1
|
Coughlin TM, Makarewich CA. Emerging roles for microproteins as critical regulators of endoplasmic reticulum function and cellular homeostasis. Semin Cell Dev Biol 2025; 170:103608. [PMID: 40245464 DOI: 10.1016/j.semcdb.2025.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle essential for key cellular processes including protein synthesis, calcium homeostasis, and the cellular stress response. It is composed of distinct domains, such as the rough and smooth ER, as well as membrane regions that facilitate direct communication with other organelles, enabling its diverse functions. While many well-characterized ER proteins contribute to these processes, recent studies have revealed a previously underappreciated class of small proteins that play critical regulatory roles. Microproteins, typically under 100 amino acids in length, were historically overlooked due to size-based biases in genome annotation and often misannotated as noncoding RNAs. Advances in ribosome profiling, mass spectrometry, and computational approaches have now enabled the discovery of numerous previously unrecognized microproteins, significantly expanding our understanding of the proteome. While some ER-associated microproteins, such as phospholamban and sarcolipin, were identified decades ago, newly discovered microproteins share similar fundamental characteristics, underscoring the need to refine our understanding of the coding potential of the genome. Molecular studies have demonstrated that ER microproteins play essential roles in calcium regulation, ER stress response, organelle communication, and protein translocation. Moreover, growing evidence suggests that ER microproteins contribute to cellular homeostasis and are implicated in disease processes, including cardiovascular disease and cancer. This review examines the shared and unique functions of ER microproteins, their implications for health and disease, and their potential as therapeutic targets for conditions associated with ER dysfunction.
Collapse
Affiliation(s)
- Taylor M Coughlin
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Vanoye CG, Desai RR, John JD, Hoffman SC, Fink N, Zhang Y, Venkatesh OG, Roe J, Adusumilli S, Jairam NP, Sanders CR, Gordon AS, George AL. Functional profiling of KCNE1 variants informs population carrier frequency of Jervell and Lange-Nielsen syndrome type 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646046. [PMID: 40236191 PMCID: PMC11996308 DOI: 10.1101/2025.03.28.646046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Congenital long-QT syndrome (LQTS) is most often associated with pathogenic variants in KCNQ1 encoding the pore-forming voltage-gated potassium channel subunit of the slow delayed rectifier current ( I Ks ). Generation of I Ks requires assembly of KCNQ1 with an auxiliary subunit encoded by KCNE1 , which is also associated with LQTS but causality of autosomal dominant disease is disputed. By contrast, KCNE1 is an accepted cause of recessive type 2 Jervell and Lange-Nielson syndrome (JLN2). The functional consequences of most KCNE1 variants have not been determined and the population prevalence of JLN2 is unknown. Methods : We determined the functional properties of 95 KCNE1 variants co-expressed with KCNQ1 in heterologous cells using high-throughput voltage-clamp recording. Experiments were conducted with each KCNE1 variant expressed in the homozygous state and then a subset was studied in the heterozygous state. The carrier frequency of JLN2 was estimated by considering the population prevalence of dysfunctional variants. Results : There is substantial overlap between disease-associated and population KCNE1 variants. When examined in the homozygous state, 68 KCNE1 variants exhibited significant differences in at least one functional property compared to WT KCNE1, whereas 27 variants did not significantly affect function. Most dysfunctional variants exhibited loss-of-function properties. We observed no evidence of dominant-negative effects. Most variants were scored as variants of uncertain significance (VUS) and inclusion of functional data resulted in revised classifications for only 14 variants. The population carrier frequency of JLN2 was calculated as 1 in 1034. Peak current density and activation voltage-dependence but no other biophysical properties were correlated with findings from a mutational scan of KCNE1. Conclusions : Among 95 disease-associated or population KCNE1 variants, many exhibit abnormal functional properties but there was no evidence of dominant-negative behaviors. Using functional data, we inferred a population carrier frequency for recessive JLN2. This work helps clarify the pathogenicity of KCNE1 variants.
Collapse
|
3
|
Tseng ZH, Nakasuka K. Out-of-Hospital Cardiac Arrest in Apparently Healthy, Young Adults. JAMA 2025; 333:981-996. [PMID: 39976933 DOI: 10.1001/jama.2024.27916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Importance Out-of-hospital cardiac arrest incidence in apparently healthy adults younger than 40 years ranges from 4 to 14 per 100 000 person-years worldwide. Of an estimated 350 000 to 450 000 total annual out-of-hospital cardiac arrests in the US, approximately 10% survive. Observations Among young adults who have had cardiac arrest outside of a hospital, approximately 60% die before reaching a hospital (presumed sudden cardiac death), approximately 40% survive to hospitalization (resuscitated sudden cardiac arrest), and 9% to 16% survive to hospital discharge (sudden cardiac arrest survivor), of whom approximately 90% have a good neurological status (Cerebral Performance Category 1 or 2). Autopsy-based studies demonstrate that 55% to 69% of young adults with presumed sudden cardiac death have underlying cardiac causes, including sudden arrhythmic death syndrome (normal heart by autopsy, most common in athletes) and structural heart disease such as coronary artery disease. Among young adults, noncardiac causes of cardiac arrest outside of a hospital may include drug overdose, pulmonary embolism, subarachnoid hemorrhage, seizure, anaphylaxis, and infection. More than half of young adults with presumed sudden cardiac death had identifiable cardiovascular risk factors such as hypertension and diabetes. Genetic cardiac disease such as long QT syndrome or dilated cardiomyopathy may be found in 2% to 22% of young adult survivors of cardiac arrest outside of the hospital, which is a lower yield than for nonsurvivors (13%-34%) with autopsy-confirmed sudden cardiac death. Persons resuscitated from sudden cardiac arrest should undergo evaluation with a basic metabolic profile and serum troponin; urine toxicology test; electrocardiogram; chest x-ray; head-to-pelvis computed tomography; and bedside ultrasound to assess for pericardial tamponade, aortic dissection, or hemorrhage. Underlying reversible causes, such as ST elevation myocardial infarction, coronary anomaly, and illicit drug or medication overdose (including QT-prolonging medicines) should be treated. If an initial evaluation does not reveal the cause of an out-of-hospital cardiac arrest, transthoracic echocardiography should be performed to screen for structural heart disease (eg, unsuspected cardiomyopathy) or valvular disease (eg, mitral valve prolapse) that can precipitate sudden cardiac death. Defibrillator implant is indicated for young adult sudden cardiac arrest survivors with nonreversible cardiac causes including structural heart disease and arrhythmia syndromes. Conclusions and Relevance Cardiac arrest in apparently healthy adults younger than 40 years may be due to inherited or acquired cardiac disease or noncardiac causes. Among young adults who have had cardiac arrest outside of a hospital, only 9% to 16% survive to hospital discharge. Sudden cardiac arrest survivors require comprehensive evaluation for underlying causes of cardiac arrest and cardiac defibrillator should be implanted in those with nonreversible cardiac causes of out-of-hospital cardiac arrest.
Collapse
Affiliation(s)
- Zian H Tseng
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco
| | - Kosuke Nakasuka
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco
| |
Collapse
|
4
|
Tseng ZH, Salazar JW, Wojciak J, Devine WP, Kinkead BA, Yee M, Eik D, Feng J, Connolly AJ, Moffatt E. Heritable Burden of Community Sudden Death by Autopsy and Molecular Phenotyping for Precision Genotype Correlation. JACC Clin Electrophysiol 2025; 11:471-481. [PMID: 39708038 DOI: 10.1016/j.jacep.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Sudden cardiac death (SCD) genetic studies neglect the majority occurring in older decedents with cardiovascular pathology. OBJECTIVES This study sought to determine the burden of genetic disease in unselected adult sudden deaths by precision genotype-postmortem phenotype correlation. METHODS The authors used autopsy, histology, and toxicology to adjudicate cause and identify high-suspicion phenotypes (eg, hypertrophic cardiomyopathy) among presumed SCDs aged 18 to 90 years referred to the county medical examiner from February 2011 to January 2018. They tested 231 genes associated with sudden death and correlated genotype with postmortem phenotypes, including myocardial analysis. Family history in high-suspicion phenotype cases was obtained. RESULTS Of 856 autopsied presumed SCDs, families of 359 consented and 306 cases (66% cardiac cause) ultimately underwent genetic testing (mean age 62 years, 74% male). Seventy-five cases met high-suspicion phenotype criteria (8.8%), of which 36 underwent testing; 18 families met with a genetic counselor. We found 14 cases with autosomal dominant or X-linked pathogenic/likely pathogenic (P/LP) variants (apparent yield 4.6%); 6 had concordant cause (corrected yield 2%). Yields restricted to autopsy-confirmed cardiac causes (2.5%) and high-suspicion phenotypes (2.7%) were similar. Myocardial genotyping in 14 high-suspicion decedents matched negative blood genotyping, thus did not support somatic mosaicism. Myocardial RNA in a P/LP PKP2 carrier without phenotype demonstrated nonsense-mediated escape as potential mechanism for incomplete penetrance. One-half of high-suspicion cases had a family history of a related condition or sudden death. CONCLUSIONS In this 7-year countywide study, 2% of total sudden deaths and 2.5% of confirmed SCDs had identifiable genetic cause, corrected for genotype-phenotype concordance. These results do not support routine genetic testing for community sudden deaths, particularly without autopsy.
Collapse
Affiliation(s)
- Zian H Tseng
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA; Cardiovascular Genetics Center, University of California-San Francisco, San Francisco, California, USA.
| | - James W Salazar
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA. https://twitter.com/JamesSalazarMD
| | - Julianne Wojciak
- Cardiovascular Genetics Center, University of California-San Francisco, San Francisco, California, USA; Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - W Patrick Devine
- Department of Pathology, University of California-San Francisco, San Francisco, California, USA
| | - Brielle A Kinkead
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Matthew Yee
- School of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - David Eik
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Jean Feng
- Department of Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, California, USA
| | - Andrew J Connolly
- Department of Pathology, University of California-San Francisco, San Francisco, California, USA
| | - Ellen Moffatt
- Office of the Chief Medical Examiner, City and County of San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
La Gerche A, Paratz ED, Bray JE, Jennings G, Page G, Timbs S, Vandenberg JI, Abhayaratna W, Chow CK, Dennis M, Figtree GA, Kovacic JC, Maris J, Nehme Z, Parsons S, Pflaumer A, Puranik R, Stub D, Freitas E, Zecchin R, Cartledge S, Haskins B, Ingles J. A Call to Action to Improve Cardiac Arrest Outcomes: A Report From the National Summit for Cardiac Arrest. Heart Lung Circ 2024; 33:1507-1522. [PMID: 39306551 DOI: 10.1016/j.hlc.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Sudden cardiac arrest (SCA) represents a major cause of premature mortality globally, with enormous impact and financial cost to victims, families, and communities. SCA prevention should be considered a health priority in Australia. National Cardiac Arrest Summits were held in June 2022 and March 2023, with inclusion from multi-faceted endeavours related to SCA prevention. It was agreed to establish a multidisciplinary Australian Sudden Cardiac Arrest Alliance (AuSCAA) working group charged with developing a national unified strategy, with clear and measurable quality indicators and standardised outcome measures, to amplify the goal of SCA prevention throughout Australia. A multi-faceted prevention strategy will include i) endeavours to progress community awareness, ii) improved fundamental mechanistic understanding, iii) implementation of best-practice resuscitation strategies for all demographics and locations, iv) secondary risk assessment directed to family members, and v) development of (near) real-time registry of cardiac arrest cases to inform areas of need and effectiveness of interventions. Together, we can and should reduce the impact of SCA in Australia.
Collapse
Affiliation(s)
- Andre La Gerche
- Department of Cardiology, St Vincent's Hospital Melbourne, Melbourne, Vic, Australia; HEART Lab, St Vincent's Institute of Medical Research, Melbourne, Vic, Australia; Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, Vic, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| | - Elizabeth D Paratz
- Department of Cardiology, St Vincent's Hospital Melbourne, Melbourne, Vic, Australia; HEART Lab, St Vincent's Institute of Medical Research, Melbourne, Vic, Australia; Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, Vic, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Janet E Bray
- School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne Vic, Australia
| | - Garry Jennings
- National Heart Foundation of Australia, Melbourne Vic, Australia
| | - Greg Page
- Heart of the Nation, Sydney, NSW, Australia
| | - Susan Timbs
- EndUCD Foundation, Melbourne, Vic, Australia
| | | | - Walter Abhayaratna
- College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, Sydney, NSW, Australia
| | - Mark Dennis
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | - Ziad Nehme
- School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne Vic, Australia; Centre for Research and Evaluation, Ambulance Victoria, Melbourne, Vic, Australia
| | - Sarah Parsons
- School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne Vic, Australia; Victorian Institute of Forensic Medicine, Melbourne, Vic, Australia
| | - Andreas Pflaumer
- Department of Cardiology, Royal Children's Hospital, Melbourne, Vic, Australia; Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | | | - Dion Stub
- School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne Vic, Australia; Department of Cardiology, Alfred Hospital, Melbourne, Vic, Australia
| | | | - Robert Zecchin
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
| | - Susie Cartledge
- School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne Vic, Australia
| | - Brian Haskins
- College of Sport, Health and Engineering, Victoria University, Melbourne, VIC, Australia
| | - Jodie Ingles
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|
6
|
Isbister JC, Tadros R, Raju H, Semsarian C. Concealed cardiomyopathy as an emerging cause of sudden cardiac arrest and sudden cardiac death. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1274-1283. [PMID: 39487366 DOI: 10.1038/s44161-024-00558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/01/2024] [Indexed: 11/04/2024]
Abstract
The inherited cardiomyopathies exhibit a broad spectrum of disease, with some patients remaining asymptomatic throughout life, while, for others, the first symptom of disease is sudden cardiac death at a young age. The risk of malignant ventricular arrhythmia in these conditions has traditionally been linked to the degree of structural myocardial abnormalities and functional impairment. However, recent advances in genetic testing and knowledge of the genetic basis of the diseases have led to the identification of concealed cardiomyopathy, in which sudden cardiac arrest or sudden cardiac death occurs in the absence of observable clinical features of cardiomyopathy, with a diagnosis being made only after the identification of a causative genetic variant. Increased awareness of concealed cardiomyopathy, a better understanding of mechanisms of arrhythmia and identification of risk modulators will be vital to improve care for families with concealed cardiomyopathy.
Collapse
Affiliation(s)
- Julia C Isbister
- Faculty of Medicine and Heath, the University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, Québec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Hariharan Raju
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Christopher Semsarian
- Faculty of Medicine and Heath, the University of Sydney, Sydney, New South Wales, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
- Agnes Ginges Centre for Molecular Cardiology at the Centenary Institute, the University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Belhassen B. Is it possible to identify patients at risk of idiopathic ventricular fibrillation? Heart Rhythm 2024:S1547-5271(24)03515-X. [PMID: 39477196 DOI: 10.1016/j.hrthm.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Bernard Belhassen
- Heart Institute, Hadassah Medical Center, Jerusalem, Israel; School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Gencheva D, Angelova P, Genova K, Atemin S, Sleptsova M, Todorov T, Nikolov F, Ruseva D, Mitev V, Todorova A. A Cautionary Tale of Hypertrophic Cardiomyopathy-From "Benign" Left Ventricular Hypertrophy to Stroke, Atrial Fibrillation, and Molecular Genetic Diagnostics: A Case Report and Review of Literature. Int J Mol Sci 2024; 25:9385. [PMID: 39273332 PMCID: PMC11395475 DOI: 10.3390/ijms25179385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
This case report concerns a 48-year-old man with a history of ischemic stroke at the age of 41 who reported cardiac hypertrophy, registered in his twenties when explained by increased physical activity. Family history was positive for a mother with permanent atrial fibrillation from her mid-thirties. At the age of 44, he had a first episode of persistent atrial fibrillation, accompanied by left atrial thrombosis while on a direct oral anticoagulant. He presented at our clinic at the age of 45 with another episode of persistent atrial fibrillation and decompensated heart failure. Echocardiography revealed a dilated left atrium, reduced left ventricular ejection fraction, and an asymmetric left ventricular hypertrophy. Cardiac magnetic resonance was positive for a cardiomyopathy with diffuse fibrosis, while slow-flow phenomenon was present on coronary angiography. Genetic testing by whole-exome sequencing revealed three variants in the patient, c.309C > A, p.His103Gln in the ACTC1 gene, c.116T > G, p.Leu39Ter in the PLN gene, and c.5827C > T, p.His1943Tyr in the SCN5A gene, the first two associated with hypertrophic cardiomyopathy and the latter possibly with familial atrial fibrillation. This case illustrates the need for advanced diagnostics in unexplained left ventricular hypertrophy, as hypertrophic cardiomyopathy is often overlooked, leading to potentially debilitating health consequences.
Collapse
Affiliation(s)
- Dolina Gencheva
- First Department of Internal Diseases, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Cardiology, University Multi-Profile Hospital for Active Treatment "Sveti Georgi", 4002 Plovdiv, Bulgaria
| | - Petya Angelova
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Kameliya Genova
- Radiology Department, University Multi-Profile Hospital for Active Treatment and Emergency Medicine "N. I. Pirogov", 1606 Sofia, Bulgaria
| | - Slavena Atemin
- Genetic Medico-Diagnostic Laboratory "Genica", 1612 Sofia, Bulgaria
| | - Mila Sleptsova
- Genetic Medico-Diagnostic Laboratory "Genica", 1612 Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory "Genica", 1612 Sofia, Bulgaria
| | - Fedya Nikolov
- First Department of Internal Diseases, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Cardiology, University Multi-Profile Hospital for Active Treatment "Sveti Georgi", 4002 Plovdiv, Bulgaria
| | - Donka Ruseva
- Clinic of Cardiology, Hospital of Ministry of Transport, 4004 Plovdiv, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
9
|
Takase B, Ikeda T, Shimizu W, Abe H, Aiba T, Chinushi M, Koba S, Kusano K, Niwano S, Takahashi N, Takatsuki S, Tanno K, Watanabe E, Yoshioka K, Amino M, Fujino T, Iwasaki YK, Kohno R, Kinoshita T, Kurita Y, Masaki N, Murata H, Shinohara T, Yada H, Yodogawa K, Kimura T, Kurita T, Nogami A, Sumitomo N. JCS/JHRS 2022 Guideline on Diagnosis and Risk Assessment of Arrhythmia. Circ J 2024; 88:1509-1595. [PMID: 37690816 DOI: 10.1253/circj.cj-22-0827] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Haruhiko Abe
- Department of Heart Rhythm Management, University of Occupational and Environmental Health, Japan
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center
| | - Masaomi Chinushi
- School of Health Sciences, Niigata University School of Medicine
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Shinichi Niwano
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Seiji Takatsuki
- Department of Cardiology, Keio University School of Medicine
| | - Kaoru Tanno
- Cardiology Division, Cardiovascular Center, Showa University Koto-Toyosu Hospital
| | - Eiichi Watanabe
- Division of Cardiology, Department of Internal Medicine, Fujita Health University Bantane Hospital
| | | | - Mari Amino
- Department of Cardiology, Tokai University School of Medicine
| | - Tadashi Fujino
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Yu-Ki Iwasaki
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Ritsuko Kohno
- Department of Heart Rhythm Management, University of Occupational and Environmental Health, Japan
| | - Toshio Kinoshita
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Yasuo Kurita
- Cardiovascular Center, International University of Health and Welfare, Mita Hospital
| | - Nobuyuki Masaki
- Department of Intensive Care Medicine, National Defense Medical College
| | | | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Hirotaka Yada
- Department of Cardiology, International University of Health and Welfare, Mita Hospital
| | - Kenji Yodogawa
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Takeshi Kimura
- Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | | | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| |
Collapse
|
10
|
Takase B, Ikeda T, Shimizu W, Abe H, Aiba T, Chinushi M, Koba S, Kusano K, Niwano S, Takahashi N, Takatsuki S, Tanno K, Watanabe E, Yoshioka K, Amino M, Fujino T, Iwasaki Y, Kohno R, Kinoshita T, Kurita Y, Masaki N, Murata H, Shinohara T, Yada H, Yodogawa K, Kimura T, Kurita T, Nogami A, Sumitomo N. JCS/JHRS 2022 Guideline on Diagnosis and Risk Assessment of Arrhythmia. J Arrhythm 2024; 40:655-752. [PMID: 39139890 PMCID: PMC11317726 DOI: 10.1002/joa3.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
| | - Takanori Ikeda
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular MedicineNippon Medical School
| | - Haruhiko Abe
- Department of Heart Rhythm ManagementUniversity of Occupational and Environmental HealthJapan
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and GeneticsNational Cerebral and Cardiovascular Center
| | | | - Shinji Koba
- Division of Cardiology, Department of MedicineShowa University School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular MedicineNational Cerebral and Cardiovascular Center
| | - Shinichi Niwano
- Department of Cardiovascular MedicineKitasato University School of Medicine
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of MedicineOita University
| | | | - Kaoru Tanno
- Cardiovascular Center, Cardiology DivisionShowa University Koto‐Toyosu Hospital
| | - Eiichi Watanabe
- Division of Cardiology, Department of Internal MedicineFujita Health University Bantane Hospital
| | | | - Mari Amino
- Department of CardiologyTokai University School of Medicine
| | - Tadashi Fujino
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Yu‐ki Iwasaki
- Department of Cardiovascular MedicineNippon Medical School
| | - Ritsuko Kohno
- Department of Heart Rhythm ManagementUniversity of Occupational and Environmental HealthJapan
| | - Toshio Kinoshita
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Yasuo Kurita
- Cardiovascular Center, Mita HospitalInternational University of Health and Welfare
| | - Nobuyuki Masaki
- Department of Intensive Care MedicineNational Defense Medical College
| | | | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of MedicineOita University
| | - Hirotaka Yada
- Department of CardiologyInternational University of Health and Welfare Mita Hospital
| | - Kenji Yodogawa
- Department of Cardiovascular MedicineNippon Medical School
| | - Takeshi Kimura
- Cardiovascular MedicineKyoto University Graduate School of Medicine
| | | | - Akihiko Nogami
- Department of Cardiology, Faculty of MedicineUniversity of Tsukuba
| | - Naokata Sumitomo
- Department of Pediatric CardiologySaitama Medical University International Medical Center
| | | |
Collapse
|
11
|
Oliveira C, Pinho A, Santos L, Pinto RA, Oliveira S, Moreira H, Rocha M, Palma P, Pestana G, Madeira M, Lebreiro A, Adão L. Long-term prognosis of idiopathic ventricular fibrillation: An eighteen-year experience from a tertiary center. Rev Port Cardiol 2024; 43:331-336. [PMID: 38615880 DOI: 10.1016/j.repc.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION AND OBJECTIVES Idiopathic ventricular fibrillation (IVF) is diagnosed in patients who survive sudden cardiac arrest (SCA), preferably with documented ventricular fibrillation (VF), without any identifiable structural or electrical abnormality. Current evidence provides limited guidance on the diagnosis and follow-up of these patients. Our aim was to assess the clinical outcomes of survivors of an aborted SCA attributed to IVF. METHODS We retrospectively collected clinical data from all patients who survived SCA and implanted a cardiac defibrillator (ICD) between 2005 and 2023. RESULTS A total of 38 patients, 36.8% female, with a mean age of 44±14 years old were included. Median follow-up time was 8.7 years (interquartile range (IQR) 4.7-14.7 years). All patients underwent a comprehensive diagnostic evaluation that excluded structural and coronary disease. During follow-up, underlying diagnoses were established in 34.2% of the whole cohort. Genetic testing, performed in 37.2%, revealed underlying diagnoses in 57.1% of those tested, compared to only 26.3% of patients who did not undergo genetic testing [p=0.035, OR=5.1 (95% confidence interval (CI) 1.2-21.5)]. Mortality was 10.5% (due to non-arrhythmic causes) and 36.8% patients received appropriate therapies with a median time to first ICD therapy of 39 [5.4-47.3] months. CONCLUSION(S) Etiological diagnosis and recurrence prediction in patients with IVF remains challenging, even with extensive diagnostic evaluation and long-term follow-up. In our study, genetic testing enhanced diagnostic yield. Consistent with previous findings, our cohort experienced a notable arrhythmic recurrence, with no cardiac deaths, underlining the pivotal role of ICD implantation in these patients.
Collapse
Affiliation(s)
- Cátia Oliveira
- Department of Cardiology, Local Health Unit of São João, E.P.E., Porto, Portugal.
| | - Ana Pinho
- Department of Cardiology, Local Health Unit of São João, E.P.E., Porto, Portugal
| | - Luís Santos
- Department of Cardiology, Local Health Unit of São João, E.P.E., Porto, Portugal
| | - Ricardo Alves Pinto
- Department of Cardiology, Local Health Unit of São João, E.P.E., Porto, Portugal
| | - Sílvia Oliveira
- Faculty of Medicine of University of Oporto, Porto, Portugal
| | - Helena Moreira
- Department of Cardiology, Local Health Unit of São João, E.P.E., Porto, Portugal
| | - Miguel Rocha
- Department of Cardiology, Local Health Unit of São João, E.P.E., Porto, Portugal
| | - Pedro Palma
- Department of Cardiology, Local Health Unit of São João, E.P.E., Porto, Portugal
| | - Gonçalo Pestana
- Department of Cardiology, Local Health Unit of São João, E.P.E., Porto, Portugal
| | - Marta Madeira
- Department of Cardiology, Local Health Unit of São João, E.P.E., Porto, Portugal
| | - Ana Lebreiro
- Department of Cardiology, Local Health Unit of São João, E.P.E., Porto, Portugal
| | - Luís Adão
- Department of Cardiology, Local Health Unit of São João, E.P.E., Porto, Portugal
| |
Collapse
|
12
|
Weizman O, Gandjbakhch E, Magnin-Poull I, Proukhnitzky J, Bordet C, Palmyre A, Bloch A, Fressart V, Charron P. Molecular genetic screening after non-ischaemic sudden cardiac arrest and no overt cardiomyopathy in real life: A major tool for the aetiological diagnostic work-up. Arch Cardiovasc Dis 2024; 117:382-391. [PMID: 38670870 DOI: 10.1016/j.acvd.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND With the development of advanced sequencing techniques, genetic testing has emerged as a valuable tool for the work-up of non-ischaemic sudden cardiac arrest (SCA). AIMS To evaluate the effectiveness of genetic testing in patients with unexplained SCA, according to clinical phenotype. METHODS All patients who underwent molecular genetic testing for non-ischaemic SCA with no left ventricular cardiomyopathy between 2012 and 2021 in two French university hospitals were included. RESULTS Of 66 patients (mean age 36.7±11.9years, 54.5% men), 21 (31.8%; 95% confidence interval 22.4-45.3%) carried a genetic variant: eight (12.1%) had a pathogenic or likely pathogenic (P/LP) variant and 13 (19.7%) had a variant of uncertain significance (VUS). Among 37 patients (56.1%) with no phenotypic clues, genetic testing identified a P/LP variant in five (13.5%), mainly in RYR2 (n=3) and SCN5A (n=2), and a VUS in nine (24.3%). None of the nine patients with phenotypic evidence of channelopathies had P/LP variants, but two had VUS in RYR2 and NKX2.5. Among the 20 patients with suspected arrhythmogenic cardiomyopathy, three P/LP variants (15.0%) and two VUS (10.0%) were found in DSC2, PKP2, SCN5A and DSG2, TRPM4, respectively. Genetic testing was performed sooner after cardiac arrest (P<0.001) and results were obtained more rapidly (P=0.02) after versus before 2016. CONCLUSION This study highlights the utility of molecular genetic testing with a genetic variant of interest identified in one-third of patients with unexplained SCA. Genetic testing was beneficial even in patients without phenotypic clues, with one-fourth of patients carrying a P/LP variant that could have direct implications.
Collapse
Affiliation(s)
- Orianne Weizman
- Cardiology department, Nancy university hospital, Nancy, France; AP-HP, unité de génétique médicale, CHU Ambroise-Paré, 92100 Boulogne-Billancourt, France.
| | - Estelle Gandjbakhch
- AP-HP, cardiology department, Institute of cardiology, Institute for cardiometabolism and nutrition (ICAN), Pitié-Salpêtrière hospital, Paris, France; Sorbonne université, Inserm 1166, Paris, France; AP-HP, département de génétique, Centre de référence des maladies cardiaques héréditaires ou rares, Pitié-Salpêtrière hospital, Paris, France
| | | | - Julie Proukhnitzky
- AP-HP, cardiology department, Institute of cardiology, Institute for cardiometabolism and nutrition (ICAN), Pitié-Salpêtrière hospital, Paris, France; Sorbonne université, Inserm 1166, Paris, France; AP-HP, département de génétique, Centre de référence des maladies cardiaques héréditaires ou rares, Pitié-Salpêtrière hospital, Paris, France
| | - Céline Bordet
- AP-HP, département de génétique, Centre de référence des maladies cardiaques héréditaires ou rares, Pitié-Salpêtrière hospital, Paris, France
| | - Aurélien Palmyre
- AP-HP, unité de génétique médicale, CHU Ambroise-Paré, 92100 Boulogne-Billancourt, France
| | - Adrien Bloch
- AP-HP, Biochemistry department, molecular cardiogenetics unit, Pitié-Salpêtrière hospital, Paris, France
| | - Véronique Fressart
- AP-HP, Biochemistry department, molecular cardiogenetics unit, Pitié-Salpêtrière hospital, Paris, France
| | - Philippe Charron
- AP-HP, unité de génétique médicale, CHU Ambroise-Paré, 92100 Boulogne-Billancourt, France; AP-HP, cardiology department, Institute of cardiology, Institute for cardiometabolism and nutrition (ICAN), Pitié-Salpêtrière hospital, Paris, France; Sorbonne université, Inserm 1166, Paris, France; AP-HP, département de génétique, Centre de référence des maladies cardiaques héréditaires ou rares, Pitié-Salpêtrière hospital, Paris, France.
| |
Collapse
|
13
|
van der Crabben SN, Wilde AAM. Idiopathic ventricular fibrillation: is it a case for genetic testing? Herzschrittmacherther Elektrophysiol 2024; 35:19-24. [PMID: 38334831 PMCID: PMC10879354 DOI: 10.1007/s00399-024-00994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Idiopathic ventricular fibrillation (IVF) is a diagnosis of exclusion in sudden cardiac arrest (SCA) survivors. Although there are clear guidelines on the clinical work-up of SCA survivors, less than one in five patients receives a complete work-up. This increases the chances of erroneously labelling these patients as having IVF, while 10-20% of them have an inherited cardiac condition (ICC). Diagnoses of ICC increase over time due to (additional) deep phenotyping or as a result of spontaneous expression of ICC over time. As SCA survivors can also harbor (likely) pathogenic variants in cardiomyopathy-associated genes in the absence of a phenotype, or can have another ICC without a clear cardiac phenotype, the question arises as to whether genetic testing in this group should be routinely performed. Family history (mainly in the case of sudden death) can increase suspicion of an ICC in an SCA victim, but does not add great value when adults underwent a complete cardiological work-up. The diagnosis of ICC has treatment consequences not only for the patient but also for their family. Genetic diagnostic yield does not appear to increase with larger gene panels, but variants of unknown significance (VUS) do. Although VUS can be confusing, careful and critical segregation analysis in the family can be performed when discussed in a multidisciplinary team at a center of expertise with at least a cardiologist as well as a clinical and laboratory geneticist, thereby degrading or promoting VUS. When to introduce genetic testing in SCA survivors remains a matter of debate, but the combination of quick, deep phenotyping with additional genetic testing for the unidentifiable phenotypes, especially in the young, seems preferable.
Collapse
Affiliation(s)
- S N van der Crabben
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- European Reference Network for rare, low prevalence, and/or complex diseases of the heart: ERN GUARD-Heart, Amsterdam, The Netherlands.
| | - A A M Wilde
- European Reference Network for rare, low prevalence, and/or complex diseases of the heart: ERN GUARD-Heart, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Cardiology, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and arrhythmias, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Afana AS, Vasiliu L, Sascău R, Adam RD, Rădulescu C, Onciul S, Cinteză E, Chirita-Emandi A, Jurcuț R. Phospholamban p.Leu39* Cardiomyopathy Compared with Other Sarcomeric Cardiomyopathies: Age-Matched Patient Cohorts and Literature Review. J Cardiovasc Dev Dis 2024; 11:41. [PMID: 38392255 PMCID: PMC10889724 DOI: 10.3390/jcdd11020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a heterogeneous genetic disorder, most often caused by sarcomeric gene mutations, with a small proportion due to variants in non-sarcomeric loci. Phospholamban (PLN) is a phosphoprotein associated with the cardiac sarcoplasmic reticulum, a major determinant of cardiac contractility and relaxation. We conducted a retrospective study to determine the prevalence, phenotypical spectrum and clinical course of patients carrying the PLN p.Leu39* variant. A cohort including 11 PLN patients was identified among all patients with HCM (9/189, 4.8%) and DCM (2/62, 3.2%) who underwent genetic testing from two tertiary centers and five more were detected through cascade screening. Complete phenotyping was performed. PLN p.Leu39* variant-driven cardiomyopathy presented mostly as hypertrophic, with frequent progression to end-stage dilated HCM. We proceeded to compare these results to a similar analysis of a control cohort consisting of age-matched individuals that inherited pathogenic or likely pathogenic variants in common sarcomeric genes (MYBPC3/MYH7). Overall, the clinical characteristics and examination findings of patients carrying PLN p.Leu39* were not different from patients with cardiomyopathy related to sarcomeric mutations except for the presence of pathological Q waves and the incidence of non-sustained ventricular arrhythmias, which were higher in PLN patients than in those with MYBPC3/MYH7-related diseases.
Collapse
Affiliation(s)
- Andreea Sorina Afana
- Expert Center for Genetic Cardiovascular Diseases, Emergency Institute for Cardiovascular Diseases, 258 Fundeni Street, 022328 Bucharest, Romania
- Emergency Clinical County Hospital Craiova, 1 Tabaci Street, 200642 Craiova, Romania
- Cardiology Department, University of Medicine and Pharmacy Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Laura Vasiliu
- Institute of Cardiovascular Diseases "Prof. Dr. George I.M. Georgescu", 700503 Iași, Romania
- Cardiology Department, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iași, Romania
| | - Radu Sascău
- Institute of Cardiovascular Diseases "Prof. Dr. George I.M. Georgescu", 700503 Iași, Romania
- Cardiology Department, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iași, Romania
| | - Robert Daniel Adam
- Expert Center for Genetic Cardiovascular Diseases, Emergency Institute for Cardiovascular Diseases, 258 Fundeni Street, 022328 Bucharest, Romania
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Cristina Rădulescu
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Emerald Medical Center, 75 Nicolae G. Caramfil Street, 077190 Bucharest, Romania
| | - Sebastian Onciul
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Emerald Medical Center, 75 Nicolae G. Caramfil Street, 077190 Bucharest, Romania
- Emergency Clinical Hospital Floreasca, 8 Calea Floreasca, 014461 Bucharest, Romania
| | - Eliza Cinteză
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Department of Pediatric Cardiology, "Marie Curie" Emergency Children's Hospital, 41451 Bucharest, Romania
| | - Adela Chirita-Emandi
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babeș" Timișoara, 2 Piaţa Eftimie Murgu Street, 300041 Timişoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children "Louis Țurcanu" Timișoara, 2 Doctor Iosif Nemoianu Street, 300011 Timișoara, Romania
| | - Ruxandra Jurcuț
- Expert Center for Genetic Cardiovascular Diseases, Emergency Institute for Cardiovascular Diseases, 258 Fundeni Street, 022328 Bucharest, Romania
- Cardiology Department, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| |
Collapse
|
15
|
Suna G, Mellor GJ. Explaining the Unexplained: A Practical Approach to Investigating the Cardiac Arrest Survivor. Arrhythm Electrophysiol Rev 2023; 12:e27. [PMID: 38124802 PMCID: PMC10731537 DOI: 10.15420/aer.2023.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/12/2023] [Indexed: 12/23/2023] Open
Abstract
Sudden cardiac arrest (SCA) is a common cause of death. The majority of SCA is caused by ventricular arrhythmia due to underlying CHD. Aborted SCA with no apparent diagnosis after initial assessment with ECG, echocardiography and coronary assessment is referred to as unexplained cardiac arrest (UCA). Systematic evaluation of such patients may reveal a specific diagnosis in up to half of patients before a diagnosis of idiopathic VF is assigned. Specific diagnoses include inherited cardiac conditions, such as latent cardiomyopathies or inherited primary electrical disease. Identifying the cause of UCA is therefore not only critical for appropriate management of the SCA survivors to prevent recurrence, but also for their family members who may be at risk of the same condition. This review provides a tiered, systematic approach for the investigation of UCA.
Collapse
Affiliation(s)
- Gonca Suna
- Cardiology Department, Royal Papworth Hospital NHS Foundation Trust Cambridge, UK
| | - Greg J Mellor
- Cardiology Department, Royal Papworth Hospital NHS Foundation Trust Cambridge, UK
| |
Collapse
|
16
|
Verheul LM, van der Ree MH, Groeneveld SA, Mulder BA, Christiaans I, Kapel GFL, Alings M, Bootsma M, Barge-Schaapveld DQCM, Balt JC, Yap SC, Krapels IPC, Ter Bekke RMA, Volders PGA, van der Crabben SN, Postema PG, Wilde AAM, Dooijes D, Baas AF, Hassink RJ. The genetic basis of apparently idiopathic ventricular fibrillation: a retrospective overview. Europace 2023; 25:euad336. [PMID: 37967257 PMCID: PMC10665040 DOI: 10.1093/europace/euad336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
AIMS During the diagnostic work-up of patients with idiopathic ventricular fibrillation (VF), next-generation sequencing panels can be considered to identify genotypes associated with arrhythmias. However, consensus for gene panel testing is still lacking, and variants of uncertain significance (VUS) are often identified. The aim of this study was to evaluate genetic testing and its results in idiopathic VF patients. METHODS AND RESULTS We investigated 419 patients with available medical records from the Dutch Idiopathic VF Registry. Genetic testing was performed in 379 (91%) patients [median age at event 39 years (27-51), 60% male]. Single-gene testing was performed in 87 patients (23%) and was initiated more often in patients with idiopathic VF before 2010. Panel testing was performed in 292 patients (77%). The majority of causal (likely) pathogenic variants (LP/P, n = 56, 15%) entailed the DPP6 risk haplotype (n = 39, 70%). Moreover, 10 LP/P variants were found in cardiomyopathy genes (FLNC, MYL2, MYH7, PLN (two), TTN (four), RBM20), and 7 LP/P variants were identified in genes associated with cardiac arrhythmias (KCNQ1, SCN5A (2), RYR2 (four)). For eight patients (2%), identification of an LP/P variant resulted in a change of diagnosis. In 113 patients (30%), a VUS was identified. Broad panel testing resulted in a higher incidence of VUS in comparison to single-gene testing (38% vs. 3%, P < 0.001). CONCLUSION Almost all patients from the registry underwent, albeit not broad, genetic testing. The genetic yield of causal LP/P variants in idiopathic VF patients is 5%, increasing to 15% when including DPP6. In specific cases, the LP/P variant is the underlying diagnosis. A gene panel specifically for idiopathic VF patients is proposed.
Collapse
Affiliation(s)
- Lisa M Verheul
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Martijn H van der Ree
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Heart Failure and Arrhythmias, Amsterdam, Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Sanne A Groeneveld
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Bart A Mulder
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Imke Christiaans
- Department of Human Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Gijs F L Kapel
- Department of Cardiology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Marco Alings
- Department of Cardiology, Amphia Hospital, Breda, The Netherlands
| | - Marianne Bootsma
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jippe C Balt
- Department of Cardiology, St.Antonius Hospital, Nieuwegein, The Netherlands
| | - Sing-Chien Yap
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ingrid P C Krapels
- Department of Human Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Rachel M A Ter Bekke
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul G A Volders
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Saskia N van der Crabben
- Department of Human Genetics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter G Postema
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Heart Failure and Arrhythmias, Amsterdam, Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Heart Failure and Arrhythmias, Amsterdam, Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Dennis Dooijes
- Department of Human Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annette F Baas
- Department of Human Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rutger J Hassink
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
17
|
Turkgenc B, Baydar CL, Deniz I, Akcay A, Ergoren MC, Sag SO, Yakicier MC, Temel SG. From Death to Life/Back to the Future: Detailed Premorbid Clinical and Family History Can Save Lives and Address the Final Diagnosis in Sudden Unexplained Deaths With Negative Autopsy. Appl Immunohistochem Mol Morphol 2023; 31:690-696. [PMID: 37796154 DOI: 10.1097/pai.0000000000001163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/10/2023] [Indexed: 10/06/2023]
Abstract
Sudden cardiac death is a sudden, unexpected death developed by one of the many different causes of cardiac arrest that occur within 1 hour of the onset of new symptoms. Sudden unexplained death (SUD) comprises a normal heart at postmortem examination and negative toxicological analysis. SUD often arises from cardiac genetic disease, particularly channelopathies. Channelopathies, or inherited arrhythmia syndromes, are a group of disorders characterized by an increased risk of sudden cardiac death, abnormal cardiac electrical function, and, typically, a structurally normal heart. They share an underlying genetic etiology where disease-causing genetic variants may lead to the absence or dysfunction of proteins involved in the generation and propagation of the cardiac action potential. Our study aimed to evaluate the importance of next-generation sequencing in the postmortem investigations of SUD cases. In this study, 5 forensic SUD cases were investigated for inherited cardiac disorders. We screened a total of 68 cardiac genes for the sibling of case 1, as well as case 2, and 51 genes for cases 3, 4, and 5. Of the 12 variants identified, 2 likely pathogenic variants (16.7%) were the TMEM43 _ c.1000+2T>C splice site mutation and the SCN5A _ p.W703X nonsense mutation. The remaining 10 variants of uncertain significance were detected in the TRPM4 , RANGRF , A KAP9 , KCND3 , KCNE1 , DSG2 , CASQ1 , and SNTA1 genes. Irrespective of genetic testing, all SUD families require detailed clinical testing to identify relatives who may be at risk. Molecular autopsy and detailed premorbid clinical and family histories can survive family members of SUD cases.
Collapse
Affiliation(s)
| | - Cetin L Baydar
- Department of Mortuary, Ministry of Justice
- Department of Forensic Medicine, Suleyman Demirel University, Isparta
| | - Idris Deniz
- Department of Forensic Medicine, Dr. Burhan Nalbantoglu State Hospital, Nicosia
| | - Arzu Akcay
- Department of Forensic Medicine, Ministry of Justice, Council of Forensic Medicine
| | | | | | - Mustafa C Yakicier
- Department of Molecular Biology and Genetics, Acibadem University, Istanbul
| | - Sehime G Temel
- Department of Medical Genetics, Uludag University
- Department of Histology and Embryology, Uludag University, Bursa, Turkey
| |
Collapse
|
18
|
Steinberg C. Short-Coupled Ventricular Fibrillation. Card Electrophysiol Clin 2023; 15:331-341. [PMID: 37558303 DOI: 10.1016/j.ccep.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Short-coupled ventricular fibrillation (SCVF) is a distinct phenotype among individuals with unexplained cardiac arrest accounting for 7% to 14% of cases of idiopathic ventricular fibrillation (IVF). VF is typically initiated by a trigger premature ventricular contraction with a short-coupling interval of less than 350 milliseconds. In the absence of specific electrocardiographic features or provocative tests, the diagnosis remains challenging and requires documentation of VF onset. Most cases are diagnosed during follow-up at the time of VF recurrence. SCVF is characterized by a high risk of VF recurrence. Insertion of an implantable cardioverter-defibrillator and quinidine are the keystones of SCVF management.
Collapse
Affiliation(s)
- Christian Steinberg
- Institut universitaire de cardiologie et pneumologie de Québec (IUCPQ-UL), Laval University, 2725 Chemin Ste-Foy, Quebec, QC, G1V 4G5, Canada.
| |
Collapse
|
19
|
Crotti L, Brugada P, Calkins H, Chevalier P, Conte G, Finocchiaro G, Postema PG, Probst V, Schwartz PJ, Behr ER. From gene-discovery to gene-tailored clinical management: 25 years of research in channelopathies and cardiomyopathies. Europace 2023; 25:euad180. [PMID: 37622577 PMCID: PMC10450790 DOI: 10.1093/europace/euad180] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 08/26/2023] Open
Abstract
In the early nineties, few years before the birth of Europace, the clinical and scientific world of familial arrhythmogenic conditions was revolutionized by the identification of the first disease-causing genes. The explosion of genetic studies over a 15-year period led to the discovery of major disease-causing genes in practically all channelopathies and cardiomyopathies, bringing insight into the pathophysiological mechanisms of these conditions. The birth of next generation sequencing allowed a further step forward and other significant genes, as CALM1-3 in channelopathies and FLN C and TTN in cardiomyopathies were identified. Genotype-phenotype studies allowed the implementation of the genetic results in diagnosis, risk stratification, and therapeutic management with a different level of evidence in different arrhythmogenic conditions. The influence of common genetic variants, i.e. SNPs, on disease manifestation was proved in mid-twenties, and in the last 10 years with the advent of genome-wide association studies performed in familial arrhythmogenic diseases, the concept of polygenic risk score has been consolidated. Now, we are at the start of another amazing phase, i.e. the initiation of first gene therapy clinical trials.
Collapse
Affiliation(s)
- Lia Crotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Piazza dell'Ateneo Nuovo, 1 - 20126, Italy
- IRCCS Istituto Auxologico Italiano, Department of Cardiology, Cardiomyopathy Unit, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Piazzale Brescia, 20, 20149 Milan, Italy
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philippe Chevalier
- Neuromyogene Institute, Claude Bernard University, Lyon 1, Lyon, France
- Service de Rythmologie, Hospices Civils de Lyon, Lyon, France
| | - Giulio Conte
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Gherardo Finocchiaro
- Cardiovascular Sciences Research Centre, St. George’s, University of London, London, UK
| | - Pieter G Postema
- Department of Cardiology, Amsterdam University Medical Centers, location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Vincent Probst
- Centre Hospitalier Universitaire Nantes, Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy
| | - Elijah R Behr
- Cardiology Section, Institute of Molecular and Clinical Sciences, St. George's, University of London, London SW17 0RE, UK
- Department of Cardiology, Mayo Clinic Healthcare, 15 Portland Pl, London W1B 1PT, UK
- Department of Cardiology, St. George's University Hospitals NHS Foundation Trust, London SW17 0QT
| |
Collapse
|
20
|
Pannone L, Gauthey A, Conte G, Osei R, Campanale D, Baldi E, Berne P, Vicentini A, Vergara P, Sorgente A, Rootwelt-Norberg C, Della Rocca DG, Monaco C, Bisignani A, Miraglia V, Spolverini M, Paparella G, Overeinder I, Bala G, Almorad A, Ströker E, de Ravel T, Medeiros-Domingo A, Sieira J, Haugaa KH, Brugada P, La Meir M, Auricchio A, Chierchia GB, Van Dooren S, de Asmundis C. Genetics in Probands With Idiopathic Ventricular Fibrillation: A Multicenter Study. JACC Clin Electrophysiol 2023; 9:1296-1306. [PMID: 37227348 DOI: 10.1016/j.jacep.2023.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Different genes have been associated with idiopathic ventricular fibrillation (IVF); however, there are no studies correlating genotype with phenotype. OBJECTIVES The aim of this study was to define the genetic background of probands with IVF using large gene panel analysis and to correlate genetics with long-term clinical outcomes. METHODS All consecutive probands with a diagnosis of IVF were included in a multicenter retrospective study. All patients had: 1) IVF diagnosis throughout the follow-up; and 2) genetic analysis with a broad gene panel. All genetic variants were classified as pathogenic/likely pathogenic (P+), variants of unknown significance (VUS) or no variants (NO-V), following current guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. The primary endpoint was occurrence of ventricular arrhythmias (VA). RESULTS Forty-five consecutive patients were included. A variant was found in 12 patients, 3 P+ and 9 VUS carriers. After a mean follow-up time of 105.0 months, there were no deaths and 16 patients (35.6%) experienced a VA. NO-V patients had higher VA free survival during the follow-up, compared with both VUS (72.7% vs 55.6%, log-rank P < 0.001) and P+ (72.7% vs 0%, log-rank P = 0.013). At Cox analysis, P+ or VUS carrier status was a predictor of VA occurrence. CONCLUSIONS In probands with IVF, undergoing genetic analysis with a broad panel, the diagnostic yield for P+ is 6.7%. P+ or VUS carrier status is a predictor of VA occurrence.
Collapse
Affiliation(s)
- Luigi Pannone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Anaïs Gauthey
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Giulio Conte
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Randy Osei
- Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Brussels, Belgium
| | - Daniela Campanale
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Enrico Baldi
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy; Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paola Berne
- Department of Cardiology, Ospedale Santissima Annunziata, University of Sassari, Sassari, Italy
| | - Alessandro Vicentini
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy; Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pasquale Vergara
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Antonio Sorgente
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Christine Rootwelt-Norberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; University of Oslo, Oslo, Norway
| | - Domenico Giovanni Della Rocca
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Cinzia Monaco
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Antonio Bisignani
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Vincenzo Miraglia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Marcello Spolverini
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy; Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gaetano Paparella
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Ingrid Overeinder
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Gezim Bala
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Alexandre Almorad
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Erwin Ströker
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Thomy de Ravel
- Centre for Medical Genetics Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium, and European Reference Networks Guard-Heart, Brussels, Belgium
| | | | - Juan Sieira
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Kristina H Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; University of Oslo, Oslo, Norway
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Mark La Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Angelo Auricchio
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Gian-Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Sonia Van Dooren
- Centre for Medical Genetics Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium, and European Reference Networks Guard-Heart, Brussels, Belgium
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium.
| |
Collapse
|
21
|
Specterman MJ, Behr ER. Cardiogenetics: the role of genetic testing for inherited arrhythmia syndromes and sudden death. Heart 2023; 109:434-441. [PMID: 36167638 DOI: 10.1136/heartjnl-2021-320015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022] Open
Abstract
There have been remarkable advances in our knowledge of the underlying heritability of cardiac arrhythmias. Long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, progressive cardiac conduction disease and the short QT syndrome comprise the inherited arrhythmia syndromes (IASs). Pathogenic variants in cardiac ion channel and calcium handling protein genes lead to these conditions, usually in the absence of overt structural cardiac disease. Diagnosis is contingent on the ECG phenotype but genetic testing may help to confirm the diagnosis and provide information on the mechanism of arrhythmogenesis that may guide treatment and provide prognostic information in relation to the risk of sudden arrhythmic death. Clinical genetic testing uses 'panels' of genes that are the likely culprits for the IASs being investigated. An International Consortium (Clinical Genome Resource) has curated gene panels based on genetic and experimental evidence of causation of inherited conditions and that have a role in clinical genetic testing. A 'single gene' or monogenic basis for IASs exists but in future, missing heritability and incomplete penetrance will be uncovered by association of common variants through genome-wide association studies. Novel rare variants will also be detected through whole-genome sequencing. The formulation of polygenic risk scores will likely help to predict phenotypic expression and response to treatments/risk stratification and move genetic testing very much to the fore of the diagnostic process.
Collapse
Affiliation(s)
- Mark J Specterman
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
22
|
Asatryan B, Barth AS. Sex-related differences in incidence, phenotype and risk of sudden cardiac death in inherited arrhythmia syndromes. Front Cardiovasc Med 2023; 9:1010748. [PMID: 36684594 PMCID: PMC9845907 DOI: 10.3389/fcvm.2022.1010748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Inherited Arrhythmia Syndromes (IAS) including long QT and Brugada Syndrome, are characterized by life-threatening arrhythmias in the absence of apparent structural heart disease and are caused by pathogenic variants in genes encoding cardiac ion channels or associated proteins. Studies of large pedigrees of families affected by IAS have demonstrated incomplete penetrance and variable expressivity. Biological sex is one of several factors that have been recognized to modulate disease severity in IAS. There is a growing body of evidence linking sex hormones to the susceptibility to arrhythmias, yet, many sex-specific disease aspects remain underrecognized as female sex and women with IAS are underinvestigated and findings from male-predominant cohorts are often generalized to both sexes with minimal to no consideration of relevant sex-associated differences in prevalence, disease manifestations and outcome. In this review, we highlight current knowledge of sex-related biological differences in normal cardiac electrophysiology and sex-associated factors that influence IAS phenotypes.
Collapse
Affiliation(s)
- Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas S. Barth
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Andreas S. Barth ✉
| |
Collapse
|
23
|
Abbas R, Abbas A, Khan TK, Sharjeel S, Amanullah K, Irshad Y. Sudden Cardiac Death in Young Individuals: A Current Review of Evaluation, Screening and Prevention. J Clin Med Res 2023; 15:1-9. [PMID: 36755763 PMCID: PMC9881489 DOI: 10.14740/jocmr4823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Sudden cardiac death (SCD) can affect all age groups, including young persons. While less common in the age < 35 population, the occurrence of SCD in the young raises concern, with multiple possible etiologies and often unanswered questions. While coronary artery disease is the leading cause in those > 35 years of age, the younger population faces a different subset of pathologies associated with SCD, including arrhythmias and cardiomyopathies. The tragic nature of SCD in the young entails that we explore and implement available screening methods for this population, and perform the necessary investigations such as electrocardiography (ECG) and echocardiography. In this review, we not only explore the vast etiology associated with SCD in those age < 35, but emphasize evaluation methods, who is at risk, and delve into screening of SCD in potential victims and their family members, in an attempt to prevent this traumatic event. Future research must work towards establishing preventative measures in order to reduce SCD, particularly unexplained SCD in the young.
Collapse
Affiliation(s)
- Ramsha Abbas
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY, USA,Corresponding Author: Ramsha Abbas, Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY, USA.
| | - Aiza Abbas
- Medical College, Aga Khan University, Karachi, Sindh, Pakistan
| | - Talha Kamran Khan
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Salal Sharjeel
- Dow Medical College, Dow University of Health Sciences, Karachi, Sindh, Pakistan
| | - Khadija Amanullah
- Medical College, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Yusra Irshad
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
24
|
Zeppenfeld K, Tfelt-Hansen J, de Riva M, Winkel BG, Behr ER, Blom NA, Charron P, Corrado D, Dagres N, de Chillou C, Eckardt L, Friede T, Haugaa KH, Hocini M, Lambiase PD, Marijon E, Merino JL, Peichl P, Priori SG, Reichlin T, Schulz-Menger J, Sticherling C, Tzeis S, Verstrael A, Volterrani M. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 2022; 43:3997-4126. [PMID: 36017572 DOI: 10.1093/eurheartj/ehac262] [Citation(s) in RCA: 1239] [Impact Index Per Article: 413.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace 2022; 24:1307-1367. [PMID: 35373836 PMCID: PMC9435643 DOI: 10.1093/europace/euac030] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische
Centra, Amsterdam, location AMC, The Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute,
University of Sydney, Sydney, Australia
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de
México, Mexico
- Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine,
and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm
Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and
Windland Smith Rice Sudden Death Genomics Laboratory, Mayo
Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University,
Stanford, California, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute,
Minas Gerais, Brazil; and
Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Héctor Barajas-Martinez
- Cardiovascular Research, Lankenau Institute of Medical
Research, Wynnewood, PA, USA; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical
Sciences, St. George’s, University of London; St. George’s University Hospitals NHS
Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental
Cardiology, Amsterdam, The
Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven,
Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques
Héréditaires, ICAN, Inserm UMR1166, Hôpital
Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin,
Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital,
Istituto Auxologico Italiano, IRCCS, Milan,
Italy
- Department of Medicine and Surgery, University of
Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology,
University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research
Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular
Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A
Coruña, Spain; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP,
Faculdade de Medicina, Universidade de Sao Paulo, Sao
Paulo, Brazil; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital
Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon
Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of
Medicine, University of Washington, Seattle, WA,
USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart
Institute, Université de Montréal, Montreal,
Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical
Sciences, Imperial College London, London,
UK
- Royal Brompton & Harefield Hospitals, Guy’s
and St. Thomas’ NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of
Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University,
Cleveland, OH, USA
| |
Collapse
|
26
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick Eduardo B, Barajas‐Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz‐Genga M, Sacilotto L, Schulze‐Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi J, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, Mac Intyre C, Mackall JA, Mont L, Napolitano C, Ochoa Juan P, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt‐Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. J Arrhythm 2022; 38:491-553. [PMID: 35936045 PMCID: PMC9347209 DOI: 10.1002/joa3.12717] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur A. M. Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische CentraAmsterdamThe Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary InstituteUniversity of SydneySydneyAustralia
| | - Manlio F. Márquez
- Instituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMexico
| | | | - Michael J. Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo ClinicRochesterMNUSA
| | - Euan A. Ashley
- Department of Cardiovascular MedicineStanford UniversityStanfordCAUSA
| | | | | | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’sUniversity of London; St. George’s University Hospitals NHS Foundation TrustLondonUKMayo Clinic HealthcareLondon
| | - Connie R. Bezzina
- Amsterdam UMC Heart Center, Department of Experimental CardiologyAmsterdamThe Netherlands
| | - Jeroen Breckpot
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCSMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Michael H. Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of CardiologyUniversity of TorontoTorontoONCanada
| | - Steven Lubitz
- Cardiac Arrhythmia ServiceMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naomasa Makita
- National Cerebral and Cardiovascular CenterResearch InstituteSuitaJapan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular CenterSuitaJapan
| | | | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao PauloBrazil
| | - Eric Schulze‐Bahr
- Institute for Genetics of Heart DiseasesUniversity Hospital MünsterMünsterGermany
| | - Wataru Shimizu
- Department of Cardiovascular MedicineGraduate School of MedicineTokyoJapan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | - James S. Ware
- National Heart and Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation TrustLondonUK
| | - David S. Winlaw
- Cincinnati Children's Hospital Medical CentreUniversity of CincinnatiCincinnatiOHUSA
| | | | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, SuitaOsakaJapan
| | - Andreas Bollmann
- Department of ElectrophysiologyHeart Center Leipzig at University of LeipzigLeipzigGermany
- Leipzig Heart InstituteLeipzigGermany
| | - Jong‐Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam HospitalKorea University College of MedicineSeoulRepublic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of CardiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloBrazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo ClinicRochesterMNUSA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos AiresBuenos AiresArgentina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Andrew D. Krahn
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Ciorsti Mac Intyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo ClinicRochesterMNUSA
| | - Judith A. Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - Lluís Mont
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS). Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), MadridSpain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCSPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pablo Ochoa Juan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), MadridSpain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de HierroMadridSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), MadridSpain
| | - Petr Peichl
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
- Hipercol Brasil ProgramSão PauloBrazil
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
| | - Jon Skinner
- Sydney Childrens Hospital NetworkUniversity of SydneySydneyAustralia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care MedicineUniversity Hospital Campus Klinikum BielefeldBielefeldGermany
| | - Jacob Tfelt‐Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of genetics, Department of Forensic Medicine, Faculty of Medical SciencesUniversity of CopenhagenDenmark
| | - Thomas Deneke
- Heart Center Bad NeustadtBad Neustadt a.d. SaaleGermany
| |
Collapse
|
27
|
Smith E, Care M, Burke-Martindale C, Weissler-Snir A. Secondary Findings Using Broad Pan Cardiomyopathy and Arrhythmia Panels in Patients With a Personal or Family History of Inherited Cardiomyopathy or Arrhythmia Syndrome. Am J Cardiol 2022; 178:137-141. [PMID: 35835602 DOI: 10.1016/j.amjcard.2022.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
With broad panels and whole exome or genome sequencing, there is the potential for secondary findings, which include pathogenic/likely pathogenic variants or variants of uncertain significance in genes that are unrelated to the primary clinical indication for the testing. No study examined the frequency and implications of secondary findings when using a broad panel for inherited cardiomyopathy or arrhythmia syndromes. We performed a retrospective review of the primary indications for genetic testing, tests performed, and genetic test results to identify secondary findings in patients seen in the Inherited Cardiovascular Disease Clinic for a personal or family history of (possible) inherited cardiomyopathy, inherited arrhythmia syndrome, previous cardiac arrest, or family history of sudden cardiac death. Of 325 probands and 20 family members who had genetic testing, with no-cost broad cardiomyopathy and arrhythmia panel, 4 probands (1.2%) and 4 family members (5%) had pathogenic/likely pathogenic variants in autosomal dominant genes, unrelated to the primary reason for testing. In conclusion, the prevalence of secondary findings using broad cardiomyopathy and arrhythmia panel in patients with personal or family history of inherited cardiomyopathy or arrhythmia was ∼2.2%. Our findings suggest that with appropriate genetic counseling, broad panels might be considered over disease-specific panels because of the relatively high prevalence of secondary findings that positively affect patient care and would not have been identified with more targeted testing.
Collapse
Affiliation(s)
- Emily Smith
- Hartford HealthCare, Heart and Vascular Institute, Hartford, Connecticut
| | - Melanie Care
- Division of Cardiology, Department of Medicine, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Adaya Weissler-Snir
- Hartford HealthCare, Heart and Vascular Institute, Hartford, Connecticut; Department of Medicine, University of Connecticut, Farmington, Connecticut.
| |
Collapse
|
28
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi JI, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, MacIntyre C, Mackall JA, Mont L, Napolitano C, Ochoa JP, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt-Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm 2022; 19:e1-e60. [PMID: 35390533 DOI: 10.1016/j.hrthm.2022.03.1225] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, location AMC, The Netherlands.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia.
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; and Member of the Latin American Heart Rhythm Society (LAHRS).
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute, Minas Gerais, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George's, University of London; St. George's University Hospitals NHS Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental Cardiology, Amsterdam, The Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques Héréditaires, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A Coruña, Spain; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig Heart Digital, Leipzig, Germany
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, Canada
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Judith A Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), Madrid, Spain
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil; Hipercol Brasil Program, São Paulo, Brazil
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Jon Skinner
- Sydney Childrens Hospital Network, University of Sydney, Sydney, Australia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care Medicine, University Hospital Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Deneke
- Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| |
Collapse
|
29
|
Behr ER. Explaining the unexplained: applying genetic testing after cardiac arrest and sudden death. Eur Heart J 2022; 43:3082-3084. [PMID: 35380654 DOI: 10.1093/eurheartj/ehac172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elijah R Behr
- Cardiology Section, Institute of Molecular and Clinical Sciences, St. George's, University of London, London SW17 0RE, UK.,Department of Cardiology, St. George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK.,Mayo Clinic Healthcare, 15 Portland Place, London W1B 1PT, UK
| |
Collapse
|
30
|
Santos-Ferreira C, Baptista R, Teixeira T, Gonçalves L. A 45-year-old man with sudden cardiac death, cutaneous abnormalities and a rare desmoplakin mutation: a case report and literature review. BMC Cardiovasc Disord 2022; 22:41. [PMID: 35151254 PMCID: PMC8840678 DOI: 10.1186/s12872-022-02472-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Background Arrhythmogenic cardiomyopathy (AC) is a rare, heritable myocardial disorder that is a leading cause of ventricular arrhythmia and sudden cardiac death (SCD) in young people. Desmoplakin (DSP) mutations account for 3–20% of AC cases. However, the number of patients with DSP mutations is extremely small in all published reports and genotype–phenotype correlations are scant and mostly non-gene-specific. Case presentation A 45-year-old man was admitted after an out-of-hospital cardiac arrest, with documented ventricular fibrillation. He had no previous history of heart disease or family history of SCD or cardiomyopathy. The cardiac magnetic resonance showed a mildly dilated left ventricle with an ejection fraction of 30% and a non-dilated right ventricle with mildly depressed systolic function, and extensive subepicardial late gadolinium enhancement. Genetic screening identified a heterozygote nonsense mutation in DSP (NM_004415.2: c.478 C > T; p.Arg160Ter). Cascade genetic screening of the relatives revealed a high prevalence of the genotype and cutaneous phenotype, but a very low penetrance of the cardiac phenotype. Conclusions We report a case of SCD and an autosomal dominant mutation in DSP that causes arrhythmogenic dilated cardiomyopathy/AC. Like the recessive mutation in DSP known to cause Carvajal syndrome, Arg160Ter may be associated with cutaneous abnormalities.
Collapse
|
31
|
Neves R, Tester DJ, Simpson MA, Behr ER, Ackerman MJ, Giudicessi JR. Exome Sequencing Highlights a Potential Role for Concealed Cardiomyopathies in Youthful Sudden Cardiac Death. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003497. [PMID: 34949102 DOI: 10.1161/circgen.121.003497] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sudden cardiac arrest (SCA) and sudden unexplained death (SUD) are feared sequelae of many genetic heart diseases. In rare circumstances, pathogenic variants in cardiomyopathy-susceptibility genes may result in electrical instability leading to SCA/SUD before any structural manifestations of underlying cardiomyopathy are evident. METHODS Collectively, 38 unexplained SCA survivors (21 males; mean age at SCA 26.4±13.1 years), 68 autopsy-inconclusive SUD cases (46 males; mean age at death 20.4±9.0 years) without disease-causative variants in the channelopathy genes, and 973 ostensibly healthy controls were included. Following exome sequencing, ultrarare (minor allele frequency ≤0.00005 in any ethnic group within Genome Aggregation Database [gnomAD, N=141 456 individuals]) nonsynonymous variants identified in 24 Clinical Genome Resource adjudicated definitive/strong evidence cardiomyopathy-susceptibility genes were analyzed. Eligible variants were adjudicated as pathogenic, likely pathogenic, or variant of uncertain significance in accordance with current American College of Medical Genetics and Genomics guidelines. RESULTS Overall, 7 out of 38 (18.4%) SCA survivors and 14 out of 68 (20.5%) autopsy-inconclusive, channelopathic-negative SUD cases had at least one pathogenic/likely pathogenic or a variant of uncertain significance nonsynonymous variant within a strong evidence, cardiomyopathy-susceptibility gene. Following American College of Medical Genetics and Genomics criterion variant adjudication, a pathogenic or likely pathogenic variant was identified in 3 out of 38 (7.9%; P=0.05) SCA survivors and 8 out of 68 (11.8%; P=0.0002) autopsy-inconclusive SUD cases compared to 20 out of 973 (2.1%) European controls. Interestingly, the yield of pathogenic/likely pathogenic variants was significantly greater in autopsy-inconclusive SUD cases with documented interstitial fibrosis (4/11, 36%) compared with only 4 out of 57 (7%, P<0.02) SUD cases without ventricular fibrosis. CONCLUSIONS Our data further supports the inclusion of strong evidence cardiomyopathy-susceptibility genes on the genetic testing panels used to evaluate unexplained SCA survivors and autopsy-inconclusive/negative SUD decedents. However, to avoid diagnostic miscues, the careful interpretation of genetic test results in patients without overt phenotypes is vital.
Collapse
Affiliation(s)
- Raquel Neves
- Division of Heart Rhythm Services, Departments of Cardiovascular Medicine (R.N., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Division of Pediatric Cardiology, Pediatric and Adolescent Medicine (R.N., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Windland Smith Rice Sudden Death Genomics Laboratory, Molecular Pharmacology & Experimental Therapeutics (R.N., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - David J Tester
- Division of Heart Rhythm Services, Departments of Cardiovascular Medicine (R.N., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Division of Pediatric Cardiology, Pediatric and Adolescent Medicine (R.N., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Windland Smith Rice Sudden Death Genomics Laboratory, Molecular Pharmacology & Experimental Therapeutics (R.N., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | | | - Elijah R Behr
- St George's University of London and St George's University Hospitals' NHS Foundation Trust, United Kingdom (E.R.B.)
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Departments of Cardiovascular Medicine (R.N., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Division of Pediatric Cardiology, Pediatric and Adolescent Medicine (R.N., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Windland Smith Rice Sudden Death Genomics Laboratory, Molecular Pharmacology & Experimental Therapeutics (R.N., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - John R Giudicessi
- Divisions of Heart Rhythm Services and Circulatory Failure, Department of Cardiovascular Medicine (J.R.G.), Mayo Clinic, Rochester, MN
| |
Collapse
|
32
|
Mellor GJ, Tadros R, Krahn AD. Cardiomyopathy Genes and Idiopathic VF: A Known Unknown? Circ Genom Precis Med 2022; 15:e003680. [DOI: 10.1161/circgen.122.003680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Greg J. Mellor
- Cardiology Department, Royal Papworth Hospital, Cambridge, United Kingdom (G.J.M.)
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, QC, Canada (R.T.)
| | - Andrew D. Krahn
- Division of Cardiology, Center for Cardiovascular Innovation, University of British Columbia, Vancouver, Canada (A.D.K.)
| |
Collapse
|
33
|
Novelli V, Memmi M, Malovini A, Mazzanti A, Liu N, Yanfei R, Bongianino R, Denegri M, Monteforte N, Bloise R, Morini M, Napolitano C. The role of CACNA1C in Brugada syndrome: prevalence and phenotype of probands referred for genetic testing. Heart Rhythm 2022; 19:798-806. [PMID: 34999275 DOI: 10.1016/j.hrthm.2021.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Contradictory evidence is available on the role of the CACNA1C gene, encoding for the α-subunit of the cardiac L-type calcium channel (CaV1.2), as a cause of the BrS3 variant of Brugada syndrome (BrS). OBJECTIVE We aimed at tackling this issue in a large BrS cohort to define the yield of molecular screening and to address the hypothesis if an appropriate patient selection could improve the clinical utility. METHODS A total of 709 patients entered this study. BrS probands (n= 563, consecutively referred) underwent CACNA1C sequencing. Two matched cohorts where defined: discovery cohort (n = 200 patients) and confirmation cohort (n = 363 patients). Furthermore, the clinical phenotypes of a matched SCN5A positive BrS cohort (n= 146) were included for comparative genotype-phenotype correlation. RESULTS In the discovery cohort, we identified 11 different rare variants in 9 patients of whom 10 (5%) were considered potentially causative based on their frequency in the general population. However, ACMG criteria were unable to classify the majority (80%) of them eventually labeled as variants of unknown significance (VUS). Functional studies revealed a loss of function for 9 variants pointing to a prevalence of CACNA1C causative variants in 4% in the discovery cohort. Genotype-phenotype correlation showed that pathogenic variants are significantly more frequent in patients with a shorter QTc (12.9 % vs 2.2 % in patients with QTc < 390 ms). CONCLUSION CACNA1C is an infrequent but definitive cause of BrS typically associated with short QT. Functional studies are highly relevant to improve variant interpretation.
Collapse
Affiliation(s)
- Valeria Novelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mirella Memmi
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Alberto Malovini
- Laboratory of Informatics and Systems Engineering for Clinical Research, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Andrea Mazzanti
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Nian Liu
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Ruan Yanfei
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Rossana Bongianino
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Marco Denegri
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Nicola Monteforte
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Raffaella Bloise
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Massimo Morini
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
34
|
Grondin S, Davies B, Cadrin-Tourigny J, Steinberg C, Cheung CC, Jorda P, Healey JS, Green MS, Sanatani S, Alqarawi W, Angaran P, Arbour L, Antiperovitch P, Khan H, Leather R, Guerra PG, Rivard L, Simpson CS, Gardner M, MacIntyre C, Seifer C, Fournier A, Joza J, Gollob MH, Lettre G, Talajic M, Laksman ZW, Roberts JD, Krahn AD, Tadros R. OUP accepted manuscript. Eur Heart J 2022; 43:3071-3081. [PMID: 35352813 PMCID: PMC9392649 DOI: 10.1093/eurheartj/ehac145] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Aims Genetic testing is recommended in specific inherited heart diseases but its role remains unclear and it is not currently recommended in unexplained cardiac arrest (UCA). We sought to assess the yield and clinical utility of genetic testing in UCA using whole-exome sequencing (WES). Methods and results Survivors of UCA requiring external defibrillation were included from the Cardiac Arrest Survivor with Preserved Ejection fraction Registry. Whole-exome sequencing was performed, followed by assessment of rare variants in previously reported cardiovascular disease genes. A total of 228 UCA survivors (mean age at arrest 39 ± 13 years) were included. The majority were males (66%) and of European ancestry (81%). Following advanced clinical testing at baseline, the likely aetiology of cardiac arrest was determined in 21/228 (9%) cases. Whole-exome sequencing identified a pathogenic or likely pathogenic (P/LP) variant in 23/228 (10%) of UCA survivors overall, increasing the proportion of ‘explained’ cases from 9% only following phenotyping to 18% when combining phenotyping with WES. Notably, 13 (57%) of the 23 P/LP variants identified were located in genes associated with cardiomyopathy, in the absence of a diagnosis of cardiomyopathy at the time of arrest. Conclusions Genetic testing identifies a disease-causing variant in 10% of apparent UCA survivors. The majority of disease-causing variants was located in cardiomyopathy-associated genes, highlighting the arrhythmogenic potential of such variants in the absence of an overt cardiomyopathy diagnosis. The present study supports the use of genetic testing including assessment of arrhythmia and cardiomyopathy genes in survivors of UCA.
Collapse
Affiliation(s)
- Steffany Grondin
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Brianna Davies
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Christian Steinberg
- Institut universitaire de cardiologie et pneumologie de Québec, Université Laval, Québec City, QC, Canada
| | - Christopher C Cheung
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paloma Jorda
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Jeffrey S Healey
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Martin S Green
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Shubhayan Sanatani
- Division of Pediatric Cardiology, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Wael Alqarawi
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cardiac Sciences, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Paul Angaran
- Cardiac Arrhythmia Service, St Michael’s Hospital, Toronto, ON, Canada
| | - Laura Arbour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Pavel Antiperovitch
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Habib Khan
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Richard Leather
- Division of Cardiology, Royal Jubilee Hospital, Victoria, BC, Canada
| | - Peter G Guerra
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Lena Rivard
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | | | - Martin Gardner
- Queen Elizabeth II Health Sciences Center, Halifax, NS, Canada
| | | | - Colette Seifer
- St Boniface Hospital, University of Manitoba, Winnipeg, MB, Canada
| | - Anne Fournier
- Ste-Justine Hospital, Université de Montréal, Montreal, QC, Canada
| | - Jacqueline Joza
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Michael H Gollob
- Division of Cardiology, University Health Network, Toronto General Hospital, Toronto, ON, Canada
| | - Guillaume Lettre
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Mario Talajic
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Zachary W Laksman
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, ON, Canada
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Andrew D Krahn
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rafik Tadros
- Corresponding author. Tel: +1 514 376 3330, Fax: +1 514 593 2158, , Twitter: @rafik_tadros
| |
Collapse
|
35
|
Dalgaard CV, Hansen BL, Jacobsen EM, Kjerrumgaard A, Tfelt-Hansen J, Weeke PE, Winkel BG, Christensen AH, Bundgaard H. Sudden unexplained death versus nonautopsied possible sudden cardiac death: Findings in relatives. J Cardiovasc Electrophysiol 2021; 33:254-261. [PMID: 34918422 DOI: 10.1111/jce.15333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND International guidelines recommend work-up of relatives to autopsy negative sudden cardiac death victims, denoted as sudden unexplained death (SUD) and nonautopsied possible sudden cardiac death (pSCD) victims. This study assesses and compare baseline characteristics and clinical outcome at initial evaluation and during follow-up of relatives to SUD and pSCD victims. METHODS We retrospectively included data from systematic screening and routine follow-up of first-degree relatives to SUD and pSCD victims referred to our Unit for Inherited Cardiac Diseases, Copenhagen, 2005-2018. Victims with an antemortem known inherited cardiac disease were excluded. RESULTS We included 371 first-degree relatives from 187 families (120 SUD, 67 pSCD): 276 SUD relatives (age 33 ± 18 years, 54% men) and 95 pSCD relatives (age 40 ± 15 years, 51% men). The diagnostic yields of inherited cardiac diseases in SUD and pSCD families were 16% and 13%, respectively (p = .8). The diagnoses in SUD families were mainly channelopathies (68%), whereas pSCD families were equally diagnosed with cardiomyopathies, channelopathies, and premature ischemic heart disease. Ninety-three percent of diagnosed families were diagnosed at initial evaluation and 7% during follow-up (5.4 ± 3.3 years). During follow-up 34% of relatives with a diagnosed inherited cardiac disease had an arrhythmic event, compared to 5% of relatives without established diagnosis (p < .0001). CONCLUSIONS Channelopathies dominated in SUD families whereas a broader spectrum of inherited diseases was diagnosed in pSCD families. Most affected relatives were diagnosed at initial evaluation. The event rate was low in relatives without an established diagnosis. Long-term clinical follow-up may not be warranted in all relatives with normal baseline-findings.
Collapse
Affiliation(s)
- Cathrine V Dalgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Benjamin L Hansen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Elisabeth M Jacobsen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Amalie Kjerrumgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Kobenhavn, Denmark.,Department of Forensic Medicine, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Peter E Weeke
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Bo G Winkel
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Alex H Christensen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Kobenhavn, Denmark.,Department of Cardiology, Herlev-Gentofte, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Kobenhavn, Denmark
| |
Collapse
|
36
|
Scrocco C, Bezzina CR, Ackerman MJ, Behr ER. Genetics and genomics of arrhythmic risk: current and future strategies to prevent sudden cardiac death. Nat Rev Cardiol 2021; 18:774-784. [PMID: 34031597 DOI: 10.1038/s41569-021-00555-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
A genetic risk of sudden cardiac arrest and sudden death due to an arrhythmic cause, known as sudden cardiac death (SCD), has become apparent from epidemiological studies in the general population and in patients with ischaemic heart disease. However, genetic susceptibility to sudden death is greatest in young people and is associated with uncommon, monogenic forms of heart disease. Despite comprehensive pathology and genetic evaluations, SCD remains unexplained in a proportion of young people and is termed sudden arrhythmic death syndrome, which poses challenges to the identification of relatives from affected families who might be at risk of SCD. In this Review, we assess the current understanding of the epidemiology and causes of SCD and evaluate both the monogenic and the polygenic contributions to the risk of SCD in the young and SCD associated with drug therapy. Finally, we analyse the potential clinical role of genomic testing in the prevention of SCD in the general population.
Collapse
Affiliation(s)
- Chiara Scrocco
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's University of London and St George's University Hospitals NHS Foundation Trust, London, UK
| | - Connie R Bezzina
- Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA.,Windland Smith Rice Genetic Heart Rhythm Clinic and the Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's University of London and St George's University Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
37
|
Conte G, Giudicessi JR, Ackerman MJ. Idiopathic ventricular fibrillation: the ongoing quest for diagnostic refinement. Europace 2021; 23:4-10. [PMID: 33038214 DOI: 10.1093/europace/euaa211] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/03/2020] [Indexed: 11/13/2022] Open
Abstract
Prior to the recognition of distinct clinical entities, such as Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and long QT syndrome, all sudden cardiac arrest (SCA) survivors with ventricular fibrillation (VF) and apparently structurally normal hearts were labelled as idiopathic ventricular fibrillation (IVF). Over the last three decades, the definition of IVF has changed substantially, mostly as result of the identification of the spectrum of SCA-predisposing genetic heart diseases (GHDs), and the molecular evidence, by post-mortem genetic analysis (aka, the molecular autopsy), of cardiac channelopathies as the pathogenic basis for up to 35% of unexplained cases of sudden cardiac death (SCD) in the young. The evolution of the definition of IVF over time has led to a progressively greater awareness of the need for an extensive diagnostic assessment in unexplained SCA survivors. Nevertheless, GHDs are still underdiagnosed among SCA survivors, due to the underuse of pharmacological challenges (i.e. sodium channel blocker test), misrecognition of electrocardiogram (ECG) abnormalities/patterns (i.e. early repolarization pattern or exercise-induced ventricular bigeminy) or errors in the measurement of ECG parameters (e.g. the heart-rate corrected QT interval). In this review, we discuss the epidemiology, diagnostic approaches, and the controversies related to role of the genetic background in unexplained SCA survivors with a default diagnosis of IVF.
Collapse
Affiliation(s)
- Giulio Conte
- Division of Cardiology, Cardiocentro Ticino, via Tesserete 48, 6900, Lugano, Switzerland.,Faculty of Biomedical Sciences, USI, Lugano, Switzerland.,Centre for Computational Medicine in Cardiology, Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland
| | - John R Giudicessi
- Department of Cardiovascular Medicine (Clinician-Investigator Training Program), Mayo Clinic, Rochester, MN, USA.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric & Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Michael J Ackerman
- Department of Cardiovascular Medicine (Clinician-Investigator Training Program), Mayo Clinic, Rochester, MN, USA.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric & Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
38
|
Giudicessi JR, Ye D, Stutzman MJ, Zhou W, Tester DJ, Ackerman MJ. Prevalence and electrophysiological phenotype of rare SCN5A genetic variants identified in unexplained sudden cardiac arrest survivors. Europace 2021; 22:622-631. [PMID: 32091595 DOI: 10.1093/europace/euz337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS To determine the prevalence and in vitro electrophysiological (EP) phenotype of ultra-rare SCN5A variants of uncertain significance (VUS) identified in unexplained sudden cardiac arrest (SCA) survivors. METHODS AND RESULTS Retrospective review of 73 unexplained SCA survivors was used to identify all patients that underwent a form of genetic testing that included comprehensive SCN5A analysis. Ultra-rare SCN5A variants (minor allele frequency < 0.005) were adjudicated according to the 2015 American College of Medical Genetics and Genomics (ACMG) guidelines. Variants designated as VUS were expressed heterologously and characterized using the whole-cell patch clamp technique. Overall, 60/73 (82%; the average age at SCA 28 ± 12 years) unexplained SCA survivors had received SCN5A genetic testing. Of these, 5/60 (8.3%) had an ultra-rare SCN5A variant. All SCN5A variants were classified as VUS. Whereas the single SCN5A VUS (p.Asp872Asn-SCN5A) identified in an unexplained SCA survivor with PR interval prolongation and inferior early repolarization conferred a loss-of-function phenotype (46.2% reduction in peak current density; 16 ms slower recovery from inactivation), the four other SCN5A VUS (p.Glu30Gly-SCN5A, p.Gln245Lys-SCN5A, p.Pro648Leu-SCN5A, and p.Glu1240Gln-SCN5A) identified in unexplained SCA survivors without early repolarization/conduction delay were indistinguishable from wild-type Nav1.5 channels. CONCLUSION In the absence of a phenotype(s) potentially attributable to sodium channel dysfunction, all SCN5A VUS identified in unexplained SCA survivors conferred a wild-type EP phenotype in vitro. As the background rate of SCN5A genetic variation is not trivial, great care must be taken to avoid prioritizing genotype over phenotype when attempting to ascertain the root cause of an individual's SCA.
Collapse
Affiliation(s)
- John R Giudicessi
- Department of Cardiovascular Medicine (Clinician-Investigator Training Program), Mayo Clinic, Rochester, MN, USA
| | - Dan Ye
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Mayo Clinic, Rochester, MN 55905, USA
| | - Marissa J Stutzman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Zhou
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Mayo Clinic, Rochester, MN 55905, USA
| | - David J Tester
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
39
|
Affiliation(s)
- Greg J Mellor
- Cardiology Department, Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Elijah R Behr
- Cardiology Clinical Academic Group, St. George's, University of London, London, UK
| |
Collapse
|
40
|
Stiles MK, Wilde AAM, Abrams DJ, Ackerman MJ, Albert CM, Behr ER, Chugh SS, Cornel MC, Gardner K, Ingles J, James CA, Juang JMJ, Kääb S, Kaufman ES, Krahn AD, Lubitz SA, MacLeod H, Morillo CA, Nademanee K, Probst V, Saarel EV, Sacilotto L, Semsarian C, Sheppard MN, Shimizu W, Skinner JR, Tfelt-Hansen J, Wang DW. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. J Arrhythm 2021; 37:481-534. [PMID: 34141003 PMCID: PMC8207384 DOI: 10.1002/joa3.12449] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
This international multidisciplinary document intends to provide clinicians with evidence-based practical patient-centered recommendations for evaluating patients and decedents with (aborted) sudden cardiac arrest and their families. The document includes a framework for the investigation of the family allowing steps to be taken, should an inherited condition be found, to minimize further events in affected relatives. Integral to the process is counseling of the patients and families, not only because of the emotionally charged subject, but because finding (or not finding) the cause of the arrest may influence management of family members. The formation of multidisciplinary teams is essential to provide a complete service to the patients and their families, and the varied expertise of the writing committee was formulated to reflect this need. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by Class of Recommendation and Level of Evidence. The recommendations were opened for public comment and reviewed by the relevant scientific and clinical document committees of the Asia Pacific Heart Rhythm Society (APHRS) and the Heart Rhythm Society (HRS); the document underwent external review and endorsement by the partner and collaborating societies. While the recommendations are for optimal care, it is recognized that not all resources will be available to all clinicians. Nevertheless, this document articulates the evaluation that the clinician should aspire to provide for patients with sudden cardiac arrest, decedents with sudden unexplained death, and their families.
Collapse
Affiliation(s)
- Martin K Stiles
- Waikato Clinical School Faculty of Medicine and Health Science The University of Auckland Hamilton New Zealand
| | - Arthur A M Wilde
- Heart Center Department of Clinical and Experimental Cardiology Amsterdam University Medical Center University of Amsterdam Amsterdam the Netherlands
| | | | | | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute St George's University of London, and St George's University Hospitals NHS Foundation Trust London UK
| | | | - Martina C Cornel
- Amsterdam University Medical Center Vrije Universiteit Amsterdam Clinical Genetics Amsterdam Public Health Research Institute Amsterdam the Netherlands
| | | | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute The University of Sydney Sydney Australia
| | | | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology Department of Internal Medicine National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | - Stefan Kääb
- Department of Medicine I University Hospital LMU Munich Munich Germany
| | | | | | | | - Heather MacLeod
- Data Coordinating Center for the Sudden Death in the Young Case Registry Okemos MI USA
| | | | - Koonlawee Nademanee
- Chulalongkorn University Faculty of Medicine, and Pacific Rim Electrophysiology Research Institute at Bumrungrad Hospital Bangkok Thailand
| | | | - Elizabeth V Saarel
- Cleveland Clinic Lerner College of Cardiology at Case Western Reserve University Cleveland OH USA
- St Luke's Medical Center Boise ID USA
| | - Luciana Sacilotto
- Heart Institute University of São Paulo Medical School São Paulo Brazil
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute The University of Sydney Sydney Australia
| | - Mary N Sheppard
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute St George's University of London, and St George's University Hospitals NHS Foundation Trust London UK
| | - Wataru Shimizu
- Department of Cardiovascular Medicine Nippon Medical School Tokyo Japan
| | | | - Jacob Tfelt-Hansen
- Department of Forensic Medicine Faculty of Medical Sciences Rigshospitalet Copenhagen Denmark
| | - Dao Wu Wang
- The First Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
41
|
Davies B, Bartels K, Hathaway J, Xu F, Roberts JD, Tadros R, Green MS, Healey JS, Simpson CS, Sanatani S, Steinberg C, Gardner M, Angaran P, Talajic M, Hamilton R, Arbour L, Seifer C, Fournier A, Joza J, Krahn AD, Lehman A, Laksman ZWM. Variant Reinterpretation in Survivors of Cardiac Arrest With Preserved Ejection Fraction (the Cardiac Arrest Survivors With Preserved Ejection Fraction Registry) by Clinicians and Clinical Commercial Laboratories. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003235. [PMID: 33960826 DOI: 10.1161/circgen.120.003235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Following an unexplained cardiac arrest, clinical genetic testing is increasingly becoming standard of care. Periodic review of variant classification is required, as reinterpretation can change the diagnosis, prognosis, and management of patients and their relatives. METHODS This study aimed to develop and validate a standardized algorithm to facilitate clinical application of the 2015 American College of Medical Genetics and Association for Molecular Pathology guidelines for the interpretation of genetic variants. The algorithm was applied to genetic results in the Cardiac Arrest Survivors With Preserved Ejection Fraction Registry, to assess the rate of variant reclassification over time. Variant classifications were then compared with the classifications of 2 commercial laboratories to determine the rate and identify sources of variant interpretation discordance. RESULTS Thirty-one percent of participants (40 of 131) had at least 1 genetic variant with a clinically significant reclassification over time. Variants of uncertain significance were more likely to be downgraded (73%) to benign than upgraded to pathogenic (27%; P=0.03). For the second part of the study, 50% (70 of 139) of variants had discrepant interpretations (excluding benign variants), provided by at least 1 team. CONCLUSIONS Periodic review of genetic variant classification is a key component of follow-up care given rapidly changing information in the field. There is potential for clinical care gaps with discrepant variant interpretations, based on the interpretation and application of current guidelines. The development of gene- and disease-specific guidelines and algorithms may provide an opportunity to further standardize variant interpretation reporting in the future. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00292032.
Collapse
Affiliation(s)
- Brianna Davies
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| | - Kirsten Bartels
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| | | | - Fang Xu
- Prevention Genetics, Marshfield, WI (F.X.)
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario (J.D.R.)
| | - Rafik Tadros
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T., M.T.)
| | | | | | | | | | - Christian Steinberg
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University (C. Steinberg)
| | | | - Paul Angaran
- St. Michael's Hospital, University of Toronto, Canada (P.A.)
| | - Mario Talajic
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T., M.T.)
| | - Robert Hamilton
- hTe Hospital for Sick Children (SickKids), Toronto, Canada (R.H.)
| | - Laura Arbour
- Division of Medical Genetics, Island Health, Victoria, Canada (L.A.)
| | - Colette Seifer
- Section of Cardiology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada (C. Seifer)
| | - Anne Fournier
- Division of Pediatric Cardiology, CHU Sainte-Justine, Université de Montréal, QC (A.F.)
| | - Jacqueline Joza
- Division of Cardiology, McGill University Health Center, Montreal, Canada (J.J.)
| | - Andrew D Krahn
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| | - Anna Lehman
- Department of Medical Genetics (A.L.), The University of British Columbia, Vancouver, Canada
| | - Zachary W M Laksman
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| |
Collapse
|
42
|
Sudden Cardiac Death in Patients with Heart Disease and Preserved Systolic Function: Current Options for Risk Stratification. J Clin Med 2021; 10:jcm10091823. [PMID: 33922111 PMCID: PMC8122448 DOI: 10.3390/jcm10091823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/26/2022] Open
Abstract
Sudden cardiac death (SCD) is the leading cause of cardiovascular mortality in patients with coronary artery disease without severe systolic dysfunction and in heart failure with preserved ejection fraction. From a global health perspective, while risk may be lower, the absolute number of SCDs in patients with left ventricle ejection fraction >35% is higher than in those with severely reduced left ventricle ejection fraction (defined as ≤35%). Despite these observations and the high amount of available data, to date there are no clear recommendations to reduce the sudden cardiac death burden in the population with mid-range or preserved left ventricle ejection fraction. Ongoing improvements in risk stratification based on electrophysiological and imaging techniques point towards a more precise identification of patients who would benefit from ICD implantation, which is still an unmet need in this subset of patients. The aim of this review is to provide a state-of-the-art approach in sudden cardiac death risk stratification of patients with mid-range and preserved left ventricular ejection fraction and one of the following etiologies: ischemic cardiomyopathy, heart failure, atrial fibrillation or myocarditis.
Collapse
|
43
|
Arrhythmogenic Cardiomyopathy: Mechanisms, Genetics, and Their Clinical Implications. CURRENT CARDIOVASCULAR RISK REPORTS 2021. [DOI: 10.1007/s12170-021-00669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Mellor GJ, Blom LJ, Groeneveld SA, Winkel BG, Ensam B, Bargehr J, van Rees B, Scrocco C, Krapels IPC, Volders PGA, Tfelt-Hansen J, Krahn AD, Hassink RJ, Behr ER. Familial Evaluation in Idiopathic Ventricular Fibrillation: Diagnostic Yield and Significance of J Wave Syndromes. Circ Arrhythm Electrophysiol 2021; 14:e009089. [PMID: 33550818 DOI: 10.1161/circep.120.009089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Greg J Mellor
- Cardiology Department, Royal Papworth Hospital, Cambridge (G.J.M., J.B.)
| | - Lennart J Blom
- Department of Cardiology, University Medical Centre, Utrecht, the Netherlands (L.J.B., S.A.G., R.J.H.)
| | - Sanne A Groeneveld
- Department of Cardiology, University Medical Centre, Utrecht, the Netherlands (L.J.B., S.A.G., R.J.H.)
| | - Bo G Winkel
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark (B.G.W., J.T.-H.)
| | - Bode Ensam
- Cardiovascular Clinical Academic Group, Molecular & Clinical Sciences Rsrch Inst, St. George's, University of London and St. George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.E., C.S., E.R.B.)
| | - Johannes Bargehr
- Cardiology Department, Royal Papworth Hospital, Cambridge (G.J.M., J.B.).,Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (J.B.)
| | - Bianca van Rees
- Department of Cardiology, Cardiovascular Rsrch Inst Maastricht (CARIM) (B.v.R., P.G.V.A.), Maastricht University Medical Center, the Netherlands
| | - Chiara Scrocco
- Cardiovascular Clinical Academic Group, Molecular & Clinical Sciences Rsrch Inst, St. George's, University of London and St. George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.E., C.S., E.R.B.)
| | - Ingrid P C Krapels
- Department of Clinical Genetics (I.P.C.K.), Maastricht University Medical Center, the Netherlands
| | - Paul G A Volders
- Department of Cardiology, Cardiovascular Rsrch Inst Maastricht (CARIM) (B.v.R., P.G.V.A.), Maastricht University Medical Center, the Netherlands
| | - Jacob Tfelt-Hansen
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark (B.G.W., J.T.-H.)
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, Canada (A.D.K.)
| | - Rutger J Hassink
- Department of Cardiology, University Medical Centre, Utrecht, the Netherlands (L.J.B., S.A.G., R.J.H.)
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular & Clinical Sciences Rsrch Inst, St. George's, University of London and St. George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.E., C.S., E.R.B.)
| |
Collapse
|
45
|
Parikh VN. Promise and Peril of Population Genomics for the Development of Genome-First Approaches in Mendelian Cardiovascular Disease. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e002964. [PMID: 33517676 PMCID: PMC7887109 DOI: 10.1161/circgen.120.002964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rich tradition of cardiovascular genomics has placed the field in prime position to extend our knowledge toward a genome-first approach to diagnosis and therapy. Population-scale genomic data has enabled exponential improvements in our ability to adjudicate variant pathogenicity based on allele rarity, and there has been a significant effort to employ these sizeable data in the investigation of rare disease. Certainly, population genomics data has great potential to aid the development of a genome-first approach to Mendelian cardiovascular disease, but its use in the clinical and investigative decision making is limited by the characteristics of the populations studied, and the evolutionary constraints on human Mendelian variation. To truly empower clinicians and patients, the successful implementation of a genome-first approach to rare cardiovascular disease will require the nuanced incorporation of population-based discovery with detailed investigation of rare disease cohorts and prospective variant evaluation.
Collapse
Affiliation(s)
- Victoria N Parikh
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department off Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
46
|
Di Mauro V, Ceriotti P, Lodola F, Salvarani N, Modica J, Bang ML, Mazzanti A, Napolitano C, Priori SG, Catalucci D. Peptide-Based Targeting of the L-Type Calcium Channel Corrects the Loss-of-Function Phenotype of Two Novel Mutations of the CACNA1 Gene Associated With Brugada Syndrome. Front Physiol 2021; 11:616819. [PMID: 33488405 PMCID: PMC7821386 DOI: 10.3389/fphys.2020.616819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Brugada syndrome (BrS) is an inherited arrhythmogenic disease that may lead to sudden cardiac death in young adults with structurally normal hearts. No pharmacological therapy is available for BrS patients. This situation highlights the urgent need to overcome current difficulties by developing novel groundbreaking curative strategies. BrS has been associated with mutations in 18 different genes of which loss-of-function (LoF) CACNA1C mutations constitute the second most common cause. Here we tested the hypothesis that BrS associated with mutations in the CACNA1C gene encoding the L-type calcium channel (LTCC) pore-forming unit (Cavα1.2) is functionally reverted by administration of a mimetic peptide (MP), which through binding to the LTCC chaperone beta subunit (Cavβ2) restores the physiological life cycle of aberrant LTCCs. Two novel Cavα1.2 mutations associated with BrS were identified in young individuals. Transient transfection in heterologous and cardiac cells showed LoF phenotypes with reduced Ca2+ current (ICa). In HEK293 cells overexpressing the two novel Cavα1.2 mutations, Western blot analysis and cell surface biotinylation assays revealed reduced Cavα1.2 protein levels at the plasma membrane for both mutants. Nano-BRET, Nano-Luciferase assays, and confocal microscopy analyses showed (i) reduced affinity of Cavα1.2 for its Cavβ2 chaperone, (ii) shortened Cavα1.2 half-life in the membrane, and (iii) impaired subcellular localization. Treatment of Cavα1.2 mutant-transfected cells with a cell permeant MP restored channel trafficking and physiologic channel half-life, thereby resulting in ICa similar to wild type. These results represent the first step towards the development of a gene-specific treatment for BrS due to defective trafficking of mutant LTCC.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Paola Ceriotti
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Francesco Lodola
- ICS Maugeri, IRCCS, Pavia, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Nicolò Salvarani
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Jessica Modica
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Andrea Mazzanti
- ICS Maugeri, IRCCS, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carlo Napolitano
- ICS Maugeri, IRCCS, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Silvia G Priori
- ICS Maugeri, IRCCS, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Daniele Catalucci
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| |
Collapse
|
47
|
Stiles MK, Wilde AAM, Abrams DJ, Ackerman MJ, Albert CM, Behr ER, Chugh SS, Cornel MC, Gardner K, Ingles J, James CA, Jimmy Juang JM, Kääb S, Kaufman ES, Krahn AD, Lubitz SA, MacLeod H, Morillo CA, Nademanee K, Probst V, Saarel EV, Sacilotto L, Semsarian C, Sheppard MN, Shimizu W, Skinner JR, Tfelt-Hansen J, Wang DW. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. Heart Rhythm 2021; 18:e1-e50. [PMID: 33091602 PMCID: PMC8194370 DOI: 10.1016/j.hrthm.2020.10.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
This international multidisciplinary document intends to provide clinicians with evidence-based practical patient-centered recommendations for evaluating patients and decedents with (aborted) sudden cardiac arrest and their families. The document includes a framework for the investigation of the family allowing steps to be taken, should an inherited condition be found, to minimize further events in affected relatives. Integral to the process is counseling of the patients and families, not only because of the emotionally charged subject, but because finding (or not finding) the cause of the arrest may influence management of family members. The formation of multidisciplinary teams is essential to provide a complete service to the patients and their families, and the varied expertise of the writing committee was formulated to reflect this need. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by Class of Recommendation and Level of Evidence. The recommendations were opened for public comment and reviewed by the relevant scientific and clinical document committees of the Asia Pacific Heart Rhythm Society (APHRS) and the Heart Rhythm Society (HRS); the document underwent external review and endorsement by the partner and collaborating societies. While the recommendations are for optimal care, it is recognized that not all resources will be available to all clinicians. Nevertheless, this document articulates the evaluation that the clinician should aspire to provide for patients with sudden cardiac arrest, decedents with sudden unexplained death, and their families.
Collapse
Affiliation(s)
- Martin K Stiles
- Waikato Clinical School, Faculty of Medicine and Health Science, The University of Auckland, Hamilton, New Zealand
| | - Arthur A M Wilde
- Amsterdam University Medical Center, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam, the Netherlands
| | | | | | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London, and St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Sumeet S Chugh
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Martina C Cornel
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Clinical Genetics, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | | | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | | | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | | - Andrew D Krahn
- The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Heather MacLeod
- Data Coordinating Center for the Sudden Death in the Young Case Registry, Okemos, Michigan, USA
| | | | - Koonlawee Nademanee
- Chulalongkorn University, Faculty of Medicine, and Pacific Rim Electrophysiology Research Institute at Bumrungrad Hospital, Bangkok, Thailand
| | | | - Elizabeth V Saarel
- Cleveland Clinic Lerner College of Cardiology at Case Western Reserve University, Cleveland, Ohio, and St Luke's Medical Center, Boise, Idaho, USA
| | - Luciana Sacilotto
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | - Mary N Sheppard
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London, and St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Jonathan R Skinner
- Cardiac Inherited Disease Group, Starship Hospital, Auckland, New Zealand
| | - Jacob Tfelt-Hansen
- Department of Forensic Medicine, Faculty of Medical Sciences, Rigshospitalet, Copenhagen, Denmark
| | - Dao Wu Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Davies B, Roberts JD, Tadros R, Green MS, Healey JS, Simpson CS, Sanatani S, Steinberg C, MacIntyre C, Angaran P, Duff H, Hamilton R, Arbour L, Leather R, Seifer C, Fournier A, Atallah J, Kimber S, Makanjee B, Alqarawi W, Cadrin-Tourigny J, Joza J, McKinney J, Clarke S, Laksman ZW, Gibbs K, Vuksanovic V, Gardner M, Talajic M, Krahn AD. The Hearts in Rhythm Organization: A Canadian National Cardiogenetics Network. CJC Open 2020; 2:652-662. [PMID: 33305225 PMCID: PMC7710951 DOI: 10.1016/j.cjco.2020.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/23/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Hearts in Rhythm Organization (HiRO) is a team of Canadian inherited heart rhythm and cardiomyopathy experts, genetic counsellors, nurses, researchers, patients, and families dedicated to the detection of inherited arrhythmias and cardiomyopathies, provision of best therapies, and protection from the tragedy of sudden cardiac arrest. METHODS Recently, existing disease-specific registries were merged into the expanded National HiRO Registry, creating a single common data set for patients and families with inherited conditions that put them at risk for sudden death in Canada. Eligible patients are invited to participate in the registry and optional biobank from 20 specialized cardiogenetics clinics across Canada. RESULTS Currently, there are 4700 participants enrolled in the National HiRO Registry, with an average of 593 participants enrolled annually over the past 5 years. The capacity to enable knowledge translation of research findings is built into HiRO's organizational infrastructure, with 3 additional working groups (HiRO Clinical Care Committee, HiRO Active Communities Committee, and HiRO Annual Symposium Committee), supporting the organization's current goals and priorities as set alongside patient partners. CONCLUSION The National HiRO Registry aims to be an integrated research platform to which researchers can pose novel research questions leading to a better understanding, detection, and clinical care of those living with inherited heart rhythm and cardiomyopathy conditions and ultimately to prevent sudden cardiac death.
Collapse
Affiliation(s)
- Brianna Davies
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason D. Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, Québec, Canada
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Martin S. Green
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | - Shubhayan Sanatani
- Children’s Heart Centre, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Christian Steinberg
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University, Québec City, Québec, Canada
| | - Ciorsti MacIntyre
- Division of Cardiology, QEII Health Sciences Center, Halifax, Nova Scotia, Canada
| | - Paul Angaran
- St Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Henry Duff
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Robert Hamilton
- Division of Cardiology, The Hospital for Sick Children (SickKids), Toronto, Ontario, Canada
| | - Laura Arbour
- Division of Medical Genetics, Island Health, Victoria, British Columbia, Canada
| | | | - Colette Seifer
- Section of Cardiology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anne Fournier
- Division of Pediatric Cardiology, CHU Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
| | - Joseph Atallah
- Division of Pediatric Cardiology, University of Alberta Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Shane Kimber
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Bhavanesh Makanjee
- Heart Health Institute, Scarborough Health Network, Scarborough, Ontario, Canada
| | - Wael Alqarawi
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, Québec, Canada
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Jacqueline Joza
- Division of Cardiology, McGill University Health Centre, Montreal, Québec, Canada
| | - Jimmy McKinney
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie Clarke
- Shared Health Genetics & Metabolism Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zachary W.M. Laksman
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Gibbs
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Martin Gardner
- Division of Cardiology, QEII Health Sciences Center, Halifax, Nova Scotia, Canada
| | - Mario Talajic
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, Québec, Canada
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Andrew D. Krahn
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
49
|
Howell SJ, German D, Bender A, Phan F, Mukundan SV, Perez-Alday EA, Rogovoy NM, Haq KT, Yang K, Wirth A, Jensen K, Tereshchenko LG. Does Sex Modify an Association of Electrophysiological Substrate with Sudden Cardiac Death? The Atherosclerosis Risk in Communities (ARIC) Study. CARDIOVASCULAR DIGITAL HEALTH JOURNAL 2020; 1:80-88. [PMID: 34308405 PMCID: PMC8301262 DOI: 10.1016/j.cvdhj.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Sex is a well-recognized risk factor for sudden cardiac death (SCD). We hypothesized that sex modifies the association of electrophysiological (EP) substrate with SCD. Objective The purpose of this study was to determine whether there are sex differences in electrocardiographic (ECG) measures and whether sex modifies the association of ECG measures of EP substrate with SCD. Methods Participants from the Atherosclerosis Risk in Communities study with analyzable ECGs (n = 14,725; age 54.2 ± 5.8 years; 55% female; 74% white) were included. EP substrate was characterized by heart rate, QRS, QTc, Cornell voltage, spatial ventricular gradient (SVG), and sum absolute QRST integral (SAI QRST) ECG metrics. Two competing outcomes were adjudicated: SCD and non-SCD. Interaction of ECG metrics with sex was studied in Cox proportional hazards and Fine-Gray competing risk models. Model 1 was adjusted for prevalent cardiovascular disease (CVD) and risk factors. Time-updated model 2 was additionally adjusted for incident nonfatal CVD. Relative hazard ratio (RHR) and relative subhazard ratio with 95% confidence interval (CI) for SCD and non-SCD risk for women relative to men were calculated. Model 1 was adjusted for prevalent CVD and risk factors. Time-updated model 2 was additionally adjusted for incident nonfatal CVD. Results Over median follow-up of 24.4 years, there were 530 SCDs (incidence 1.72; 95% CI 1.58–1.88 per 1000 person-years). Women compared to men experienced a greater risk of SCD associated with Cornell voltage (RHR 1.18; 95% CI 1.06–1.32; P = .003), SAI QRST (RHR 1.16; 95% CI 1.04–1.30; P = .007), and SVG magnitude (RHR 1.24; 95% CI 1.05–1.45; P = .009), independently from incident CVD. Conclusion In women, the global EP substrate is associated with up to 24% greater risk of SCD than in men, suggesting differences in underlying mechanisms and the need for sex-specific SCD risk stratification.
Collapse
Affiliation(s)
- Stacey J. Howell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - David German
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Aron Bender
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Francis Phan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Srini V. Mukundan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
- Rush University Medical Center, Chicago, Illinois
| | - Erick A. Perez-Alday
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Nichole M. Rogovoy
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Kazi T. Haq
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Katherine Yang
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
- Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Ashley Wirth
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Kelly Jensen
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Larisa G. Tereshchenko
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
- Cardiovascular Division, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
- Address reprint requests and correspondence: Dr Larisa G. Tereshchenko, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, UHN62, Portland, OR 97239.
| |
Collapse
|
50
|
Isbister JC, Nowak N, Butters A, Yeates L, Gray B, Sy RW, Ingles J, Bagnall RD, Semsarian C. "Concealed cardiomyopathy" as a cause of previously unexplained sudden cardiac arrest. Int J Cardiol 2020; 324:96-101. [PMID: 32931854 DOI: 10.1016/j.ijcard.2020.09.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Genetic heart disease is a common cause of sudden cardiac arrest (SCA) in the young and those without an ischaemic precipitant. Identifying a cause of SCA in these patients allows for targeted care and family screening. Current guidelines recommend limited, phenotype-guided genetic testing in SCA survivors where a specific genetic condition is suspected and genetic testing is not recommended in clinically-idiopathic SCA survivors. OBJECTIVE To investigate the diagnostic utility of broad, multi-phenotype genetic testing in clinically-idiopathic SCA survivors. METHODS Clinically-idiopathic SCA survivors underwent analysis of genes known to be associated with either cardiomyopathy or primary arrhythmia syndromes, following referral to a specialised genetic heart disease clinic in Sydney, Australia between 1997 and 2019. Comprehensive review of clinical records, investigations and re-appraisal of genetic data according to current variant classification criteria was performed. RESULTS In total, 22% (n = 8/36) of clinically-idiopathic SCA survivors (mean age 36.9 ± 16.9 years, 61% male) had a disease-causing variant identified on broad genetic testing. Of these, 7 (88%) variants resided in cardiomyopathy-associated genes (ACTN2, DES, DSP, MYBPC3, MYH7, PKP2) despite structurally normal hearts or sub-diagnostic structural changes at the time of arrest, so-called "concealed cardiomyopathy". Only one SCA survivor had a variant identified in a channelopathy associated gene (SCN5A). CONCLUSION Extended molecular analysis with multi-phenotype genetic testing can identify a "concealed cardiomyopathy", and increase the diagnosis rate for clinically-idiopathic SCA survivors.
Collapse
Affiliation(s)
- Julia C Isbister
- Agnes Ginges Centre for Molecular Cardiology Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Heath, The University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Natalie Nowak
- Agnes Ginges Centre for Molecular Cardiology Centenary Institute, The University of Sydney, Sydney, Australia
| | - Alexandra Butters
- Agnes Ginges Centre for Molecular Cardiology Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Heath, The University of Sydney, Sydney, Australia
| | - Laura Yeates
- Agnes Ginges Centre for Molecular Cardiology Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Heath, The University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Belinda Gray
- Faculty of Medicine and Heath, The University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Raymond W Sy
- Faculty of Medicine and Heath, The University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Heath, The University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Richard D Bagnall
- Faculty of Medicine and Heath, The University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Heath, The University of Sydney, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|