1
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Guadix JA, Ruiz-Villalba A, Pérez-Pomares JM. Congenital Coronary Blood Vessel Anomalies: Animal Models and the Integration of Developmental Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:817-831. [PMID: 38884751 DOI: 10.1007/978-3-031-44087-8_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Coronary blood vessels are in charge of sustaining cardiac homeostasis. It is thus logical that coronary congenital anomalies (CCA) directly or indirectly associate with multiple cardiac conditions, including sudden death. The coronary vascular system is a sophisticated, highly patterned anatomical entity, and therefore a wide range of congenital malformations of the coronary vasculature have been described. Despite the clinical interest of CCA, very few attempts have been made to relate specific embryonic developmental mechanisms to the congenital anomalies of these blood vessels. This is so because developmental data on the morphogenesis of the coronary vascular system derive from complex studies carried out in animals (mostly transgenic mice), and are not often accessible to the clinician, who, in turn, possesses essential information on the significance of CCA. During the last decade, advances in our understanding of normal embryonic development of coronary blood vessels have provided insight into the cellular and molecular mechanisms underlying coronary arteries anomalies. These findings are the base for our attempt to offer plausible embryological explanations to a variety of CCA as based on the analysis of multiple animal models for the study of cardiac embryogenesis, and present them in an organized manner, offering to the reader developmental mechanistic explanations for the pathogenesis of these anomalies.
Collapse
Affiliation(s)
- Juan Antonio Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - José M Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain.
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
3
|
Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res 2023; 119:2262-2277. [PMID: 37595264 PMCID: PMC10597641 DOI: 10.1093/cvr/cvad129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Clarissa Becher
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Frances de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center (UMC) (Vrije Universiteit), 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
4
|
Ramírez-Vidal L, Molina-Villa T, Mendoza V, Peralta-Álvarez CA, Poot-Hernández AC, Dotov D, López-Casillas F. Betaglycan promoter activity is differentially regulated during myogenesis in zebrafish embryo somites. Dev Dyn 2023; 252:1162-1179. [PMID: 37222488 DOI: 10.1002/dvdy.602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Betaglycan, also known as the TGFβ type III receptor (Tgfbr3), is a co-receptor that modulates TGFβ family signaling. Tgfbr3 is upregulated during C2C12 myoblast differentiation and expressed in mouse embryos myocytes. RESULTS To investigate tgfbr3 transcriptional regulation during zebrafish embryonic myogenesis, we cloned a 3.2 kb promoter fragment that drives reporter transcription during C2C12 myoblasts differentiation and in the Tg(tgfbr3:mCherry) transgenic zebrafish. We detect tgfbr3 protein and mCherry expression in the adaxial cells concomitantly with the onset of their radial migration to become slow-twitch muscle fibers in the Tg(tgfbr3:mCherry). Remarkably, this expression displays a measurable antero-posterior somitic gradient expression. CONCLUSIONS tgfbr3 is transcriptionally regulated during somitic muscle development in zebrafish with an antero-posterior gradient expression that preferentially marks the adaxial cells and their descendants.
Collapse
Affiliation(s)
- Lizbeth Ramírez-Vidal
- Departmento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Tonatiuh Molina-Villa
- Departmento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Valentín Mendoza
- Departmento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | | | | | - Dobromir Dotov
- Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Canada
| | - Fernando López-Casillas
- Departmento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| |
Collapse
|
5
|
Lu P, Wu B, Wang Y, Russell M, Liu Y, Bernard DJ, Zheng D, Zhou B. Prerequisite endocardial-mesenchymal transition for murine cardiac trabecular angiogenesis. Dev Cell 2023; 58:791-805.e4. [PMID: 37023750 PMCID: PMC10656710 DOI: 10.1016/j.devcel.2023.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/01/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Coronary heart disease damages the trabecular myocardium, and the regeneration of trabecular vessels may alleviate ischemic injury. However, the origins and developmental mechanisms of trabecular vessels remain unknown. Here, we show that murine ventricular endocardial cells generate trabecular vessels through an "angioEMT" mechanism. Time course fate mapping defined a specific wave of trabecular vascularization by ventricular endocardial cells. Single-cell transcriptomics and immunofluorescence identified a subpopulation of ventricular endocardial cells that underwent endocardial-mesenchymal transition (EMT) before these cells generated trabecular vessels. Ex vivo pharmacological activation and in vivo genetic inactivation experiments identified an EMT signal in ventricular endocardial cells involving SNAI2-TGFB2/TGFBR3, which was a prerequisite for later trabecular-vessel formation. Additional loss- and gain-of-function genetic studies showed that VEGFA-NOTCH1 signaling regulated post-EMT trabecular angiogenesis by ventricular endocardial cells. Our finding that trabecular vessels originate from ventricular endocardial cells through a two-step angioEMT mechanism could inform better regeneration medicine for coronary heart disease.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Yidong Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cardiovascular Research Center, School of Basic Medical Sciences, Jiaotong University, Xi'an 710061, China
| | - Megan Russell
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Departments of Pediatrics and Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| |
Collapse
|
6
|
Yang X, Cheng K, Wang LY, Jiang JG. The role of endothelial cell in cardiac hypertrophy: Focusing on angiogenesis and intercellular crosstalk. Biomed Pharmacother 2023; 163:114799. [PMID: 37121147 DOI: 10.1016/j.biopha.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Cardiac hypertrophy is characterized by cardiac structural remodeling, fibrosis, microvascular rarefaction, and chronic inflammation. The heart is structurally organized by different cell types, including cardiomyocytes, fibroblasts, endothelial cells, and immune cells. These cells highly interact with each other by a number of paracrine or autocrine factors. Cell-cell communication is indispensable for cardiac development, but also plays a vital role in regulating cardiac response to damage. Although cardiomyocytes and fibroblasts are deemed as key regulators of hypertrophic stimulation, other cells, including endothelial cells, also exert important effects on cardiac hypertrophy. More particularly, endothelial cells are the most abundant cells in the heart, which make up the basic structure of blood vessels and are widespread around other cells in the heart, implicating the great and inbuilt advantage of intercellular crosstalk. Cardiac microvascular plexuses are essential for transport of liquids, nutrients, molecules and cells within the heart. Meanwhile, endothelial cell-mediated paracrine signals have multiple positive or negative influences on cardiac hypertrophy. However, a comprehensive discussion of these influences and consequences is required. This review aims to summarize the basic function of endothelial cells in angiogenesis, with an emphasis on angiogenic molecules under hypertrophic conditions. The secondary objective of the research is to fully discuss the key molecules involved in the intercellular crosstalk and the endothelial cell-mediated protective or detrimental effects on other cardiac cells. This review provides a more comprehensive understanding of the overall role of endothelial cells in cardiac hypertrophy and guides the therapeutic approaches and drug development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xing Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China
| | - Kun Cheng
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Lu-Yun Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| | - Jian-Gang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| |
Collapse
|
7
|
Mwaura AN, Riaz MA, Maoga JB, Mecha E, Omwandho COA, Scheiner-Bobis G, Meinhold-Heerlein I, Konrad L. Role of Betaglycan in TGF-β Signaling and Wound Healing in Human Endometriotic Epithelial Cells and in Endometriosis. BIOLOGY 2022; 11:biology11040513. [PMID: 35453712 PMCID: PMC9027931 DOI: 10.3390/biology11040513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Endometriosis is characterized by the presence of ectopic endometrium most often in the pelvis. The transforming growth factor-beta (TGF-β) superfamily is also involved in the pathogenesis; however, betaglycan (BG, syn. TGF-β type III receptor) as an important co-receptor was not studied. We analyzed mainly BG ectodomain shedding because released soluble BG (sBG) often antagonizes TGF-β signaling. Furthermore, we studied the role of TGF-βs and BG in wound healing and evaluated the suitability of BG measurements in serum and endocervical mucus for non-invasive diagnosis of endometriosis. Evaluation of the BG shedding and signaling pathways involved as well as wound healing was performed with enzyme-linked immune assays (ELISAs), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), small interfering RNA (siRNA) knockdown, and scratch assays with human endometriotic epithelial cells. TGF-β1/2 stimulation resulted in a significant dose-dependent reduction in BG shedding in endometriotic cells, which was TGF-β/activin receptor-like kinase-5 (ALK-5)/mother against decapentaplegic homolog3 (SMAD3)- but not SMAD2-dependent. Inhibition of matrix metalloproteinases (MMPs) using the pan-MMP inhibitor GM6001 and tissue inhibitor of MMPs (TIMP3) equally attenuated BG shedding, signifying the involvement of MMPs in shedding. Likewise, recombinant BG moderately reduced the secretion of TGF-β1/2 and wound healing of endometriotic cells. TGF-β1 significantly enhanced the secretion of MMP2 and MMP3 and moderately promoted wound healing. In order to evaluate the role of BG in endometriosis, serum (n = 238) and mucus samples (n = 182) were analyzed. Intriguingly, a significant reduction in the levels of sBG in endocervical mucus but not in the serum of endometriosis patients compared to controls was observed. Collectively, these observations support a novel role for BG in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Agnes N. Mwaura
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus-Liebig-University, Feulgenstr. 10-12, D-35392 Giessen, Germany; (A.N.M.); (M.A.R.); (J.B.M.); (I.M.-H.)
| | - Muhammad A. Riaz
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus-Liebig-University, Feulgenstr. 10-12, D-35392 Giessen, Germany; (A.N.M.); (M.A.R.); (J.B.M.); (I.M.-H.)
| | - Jane B. Maoga
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus-Liebig-University, Feulgenstr. 10-12, D-35392 Giessen, Germany; (A.N.M.); (M.A.R.); (J.B.M.); (I.M.-H.)
| | - Ezekiel Mecha
- Department of Biochemistry, University of Nairobi, Nairobi 00100, Kenya;
| | | | - Georgios Scheiner-Bobis
- Institute for Veterinary Physiology and Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, D-35392 Giessen, Germany;
| | - Ivo Meinhold-Heerlein
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus-Liebig-University, Feulgenstr. 10-12, D-35392 Giessen, Germany; (A.N.M.); (M.A.R.); (J.B.M.); (I.M.-H.)
| | - Lutz Konrad
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus-Liebig-University, Feulgenstr. 10-12, D-35392 Giessen, Germany; (A.N.M.); (M.A.R.); (J.B.M.); (I.M.-H.)
- Correspondence: ; Tel./Fax: +49-641-985-45282
| |
Collapse
|
8
|
Choudhury TZ, Majumdar U, Basu M, Garg V. Impact of maternal hyperglycemia on cardiac development: Insights from animal models. Genesis 2021; 59:e23449. [PMID: 34498806 PMCID: PMC8599640 DOI: 10.1002/dvg.23449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of birth defect-related death in infants and is a global pediatric health concern. While the genetic causes of CHD have become increasingly recognized with advances in genome sequencing technologies, the etiology for the majority of cases of CHD is unknown. The maternal environment during embryogenesis has a profound impact on cardiac development, and numerous environmental factors are associated with an elevated risk of CHD. Maternal diabetes mellitus (matDM) is associated with up to a fivefold increased risk of having an infant with CHD. The rising prevalence of diabetes mellitus has led to a growing interest in the use of experimental diabetic models to elucidate mechanisms underlying this associated risk for CHD. The purpose of this review is to provide a comprehensive summary of rodent models that are being used to investigate alterations in cardiac developmental pathways when exposed to a maternal diabetic setting and to summarize the key findings from these models. The majority of studies in the field have utilized the chemically induced model of matDM, but recent advances have also been made using diet based and genetic models. Each model provides an opportunity to investigate unique aspects of matDM and is invaluable for a comprehensive understanding of the molecular and cellular mechanisms underlying matDM-associated CHD.
Collapse
Affiliation(s)
- Talita Z. Choudhury
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
| | - Madhumita Basu
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
9
|
Streef TJ, Smits AM. Epicardial Contribution to the Developing and Injured Heart: Exploring the Cellular Composition of the Epicardium. Front Cardiovasc Med 2021; 8:750243. [PMID: 34631842 PMCID: PMC8494983 DOI: 10.3389/fcvm.2021.750243] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The epicardium is an essential cell population during cardiac development. It contributes different cell types to the developing heart through epithelial-to-mesenchymal transition (EMT) and it secretes paracrine factors that support cardiac tissue formation. In the adult heart the epicardium is a quiescent layer of cells which can be reactivated upon ischemic injury, initiating an embryonic-like response in the epicardium that contributes to post-injury repair processes. Therefore, the epicardial layer is considered an interesting target population to stimulate endogenous repair mechanisms. To date it is still not clear whether there are distinct cell populations in the epicardium that contribute to specific lineages or aid in cardiac repair, or that the epicardium functions as a whole. To address this putative heterogeneity, novel techniques such as single cell RNA sequencing (scRNA seq) are being applied. In this review, we summarize the role of the epicardium during development and after injury and provide an overview of the most recent insights into the cellular composition and diversity of the epicardium.
Collapse
Affiliation(s)
| | - Anke M. Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Tsao YC, Wang SJ, Hsu CL, Wang YF, Fuh JL, Chen SP, Fann CSJ. Genome-wide association study reveals susceptibility loci for self-reported headache in a large community-based Asian population. Cephalalgia 2021; 42:229-238. [PMID: 34404248 DOI: 10.1177/03331024211037269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The genetic substrate for headache in the general population has not been identified in Asians. We investigated susceptible genetic variants for self-reported headache in a large community-based Asian population. METHODS We conducted a genome-wide association study in participants recruited from a community-based cohort to identify the genetic variants associated with headache in Taiwanese. All participants received a structured questionnaire for self-reported headache. A total of 2084 patients with "self-reported headache" and 11,822 age- and sex-matched controls were enrolled. Gene enrichment analysis using the Genotype-Tissue Expression version 6 database was performed to explore the potential function of the identified variants. RESULTS We identified two novel loci, rs10493859 in TGFBR3 and rs13312779 in FGF23, that are functionally relevant to vascular function and migraine to be significantly associated with self-reported headache after adjusting age, sex and top 10 principal components (p = 8.53 × 10-11 and p = 1.07 × 10-8, respectively). Gene enrichment analysis for genes with GWAS suggestive significance (p < 10-6) demonstrated that the expression of these genes was significantly enriched in the artery (p = 8.18 × 10-4) and adipose tissue (p = 8.95 × 10-4). CONCLUSION Our results suggest that vascular dysfunction might play important roles in the pathogenesis of self-reported headache in Asian populations.
Collapse
Affiliation(s)
- Yu-Chien Tsao
- Department of Internal Medicine, 156932Yonghe Cardinal Tien Hospital, Yonghe Cardinal Tien Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Lin Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, 46615Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ling Fuh
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, 46615Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, 46615Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | | |
Collapse
|
11
|
Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol 2021; 237:59-85. [PMID: 34286853 DOI: 10.1002/jcp.30529] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β (TGF-β) is a proinflammatory cytokine known to control a diverse array of pathological and physiological conditions during normal development and tumorigenesis. TGF-β-mediated physiological effects are heterogeneous and vary among different types of cells and environmental conditions. TGF-β serves as an antiproliferative agent and inhibits tumor development during primary stages of tumor progression; however, during the later stages, it encourages tumor development and mediates metastatic progression and chemoresistance. The fundamental elements of TGF-β signaling have been divulged more than a decade ago; however, the process by which the signals are relayed from cell surface to nucleus is very complex with additional layers added in tumor cell niches. Although the intricate understanding of TGF-β-mediated signaling pathways and their regulation are still evolving, we tried to make an attempt to summarize the TGF-β-mediated SMAD-dependent andSMAD-independent pathways. This manuscript emphasizes the functions of TGF-β as a metastatic promoter and tumor suppressor during the later and initial phases of tumor progression respectively.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| | - Asiya Batool
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, JK, India
| | | | | | | | - Zaffar Amin Shah
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| |
Collapse
|
12
|
Molina-Villa T, Ramírez-Vidal L, Mendoza V, Escalante-Alcalde D, López-Casillas F. Chordacentrum mineralization is delayed in zebrafish betaglycan-null mutants. Dev Dyn 2021; 251:213-225. [PMID: 34228380 DOI: 10.1002/dvdy.393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/04/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The Transforming Growth Factor β (TGFβ) family is a group of related proteins that signal through a type I and type II receptors. Betaglycan, also known as the type III receptor (Tgfbr3), is a coreceptor for various ligands of the TGFβ family that participates in heart, liver and kidney development as revealed by the tgfbr3-null mouse, as well as in angiogenesis as revealed by Tgfbr3 downregulation in morphant zebrafish. RESULTS Here, we present CRISPR/Cas9-derived zebrafish Tgfbr3-null mutants, which exhibited unaltered embryonic angiogenesis and developed into fertile adults. One reproducible phenotype displayed by these Tgfbr3-null mutants is delayed chordacentra mineralization, which nonetheless does not result in vertebral abnormalities in the adult fishes. We also report that the canonical TGFβ signaling pathway is needed for proper chordacentra mineralization and that Tgfbr3 absence decreases this signal in the notochordal cells responsible for this process. CONCLUSION Betaglycan's "ligand presentation" function contributes to the optimal TGFβ signaling required for zebrafish chordacentra mineralization.
Collapse
Affiliation(s)
- Tonatiuh Molina-Villa
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, UNAM, México City, Mexico
| | - Lizbeth Ramírez-Vidal
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, UNAM, México City, Mexico
| | - Valentín Mendoza
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, UNAM, México City, Mexico
| | - Diana Escalante-Alcalde
- Division of Neurosciences, Department of Neural Development and Physiology, Institute of Cellular Physiology, UNAM, México City, Mexico
| | - Fernando López-Casillas
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, UNAM, México City, Mexico
| |
Collapse
|
13
|
Nakano H, Fajardo VM, Nakano A. The role of glucose in physiological and pathological heart formation. Dev Biol 2021; 475:222-233. [PMID: 33577830 PMCID: PMC8107118 DOI: 10.1016/j.ydbio.2021.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cells display distinct metabolic characteristics depending on its differentiation stage. The fuel type of the cells serves not only as a source of energy but also as a driver of differentiation. Glucose, the primary nutrient to the cells, is a critical regulator of rapidly growing embryos. This metabolic change is a consequence as well as a cause of changes in genetic program. Disturbance of fetal glucose metabolism such as in diabetic pregnancy is associated with congenital heart disease. In utero hyperglycemia impacts the left-right axis establishment, migration of cardiac neural crest cells, conotruncal formation and mesenchymal formation of the cardiac cushion during early embryogenesis and causes cardiac hypertrophy in late fetal stages. In this review, we focus on the role of glucose in cardiogenesis and the molecular mechanisms underlying heart diseases associated with hyperglycemia.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Viviana M Fajardo
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Sun X, Malandraki-Miller S, Kennedy T, Bassat E, Klaourakis K, Zhao J, Gamen E, Vieira JM, Tzahor E, Riley PR. The extracellular matrix protein agrin is essential for epicardial epithelial-to-mesenchymal transition during heart development. Development 2021; 148:261801. [PMID: 33969874 PMCID: PMC8172119 DOI: 10.1242/dev.197525] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/03/2021] [Indexed: 12/15/2022]
Abstract
During heart development, epicardial cells residing within the outer layer undergo epithelial-mesenchymal transition (EMT) and migrate into the underlying myocardium to support organ growth and morphogenesis. Disruption of epicardial EMT results in embryonic lethality, yet its regulation is poorly understood. Here, we report epicardial EMT within the mesothelial layer of the mouse embryonic heart at ultra-high resolution using scanning electron microscopy combined with immunofluorescence analyses. We identified morphologically active EMT regions that associated with key components of the extracellular matrix, including the basement membrane-associated proteoglycan agrin. Deletion of agrin resulted in impaired EMT and compromised development of the epicardium, accompanied by downregulation of Wilms' tumor 1. Agrin enhanced EMT in human embryonic stem cell-derived epicardial-like cells by decreasing β-catenin and promoting pFAK localization at focal adhesions, and promoted the aggregation of dystroglycan within the Golgi apparatus in murine epicardial cells. Loss of agrin resulted in dispersal of dystroglycan in vivo, disrupting basement membrane integrity and impairing EMT. Our results provide new insights into the role of the extracellular matrix in heart development and implicate agrin as a crucial regulator of epicardial EMT.
Collapse
Affiliation(s)
- Xin Sun
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Sophia Malandraki-Miller
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Tahnee Kennedy
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Elad Bassat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Konstantinos Klaourakis
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Jia Zhao
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Elisabetta Gamen
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Paul R Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.,British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
15
|
Lorda-Diez CI, Duarte-Olivenza C, Hurle JM, Montero JA. Transforming growth factor beta signaling: The master sculptor of fingers. Dev Dyn 2021; 251:125-136. [PMID: 33871876 DOI: 10.1002/dvdy.349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor beta (TGFβ) constitutes a large and evolutionarily conserved superfamily of secreted factors that play essential roles in embryonic development, cancer, tissue regeneration, and human degenerative pathology. Studies of this signaling cascade in the regulation of cellular and tissue changes in the three-dimensional context of a developing embryo have notably advanced in the understanding of the action mechanism of these growth factors. In this review, we address the role of TGFβ signaling in the developing limb, focusing on its essential function in the morphogenesis of the autopod. As we discuss in this work, modern mouse genetic experiments together with more classical embryological approaches in chick embryos, provided very valuable information concerning the role of TGFβ and Activin family members in the morphogenesis of the digits of tetrapods, including the formation of phalanxes, digital tendons, and interphalangeal joints. We emphasize the importance of the Activin and TGFβ proteins as digit inducing factors and their critical interaction with the BMP signaling to sculpt the hand and foot morphology.
Collapse
Affiliation(s)
- Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Cristina Duarte-Olivenza
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
16
|
Listik E, Horst B, Choi AS, Lee NY, Győrffy B, Mythreye K. A bioinformatic analysis of the inhibin-betaglycan-endoglin/CD105 network reveals prognostic value in multiple solid tumors. PLoS One 2021; 16:e0249558. [PMID: 33819300 PMCID: PMC8021191 DOI: 10.1371/journal.pone.0249558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibins and activins are dimeric ligands belonging to the TGFβ superfamily with emergent roles in cancer. Inhibins contain an α-subunit (INHA) and a β-subunit (either INHBA or INHBB), while activins are mainly homodimers of either βA (INHBA) or βB (INHBB) subunits. Inhibins are biomarkers in a subset of cancers and utilize the coreceptors betaglycan (TGFBR3) and endoglin (ENG) for physiological or pathological outcomes. Given the array of prior reports on inhibin, activin and the coreceptors in cancer, this study aims to provide a comprehensive analysis, assessing their functional prognostic potential in cancer using a bioinformatics approach. We identify cancer cell lines and cancer types most dependent and impacted, which included p53 mutated breast and ovarian cancers and lung adenocarcinomas. Moreover, INHA itself was dependent on TGFBR3 and ENG/CD105 in multiple cancer types. INHA, INHBA, TGFBR3, and ENG also predicted patients' response to anthracycline and taxane therapy in luminal A breast cancers. We also obtained a gene signature model that could accurately classify 96.7% of the cases based on outcomes. Lastly, we cross-compared gene correlations revealing INHA dependency to TGFBR3 or ENG influencing different pathways themselves. These results suggest that inhibins are particularly important in a subset of cancers depending on the coreceptor TGFBR3 and ENG and are of substantial prognostic value, thereby warranting further investigation.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ben Horst
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alex Seok Choi
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nam. Y. Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Balázs Győrffy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
17
|
Lozano-Prieto M, Adlam D, García-Guimaraes M, Sanz-García A, Vera-Tomé P, Rivero F, Cuesta J, Bastante T, Baranowska-Clarke AA, Vara A, Martin-Gayo E, Vicente-Manzanares M, Martín P, Samani NJ, Sánchez-Madrid F, Alfonso F, de la Fuente H. Differential miRNAs in acute spontaneous coronary artery dissection: Pathophysiological insights from a potential biomarker. EBioMedicine 2021; 66:103338. [PMID: 33866193 PMCID: PMC8079473 DOI: 10.1016/j.ebiom.2021.103338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spontaneous Coronary Artery Dissection (SCAD) is an important cause of acute coronary syndromes, particularly in young to middle-aged women. Differentiating acute SCAD from coronary atherothrombosis remains a major clinical challenge. METHODS A case-control study was used to explore the usefulness of circulating miRNAs to discriminate both clinical entities. The profile of miRNAs was evaluated using an unbiased human RT-PCR platform and confirmed using individual primers. miRNAs were evaluated in plasma samples from acute SCAD and atherothrombotic acute myocardial infarction (AT-AMI) from two independent cohorts; discovery cohort (SCAD n = 15, AT-AMI n = 15), and validation cohort (SCAD n = 11, AT-AMI n = 41) with 9 healthy control subjects. Plasma levels of IL-8, TGFB1, TGBR1, Endothelin-1 and MMP2 were analysed by ELISA assays. FINDINGS From 15 differentially expressed miRNAs detected in cohort 1, we confirmed in cohort 2 the differential expression of 4 miRNAs: miR-let-7f-5p, miR-146a-5p, miR-151a-3p and miR-223-5p, whose expression was higher in SCAD compared to AT-AMI. The combined expression of these 4 miRNAs showed the best predictive value to distinguish between both entities (AUC: 0.879, 95% CI 0.72-1.0) compared to individual miRNAs. Functional profiling of target genes identified an association with blood vessel biology, TGF-beta pathway and cytoskeletal traction force. ELISA assays showed high plasma levels of IL-8, TGFB1, TGFBR1, Endothelin-1 and MMP2 in SCAD patients compared to AT-AMI. INTERPRETATION We present a novel signature of plasma miRNAs in patients with SCAD. miR-let-7f-5p, miR-146a-5p, miR-151a-3p and miR-223-5p discriminate SCAD from AT-AMI patients and also shed light on the pathological mechanisms underlying this condition. FUNDING Spanish Ministry of Economy and Competitiveness (MINECO): Plan Nacional de Salud SAF2017-82886-R, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV). Fundación BBVA a equipos de Investigación Científica 2018 and from Caixa Banking Foundation under the project code HR17-00016 to F.S.M. Instituto de Salud Carlos III (AES 2019): PI19/00565 to F.R, PI19/00545 to P.M. CAM (S2017/BMD-3671-INFLAMUNE-CM) from Comunidad de Madrid to FSM and PM. The UK SCAD study was supported by BeatSCAD, the British Heart Foundation (BHF) PG/13/96/30608 the NIHR rare disease translational collaboration and the Leicester NIHR Biomedical Research Centre.
Collapse
Affiliation(s)
- Marta Lozano-Prieto
- Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Adlam
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Marcos García-Guimaraes
- Department of Cardiology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain; Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Ancor Sanz-García
- Data Analysis Unit, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
| | - Paula Vera-Tomé
- Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Rivero
- Department of Cardiology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
| | - Javier Cuesta
- Department of Cardiology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
| | - Teresa Bastante
- Department of Cardiology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
| | - Anna A Baranowska-Clarke
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alicia Vara
- Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique Martin-Gayo
- Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares,; CIBER de Enfermedades Cardiovasculares, Spain
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Francisco Sánchez-Madrid
- Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares,; CIBER de Enfermedades Cardiovasculares, Spain
| | - Fernando Alfonso
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK; CIBER de Enfermedades Cardiovasculares, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain.
| |
Collapse
|
18
|
Tazat K, Pomeraniec-Abudy L, Hector-Greene M, Szilágyi SS, Sharma S, Cai EM, Corona AL, Ehrlich M, Blobe GC, Henis YI. ALK1 regulates the internalization of endoglin and the type III TGF-β receptor. Mol Biol Cell 2021; 32:605-621. [PMID: 33566682 PMCID: PMC8101464 DOI: 10.1091/mbc.e20-03-0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Complex formation and endocytosis of transforming growth factor-β (TGF-β) receptors play important roles in signaling. However, their interdependence remained unexplored. Here, we demonstrate that ALK1, a TGF-β type I receptor prevalent in endothelial cells, forms stable complexes at the cell surface with endoglin and with type III TGF-β receptors (TβRIII). We show that ALK1 undergoes clathrin-mediated endocytosis (CME) faster than ALK5, type II TGF-β receptor (TβRII), endoglin, or TβRIII. These complexes regulate the endocytosis of the TGF-β receptors, with a major effect mediated by ALK1. Thus, ALK1 enhances the endocytosis of TβRIII and endoglin, while ALK5 and TβRII mildly enhance endoglin, but not TβRIII, internalization. Conversely, the slowly endocytosed endoglin has no effect on the endocytosis of either ALK1, ALK5, or TβRII, while TβRIII has a differential effect, slowing the internalization of ALK5 and TβRII, but not ALK1. Such effects may be relevant to signaling, as BMP9-mediated Smad1/5/8 phosphorylation is inhibited by CME blockade in endothelial cells. We propose a model that links TGF-β receptor oligomerization and endocytosis, based on which endocytosis signals are exposed/functional in specific receptor complexes. This has broad implications for signaling, implying that complex formation among various receptors regulates their surface levels and signaling intensities.
Collapse
Affiliation(s)
- Keren Tazat
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | | | | - Swati Sharma
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Elise M Cai
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Armando L Corona
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
19
|
Amanso AM, Kamalakar A, Bitarafan S, Abramowicz S, Drissi H, Barnett JV, Wood LB, Goudy SL. Osteoinductive effect of soluble transforming growth factor beta receptor 3 on human osteoblast lineage. J Cell Biochem 2021; 122:538-548. [PMID: 33480071 DOI: 10.1002/jcb.29888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 01/05/2023]
Abstract
The development of bone requires carefully choregraphed signaling to bone progenitors to form bone. Our group recently described the requirement of transforming growth factor beta receptor 3 (TGFβR3), a receptor involved in TGFβ pathway signaling, during osteoblast lineage commitment in mice. The TGFβ pathway is known to play multiple osteo-inductive and osteo-inhibitory roles during osteoblast development and TGFβR3 human mutations are associated with reduced bone mineral density, making TGFβR3 a unique target for bone inductive therapy. In this article, we demonstrated increased mineralization of human pediatric bone-derived osteoblast-like cells (HBO) when treated with soluble TGFβR3 (sR3) using Alizarin Red staining. Osteogenic commitment of HBO cells was demonstrated by induction of osteogenic genes RUNX2, osteocalcin, osteopontin, and osterix. Evaluation of the canonical TGFβ pathway signaling demonstrated that sR3 was able to induce bone formation in HBO cells, mainly through activation of noncanonical targets of TGFβ pathway signaling including AKT, ERK, and p38 MAP kinases. Inhibition of these osteogenic noncanonical pathways in the HBO cells also inhibited mineralization, suggesting they are each required. Although no induction of SMAD1, 5, and 9 was observed, there was the activation of SMAD2 and 3 suggesting that sR3 is primarily signaling via the noncanonical pathways during osteogenic induction of the HBO. Our results highlight the important role of TGFβR3 in osteoblast induction of mineralization in human bone cells through noncanonical targets of TGFβ signaling. Future studies will focus on the ability of sR3 to induce bone regeneration in vivo using animal models.
Collapse
Affiliation(s)
| | - Archana Kamalakar
- Department of Otolaryngology, Emory University, Atlanta, Georgia, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shelly Abramowicz
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Emory University, Atlanta, Georgia, USA
| | - Hicham Drissi
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA.,Department of Orthopaedics, Emory University, Atlanta, Georgia, USA.,The Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Joey Victor Barnett
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Levi Benjamin Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - S L Goudy
- Department of Otolaryngology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Ren P, Deng F, Chen S, Ran J, Li J, Yin L, Wang Y, Yin H, Zhu Q, Liu Y. Whole-genome resequencing reveals loci with allelic transmission ratio distortion in F 1 chicken population. Mol Genet Genomics 2021; 296:331-339. [PMID: 33404883 DOI: 10.1007/s00438-020-01744-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022]
Abstract
Allelic transmission ratio distortion (TRD) is the significant deviation from the expected ratio under Mendelian inheritance theory, which may be resulted from multiple disrupted biological processes, including germline selection, meiotic drive, gametic competition, imprint error, and embryo lethality. However, it is less known that whether or what extent the allelic TRD is present in farm animals. In this study, whole-genome resequencing technology was applied to reveal TRD loci in chicken by constructing a full-sib F1 hybrid population. Through the whole-genome resequencing data of two parents (30 ×) and 38 offspring (5 ×), we detected a total of 2850 TRD SNPs (p-adj < 0.05) located within 400 genes showing TRD, and all of them were unevenly distributed on macrochromosomes and microchromosomes. Our findings suggested that TRD in the chicken chromosome 16 might play an important role in chicken immunity and disease resistance and the MYH1F with significant TRD and allele-specific expression could play a key role in the fast muscle development. In addition, functional enrichment analyses revealed that many genes (e.g., TGFBR2, TGFBR3, NOTCH1, and NCOA1) with TRD were found in the significantly enriched biological process and InterPro terms in relation to embryonic lethality and germline selection. Our results suggested that TRD is considerably prevalent in the chicken genome and has functional implications.
Collapse
Affiliation(s)
- Peng Ren
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Feilong Deng
- Special Key Laboratory of Microbial Resources and Drug Development, Zunyi Medical University, Zunyi, 563000, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Jinshan Ran
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Jingjing Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China. .,Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan, 611130, China.
| |
Collapse
|
21
|
Ricard N, Bailly S, Guignabert C, Simons M. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nat Rev Cardiol 2021; 18:565-580. [PMID: 33627876 PMCID: PMC7903932 DOI: 10.1038/s41569-021-00517-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Endothelial cells are at the interface between circulating blood and tissues. This position confers on them a crucial role in controlling oxygen and nutrient exchange and cellular trafficking between blood and the perfused organs. The endothelium adopts a structure that is specific to the needs and function of each tissue and organ and is subject to tissue-specific signalling input. In adults, endothelial cells are quiescent, meaning that they are not proliferating. Quiescence was considered to be a state in which endothelial cells are not stimulated but are instead slumbering and awaiting activating signals. However, new evidence shows that quiescent endothelium is fully awake, that it constantly receives and initiates functionally important signalling inputs and that this state is actively regulated. Signalling pathways involved in the maintenance of functionally quiescent endothelia are starting to be identified and are a combination of endocrine, autocrine, paracrine and mechanical inputs. The paracrine pathways confer a microenvironment on the endothelial cells that is specific to the perfused organs and tissues. In this Review, we present the current knowledge of organ-specific signalling pathways involved in the maintenance of endothelial quiescence and the pathologies associated with their disruption. Linking organ-specific pathways and human vascular pathologies will pave the way towards the development of innovative preventive strategies and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Ricard
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Sabine Bailly
- grid.457348.9Université Grenoble Alpes, INSERM, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France
| | - Christophe Guignabert
- grid.414221.0INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Michael Simons
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cell Biology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
22
|
Dronkers E, Wauters MMM, Goumans MJ, Smits AM. Epicardial TGFβ and BMP Signaling in Cardiac Regeneration: What Lesson Can We Learn from the Developing Heart? Biomolecules 2020; 10:biom10030404. [PMID: 32150964 PMCID: PMC7175296 DOI: 10.3390/biom10030404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022] Open
Abstract
The epicardium, the outer layer of the heart, has been of interest in cardiac research due to its vital role in the developing and diseased heart. During development, epicardial cells are active and supply cells and paracrine cues to the myocardium. In the injured adult heart, the epicardium is re-activated and recapitulates embryonic behavior that is essential for a proper repair response. Two indispensable processes for epicardial contribution to heart tissue formation are epithelial to mesenchymal transition (EMT), and tissue invasion. One of the key groups of cytokines regulating both EMT and invasion is the transforming growth factor β (TGFβ) family, including TGFβ and Bone Morphogenetic Protein (BMP). Abundant research has been performed to understand the role of TGFβ family signaling in the developing epicardium. However, less is known about signaling in the adult epicardium. This review provides an overview of the current knowledge on the role of TGFβ in epicardial behavior both in the development and in the repair of the heart. We aim to describe the presence of involved ligands and receptors to establish if and when signaling can occur. Finally, we discuss potential targets to improve the epicardial contribution to cardiac repair as a starting point for future investigation.
Collapse
|
23
|
Schoonderwoerd MJA, Goumans MJTH, Hawinkels LJAC. Endoglin: Beyond the Endothelium. Biomolecules 2020; 10:biom10020289. [PMID: 32059544 PMCID: PMC7072477 DOI: 10.3390/biom10020289] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Keywords: endoglin; CD105 TGF-β; BMP9; ALK-1; TRC105; tumor microenvironment.
Collapse
Affiliation(s)
- Mark J. A. Schoonderwoerd
- Department of Gastrenterology-Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Lukas J. A. C. Hawinkels
- Department of Gastrenterology-Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-526-6736
| |
Collapse
|
24
|
Kim SK, Henen MA, Hinck AP. Structural biology of betaglycan and endoglin, membrane-bound co-receptors of the TGF-beta family. Exp Biol Med (Maywood) 2019; 244:1547-1558. [PMID: 31601110 PMCID: PMC6920675 DOI: 10.1177/1535370219881160] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Betaglycan and endoglin, membrane-bound co-receptors of the TGF-β family, are required to mediate the signaling of a select subset of TGF-β family ligands, TGF-β2 and InhA, and BMP-9 and BMP-10, respectively. Previous biochemical and biophysical methods suggested alternative modes of ligand binding might be responsible for these co-receptors to selectively recognize and potentiate the functions of their ligands, yet the molecular details were lacking. Recent progress determining structures of betaglycan and endoglin, both alone and as bound to their cognate ligands, is presented herein. The structures reveal relatively minor, but very significant structural differences that lead to entirely different modes of ligand binding. The different modes of binding nonetheless share certain commonalities, such as multivalency, which imparts the co-receptors with very high affinity for their cognate ligands, but at the same time provides a mechanism for release by stepwise binding of the signaling receptors, both of which are essential for their functions.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Department of Structural Biology, University of Pittsburgh,
Pittsburgh, PA 15260, USA
- Department of Biochemistry and Biophysics, University California
San Francisco, San Francisco, CA 94158, USA
| | - Morkos A Henen
- Department of Structural Biology, University of Pittsburgh,
Pittsburgh, PA 15260, USA
- Faculty of Pharmacy, Mansoura University, Mansoura 35516,
Egypt
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh,
Pittsburgh, PA 15260, USA
| |
Collapse
|
25
|
Basu M, Garg V. Maternal hyperglycemia and fetal cardiac development: Clinical impact and underlying mechanisms. Birth Defects Res 2019; 110:1504-1516. [PMID: 30576094 DOI: 10.1002/bdr2.1435] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Congenital heart disease (CHD) is the most common type of birth defect and is both a significant pediatric and adult health problem, in light of a growing population of survivors. The etiology of CHD has been considered to be multifactorial with genetic and environmental factors playing important roles. The combination of advances in cardiac developmental biology, which have resulted in the elucidation of molecular pathways regulating normal cardiac morphogenesis, and genome sequencing technology have allowed the discovery of numerous genetic contributors of CHD ranging from chromosomal abnormalities to single gene variants. Conversely, mechanistic details of the contribution of environmental factors to CHD remain unknown. Maternal diabetes mellitus (matDM) is a well-established and increasingly prevalent environmental risk factor for CHD, but the underlying etiologic mechanisms by which pregestational matDM increases the vulnerability of embryos to cardiac malformations remains largely elusive. Here, we will briefly discuss the multifactorial etiology of CHD with a focus on the epidemiologic link between matDM and CHD. We will describe the animal models used to study the underlying mechanisms between matDM and CHD and review the numerous cellular and molecular pathways affected by maternal hyperglycemia in the developing heart. Last, we discuss how this increased understanding may open the door for the development of novel prevention strategies to reduce the incidence of CHD in this high-risk population.
Collapse
Affiliation(s)
- Madhumita Basu
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
26
|
Ahel J, Hudorović N, Vičić-Hudorović V, Nikles H. TGF-BETA IN THE NATURAL HISTORY OF PROSTATE CANCER. Acta Clin Croat 2019; 58:128-138. [PMID: 31363335 PMCID: PMC6629207 DOI: 10.20471/acc.2019.58.01.17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
All transforming growth factors beta (TGFß) are cytokines that regulate several cellular functions such as cell growth, differentiation and motility. They may also have a role in immunosuppression. Their role is important for normal prostate development. TGFß is active in the regulation of balance between epithelial cell proliferation and apoptosis through stromal epithelia via the androgen receptor action. TGFß protects and maintains prostate stem cells, an important population necessary for prostate tissue regeneration. However, TGFß is shown to have a contrasting role in prostate tumor genesis. In the early stages of tumor development, TGFß acts as a tumor suppressor, whereas in the later stages, TGFß becomes a tumor promoter by inducing proliferation, invasion and metastasis. In this review, we outline complex interactions that TGFß-mediated signaling has on prostate tumor genesis, focusing on the role of these interactions during the course of prostate cancer and, in particular, during disease progression.
Collapse
Affiliation(s)
| | - Narcis Hudorović
- 1Dr Zaky Polyclinic for Internal Medicine and Urology, Zagreb, Croatia; 2Department of Vascular Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Croatian Nursing Association, Zagreb, Croatia; 4Department of Abdominal Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| | - Višnja Vičić-Hudorović
- 1Dr Zaky Polyclinic for Internal Medicine and Urology, Zagreb, Croatia; 2Department of Vascular Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Croatian Nursing Association, Zagreb, Croatia; 4Department of Abdominal Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| | - Hrvoje Nikles
- 1Dr Zaky Polyclinic for Internal Medicine and Urology, Zagreb, Croatia; 2Department of Vascular Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Croatian Nursing Association, Zagreb, Croatia; 4Department of Abdominal Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| |
Collapse
|
27
|
Lüdtke TH, Rudat C, Kurz J, Häfner R, Greulich F, Wojahn I, Aydoğdu N, Mamo TM, Kleppa MJ, Trowe MO, Bohnenpoll T, Taketo MM, Kispert A. Mesothelial mobilization in the developing lung and heart differs in timing, quantity, and pathway dependency. Am J Physiol Lung Cell Mol Physiol 2019; 316:L767-L783. [PMID: 30702346 DOI: 10.1152/ajplung.00212.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mesothelial lining of the lung, the visceral pleura, and of the heart, the epicardium, derive from a common multipotent precursor tissue, the mesothelium of the embryonic thoracic cavity that also contributes to organ-specific mesenchymal cell types. Insight into mesothelial mobilization and differentiation has prevailedin the developing heart while the mesenchymal transition and fate of the visceral pleura are poorly understood. Here, we use the fact that the early mesothelium of both the lung and the heart expresses the transcription factor gene Wt1, to comparatively analyze mesothelial mobilization in the two organs by a genetic cre-loxP-based conditional approach. We show that epicardial cells are mobilized in a large number between E12.5 and E14.5, whereas pleural mobilization occurs only sporadically and variably in few regions of the lung in a temporally highly confined manner shortly after E12.5. Mesothelium-specific inactivation of unique pathway components using a Wt1creERT2 line excluded a requirement for canonical WNT, NOTCH, HH, TGFB, PDGFRA, and FGFR1/FGFR2 signaling in the mesenchymal transition of the visceral pleura but indicated a deleterious effect of activated WNT, NOTCH, and HH signaling on lung development. Epicardial mobilization was negatively impacted on by loss of HH, PDGFRA, FGFR1/2 signaling. Epicardial overactivation of WNT, NOTCH, and HH disturbed epicardial and myocardial integrity. We conclude that mesothelial mobilization in the developing lung and heart differs in timing, quantity and pathway dependency, indicating the organ specificity of the program.
Collapse
Affiliation(s)
- Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Jennifer Kurz
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Regine Häfner
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Franziska Greulich
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Nurullah Aydoğdu
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Tamrat M Mamo
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Tobias Bohnenpoll
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| |
Collapse
|
28
|
Wang S, Zhou H, Wu D, Ni H, Chen Z, Chen C, Xiang Y, Dai K, Chen X, Li X. MicroRNA let-7a regulates angiogenesis by targeting TGFBR3 mRNA. J Cell Mol Med 2018; 23:556-567. [PMID: 30467960 PMCID: PMC6307798 DOI: 10.1111/jcmm.13960] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/16/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis has a great impact on human health, owing to its participation in development, wound healing and the pathogenesis of several diseases. It has been reported that let-7a is a tumour suppressor, but whether it plays a role in angiogenesis is unclear. Here we showed that let-7a, a microRNA conserved in vertebrates, regulated angiogenesis by concomitantly down-regulating TGFBR3. Overexpression of let-7a or knockdown of TGFBR3 in cell culture inhibited the tube formation and reduced migration rate. Moreover, xenograft experiments showed that overexpression of let-7a or knockdown of TGFBR3 had smaller tumour size. Downstream genes, such as VEGFC and MMP9, were also down-regulated in let-7a overexpression or TGFBR3 knockdown groups. Therefore, our results revealed a novel mechanism that let-7a regulate angiogenesis through post-transcriptional regulation of TGFBR3.
Collapse
Affiliation(s)
- Shao Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huandong Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dazhou Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huajing Ni
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongliang Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Youqun Xiang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Dai
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoming Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Iyer D, Zhao Q, Wirka R, Naravane A, Nguyen T, Liu B, Nagao M, Cheng P, Miller CL, Kim JB, Pjanic M, Quertermous T. Coronary artery disease genes SMAD3 and TCF21 promote opposing interactive genetic programs that regulate smooth muscle cell differentiation and disease risk. PLoS Genet 2018; 14:e1007681. [PMID: 30307970 PMCID: PMC6198989 DOI: 10.1371/journal.pgen.1007681] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/23/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Although numerous genetic loci have been associated with coronary artery disease (CAD) with genome wide association studies, efforts are needed to identify the causal genes in these loci and link them into fundamental signaling pathways. Recent studies have investigated the disease mechanism of CAD associated gene SMAD3, a central transcription factor (TF) in the TGFβ pathway, investigating its role in smooth muscle biology. In vitro studies in human coronary artery smooth muscle cells (HCASMC) revealed that SMAD3 modulates cellular phenotype, promoting expression of differentiation marker genes while inhibiting proliferation. RNA sequencing and chromatin immunoprecipitation sequencing studies in HCASMC identified downstream genes that reside in pathways which mediate vascular development and atherosclerosis processes in this cell type. HCASMC phenotype, and gene expression patterns promoted by SMAD3 were noted to have opposing direction of effect compared to another CAD associated TF, TCF21. At sites of SMAD3 and TCF21 colocalization on DNA, SMAD3 binding was inversely correlated with TCF21 binding, due in part to TCF21 locally blocking chromatin accessibility at the SMAD3 binding site. Further, TCF21 was able to directly inhibit SMAD3 activation of gene expression in transfection reporter gene studies. In contrast to TCF21 which is protective toward CAD, SMAD3 expression in HCASMC was shown to be directly correlated with disease risk. We propose that the pro-differentiation action of SMAD3 inhibits dedifferentiation that is required for HCASMC to expand and stabilize disease plaque as they respond to vascular stresses, counteracting the protective dedifferentiating activity of TCF21 and promoting disease risk.
Collapse
Affiliation(s)
- Dharini Iyer
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Quanyi Zhao
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Robert Wirka
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ameay Naravane
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Trieu Nguyen
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Boxiang Liu
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Manabu Nagao
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Paul Cheng
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Clint L. Miller
- Departments of Public Health Sciences, Biochemistry and Genetics, and Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - Juyong Brian Kim
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Milos Pjanic
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Thomas Quertermous
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
30
|
TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 2018; 52:112-120. [PMID: 30184463 DOI: 10.1016/j.cellsig.2018.09.002] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/07/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor β (TGF-β) plays an important role in normal development and homeostasis. Dysregulation of TGF-β responsiveness and its downstream signaling pathways contribute to many diseases, including cancer initiation, progression, and metastasis. TGF-β ligands bind to three isoforms of the TGF-β receptor (TGFBR) with different affinities. TGFBR1 and 2 are both serine/threonine and tyrosine kinases, but TGFBR3 does not have any kinase activity. They are necessary for activating canonical or noncanonical signaling pathways, as well as for regulating the activation of other signaling pathways. Another prominent feature of TGF-β signaling is its context-dependent effects, temporally and spatially. The diverse effects and context dependency are either achieved by fine-tuning the downstream components or by regulating the expressions and activities of the ligands or receptors. Focusing on the receptors in events in and beyond TGF-β signaling, we review the membrane trafficking of TGFBRs, the kinase activity of TGFBR1 and 2, the direct interactions between TGFBR2 and other receptors, and the novel roles of TGFBR3.
Collapse
|
31
|
Abstract
Vascular, resident stem cells are present in all 3 layers of the vessel wall; they play a role in vascular formation under physiological conditions and in remodeling in pathological situations. Throughout development and adult early life, resident stem cells participate in vessel formation through vasculogenesis and angiogenesis. In adults, the vascular stem cells are mostly quiescent in their niches but can be activated in response to injury and participate in endothelial repair and smooth muscle cell accumulation to form neointima. However, delineation of the characteristics and of the migration and differentiation behaviors of these stem cells is an area of ongoing investigation. A set of genetic mouse models for cell lineage tracing has been developed to specifically address the nature of these cells and both migration and differentiation processes during physiological angiogenesis and in vascular diseases. This review summarizes the current knowledge on resident stem cells, which has become more defined and refined in vascular biology research, thus contributing to the development of new potential therapeutic strategies to promote endothelial regeneration and ameliorate vascular disease development.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Shirin Issa Bhaloo
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| | - Ting Chen
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academic of Sciences (B.Z.)
| | - Qingbo Xu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| |
Collapse
|
32
|
Tao J, Barnett JV, Watanabe M, Ramírez-Bergeron D. Hypoxia Supports Epicardial Cell Differentiation in Vascular Smooth Muscle Cells through the Activation of the TGFβ Pathway. J Cardiovasc Dev Dis 2018; 5:jcdd5020019. [PMID: 29652803 PMCID: PMC6023394 DOI: 10.3390/jcdd5020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Epicardium-derived cells (EPDCs) are an important pool of multipotent cardiovascular progenitor cells. Through epithelial-to-mesenchymal-transition (EMT), EPDCs invade the subepicardium and myocardium and further differentiate into several cell types required for coronary vessel formation. We previously showed that epicardial hypoxia inducible factor (HIF) signaling mediates the invasion of vascular precursor cells critical for patterning the coronary vasculature. Here, we examine the regulatory role of hypoxia (1% oxygen) on EPDC differentiation into vascular smooth muscle cells (VSMCs). Results: Hypoxia stimulates EMT and enhances expression of several VSMC markers in mouse epicardial cell cultures. This stimulation is specifically blocked by inhibiting transforming growth factor-beta (TGFβ) receptor I. Further analyses indicated that hypoxia increases the expression level of TGFβ-1 ligand and phosphorylation of TGFβ receptor II, suggesting an indispensable role of the TGFβ pathway in hypoxia-stimulated VSMC differentiation. We further demonstrate that the non-canonical RhoA/Rho kinase (ROCK) pathway acts as the main downstream effector of TGFβ to modulate hypoxia’s effect on VSMC differentiation. Conclusion: Our results reveal a novel role of epicardial HIF in mediating coronary vasculogenesis by promoting their differentiation into VSMCs through noncanonical TGFβ signaling. These data elucidate that patterning of the coronary vasculature is influenced by epicardial hypoxic signals.
Collapse
Affiliation(s)
- Jiayi Tao
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Joey V Barnett
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Michiko Watanabe
- Department of Pediatrics, Rainbow Babies and Children's Hospital, The Congenital Heart Collaborative, Cleveland, OH 44106, USA.
| | - Diana Ramírez-Bergeron
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
- University Hospitals Harrington-McLaughlin Heart & Vascular Institute, Cleveland, OH 44106, USA.
| |
Collapse
|
33
|
Wu J, Jackson-Weaver O, Xu J. The TGFβ superfamily in cardiac dysfunction. Acta Biochim Biophys Sin (Shanghai) 2018; 50:323-335. [PMID: 29462261 DOI: 10.1093/abbs/gmy007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
TGFβ superfamily includes the transforming growth factor βs (TGFβs), bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs) and Activin/Inhibin families of ligands. Among the 33 members of TGFβ superfamily ligands, many act on multiple types of cells within the heart, including cardiomyocytes, cardiac fibroblasts/myofibroblasts, coronary endothelial cells, smooth muscle cells, and immune cells (e.g. monocytes/macrophages and neutrophils). In this review, we highlight recent discoveries on TGFβs, BMPs, and GDFs in different cardiac residential cellular components, in association with functional impacts in heart development, injury repair, and dysfunction. Specifically, we will review the roles of TGFβs, BMPs, and GDFs in cardiac hypertrophy, fibrosis, contractility, metabolism, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
34
|
Simões FC, Riley PR. The ontogeny, activation and function of the epicardium during heart development and regeneration. Development 2018; 145:145/7/dev155994. [DOI: 10.1242/dev.155994] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The epicardium plays a key role during cardiac development, homeostasis and repair, and has thus emerged as a potential target in the treatment of cardiovascular disease. However, therapeutically manipulating the epicardium and epicardium-derived cells (EPDCs) requires insights into their developmental origin and the mechanisms driving their activation, recruitment and contribution to both the embryonic and adult injured heart. In recent years, studies of various model systems have provided us with a deeper understanding of the microenvironment in which EPDCs reside and emerge into, of the crosstalk between the multitude of cardiovascular cell types that influence the epicardium, and of the genetic programmes that orchestrate epicardial cell behaviour. Here, we review these discoveries and discuss how technological advances could further enhance our knowledge of epicardium-based repair mechanisms and ultimately influence potential therapeutic outcomes in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Filipa C. Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Paul R. Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
35
|
Goumans MJ, Ten Dijke P. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022210. [PMID: 28348036 DOI: 10.1101/cshperspect.a022210] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic studies in animals and humans indicate that gene mutations that functionally perturb transforming growth factor β (TGF-β) signaling are linked to specific hereditary vascular syndromes, including Osler-Rendu-Weber disease or hereditary hemorrhagic telangiectasia and Marfan syndrome. Disturbed TGF-β signaling can also cause nonhereditary disorders like atherosclerosis and cardiac fibrosis. Accordingly, cell culture studies using endothelial cells or smooth muscle cells (SMCs), cultured alone or together in two- or three-dimensional cell culture assays, on plastic or embedded in matrix, have shown that TGF-β has a pivotal effect on endothelial and SMC proliferation, differentiation, migration, tube formation, and sprouting. Moreover, TGF-β can stimulate endothelial-to-mesenchymal transition, a process shown to be of key importance in heart valve cushion formation and in various pathological vascular processes. Here, we discuss the roles of TGF-β in vasculogenesis, angiogenesis, and lymphangiogenesis and the deregulation of TGF-β signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
36
|
Young VJ, Ahmad SF, Duncan WC, Horne AW. The role of TGF-β in the pathophysiology of peritoneal endometriosis. Hum Reprod Update 2018; 23:548-559. [PMID: 28903471 DOI: 10.1093/humupd/dmx016] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 05/28/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Endometriosis is estimated to affect 6-10% of women of reproductive age and it is associated with chronic pelvic pain, dysmenorrhoea and subfertility. It is currently managed surgically or medically but symptoms recur in up to 75% of cases and available medical treatments have undesirable side effects. Endometriosis is defined as the presence of endometrial tissue outside the uterus with lesions typically found on the peritoneum. The aetiology of endometriosis is uncertain but there is increasing evidence that transforming growth factor (TGF)-β plays a major role. OBJECTIVE AND RATIONALE A descriptive review was undertaken of the published literature on the expression pattern of TGF-β ligands and signalling molecules in women with and without endometriosis, and on the potential roles of TGF-β signalling in the development and progression of peritoneal endometriosis. The current understanding of the TGF-β signalling pathway is summarized. SEARCH METHODS We searched the Pubmed database using the terms 'transforming growth factor beta' and 'endometriosis' for studies published between 1995 and 2016. The initial search identified 99 studies and these were used as the basic material for this review. We also extended our remit for important older publications. In addition, we searched the reference lists of studies used in this review for additional studies we judged as relevant. Studies which were included in the review focused on peritoneal endometriosis only as increasing evidence suggests that ovarian and deep endometriosis may have a differing pathophysiology. Thus, a final 95 studies were included in the review. OUTCOMES TGF-β1 is reported to be increased in the peritoneal fluid, serum, ectopic endometrium and peritoneum of women with endometriosis compared to women without endometriosis, and TGF-β1-null mice have reduced endometriosis lesion growth when compared to their wild-type controls. Studies in mice and women have indicated that increasing levels of TGF-β ligands are associated with decreased immune cell activity within the peritoneum, together with an increase in ectopic endometrial cell survival, attachment, invasion and proliferation, during endometriosis lesion development. TGF-β1 has been associated with changes in ectopic endometrial and peritoneal cell metabolism and the initiation of neoangiogenesis, further fuelling endometriosis lesion development. WIDER IMPLICATIONS Together these studies suggest that TGF-β1 plays a major role in the development of peritoneal endometriosis lesions and that targeting this pathway may be of therapeutic potential.
Collapse
Affiliation(s)
- Vicky J Young
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - S F Ahmad
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | | | - Andrew W Horne
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
37
|
Jenkins LM, Horst B, Lancaster CL, Mythreye K. Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 2017; 39:124-136. [PMID: 29291930 DOI: 10.1016/j.cytogfr.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling in response to secreted growth factors has been linked to the development of multiple diseases, including cancer. As such, understanding mechanisms that control growth factor availability and receptor-growth factor interaction is vital. Dually modified transmembrane proteoglycans (DMTPs), which are classified as cell surface macromolecules composed of a core protein decorated with covalently linked heparan sulfated (HS) and/or chondroitin sulfated (CS) glycosaminoglycan (GAG) chains, provide one type of regulatory mechanism. Specifically, DMTPs betaglycan and syndecan-1 (SDC1) play crucial roles in modulating key cell signaling pathways, such as Wnt, transforming growth factor-β and fibroblast growth factor signaling, to affect epithelial cell biology and cancer progression. This review outlines current and potential functions for betaglycan and SDC1, with an emphasis on comparing individual roles for HS and CS modified DMTPs. We highlight the mutual dependence of DMTPs' GAG chains and core proteins and provide comprehensive knowledge on how these DMTPs, through regulation of ligand availability and receptor internalization, control cell signaling pathways involved in development and disease.
Collapse
Affiliation(s)
- Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Ben Horst
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Carly L Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
38
|
Sun F, Li X, Duan WQ, Tian W, Gao M, Yang J, Wu XY, Huang D, Xia W, Han YN, Wang JX, Liu YX, Dong CJ, Zhao D, Ban T, Chu WF. Transforming Growth Factor-β Receptor III is a Potential Regulator of Ischemia-Induced Cardiomyocyte Apoptosis. J Am Heart Assoc 2017; 6:JAHA.116.005357. [PMID: 28559372 PMCID: PMC5669164 DOI: 10.1161/jaha.116.005357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Myocardial infarction (MI) is often accompanied by cardiomyocyte apoptosis, which decreases heart function and leads to an increased risk of heart failure. The aim of this study was to examine the effects of transforming growth factor‐β receptor III (TGFβR3) on cardiomyocyte apoptosis during MI. Methods and Results An MI mouse model was established by left anterior descending coronary artery ligation. Cell viability, apoptosis, TGFβR3, and mitogen‐activated protein kinase signaling were assessed by methylthiazolyldiphenyl‐tetrazolium bromide assay, terminal deoxynucleotidyl transferase‐mediated dUTP nick end labeling assay, immunofluorescence, electron microscopy, and Western blotting. Our results demonstrated that TGFβR3 expression in the border region of the heart was dynamically changed during MI. After stimulation with H2O2, TGFβR3 overexpression in cardiomyocytes led to increased cell apoptosis and activation of p38 signaling, whereas TGFβR3 knockdown had the opposite effect. ERK1/2 and JNK1/2 signaling was not altered by TGFβR3 modulation, and p38 inhibitor (SB203580) reduced the effect of TGFβR3 on apoptosis, suggesting that p38 has a nonredundant function in activating apoptosis. Consistent with the in vitro observations, cardiac TGFβR3 transgenic mice showed augmented cardiomyocyte apoptosis, enlarged infarct size, increased injury, and enhanced p38 signaling upon MI. Conversely, cardiac loss of function of TGFβR3 by adeno‐associated viral vector serotype 9–TGFβR3 short hairpin RNA attenuated the effects of MI in mice. Conclusions TGFβR3 promotes apoptosis of cardiomyocytes via a p38 pathway–associated mechanism, and loss of TGFβR3 reduces MI injury, which suggests that TGFβR3 may serve as a novel therapeutic target for MI.
Collapse
Affiliation(s)
- Fei Sun
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wen-Qi Duan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei Tian
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ming Gao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jia Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xia-Yang Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Di Huang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei Xia
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan-Na Han
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jia-Xin Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan-Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chang-Jiang Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Dan Zhao
- Department of Clinical Pharmacy (Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment), The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tao Ban
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wen-Feng Chu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
39
|
Duffey OJ, Smart N. Approaches to augment vascularisation and regeneration of the adult heart via the reactivated epicardium. Glob Cardiol Sci Pract 2016; 2016:e201628. [PMID: 28979901 PMCID: PMC5624183 DOI: 10.21542/gcsp.2016.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 12/15/2016] [Indexed: 11/05/2022] Open
Abstract
Survival rates following myocardial infarction have increased in recent years but current treatments for post-infarction recovery are inadequate and cannot induce regeneration of damaged hearts. Regenerative medicine could provide disease-reversing treatments by harnessing modern concepts in cell and developmental biology. A recently-established paradigm in regenerative medicine is that regeneration of a tissue can be achieved by reactivation of the coordinated developmental processes that originally formed the tissue. In the heart, the epicardium has emerged as an important regulator of cardiac development and reactivation of epicardial developmental processes may provide a means to enable cardiac regeneration. Indeed, in adult mouse hearts, treatment with thymosin β4 and other drug-like molecules reactivates the epicardium and improves outcomes after myocardial infarction by inducing regenerative paracrine signalling, neovascularisation and de novo cardiomyocyte production. However, there are considerable limitations to current methods of epicardial reactivation that prevent direct translation into clinical practice. Here, we describe the rationale for targeting the epicardium and the successes and limitations of this approach. We consider how several recent advances in epicardial biology could be used to overcome these limitations. These advances include insight into epicardial signalling and heterogeneity, epicardial modulation of inflammation and epicardial remodelling of extracellular matrix.
Collapse
Affiliation(s)
- Owen J. Duffey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Tran JR, Zheng X, Zheng Y. Lamin-B1 contributes to the proper timing of epicardial cell migration and function during embryonic heart development. Mol Biol Cell 2016; 27:3956-3963. [PMID: 27798236 PMCID: PMC5156536 DOI: 10.1091/mbc.e16-06-0462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/11/2022] Open
Abstract
Lamin proteins form a meshwork beneath the nuclear envelope and contribute to many different cellular processes. Mutations in lamins cause defective organogenesis in mouse models and human diseases that affect adipose tissue, brain, skeletal muscle, and the heart. In vitro cell culture studies have shown that lamins help maintain nuclear shape and facilitate cell migration. However, whether these defects contribute to improper tissue building in vivo requires further clarification. By studying the heart epicardium during embryogenesis, we show that Lb1-null epicardial cells exhibit in vivo and in vitro migratory delay. Transcriptome analyses of these cells suggest that Lb1 influences the expression of cell adhesion genes, which could affect cell migration during epicardium development. These epicardial defects are consistent with incomplete development of both vascular smooth muscle and compact myocardium at later developmental stages in Lb1-null embryos. Further, we found that Lb1-null epicardial cells have a delayed nuclear morphology change in vivo, suggesting that Lb1 facilitates morphological changes associated with migration. These findings suggest that Lb1 contributes to nuclear shape maintenance and migration of epicardial cells and highlights the use of these cells for in vitro and in vivo study of these classic cell biological phenomena.
Collapse
Affiliation(s)
- Joseph R Tran
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
41
|
Sharma B, Chang A, Red-Horse K. Coronary Artery Development: Progenitor Cells and Differentiation Pathways. Annu Rev Physiol 2016; 79:1-19. [PMID: 27959616 DOI: 10.1146/annurev-physiol-022516-033953] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronary artery disease (CAD) is the number one cause of death worldwide and involves the accumulation of plaques within the artery wall that can occlude blood flow to the heart and cause myocardial infarction. The high mortality associated with CAD makes the development of medical interventions that repair and replace diseased arteries a high priority for the cardiovascular research community. Advancements in arterial regenerative medicine could benefit from a detailed understanding of coronary artery development during embryogenesis and of how these pathways might be reignited during disease. Recent research has advanced our knowledge on how the coronary vasculature is built and revealed unexpected features of progenitor cell deployment that may have implications for organogenesis in general. Here, we highlight these recent findings and discuss how they set the stage to interrogate developmental pathways during injury and disease.
Collapse
Affiliation(s)
- Bikram Sharma
- Department of Biology, Stanford University, Stanford, California 94305;
| | - Andrew Chang
- Department of Biology, Stanford University, Stanford, California 94305; .,Department of Developmental Biology, Stanford University, Stanford, California 94305
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, California 94305;
| |
Collapse
|
42
|
Lou J, Zhao D, Zhang LL, Song SY, Li YC, Sun F, Ding XQ, Yu CJ, Li YY, Liu MT, Dong CJ, Ji Y, Li H, Chu W, Zhang ZR. Type III Transforming Growth Factor-β Receptor Drives Cardiac Hypertrophy Through β-Arrestin2–Dependent Activation of Calmodulin-Dependent Protein Kinase II. Hypertension 2016; 68:654-66. [PMID: 27432858 DOI: 10.1161/hypertensionaha.116.07420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/22/2016] [Indexed: 01/02/2023]
Abstract
The role of type III transforming growth factor-β receptor (TβRIII) in the pathogenesis of heart diseases remains largely unclear. Here, we investigated the functional role and molecular mechanisms of TβRIII in the development of myocardial hypertrophy. Western blot and quantitative real time-polymerase chain reaction analyses revealed that the expression of TβRIII was significantly elevated in human cardiac hypertrophic samples. Consistently, TβRIII expression was substantially increased in transverse aortic constriction (TAC)– and isoproterenol-induced mouse cardiac hypertrophy in vivo and in isoproterenol-induced cardiomyocyte hypertrophy in vitro. Overexpression of TβRIII resulted in cardiomyocyte hypertrophy, whereas isoproterenol-induced cardiomyocyte hypertrophy was greatly attenuated by knockdown of TβRIII in vitro. Cardiac-specific transgenic expression of TβRIII independently led to cardiac hypertrophy in mice, which was further aggravated by isoproterenol and TAC treatment. Cardiac contractile function of the mice was not altered in TβRIII transgenic mice; however, TAC led to significantly decreased cardiac contractile function in TβRIII transgenic mice compared with control mice. Conversely, isoproterenol- and TAC-induced cardiac hypertrophy and TAC-induced cardiac contractile function impairment were partially reversed by suppression of TβRIII in vivo. Our data suggest that TβRIII mediates stress-induced cardiac hypertrophy through activation of Ca
2+
/calmodulin-dependent protein kinase II, which requires a physical interaction of β-arrestin2 with both TβRIII and calmodulin-dependent protein kinase II. Our findings indicate that stress-induced increase in TβRIII expression results in cardiac hypertrophy through β-arrestin2–dependent activation of calmodulin-dependent protein kinase II and that transforming growth factor-β and β-adrenergic receptor signaling are not involved in spontaneous cardiac hypertrophy in cardiac-specific transgenic expression of TβRIII mice. Our findings may provide a novel target for control of myocardial hypertrophy.
Collapse
Affiliation(s)
- Jie Lou
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Dan Zhao
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.).
| | - Ling-Ling Zhang
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Shu-Ying Song
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Yan-Chao Li
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Fei Sun
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Xiao-Qing Ding
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Chang-Jiang Yu
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Yuan-Yuan Li
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Mei-Tong Liu
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Chang-Jiang Dong
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Yong Ji
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Hongliang Li
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.)
| | - Wenfeng Chu
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.).
| | - Zhi-Ren Zhang
- From the Department of Cardiology and Clinic Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, China (J.L., S.-Y.S., Y.-C.L., X.-Q.D., C.-J.Y., Z.-R.Z.); Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, China (D.Z., Z.-R.Z.); Department of Pharmacology, Harbin Medical University, China (L.-L.Z., F.S., Y.-Y.L., M.-T.L., C.-J.D., W.C.); Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, China (Y.J.); and Department of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, China (H.L.).
| |
Collapse
|
43
|
DeLaughter DM, Clark CR, Christodoulou DC, Seidman CE, Baldwin HS, Seidman JG, Barnett JV. Transcriptional Profiling of Cultured, Embryonic Epicardial Cells Identifies Novel Genes and Signaling Pathways Regulated by TGFβR3 In Vitro. PLoS One 2016; 11:e0159710. [PMID: 27505173 PMCID: PMC4978490 DOI: 10.1371/journal.pone.0159710] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/07/2016] [Indexed: 11/23/2022] Open
Abstract
The epicardium plays an important role in coronary vessel formation and Tgfbr3-/- mice exhibit failed coronary vessel development associated with decreased epicardial cell invasion. Immortalized Tgfbr3-/- epicardial cells display the same defects. Tgfbr3+/+ and Tgfbr3-/- cells incubated for 72 hours with VEH or ligands known to promote invasion via TGFβR3 (TGFβ1, TGFβ2, BMP2), for 72 hours were harvested for RNA-seq analysis. We selected for genes >2-fold differentially expressed between Tgfbr3+/+ and Tgfbr3-/- cells when incubated with VEH (604), TGFβ1 (515), TGFβ2 (553), or BMP2 (632). Gene Ontology (GO) analysis of these genes identified dysregulated biological processes consistent with the defects observed in Tgfbr3-/- cells, including those associated with extracellular matrix interaction. GO and Gene Regulatory Network (GRN) analysis identified distinct expression profiles between TGFβ1-TGFβ2 and VEH-BMP2 incubated cells, consistent with the differential response of epicardial cells to these ligands in vitro. Despite the differences observed between Tgfbr3+/+ and Tgfbr3-/- cells after TGFβ and BMP ligand addition, GRNs constructed from these gene lists identified NF-ĸB as a key nodal point for all ligands examined. Tgfbr3-/- cells exhibited decreased expression of genes known to be activated by NF-ĸB signaling. NF-ĸB activity was stimulated in Tgfbr3+/+ epicardial cells after TGFβ2 or BMP2 incubation, while Tgfbr3-/- cells failed to activate NF-ĸB in response to these ligands. Tgfbr3+/+ epicardial cells incubated with an inhibitor of NF-ĸB signaling no longer invaded into a collagen gel in response to TGFβ2 or BMP2. These data suggest that NF-ĸB signaling is dysregulated in Tgfbr3-/- epicardial cells and that NF-ĸB signaling is required for epicardial cell invasion in vitro. Our approach successfully identified a signaling pathway important in epicardial cell behavior downstream of TGFβR3. Overall, the genes and signaling pathways identified through our analysis yield the first comprehensive list of candidate genes whose expression is dependent on TGFβR3 signaling.
Collapse
Affiliation(s)
- Daniel M. DeLaughter
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Cynthia R. Clark
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Danos C. Christodoulou
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine E. Seidman
- Cardiology Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - H. Scott Baldwin
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville,Tennessee, United States of America
| | - J. G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joey V. Barnett
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
44
|
Clark CR, Robinson JY, Sanchez NS, Townsend TA, Arrieta JA, Merryman WD, Trykall DZ, Olivey HE, Hong CC, Barnett JV. Common pathways regulate Type III TGFβ receptor-dependent cell invasion in epicardial and endocardial cells. Cell Signal 2016; 28:688-98. [PMID: 26970186 DOI: 10.1016/j.cellsig.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/23/2016] [Accepted: 03/08/2016] [Indexed: 11/29/2022]
Abstract
Epithelial-Mesenchymal Transformation (EMT) and the subsequent invasion of epicardial and endocardial cells during cardiac development is critical to the development of the coronary vessels and heart valves. The transformed cells give rise to cardiac fibroblasts and vascular smooth muscle cells or valvular interstitial cells, respectively. The Type III Transforming Growth Factor β (TGFβR3) receptor regulates EMT and cell invasion in both cell types, but the signaling mechanisms downstream of TGFβR3 are not well understood. Here we use epicardial and endocardial cells in in vitro cell invasion assays to identify common mechanisms downstream of TGFβR3 that regulate cell invasion. Inhibition of NF-κB activity blocked cell invasion in epicardial and endocardial cells. NF-κB signaling was found to be dysregulated in Tgfbr3(-/-) epicardial cells which also show impaired cell invasion in response to ligand. TGFβR3-dependent cell invasion is also dependent upon Activin Receptor-Like Kinase (ALK) 2, ALK3, and ALK5 activity. A TGFβR3 mutant that contains a threonine to alanine substitution at residue 841 (TGFβR3-T841A) induces ligand-independent cell invasion in both epicardial and endocardial cells in vitro. These findings reveal a role for NF-κB signaling in the regulation of epicardial and endocardial cell invasion and identify a mutation in TGFβR3 which stimulates ligand-independent signaling.
Collapse
Affiliation(s)
- Cynthia R Clark
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Jamille Y Robinson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Nora S Sanchez
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Todd A Townsend
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Julian A Arrieta
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - W David Merryman
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212.
| | - David Z Trykall
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| | - Harold E Olivey
- Dept. of Biology, Indiana University-Northwest, Gary, IN 46408, United States.
| | - Charles C Hong
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Research Medicine, Veterans Affairs TVHS, Nashville, TN 37212, United States.
| | - Joey V Barnett
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| |
Collapse
|
45
|
Allison P, Espiritu D, Camenisch TD. BMP2 rescues deficient cell migration in Tgfbr3(-/-) epicardial cells and requires Src kinase. Cell Adh Migr 2015; 10:259-68. [PMID: 26645362 PMCID: PMC4951173 DOI: 10.1080/19336918.2015.1119362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types which contribute to the coronary vessels. The type III transforming growth factor-β receptor (TGFβR3) is required for epicardial cell invasion and development of coronary vasculature in vivo. Bone Morphogenic Protein-2 (BMP2) is a driver of epicardial cell migration. Utilizing a primary epicardial cell line derived from Tgfbr3(+/+) and Tgfbr3(-/-) mouse embryos, we show that Tgfbr3(-/-) epicardial cells are deficient in BMP2 mRNA expression. Tgfbr3(-/-) epicardial cells are deficient in 2-dimensional migration relative to Tgfbr3(+/+) cells; BMP2 induces cellular migration to Tgfbr3(+/+) levels without affecting proliferation. We further demonstrate that Src kinase activity is required for BMP2 driven Tgfbr3(-/-) migration. BMP2 also requires Src for filamentous actin polymerization in Tgfbr3(-/-) epicardial cells. Taken together, our data identifies a novel pathway in epicardial cell migration required for development of the coronary vessels.
Collapse
Affiliation(s)
- Patrick Allison
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA,CONTACT Patrick Allison Michigan State University, College of Veterinary Medicine, 784 Wilson Rd, RmG358, East Lansing, MI 48824, USA
| | - Daniella Espiritu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Todd D. Camenisch
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA,Southwest Environmental Health Sciences Center, University of Arizona, Tucson, AZ, USA,Steele Children's Research Center, University of Arizona, Tucson, AZ, USA,Sarver Heart Center, University of Arizona, Tucson, AZ, USA,Bio5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
46
|
Kamaid A, Molina-Villa T, Mendoza V, Pujades C, Maldonado E, Ispizua Belmonte JC, López-Casillas F. Betaglycan knock-down causes embryonic angiogenesis defects in zebrafish. Genesis 2015; 53:583-603. [PMID: 26174808 DOI: 10.1002/dvg.22876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 01/21/2023]
Abstract
Angiogenesis is an essential requirement for embryonic development and adult homeostasis. Its deregulation is a key feature of numerous pathologies and many studies have shown that members of the transforming growth factor beta (TGF-β) family of proteins play important roles in angiogenesis during development and disease. Betaglycan (BG), also known as TGF-β receptor type III, is a TGF-β coreceptor essential for mice embryonic development but its role in angiogenesis has not been described. We have cloned the cDNA encoding zebrafish BG, a TGF-β-binding membrane proteoglycan that showed a dynamic expression pattern in zebrafish embryos, including the notochord and cells adjacent to developing vessels. Injection of antisense morpholinos decreased BG protein levels and morphant embryos exhibited impaired angiogenesis that was rescued by coinjection with rat BG mRNA. In vivo time-lapse microscopy revealed that BG deficiency differentially affected arterial and venous angiogenesis: morphants showed impaired pathfinding of intersegmental vessels migrating from dorsal aorta, while endothelial cells originating from the caudal vein displayed sprouting and migration defects. Our results reveal a new role for BG during embryonic angiogenesis in zebrafish, which has not been described in mammals and pose interesting questions about the molecular machinery regulating angiogenesis in different vertebrates. genesis 53:583-603, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrés Kamaid
- Instituto De Fisiología Celular, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, México City, D.F. México
| | - Tonatiuh Molina-Villa
- Instituto De Fisiología Celular, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, México City, D.F. México
| | - Valentín Mendoza
- Instituto De Fisiología Celular, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, México City, D.F. México
| | - Cristina Pujades
- Department of Experimental And Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Park, Barcelona, España
| | - Ernesto Maldonado
- Instituto De Ciencias Del Mar Y Limnología, Unidad Académica De Sistemas Arrecifales, Universidad Nacional Autónoma De México, Puerto Morelos, Quintana Roo, México
| | | | - Fernando López-Casillas
- Instituto De Fisiología Celular, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, México City, D.F. México
| |
Collapse
|
47
|
The role of neuronal versus astrocyte-derived heparan sulfate proteoglycans in brain development and injury. Biochem Soc Trans 2015; 42:1263-9. [PMID: 25233401 DOI: 10.1042/bst20140166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Astrocytes modulate many aspects of neuronal function, including synapse formation and the response to injury. Heparan sulfate proteoglycans (HSPGs) mediate some of the effects of astrocytes on synaptic function, and participate in the astrocyte-mediated brain injury response. HSPGs are a highly conserved class of proteoglycans, with variable heparan sulfate (HS) chains that play a major role in determining the function of these proteins, such as binding to growth factors and receptors. Expression of both the core proteins and their HS chains can vary depending on cellular origin, thus the functional impact of HSPGs may be determined by the cell type in which they are expressed. In the brain, HSPGs are expressed by both neurons and astrocytes; however, the specific contribution of neuronal HSPGs compared with astrocyte-derived HSPGs to development and the injury response is largely unknown. The present review examines the current evidence regarding the roles of HSPGs in the brain, describes the cellular origins of HSPGs, and interrogates the roles of HSPGs from astrocytes and neurons in synaptogenesis and injury. The importance of considering cell-type-specific expression of HSPGs when studying brain function is discussed.
Collapse
|
48
|
Wang F, Reece EA, Yang P. Oxidative stress is responsible for maternal diabetes-impaired transforming growth factor beta signaling in the developing mouse heart. Am J Obstet Gynecol 2015; 212:650.e1-11. [PMID: 25595579 DOI: 10.1016/j.ajog.2015.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/20/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Oxidative stress plays a causal role in diabetic embryopathy. Maternal diabetes induces heart defects and impaired transforming growth factor beta (TGFβ) signaling, which is essential for cardiogenesis. We hypothesize that mitigating oxidative stress through superoxide dismutase 1 (SOD1) overexpression in transgenic (Tg) mice reverses maternal hyperglycemia-impaired TGFβ signaling and its downstream effectors. STUDY DESIGN Day 12.5 embryonic hearts from wild-type (WT) and SOD1 overexpressing embryos of nondiabetic (ND) and diabetic mellitus (DM) dams were used for the detection of oxidative stress markers: 4-hydroxynonenal (4-HNE) and malondlaldehyde (MDA), and TGFβ1, 2, and 3, phosphor (p)-TGFβ receptor II (TβRII), p-phosphorylated mothers against decapentaplegic (Smad)2, and p-Smad3. The expression of 3 TGFβ-responsive genes was also assessed. Day 11.5 embryonic hearts were explanted and cultured ex vivo, with or without treatments of a SOD1 mimetic (Tempol; Enzo Life Science, Farmingdale, NY) or a TGFβ recombinant protein for the detection of TGFβ signaling intermediates. RESULTS Levels of 4-HNE and MDA were significantly increased by maternal diabetes, and SOD1 overexpression blocked the increase of these 2 oxidative stress markers. Maternal diabetes suppresses the TGFβ signaling pathway by down-regulating TGFβ1 and TGFβ3 expression. Consequently, phosphorylation of TβRII, Smad2, and Smad3, downstream effectors of TGFβ, and expression of 3 TGFβ-responsive genes were reduced by maternal diabetes, and these reductions were prevented by SOD1 overexpression. Treatment with Tempol or TGFβ recombinant protein restored high-glucose-suppressed TGFβ signaling intermediates and responsive gene expression. CONCLUSION Oxidative stress mediates the inhibitory effect of hyperglycemia in the developing heart. Antioxidants, TGFβ recombinant proteins, or TGFβ agonists may have potential therapeutic values in the prevention of heart defects in diabetic pregnancies.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
49
|
Allison P, Espiritu D, Barnett JV, Camenisch TD. Type III TGFβ receptor and Src direct hyaluronan-mediated invasive cell motility. Cell Signal 2015; 27:453-9. [PMID: 25499979 PMCID: PMC5604324 DOI: 10.1016/j.cellsig.2014.11.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/21/2014] [Indexed: 02/07/2023]
Abstract
During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types which contribute to the coronary vessels. This process requires epithelial to mesenchymal transition (EMT) and directed cellular invasion. The Type III Transforming Growth Factor-beta Receptor (TGFβR3) is required for epicardial cell invasion and coronary vessel development. Using primary epicardial cells derived from Tgfbr3(+/+) and Tgfbr3(-/-) mouse embryos, high-molecular weight hyaluronan (HMWHA) stimulated cellular invasion and filamentous (f-actin) polymerization are detected in Tgfbr3(+/+) cells, but not in Tgfbr3(-/-) cells. Furthermore, HMWHA-stimulated cellular invasion and f-actin polymerization in Tgfbr3(+/+) epicardial cells are dependent on Src kinase. Src activation in HMWHA-stimulated Tgfbr3(-/-) epicardial cells is not detected in response to HMWHA. RhoA and Rac1 also fail to activate in response to HMWHA in Tgfbr3(-/-) cells. These events coincide with defective f-actin formation and deficient cellular invasion. Finally, a T841A activating substitution in TGFβR3 drives ligand-independent Src activation. Collectively, these data define a TGFβR3-Src-RhoA/Rac1 pathway that is essential for hyaluronan-directed cell invasion in epicardial cells.
Collapse
Affiliation(s)
- Patrick Allison
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| | - Daniella Espiritu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| | - Joey V. Barnett
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Todd D. Camenisch
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States,Southwest Environmental Health Sciences Center, University of Arizona, Tucson, AZ 85721, United States,Steele Children's Research Center, University of Arizona, Tucson, AZ 85721, United States,Sarver Heart Center, University of Arizona, Tucson, AZ 85721, United States,Bio5 Institute, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
50
|
Hill CR, Jacobs BH, Brown CB, Barnett JV, Goudy SL. Type III transforming growth factor beta receptor regulates vascular and osteoblast development during palatogenesis. Dev Dyn 2014; 244:122-33. [PMID: 25382630 DOI: 10.1002/dvdy.24225] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cleft palate occurs in up to 1:1,000 live births and is associated with mutations in multiple genes. Palatogenesis involves a complex choreography of palatal shelf elongation, elevation, and fusion. Transforming growth factor β (TGFβ) and bone morphogenetic protein 2 (BMP2) canonical signaling is required during each stage of palate development. The type III TGFβ receptor (TGFβR3) binds all three TGFβ ligands and BMP2, but its contribution to palatogenesis is unknown. RESULTS The role of TGFβR3 during palate formation was found to be during palatal shelf elongation and elevation. Tgfbr3(-) (/) (-) embryos displayed reduced palatal shelf width and height, changes in proliferation and apoptosis, and reduced vascular and osteoblast differentiation. Abnormal vascular plexus organization as well as aberrant expression of arterial (Notch1, Alk1), venous (EphB4), and lymphatic (Lyve1) markers was also observed. Decreased osteoblast differentiation factors (Runx2, alk phos, osteocalcin, col1A1, and col1A2) demonstrated poor mesenchymal cell commitment to the osteoblast lineage within the maxilla and palatal shelves in Tgfbr3(-) (/) (-) embryos. Additionally, in vitro bone mineralization induced by osteogenic medium (OM+BMP2) was insufficient in Tgfbr3(-) (/) (-) palatal mesenchyme, but mineralization was rescued by overexpression of TGFβR3. CONCLUSIONS These data reveal a critical, previously unrecognized role for TGFβR3 in vascular and osteoblast development during palatogenesis.
Collapse
Affiliation(s)
- Cynthia R Hill
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | |
Collapse
|