INVEST compared cardiovascular outcomes between two antihypertensive treatment strategies in ethnically diverse patients with hypertension and coronary artery disease. We genotyped 101 TCF7L2 tag SNPs and used logistic regression to test for pharmacogenetic (SNP×hydrochlorothiazide treatment) interactions. Permuted interaction P values were corrected with the PACT test and adjusted for diabetes-related variables. RESULTS In INVEST whites, we observed three TCF7L2 SNPs with significant SNP×treatment interactions for NOD. The strongest pharmacogenetic interaction was observed for rs7917983 [synergy index 3.37 (95% CI 1.72-6.59), P=5.0×10, PACT=0.03], which was associated with increased NOD risk in hydrochlorothiazide-treated patients [odds ratio 1.53 (1.04-2.25), P=0.03] and decreased NOD risk in non hydrochlorothiazide-treated patients [odds ratio 0.48 (0.27-0.86), P=0.02]. The TCF7L2 SNP rs4506565, previously associated with diabetes, showed a similar, significant pharmacogenetic association. CONCLUSION Our results suggest that hydrochlorothiazide treatment is an environmental risk factor that increases diabetes risk beyond that attributed to TCF7L2 variation in white, hypertensive patients. Further study and replication of our results is needed to confirm pharmacogenetic influences of TCF7L2 SNPs on thiazide-induced NOD.
Collapse
|
41
|
Polimanti R, Iorio A, Piacentini S, Manfellotto D, Fuciarelli M. Human pharmacogenomic variation of antihypertensive drugs: from population genetics to personalized medicine. Pharmacogenomics 2014; 15:157-67. [DOI: 10.2217/pgs.13.231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: To investigate the human pharmacogenetic variation related to antihypertensive drugs, providing a survey of functional interpopulation differences in hypertension pharmacogenes. Materials & methods: The study was divided into two stages. In the first stage, we analyzed 1249 variants located in 57 hypertension pharmacogenes. This first-stage analysis confirmed that geographic origin strongly affects hypertension pharmacogenomic variation and that 31 pharmacogenes are geographically differentiated. In the second stage, we focused our attention on the ethnic-differentiated pharmacogenes, investigating 55,521 genetic variants. In silico analyses were performed to predict the effect of genetic variation. Results: Our analyses indicated functional interpopulation differences, suggesting insight into the mechanisms of antihypertensive drug response. Moreover, our data suggested that rare variants mainly determine the functionality of genes related to antihypertensive drugs. Conclusion: Our study provided important knowledge about the genetics of the antihypertensive drug response, suggesting that next-generation sequencing technologies may develop reliable pharmacogenetic tests for antihypertensive drugs. Original submitted 19 September 2013; Revision submitted 14 November 2013
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome, Italy
| | - Andrea Iorio
- Clinical Pathophysiology Center, AFaR – “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Sara Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome, Italy
| | - Dario Manfellotto
- Clinical Pathophysiology Center, AFaR – “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Maria Fuciarelli
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome, Italy
| |
Collapse
|
42
|
Cerda A, Hirata RDC, Hirata MH. Genetic scoring to predict antihypertensive drug response using gene variants associated with hypertension. Pharmacogenomics 2013; 14:1817-18. [PMID: 24236481 DOI: 10.2217/pgs.13.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Alvaro Cerda
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
43
|
Gong Y, McDonough CW, Beitelshees AL, Karnes JH, O'Connell JR, Turner ST, Chapman AB, Gums JG, Bailey KR, Boerwinkle E, Johnson JA, Cooper-DeHoff RM. PROX1 gene variant is associated with fasting glucose change after antihypertensive treatment. Pharmacotherapy 2013; 34:123-30. [PMID: 24122840 DOI: 10.1002/phar.1355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
STUDY OBJECTIVE To assess the relationship of the 33 single nucleotide polymorphisms (SNPs) previously associated with fasting glucose in Caucasians in genome-wide association studies (GWAS) with glucose response to antihypertensive drugs shown to increase risk for hyperglycemia and diabetes. DESIGN Randomized, multicenter clinical trial. PATIENTS A total of 456 Caucasian men and women with uncomplicated hypertension. MEASUREMENTS AND MAIN RESULTS The Pharmacogenomic Evaluation of Antihypertensives Responses study evaluated blood pressure and glucose response in uncomplicated hypertensive patients randomized to either atenolol or hydrochlorothiazide (HCTZ) monotherapy, followed by combination therapy with both agents. Association of these SNPs with atenolol- or HCTZ-induced glucose response was evaluated in 456 Caucasian patients using linear regression adjusting for age, sex, body mass index, baseline glucose, baseline insulin, and principal component for ancestry. The SNP rs340874 in the 5' region of PROX1 gene was significantly associated with atenolol-induced glucose change (p=0.0013). Participants harboring the C allele of this SNP had greater glucose elevation after approximately 9 weeks of atenolol monotherapy (β = +2.39 mg/dl per C allele), consistent with the direction of effect in fasting glucose GWAS, that showed the C allele is associated with higher fasting glucose. CONCLUSION These data suggest that PROX1 SNP rs340874, discovered in fasting glucose GWAS, may also be a pharmacogenetic risk factor for antihypertensive-induced hyperglycemia. β-blockers and thiazides may interact with genetic risk factors to increase risk for dysglycemia and diabetes.
Collapse
Affiliation(s)
- Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, Florida
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The elucidation of genes implicated in Mendelian forms of hypertension demonstrates rare variants with substantial effects are responsible, and often these genes lie within pathways managing sodium homeostasis. More recently with advances in affordable high-throughput genotyping strategies, multiple common genetic variants with modest effects on blood pressure (<1 mmHg systolic) have been discovered in the population. In aggregate, these common variants explain <3% of the variance of blood pressure. Although these findings may offer new mechanistic insights into the biology of blood pressure, a key question is can these findings translate into patient benefit? It is timely to reflect on recent advances in genomics, and the use of new resources, such as the 1000 Genomes Project and the Encyclopedia of DNA Elements, to annotate likely causal variants, and their relevance to cardiovascular disease. In this review, we discuss the advances in relation to our knowledge of the genetic architecture of blood pressure, and whether gene discoveries might influence cardiovascular risk assessment, help to stratify patient response to medicine, or identify new biological pathways for novel therapeutic targets.
Collapse
Affiliation(s)
- Patricia B Munroe
- William Harvey Research Institute and Barts National Institute for Health Research Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ United Kingdom
| | | | | |
Collapse
|
45
|
|