1
|
Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C. Pacemaker Channels and the Chronotropic Response in Health and Disease. Circ Res 2024; 134:1348-1378. [PMID: 38723033 PMCID: PMC11081487 DOI: 10.1161/circresaha.123.323250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating β-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.
Collapse
Affiliation(s)
- Konstantin Hennis
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Chiara Piantoni
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Christian Wahl-Schott
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
2
|
Thakore P, Clark JE, Aubdool AA, Thapa D, Starr A, Fraser PA, Farrell-Dillon K, Fernandes ES, McFadzean I, Brain SD. Transient Receptor Potential Canonical 5 (TRPC5): Regulation of Heart Rate and Protection against Pathological Cardiac Hypertrophy. Biomolecules 2024; 14:442. [PMID: 38672459 PMCID: PMC11047837 DOI: 10.3390/biom14040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
TRPC5 is a non-selective cation channel that is expressed in cardiomyocytes, but there is a lack of knowledge of its (patho)physiological role in vivo. Here, we examine the role of TRPC5 on cardiac function under basal conditions and during cardiac hypertrophy. Cardiovascular parameters were assessed in wild-type (WT) and global TRPC5 knockout (KO) mice. Despite no difference in blood pressure or activity, heart rate was significantly reduced in TRPC5 KO mice. Echocardiography imaging revealed an increase in stroke volume, but cardiac contractility was unaffected. The reduced heart rate persisted in isolated TRPC5 KO hearts, suggesting changes in basal cardiac pacing. Heart rate was further investigated by evaluating the reflex change following drug-induced pressure changes. The reflex bradycardic response following phenylephrine was greater in TRPC5 KO mice but the tachycardic response to SNP was unchanged, indicating an enhancement in the parasympathetic control of the heart rate. Moreover, the reduction in heart rate to carbachol was greater in isolated TRPC5 KO hearts. To evaluate the role of TRPC5 in cardiac pathology, mice were subjected to abdominal aortic banding (AAB). An exaggerated cardiac hypertrophy response to AAB was observed in TRPC5 KO mice, with an increased expression of hypertrophy markers, fibrosis, reactive oxygen species, and angiogenesis. This study provides novel evidence for a direct effect of TRPC5 on cardiac function. We propose that (1) TRPC5 is required for maintaining heart rate by regulating basal cardiac pacing and in response to pressure lowering, and (2) TRPC5 protects against pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Pratish Thakore
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - James E. Clark
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Aisah A. Aubdool
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Dibesh Thapa
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Anna Starr
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Paul A. Fraser
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Keith Farrell-Dillon
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| | - Elizabeth S. Fernandes
- Programa de Pós-Graduação, em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80230-020, PR, Brazil;
| | - Ian McFadzean
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
- School of Bioscience Education, Faculty of Life Sciences & Medicine, King’s College London, London SE1 1UL, UK
| | - Susan D. Brain
- BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London SE1 9NH, UK (J.E.C.); (A.A.A.); (D.T.); (A.S.); (P.A.F.); (K.F.-D.)
| |
Collapse
|
3
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
4
|
Bose SJ, Read MJ, Akerman E, Capel RA, Ayagama T, Russell A, Terrar DA, Zaccolo M, Burton RAB. Inhibition of adenylyl cyclase 1 by ST034307 inhibits IP 3-evoked changes in sino-atrial node beat rate. Front Pharmacol 2022; 13:951897. [PMID: 36105228 PMCID: PMC9465815 DOI: 10.3389/fphar.2022.951897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial arrhythmias, such as atrial fibrillation (AF), are a major mortality risk and a leading cause of stroke. The IP3 signalling pathway has been proposed as an atrial-specific target for AF therapy, and atrial IP3 signalling has been linked to the activation of calcium sensitive adenylyl cyclases AC1 and AC8. We investigated the involvement of AC1 in the response of intact mouse atrial tissue and isolated guinea pig atrial and sino-atrial node (SAN) cells to the α-adrenoceptor agonist phenylephrine (PE) using the selective AC1 inhibitor ST034307. The maximum rate change of spontaneously beating mouse right atrial tissue exposed to PE was reduced from 14.5% to 8.2% (p = 0.005) in the presence of 1 μM ST034307, whereas the increase in tension generated in paced left atrial tissue in the presence of PE was not inhibited by ST034307 (Control = 14.2%, ST034307 = 16.3%; p > 0.05). Experiments were performed using isolated guinea pig atrial and SAN cells loaded with Fluo-5F-AM to record changes in calcium transients (CaT) generated by 10 μM PE in the presence and absence of 1 μM ST034307. ST034307 significantly reduced the beating rate of SAN cells (0.34-fold decrease; p = 0.003) but did not inhibit changes in CaT amplitude in response to PE in atrial cells. The results presented here demonstrate pharmacologically the involvement of AC1 in the downstream response of atrial pacemaker activity to α-adrenoreceptor stimulation and IP3R calcium release.
Collapse
Affiliation(s)
- Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Matthew J. Read
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Emily Akerman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rebecca A. Capel
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Angela Russell
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Derek A. Terrar
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
5
|
Louradour J, Bortolotti O, Torre E, Bidaud I, Lamb N, Fernandez A, Le Guennec JY, Mangoni ME, Mesirca P. L-Type Cav1.3 Calcium Channels Are Required for Beta-Adrenergic Triggered Automaticity in Dormant Mouse Sinoatrial Pacemaker Cells. Cells 2022; 11:cells11071114. [PMID: 35406677 PMCID: PMC8997967 DOI: 10.3390/cells11071114] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Sinoatrial node cells (SANC) automaticity is generated by functional association between the activity of plasmalemmal ion channels and local diastolic intracellular Ca2+ release (LCR) from ryanodine receptors. Strikingly, most isolated SANC exhibit a “dormant” state, whereas only a fraction shows regular firing as observed in intact SAN. Recent studies showed that β-adrenergic stimulation can initiate spontaneous firing in dormant SANC, though this mechanism is not entirely understood. Methods: To investigate the role of L-type Cav1.3 Ca2+ channels in the adrenergic regulation of automaticity in dormant SANC, we used a knock-in mouse strain in which the sensitivity of L-type Cav1.2 α1 subunits to dihydropyridines (DHPs) was inactivated (Cav1.2DHP−/−), enabling the selective pharmacological inhibition of Cav1.3 by DHPs. Results: In dormant SANC, β-adrenergic stimulation with isoproterenol (ISO) induced spontaneous action potentials (AP) and Ca2+ transients, which were completely arrested with concomitant perfusion of the DHP nifedipine. In spontaneously firing SANC at baseline, Cav1.3 inhibition completely reversed the effect of β-adrenergic stimulation on AP and the frequency of Ca2+ transients. Confocal calcium imaging of SANC showed that the β-adrenergic-induced synchronization of LCRs is regulated by the activity of Cav1.3 channels. Conclusions: Our study shows a novel role of Cav1.3 channels in initiating and maintaining automaticity in dormant SANC upon β-adrenergic stimulation.
Collapse
Affiliation(s)
- Julien Louradour
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 34090 Montpellier, France;
| | - Olivier Bortolotti
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
| | - Ned Lamb
- Mammalian Stem Cell Biology Group, Institute of Human Genetics, Université de Montpellier, CNRS, 34090 Montpellier, France; (N.L.); (A.F.)
| | - Anne Fernandez
- Mammalian Stem Cell Biology Group, Institute of Human Genetics, Université de Montpellier, CNRS, 34090 Montpellier, France; (N.L.); (A.F.)
| | - Jean-Yves Le Guennec
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 34090 Montpellier, France;
| | - Matteo E. Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
- Correspondence: (M.E.M.); (P.M.)
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
- Correspondence: (M.E.M.); (P.M.)
| |
Collapse
|
6
|
Zhuang XL, Zhu ZL, Huang QH, Yan FR, Zheng SY, Lai SM, Jiao HX, Lin MJ. High magnesium mitigates the vasoconstriction mediated by different types of calcium influx from monocrotaline-induced pulmonary hypertensive rats. Exp Physiol 2022; 107:359-373. [PMID: 35193162 DOI: 10.1113/ep090029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to examine and explore the involvement of Mg2+ in mitigating the vasoconstriction in PAs and sPAs in the MCT-PAH rat model. What are the main finding and its importance? 1.Both SOCE- and ROCE-mediated vasoconstriction enhanced in the MCT-PAH model. 2.High magnesium inhibited vasoconstriction due to directly antagonizing Ca2+ and increasing NO release. 3.The inhibition effect of high magnesium was more notable in sPA. ABSTRACT Increased extracellular magnesium concentration ([Mg2+ ]e ) has been evidenced to attenuate the endothelin-1 (ET-1)-induced contractile response via the release of nitric oxide (NO) from the endothelium in proximal pulmonary arteries (PAs) of chronic hypoxic (CH) mice. Here we further examined the involvement of Mg2+ in the inhibition of vasoconstriction in PAs and distal smaller pulmonary arteries (sPAs) in a monocrotaline-induced pulmonary arterial hypertension (MCT-PAH) rat model. The data showed that in control rats, vasoconstriction in sPAs is more intense than that in PAs. In MCT-PAH rats, the store-operated Ca2+ entry (SOCE)-, and receptor-operated Ca2+ entry (ROCE)-mediated contraction was significantly strengthened. However, there was no upregulation of the vasoconstriction mediated by voltage-dependent calcium entry (VDCE). Furthermore, high magnesium greatly inhibited the VDCE-mediated contraction in PAs instead of sPAs, which was opposite to the ROCE-mediated contraction. Moreover, MCT pretreatment partly eliminated the endothelium-dependent vasodilation in PAs, which in sPAs, however, was still promoted by magnesium due to the increased NO release in pulmonary microvascular endothelial cells (PMVECs). In conclusion, the findings suggest that both SOCE- and ROCE-mediated vasoconstriction in the MCT-PAH model are enhanced, especially in sPAs. The inhibition effect of high magnesium on vasoconstriction can be achieved partly by its direct role as a Ca2+ antagonist and partly by increasing the NO release in PMVECs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiao-Ling Zhuang
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China.,Department of Pathology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Provinece, PR China
| | - Zhuang-Li Zhu
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China
| | - Qiu-Hong Huang
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China.,School of Basic Medicine, Quanzhou Medical College, Quanzhou, Fujian Provinece, PR China
| | - Fu-Rong Yan
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China.,Center for Molecular Diagnosis and Therapy, Respiratory Medicine Center of Fujian Provinece, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, PR China
| | - Si-Yi Zheng
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China
| | - Su-Mei Lai
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China
| | - Hai-Xia Jiao
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China
| | - Mo-Jun Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Provinece, People's Republic of China
| |
Collapse
|
7
|
Bon RS, Wright DJ, Beech DJ, Sukumar P. Pharmacology of TRPC Channels and Its Potential in Cardiovascular and Metabolic Medicine. Annu Rev Pharmacol Toxicol 2022; 62:427-446. [PMID: 34499525 DOI: 10.1146/annurev-pharmtox-030121-122314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient receptor potential canonical (TRPC) proteins assemble to form homo- or heterotetrameric, nonselective cation channels permeable to K+, Na+, and Ca2+. TRPC channels are thought to act as complex integrators of physical and chemical environmental stimuli. Although the understanding of essential physiological roles of TRPC channels is incomplete, their implication in various pathological mechanisms and conditions of the nervous system, kidneys, and cardiovascular system in combination with the lack of major adverse effects of TRPC knockout or TRPC channel inhibition is driving the search of TRPC channel modulators as potential therapeutics. Here, we review the most promising small-molecule TRPC channel modulators, the understanding of their mode of action, and their potential in the study and treatment of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David J Wright
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David J Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - Piruthivi Sukumar
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
8
|
Turner D, Kang C, Mesirca P, Hong J, Mangoni ME, Glukhov AV, Sah R. Electrophysiological and Molecular Mechanisms of Sinoatrial Node Mechanosensitivity. Front Cardiovasc Med 2021; 8:662410. [PMID: 34434970 PMCID: PMC8382116 DOI: 10.3389/fcvm.2021.662410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
The understanding of the electrophysiological mechanisms that underlie mechanosensitivity of the sinoatrial node (SAN), the primary pacemaker of the heart, has been evolving over the past century. The heart is constantly exposed to a dynamic mechanical environment; as such, the SAN has numerous canonical and emerging mechanosensitive ion channels and signaling pathways that govern its ability to respond to both fast (within second or on beat-to-beat manner) and slow (minutes) timescales. This review summarizes the effects of mechanical loading on the SAN activity and reviews putative candidates, including fast mechanoactivated channels (Piezo, TREK, and BK) and slow mechanoresponsive ion channels [including volume-regulated chloride channels and transient receptor potential (TRP)], as well as the components of mechanochemical signal transduction, which may contribute to SAN mechanosensitivity. Furthermore, we examine the structural foundation for both mechano-electrical and mechanochemical signal transduction and discuss the role of specialized membrane nanodomains, namely, caveolae, in mechanical regulation of both membrane and calcium clock components of the so-called coupled-clock pacemaker system responsible for SAN automaticity. Finally, we emphasize how these mechanically activated changes contribute to the pathophysiology of SAN dysfunction and discuss controversial areas necessitating future investigations. Though the exact mechanisms of SAN mechanosensitivity are currently unknown, identification of such components, their impact into SAN pacemaking, and pathological remodeling may provide new therapeutic targets for the treatment of SAN dysfunction and associated rhythm abnormalities.
Collapse
Affiliation(s)
- Daniel Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Chen Kang
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Juan Hong
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Rajan Sah
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Hu W, Clark RB, Giles WR, Shibata E, Zhang H. Physiological Roles of the Rapidly Activated Delayed Rectifier K + Current in Adult Mouse Heart Primary Pacemaker Activity. Int J Mol Sci 2021; 22:4761. [PMID: 33946248 PMCID: PMC8124469 DOI: 10.3390/ijms22094761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Robust, spontaneous pacemaker activity originating in the sinoatrial node (SAN) of the heart is essential for cardiovascular function. Anatomical, electrophysiological, and molecular methods as well as mathematical modeling approaches have quite thoroughly characterized the transmembrane fluxes of Na+, K+ and Ca2+ that produce SAN action potentials (AP) and 'pacemaker depolarizations' in a number of different in vitro adult mammalian heart preparations. Possible ionic mechanisms that are responsible for SAN primary pacemaker activity are described in terms of: (i) a Ca2+-regulated mechanism based on a requirement for phasic release of Ca2+ from intracellular stores and activation of an inward current-mediated by Na+/Ca2+ exchange; (ii) time- and voltage-dependent activation of Na+ or Ca2+ currents, as well as a cyclic nucleotide-activated current, If; and/or (iii) a combination of (i) and (ii). Electrophysiological studies of single spontaneously active SAN myocytes in both adult mouse and rabbit hearts consistently reveal significant expression of a rapidly activating time- and voltage-dependent K+ current, often denoted IKr, that is selectively expressed in the leading or primary pacemaker region of the adult mouse SAN. The main goal of the present study was to examine by combined experimental and simulation approaches the functional or physiological roles of this K+ current in the pacemaker activity. Our patch clamp data of mouse SAN myocytes on the effects of a pharmacological blocker, E4031, revealed that a rapidly activating K+ current is essential for action potential (AP) repolarization, and its deactivation during the pacemaker potential contributes a small but significant component to the pacemaker depolarization. Mathematical simulations using a murine SAN AP model confirm that well known biophysical properties of a delayed rectifier K+ current can contribute to its role in generating spontaneous myogenic activity.
Collapse
Affiliation(s)
- Wei Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | - Robert B. Clark
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.)
| | - Wayne R. Giles
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.B.C.); (W.R.G.)
| | - Erwin Shibata
- Department of Physiology, Carver School of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
10
|
Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet 2021; 12:654925. [PMID: 33868385 PMCID: PMC8047474 DOI: 10.3389/fgene.2021.654925] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.
Collapse
Affiliation(s)
- Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Pietro Mesirca
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matteo E. Mangoni
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
11
|
Pineda S, Nikolova-Krstevski V, Leimena C, Atkinson AJ, Altekoester AK, Cox CD, Jacoby A, Huttner IG, Ju YK, Soka M, Ohanian M, Trivedi G, Kalvakuri S, Birker K, Johnson R, Molenaar P, Kuchar D, Allen DG, van Helden DF, Harvey RP, Hill AP, Bodmer R, Vogler G, Dobrzynski H, Ocorr K, Fatkin D. Conserved Role of the Large Conductance Calcium-Activated Potassium Channel, K Ca1.1, in Sinus Node Function and Arrhythmia Risk. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003144. [PMID: 33629867 DOI: 10.1161/circgen.120.003144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND KCNMA1 encodes the α-subunit of the large-conductance Ca2+-activated K+ channel, KCa1.1, and lies within a linkage interval for atrial fibrillation (AF). Insights into the cardiac functions of KCa1.1 are limited, and KCNMA1 has not been investigated as an AF candidate gene. METHODS The KCNMA1 gene was sequenced in 118 patients with familial AF. The role of KCa1.1 in normal cardiac structure and function was evaluated in humans, mice, zebrafish, and fly. A novel KCNMA1 variant was functionally characterized. RESULTS A complex KCNMA1 variant was identified in 1 kindred with AF. To evaluate potential disease mechanisms, we first evaluated the distribution of KCa1.1 in normal hearts using immunostaining and immunogold electron microscopy. KCa1.1 was seen throughout the atria and ventricles in humans and mice, with strong expression in the sinus node. In an ex vivo murine sinoatrial node preparation, addition of the KCa1.1 antagonist, paxilline, blunted the increase in beating rate induced by adrenergic receptor stimulation. Knockdown of the KCa1.1 ortholog, kcnma1b, in zebrafish embryos resulted in sinus bradycardia with dilatation and reduced contraction of the atrium and ventricle. Genetic inactivation of the Drosophila KCa1.1 ortholog, slo, systemically or in adult stages, also slowed the heartbeat and produced fibrillatory cardiac contractions. Electrophysiological characterization of slo-deficient flies revealed bursts of action potentials, reflecting increased events of fibrillatory arrhythmias. Flies with cardiac-specific overexpression of the human KCNMA1 mutant also showed increased heart period and bursts of action potentials, similar to the KCa1.1 loss-of-function models. CONCLUSIONS Our data point to a highly conserved role of KCa1.1 in sinus node function in humans, mice, zebrafish, and fly and suggest that KCa1.1 loss of function may predispose to AF.
Collapse
Affiliation(s)
- Santiago Pineda
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Vesna Nikolova-Krstevski
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Christiana Leimena
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Andrew J Atkinson
- Institute of Cardiovascular Sciences, University of Manchester, United Kingdom (A.J.A., H.D.)
| | - Ann-Kristin Altekoester
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Arie Jacoby
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Inken G Huttner
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Yue-Kun Ju
- Bosch Institute, University of Sydney, Camperdown (Y.-K.J., D.G.A.)
| | - Magdalena Soka
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Monique Ohanian
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Gunjan Trivedi
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Sreehari Kalvakuri
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Katja Birker
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Renee Johnson
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Peter Molenaar
- Faculty of Health, Queensland University of Technology (P.M.).,School of Medicine, University of Queensland, Prince Charles Hospital, Brisbane, Queensland, Australia (P.M.)
| | - Dennis Kuchar
- Cardiology Department, St Vincent's Hospital, Darlinghurst (D.K., D.F.)
| | - David G Allen
- Bosch Institute, University of Sydney, Camperdown (Y.-K.J., D.G.A.)
| | - Dirk F van Helden
- University of Newcastle and Hunter Medical Research Institute, NSW, Australia (D.F.v.H.)
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Rolf Bodmer
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Georg Vogler
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Halina Dobrzynski
- Institute of Cardiovascular Sciences, University of Manchester, United Kingdom (A.J.A., H.D.).,Jagiellonian University Medical College, Cracow, Poland (H.D.)
| | - Karen Ocorr
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst (D.K., D.F.)
| |
Collapse
|
12
|
Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ, Mangoni ME. Pharmacologic Approach to Sinoatrial Node Dysfunction. Annu Rev Pharmacol Toxicol 2021; 61:757-778. [PMID: 33017571 PMCID: PMC7790915 DOI: 10.1146/annurev-pharmtox-031120-115815] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.
Collapse
Affiliation(s)
- Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Vadim V Fedorov
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Thomas J Hund
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Peter J Mohler
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| |
Collapse
|
13
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Baudot M, Torre E, Bidaud I, Louradour J, Torrente AG, Fossier L, Talssi L, Nargeot J, Barrère-Lemaire S, Mesirca P, Mangoni ME. Concomitant genetic ablation of L-type Ca v1.3 (α 1D) and T-type Ca v3.1 (α 1G) Ca 2+ channels disrupts heart automaticity. Sci Rep 2020; 10:18906. [PMID: 33144668 PMCID: PMC7642305 DOI: 10.1038/s41598-020-76049-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/15/2020] [Indexed: 12/02/2022] Open
Abstract
Cardiac automaticity is set by pacemaker activity of the sinus node (SAN). In addition to the ubiquitously expressed cardiac voltage-gated L-type Cav1.2 Ca2+ channel isoform, pacemaker cells within the SAN and the atrioventricular node co-express voltage-gated L-type Cav1.3 and T-type Cav3.1 Ca2+ channels (SAN-VGCCs). The role of SAN-VGCCs in automaticity is incompletely understood. We used knockout mice carrying individual genetic ablation of Cav1.3 (Cav1.3−/−) or Cav3.1 (Cav3.1−/−) channels and double mutant Cav1.3−/−/Cav3.1−/− mice expressing only Cav1.2 channels. We show that concomitant loss of SAN-VGCCs prevents physiological SAN automaticity, blocks impulse conduction and compromises ventricular rhythmicity. Coexpression of SAN-VGCCs is necessary for impulse formation in the central SAN. In mice lacking SAN-VGCCs, residual pacemaker activity is predominantly generated in peripheral nodal and extranodal sites by f-channels and TTX-sensitive Na+ channels. In beating SAN cells, ablation of SAN-VGCCs disrupted late diastolic local intracellular Ca2+ release, which demonstrates an important role for these channels in supporting the sarcoplasmic reticulum based “Ca2+clock” mechanism during normal pacemaking. These data implicate an underappreciated role for co-expression of SAN-VGCCs in heart automaticity and define an integral role for these channels in mechanisms that control the heartbeat.
Collapse
Affiliation(s)
- Matthias Baudot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France.,Department of Biotechnology and Biosciences, Università Degli Studi di Milano-Bicocca, Milan, Italy
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Julien Louradour
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Lucile Fossier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Leïla Talssi
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France. .,LabEx ICST, Montpellier, France.
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France. .,LabEx ICST, Montpellier, France.
| |
Collapse
|
15
|
Njegic A, Wilson C, Cartwright EJ. Targeting Ca 2 + Handling Proteins for the Treatment of Heart Failure and Arrhythmias. Front Physiol 2020; 11:1068. [PMID: 33013458 PMCID: PMC7498719 DOI: 10.3389/fphys.2020.01068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Diseases of the heart, such as heart failure and cardiac arrhythmias, are a growing socio-economic burden. Calcium (Ca2+) dysregulation is key hallmark of the failing myocardium and has long been touted as a potential therapeutic target in the treatment of a variety of cardiovascular diseases (CVD). In the heart, Ca2+ is essential for maintaining normal cardiac function through the generation of the cardiac action potential and its involvement in excitation contraction coupling. As such, the proteins which regulate Ca2+ cycling and signaling play a vital role in maintaining Ca2+ homeostasis. Changes to the expression levels and function of Ca2+-channels, pumps and associated intracellular handling proteins contribute to altered Ca2+ homeostasis in CVD. The remodeling of Ca2+-handling proteins therefore results in impaired Ca2+ cycling, Ca2+ leak from the sarcoplasmic reticulum and reduced Ca2+ clearance, all of which contributes to increased intracellular Ca2+. Currently, approved treatments for targeting Ca2+ handling dysfunction in CVD are focused on Ca2+ channel blockers. However, whilst Ca2+ channel blockers have been successful in the treatment of some arrhythmic disorders, they are not universally prescribed to heart failure patients owing to their ability to depress cardiac function. Despite the progress in CVD treatments, there remains a clear need for novel therapeutic approaches which are able to reverse pathophysiology associated with heart failure and arrhythmias. Given that heart failure and cardiac arrhythmias are closely associated with altered Ca2+ homeostasis, this review will address the molecular changes to proteins associated with both Ca2+-handling and -signaling; their potential as novel therapeutic targets will be discussed in the context of pre-clinical and, where available, clinical data.
Collapse
Affiliation(s)
- Alexandra Njegic
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Camacho Londoño JE, Kuryshev V, Zorn M, Saar K, Tian Q, Hübner N, Nawroth P, Dietrich A, Birnbaumer L, Lipp P, Dieterich C, Freichel M. Transcriptional signatures regulated by TRPC1/C4-mediated Background Ca 2+ entry after pressure-overload induced cardiac remodelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:86-104. [PMID: 32738354 DOI: 10.1016/j.pbiomolbio.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 07/21/2020] [Indexed: 01/17/2023]
Abstract
AIMS After summarizing current concepts for the role of TRPC cation channels in cardiac cells and in processes triggered by mechanical stimuli arising e.g. during pressure overload, we analysed the role of TRPC1 and TRPC4 for background Ca2+ entry (BGCE) and for cardiac pressure overload induced transcriptional remodelling. METHODS AND RESULTS Mn2+-quench analysis in cardiomyocytes from several Trpc-deficient mice revealed that both TRPC1 and TRPC4 are required for BGCE. Electrically-evoked cell shortening of cardiomyocytes from TRPC1/C4-DKO mice was reduced, whereas parameters of cardiac contractility and relaxation assessed in vivo were unaltered. As pathological cardiac remodelling in mice depends on their genetic background, and the development of cardiac remodelling was found to be reduced in TRPC1/C4-DKO mice on a mixed genetic background, we studied TRPC1/C4-DKO mice on a C57BL6/N genetic background. Cardiac hypertrophy was reduced in those mice after chronic isoproterenol infusion (-51.4%) or after one week of transverse aortic constriction (TAC; -73.0%). This last manoeuvre was preceded by changes in the pressure overload induced transcriptional program as analysed by RNA sequencing. Genes encoding specific collagens, the Mef2 target myomaxin and the gene encoding the mechanosensitive channel Piezo2 were up-regulated after TAC in wild type but not in TRPC1/C4-DKO hearts. CONCLUSIONS Deletion of the TRPC1 and TRPC4 channel proteins protects against development of pathological cardiac hypertrophy independently of the genetic background. To determine if the TRPC1/C4-dependent changes in the pressure overload induced alterations in the transcriptional program causally contribute to cardio-protection needs to be elaborated in future studies.
Collapse
Affiliation(s)
- Juan E Camacho Londoño
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany.
| | - Vladimir Kuryshev
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; Innere Medizin III, Bioinformatik und Systemkardiologie, Klaus Tschira Institute for Computational Cardiology, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Markus Zorn
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Kathrin Saar
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Qinghai Tian
- Medical Faculty, Centre for Molecular Signalling (PZMS), Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Norbert Hübner
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany; Berlin Institute of Health (BIH), 10178, Berlin, Germany; Charité -Universitätsmedizin, 10117, Berlin, Germany
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120, Heidelberg, Germany; German Center for Diabetes Research (DZD), Germany; Institute for Diabetes and Cancer IDC Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Dept. of Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität, 80336, München, Germany
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, NIEHS, North Carolina, USA and Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina
| | - Peter Lipp
- Medical Faculty, Centre for Molecular Signalling (PZMS), Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Christoph Dieterich
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany; Innere Medizin III, Bioinformatik und Systemkardiologie, Klaus Tschira Institute for Computational Cardiology, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany.
| |
Collapse
|
17
|
Torrente AG, Mesirca P, Bidaud I, Mangoni ME. Channelopathies of voltage-gated L-type Cav1.3/α 1D and T-type Cav3.1/α 1G Ca 2+ channels in dysfunction of heart automaticity. Pflugers Arch 2020; 472:817-830. [PMID: 32601767 DOI: 10.1007/s00424-020-02421-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 10/24/2022]
Abstract
The heart automaticity is a fundamental physiological function in vertebrates. The cardiac impulse is generated in the sinus node by a specialized population of spontaneously active myocytes known as "pacemaker cells." Failure in generating or conducting spontaneous activity induces dysfunction in cardiac automaticity. Several families of ion channels are involved in the generation and regulation of the heart automaticity. Among those, voltage-gated L-type Cav1.3 (α1D) and T-type Cav3.1 (α1G) Ca2+ channels play important roles in the spontaneous activity of pacemaker cells. Ca2+ channel channelopathies specifically affecting cardiac automaticity are considered rare. Recent research on familial disease has identified mutations in the Cav1.3-encoding CACNA1D gene that underlie congenital sinus node dysfunction and deafness (OMIM # 614896). In addition, both Cav1.3 and Cav3.1 channels have been identified as pathophysiological targets of sinus node dysfunction and heart block, caused by congenital autoimmune disease of the cardiac conduction system. The discovery of channelopathies linked to Cav1.3 and Cav3.1 channels underscores the importance of Ca2+ channels in the generation and regulation of heart's automaticity.
Collapse
Affiliation(s)
- Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141, rue de la cardonille, 34094, Montpellier, France. .,LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France.
| |
Collapse
|
18
|
Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiol Rev 2020; 101:37-92. [PMID: 32380895 DOI: 10.1152/physrev.00036.2019] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Segin S, Berlin M, Richter C, Medert R, Flockerzi V, Worley P, Freichel M, Camacho Londoño JE. Cardiomyocyte-Specific Deletion of Orai1 Reveals Its Protective Role in Angiotensin-II-Induced Pathological Cardiac Remodeling. Cells 2020; 9:cells9051092. [PMID: 32354146 PMCID: PMC7290784 DOI: 10.3390/cells9051092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Pathological cardiac remodeling correlates with chronic neurohumoral stimulation and abnormal Ca2+ signaling in cardiomyocytes. Store-operated calcium entry (SOCE) has been described in adult and neonatal murine cardiomyocytes, and Orai1 proteins act as crucial ion-conducting constituents of this calcium entry pathway that can be engaged not only by passive Ca2+ store depletion but also by neurohumoral stimuli such as angiotensin-II. In this study, we, therefore, analyzed the consequences of Orai1 deletion for cardiomyocyte hypertrophy in neonatal and adult cardiomyocytes as well as for other features of pathological cardiac remodeling including cardiac contractile function in vivo. Cellular hypertrophy induced by angiotensin-II in embryonic cardiomyocytes from Orai1-deficient mice was blunted in comparison to cells from litter-matched control mice. Due to lethality of mice with ubiquitous Orai1 deficiency and to selectively analyze the role of Orai1 in adult cardiomyocytes, we generated a cardiomyocyte-specific and temporally inducible Orai1 knockout mouse line (Orai1CM–KO). Analysis of cardiac contractility by pressure-volume loops under basal conditions and of cardiac histology did not reveal differences between Orai1CM–KO mice and controls. Moreover, deletion of Orai1 in cardiomyocytes in adult mice did not protect them from angiotensin-II-induced cardiac remodeling, but cardiomyocyte cross-sectional area and cardiac fibrosis were enhanced. These alterations in the absence of Orai1 go along with blunted angiotensin-II-induced upregulation of the expression of Myoz2 and a lack of rise in angiotensin-II-induced STIM1 and Orai3 expression. In contrast to embryonic cardiomyocytes, where Orai1 contributes to the development of cellular hypertrophy, the results obtained from deletion of Orai1 in the adult myocardium reveal a protective function of Orai1 against the development of angiotensin-II-induced cardiac remodeling, possibly involving signaling via Orai3/STIM1-calcineurin-NFAT related pathways.
Collapse
Affiliation(s)
- Sebastian Segin
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, INF 366, 69120 Heidelberg, Germany; (S.S.); (M.B.); (C.R.); (R.M.); (M.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Michael Berlin
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, INF 366, 69120 Heidelberg, Germany; (S.S.); (M.B.); (C.R.); (R.M.); (M.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Christin Richter
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, INF 366, 69120 Heidelberg, Germany; (S.S.); (M.B.); (C.R.); (R.M.); (M.F.)
| | - Rebekka Medert
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, INF 366, 69120 Heidelberg, Germany; (S.S.); (M.B.); (C.R.); (R.M.); (M.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany;
| | - Paul Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA;
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, INF 366, 69120 Heidelberg, Germany; (S.S.); (M.B.); (C.R.); (R.M.); (M.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Juan E. Camacho Londoño
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, INF 366, 69120 Heidelberg, Germany; (S.S.); (M.B.); (C.R.); (R.M.); (M.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-54-86863; Fax: +49-6221-54-8644
| |
Collapse
|
20
|
MacDonald EA, Rose RA, Quinn TA. Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight From Experimental Models and Findings From Humans. Front Physiol 2020; 11:170. [PMID: 32194439 PMCID: PMC7063087 DOI: 10.3389/fphys.2020.00170] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The sinoatrial node is perhaps one of the most important tissues in the entire body: it is the natural pacemaker of the heart, making it responsible for initiating each-and-every normal heartbeat. As such, its activity is heavily controlled, allowing heart rate to rapidly adapt to changes in physiological demand. Control of sinoatrial node activity, however, is complex, occurring through the autonomic nervous system and various circulating and locally released factors. In this review we discuss the coupled-clock pacemaker system and how its manipulation by neurohumoral signaling alters heart rate, considering the multitude of canonical and non-canonical agents that are known to modulate sinoatrial node activity. For each, we discuss the principal receptors involved and known intracellular signaling and protein targets, highlighting gaps in our knowledge and understanding from experimental models and human studies that represent areas for future research.
Collapse
Affiliation(s)
- Eilidh A. MacDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Robert A. Rose
- Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
21
|
Wen H, Gwathmey JK, Xie LH. Role of Transient Receptor Potential Canonical Channels in Heart Physiology and Pathophysiology. Front Cardiovasc Med 2020; 7:24. [PMID: 32158769 PMCID: PMC7052113 DOI: 10.3389/fcvm.2020.00024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential canonical (TRPC) channels are involved in the regulation of cardiac function under (patho)physiological conditions and are closely associated with the pathogenesis of cardiac hypertrophy, arrhythmias, and myocardial infarction. Understanding the molecular mechanisms and the regulatory pathway/locus of TRPC channels in related heart diseases will provide potential new concepts for designing novel drugs targeting TRPC channels. We will present the properties and regulation of TRPC channels and their roles in the development of various forms of heart disease. This article provides a brief review on the role of TRPC channels in the regulation of myocardial function as well as how TRPC channels may serve as a therapeutic target in heart failure and cardiac arrhythmias including atrial fibrillation.
Collapse
Affiliation(s)
- Hairuo Wen
- Beijing Key Laboratory, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China.,Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Judith K Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
22
|
Hof T, Chaigne S, Récalde A, Sallé L, Brette F, Guinamard R. Transient receptor potential channels in cardiac health and disease. Nat Rev Cardiol 2020; 16:344-360. [PMID: 30664669 DOI: 10.1038/s41569-018-0145-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transient receptor potential (TRP) channels are nonselective cationic channels that are generally Ca2+ permeable and have a heterogeneous expression in the heart. In the myocardium, TRP channels participate in several physiological functions, such as modulation of action potential waveform, pacemaking, conduction, inotropy, lusitropy, Ca2+ and Mg2+ handling, store-operated Ca2+ entry, embryonic development, mitochondrial function and adaptive remodelling. Moreover, TRP channels are also involved in various pathological mechanisms, such as arrhythmias, ischaemia-reperfusion injuries, Ca2+-handling defects, fibrosis, maladaptive remodelling, inherited cardiopathies and cell death. In this Review, we present the current knowledge of the roles of TRP channels in different cardiac regions (sinus node, atria, ventricles and Purkinje fibres) and cells types (cardiomyocytes and fibroblasts) and discuss their contribution to pathophysiological mechanisms, which will help to identify the best candidates for new therapeutic targets among the cardiac TRP family.
Collapse
Affiliation(s)
- Thomas Hof
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Sébastien Chaigne
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Alice Récalde
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Laurent Sallé
- Normandie Université, UNICAEN, EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, France
| | - Fabien Brette
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Romain Guinamard
- Normandie Université, UNICAEN, EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, France.
| |
Collapse
|
23
|
TRPC Channels: Dysregulation and Ca 2+ Mishandling in Ischemic Heart Disease. Cells 2020; 9:cells9010173. [PMID: 31936700 PMCID: PMC7017417 DOI: 10.3390/cells9010173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Transient receptor potential canonical (TRPC) channels are ubiquitously expressed in excitable and non-excitable cardiac cells where they sense and respond to a wide variety of physical and chemical stimuli. As other TRP channels, TRPC channels may form homo or heterotetrameric ion channels, and they can associate with other membrane receptors and ion channels to regulate intracellular calcium concentration. Dysfunctions of TRPC channels are involved in many types of cardiovascular diseases. Significant increase in the expression of different TRPC isoforms was observed in different animal models of heart infarcts and in vitro experimental models of ischemia and reperfusion. TRPC channel-mediated increase of the intracellular Ca2+ concentration seems to be required for the activation of the signaling pathway that plays minor roles in the healthy heart, but they are more relevant for cardiac responses to ischemia, such as the activation of different factors of transcription and cardiac hypertrophy, fibrosis, and angiogenesis. In this review, we highlight the current knowledge regarding TRPC implication in different cellular processes related to ischemia and reperfusion and to heart infarction.
Collapse
|
24
|
Specific Upregulation of TRPC1 and TRPC5 Channels by Mineralocorticoid Pathway in Adult Rat Ventricular Cardiomyocytes. Cells 2019; 9:cells9010047. [PMID: 31878108 PMCID: PMC7017140 DOI: 10.3390/cells9010047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
Whereas cardiac TRPC (transient receptor potential canonical) channels and the associated store-operated Ca2+ entry (SOCE) are abnormally elevated during cardiac hypertrophy and heart failure, the mechanism of this upregulation is not fully elucidated but might be related to the activation of the mineralocorticoid pathway. Using a combination of biochemical, Ca2+ imaging, and electrophysiological techniques, we determined the effect of 24-h aldosterone treatment on the TRPCs/Orai-dependent SOCE in adult rat ventricular cardiomyocytes (ARVMs). The 24-h aldosterone treatment (from 100 nM to 1 µM) enhanced depletion-induced Ca2+ entry in ARVMs, as assessed by a faster reduction of Fura-2 fluorescence decay upon the addition of Mn2+ and increased Fluo-4/AM fluorescence following Ca2+ store depletion. These effects were prevented by co-treatment with a specific mineralocorticoid receptor (MR) antagonist, RU-28318, and they are associated with the enhanced depletion-induced N-[4-[3,5-Bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2)-sensitive macroscopic current recorded by patch-clamp experiments. Molecular screening by qRT-PCR and Western blot showed a specific upregulation of TRPC1, TRPC5, and STIM1 expression at the messenger RNA (mRNA) and protein levels upon 24-h aldosterone treatment of ARVMs, corroborated by immunostaining. Our study provides evidence that the mineralocorticoid pathway specifically promotes TRPC1/TRPC5-mediated SOCE in adult rat cardiomyocytes.
Collapse
|
25
|
Pérez-Riera AR, Barbosa-Barros R, Daminello-Raimundo R, de Abreu LC, Nikus K. Current aspects of the basic concepts of the electrophysiology of the sinoatrial node. J Electrocardiol 2019; 57:112-118. [DOI: 10.1016/j.jelectrocard.2019.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
|
26
|
Transient Receptor Potential Canonical Channel Blockers Improve Ventricular Contractile Functions After Ischemia/Reperfusion in a Langendorff-perfused Mouse Heart Model. J Cardiovasc Pharmacol 2019; 71:248-255. [PMID: 29389740 DOI: 10.1097/fjc.0000000000000566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reperfusion of ischemic myocardium is accompanied by intracellular Ca overload, leading to cardiac dysfunction. However, the mechanisms underlying intracellular Ca overload have yet to be fully elucidated. The mechanism may involve the activation of store-operated Ca entry, which is primarily mediated through the transient receptor potential canonical (TRPC) channels. This study was undertaken to examine the possible involvement of TRPC channels in the development of contractile dysfunction associated with reperfusion of ischemic myocardium using a mouse heart model. The functional expression of TRPC channels was confirmed in mouse ventricular myocytes using immunocytochemistry, Western blotting, and patch-clamp experiments. The left ventricular functions were assessed by measuring left ventricular end-diastolic pressure, left ventricular developed pressure, and its first derivatives in a Langendorff-perfused mouse heart subjected to 30 minutes of normothermic (37°C) global ischemia followed by 60 minutes of reperfusion. Under control conditions, left ventricular functions were deteriorated during reperfusion, which was significantly ameliorated by administration of the TRPC channel blockers 2-aminoethoxydiphenyl borate and La during initial 5 minutes of reperfusion. Our findings suggest that TRPC channels are involved in mediating contractile dysfunction during reperfusion of ischemic myocardium and detect TRPC channels as a potential therapeutic target for preventing myocardial ischemia/reperfusion injury.
Collapse
|
27
|
Falcón D, Galeano-Otero I, Calderón-Sánchez E, Del Toro R, Martín-Bórnez M, Rosado JA, Hmadcha A, Smani T. TRP Channels: Current Perspectives in the Adverse Cardiac Remodeling. Front Physiol 2019; 10:159. [PMID: 30881310 PMCID: PMC6406032 DOI: 10.3389/fphys.2019.00159] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Calcium is an important second messenger required not only for the excitation-contraction coupling of the heart but also critical for the activation of cell signaling pathways involved in the adverse cardiac remodeling and consequently for the heart failure. Sustained neurohumoral activation, pressure-overload, or myocardial injury can cause pathologic hypertrophic growth of the heart followed by interstitial fibrosis. The consequent heart’s structural and molecular adaptation might elevate the risk of developing heart failure and malignant arrhythmia. Compelling evidences have demonstrated that Ca2+ entry through TRP channels might play pivotal roles in cardiac function and pathology. TRP proteins are classified into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin), and TRPP (polycystin), which are activated by numerous physical and/or chemical stimuli. TRP channels participate to the handling of the intracellular Ca2+ concentration in cardiac myocytes and are mediators of different cardiovascular alterations. This review provides an overview of the current knowledge of TRP proteins implication in the pathologic process of some frequent cardiac diseases associated with the adverse cardiac remodeling such as cardiac hypertrophy, fibrosis, and conduction alteration.
Collapse
Affiliation(s)
- Debora Falcón
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - Eva Calderón-Sánchez
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | - Raquel Del Toro
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | - Marta Martín-Bórnez
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - Abdelkrim Hmadcha
- Department of Generation and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain.,CIBERDEM, Madrid, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
28
|
Positive Feedback Mechanisms among Local Ca Releases, NCX, and I CaL Ignite Pacemaker Action Potentials. Biophys J 2019. [PMID: 29539403 DOI: 10.1016/j.bpj.2017.12.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent data suggest that cardiac pacemaker cell function is determined by numerous time-, voltage-, and Ca-dependent interactions of cell membrane electrogenic proteins (M-clock) and intracellular Ca cycling proteins (Ca-clock), forming a coupled-clock system. Many aspects of the coupled-clock system, however, remain underexplored. The key players of the system are Ca release channels (ryanodine receptors), generating local Ca releases (LCRs) from sarcoplasmic reticulum, electrogenic Na/Ca exchanger (NCX) current, and L-type Ca current (ICaL). We combined numerical model simulations with experimental simultaneous recordings of action potentials (APs) and Ca to gain further insight into the complex interactions within the system. Our simulations revealed a positive feedback mechanism, dubbed AP ignition, which accelerates the diastolic depolarization (DD) to reach AP threshold. The ignition phase begins when LCRs begin to occur and the magnitude of inward NCX current begins to increase. The NCX current, together with funny current and T-type Ca current accelerates DD, bringing the membrane potential to ICaL activation threshold. During the ignition phase, ICaL-mediated Ca influx generates more LCRs via Ca-induced Ca release that further activates inward NCX current, creating a positive feedback. Simultaneous recordings of membrane potential and confocal Ca images support the model prediction of the positive feedback among LCRs and ICaL, as diastolic LCRs begin to occur below and continue within the voltage range of ICaL activation. The ignition phase onset (identified within the fine DD structure) begins when DD starts to notably accelerate (∼0.15 V/s) above the recording noise. Moreover, the timing of the ignition onset closely predicted the duration of each AP cycle in the basal state, in the presence of autonomic receptor stimulation, and in response to specific inhibition of either the M-clock or Ca-clock, thus indicating general importance of the new coupling mechanism for regulation of the pacemaker cell cycle duration, and ultimately the heart rate.
Collapse
|
29
|
Han L, Li J. Canonical transient receptor potential 3 channels in atrial fibrillation. Eur J Pharmacol 2018; 837:1-7. [PMID: 30153442 DOI: 10.1016/j.ejphar.2018.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 02/08/2023]
Abstract
The pathogenesis of atrial fibrillation (AF) is largely dependent on structural remodeling and electrical reconfiguration, which in turn drive localized fibrosis. Canonical transient receptor potential 3 (TRPC3) channel is indispensable regulator of fibrosis development, promoting fibroblasts to transition into myofibroblasts via intracellular Ca2+ overload. TRPC3 is a non-voltage gated, non-selective cation channel that regulates the permeability of the cell to Ca2+. When subjected to various external physical and chemical stimuli, such as angiotensin II (AngII), mechanical stretch, hypoxia, or oxidative stress, TRPC3 coordinates with downstream signal transduction pathways to alter gene expression and thereby regulate a number of distinct pathological patterns and mechanisms. This review will focus on how TRPC3 affects AF pathogenesis by exploring the underlying mechanisms governing fibrosis associated with particular signaling proteins, ultimately highlighting the characteristics of TPRC3 that mark it as a novel therapeutic target for AF alleviation.
Collapse
Affiliation(s)
- Lu Han
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
30
|
Dryer SE, Kim EY. Permeation and Rectification in Canonical Transient Receptor Potential-6 (TRPC6) Channels. Front Physiol 2018; 9:1055. [PMID: 30123138 PMCID: PMC6085515 DOI: 10.3389/fphys.2018.01055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/16/2018] [Indexed: 01/25/2023] Open
Abstract
Transient receptor potential-6 channels are widely expressed cation channels that play a role in regulating Ca2+ dynamics, especially during G protein-coupled receptor signaling. The permeation of cations through TRPC6 is complex and the relative permeability to Ca2+ relative to monovalent cations appears to be highly voltage-dependent and is reduced upon membrane depolarization. Many investigators have observed complex current-voltage (I-V) relationships in recordings of TRPC6 channels, which often manifest as flattening of I-V curves between 0 and +40 mV and negative to -60 mV. These features are especially common in recordings from TRPC6 channels expressed in heterologous expression systems. Indeed, it is sometimes argued that marked rectification at both negative and positive membrane potentials is a defining feature of TRPC6, and that recordings in which these features are reduced or absent cannot reflect activity of TRPC6. Here we present a review of the literature to show that complex rectification is not seen in every cell type expressing TRPC6, even when comparing recordings made from the same groups of investigators, or in recordings from what is nominally the same heterologous expression system. Therefore other criteria, such as gene knockout or knockdown, or the use of newly emerging selective blockers, must be used to ascertain that a given current reflects activity of endogenously expressed TRPC6 channels. We also discuss the possibility that complex rectification may not be an intrinsic property of TRPC6 in cells where it is observed, and may instead reflect presence of endogenous substances that cause voltage-dependent inhibition of the channels.
Collapse
Affiliation(s)
- Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States.,Department of Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, United States
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
31
|
Nikolova-Krstevski V, Wagner S, Yu ZY, Cox CD, Cvetkovska J, Hill AP, Huttner IG, Benson V, Werdich AA, MacRae C, Feneley MP, Friedrich O, Martinac B, Fatkin D. Endocardial TRPC-6 Channels Act as Atrial Mechanosensors and Load-Dependent Modulators of Endocardial/Myocardial Cross-Talk. ACTA ACUST UNITED AC 2017; 2:575-590. [PMID: 30062171 PMCID: PMC6058914 DOI: 10.1016/j.jacbts.2017.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/05/2017] [Accepted: 05/22/2017] [Indexed: 12/01/2022]
Abstract
Mechanoelectrical feedback may increase arrhythmia susceptibility, but the molecular mechanisms are incompletely understood. This study showed that mechanical stretch altered the localization, protein levels, and function of the cation-selective transient receptor potential channel (TRPC)-6 in atrial endocardial cells in humans, pigs, and mice. In endocardial/myocardial cross-talk studies, addition of media from porcine atrial endocardium (AE) cells altered the calcium (Ca2+) transient characteristics of human-induced pluripotent stem cell-derived cardiomyocytes. These changes did not occur with media from stretched AE cells. Our data suggested that endocardial TRPC-6-dependent paracrine signaling may modulate myocardial Ca2+ homeostasis under basal conditions and protect against stretch-induced atrial arrhythmias.
Collapse
Key Words
- AE, atrial endocardium
- AF, atrial fibrillation
- APB, aminoethoxydiphenyl borate
- Ab, antibody
- CM, cardiomyocyte
- Ca2+, calcium
- Dil-Ac-LDL, dil acetylated−low-density lipoprotein
- ET, endothelin
- HUVEC, human umbilical vein endothelial cell
- OAG, 1-oleoyl-2-acetyl-sn-glycerol
- TAC, thoracic aortic constriction
- TRPC, transient receptor potential channel
- Tet, tetanus toxin
- [Ca2+]i, intracellular global Ca2+
- atrial endocardium
- endothelium
- iPS, induced pluripotent stem
- mechanical stretch
- transient receptor potential channels
Collapse
Affiliation(s)
- Vesna Nikolova-Krstevski
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Soeren Wagner
- Department of Anesthesiology, University Clinic Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ze Yan Yu
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia.,Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Jasmina Cvetkovska
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Adam P Hill
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Inken G Huttner
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Victoria Benson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andreas A Werdich
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Calum MacRae
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael P Feneley
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia.,Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Oliver Friedrich
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia.,Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia
| |
Collapse
|
32
|
Ahmad AA, Streiff M, Hunter C, Hu Q, Sachse FB. Physiological and pathophysiological role of transient receptor potential canonical channels in cardiac myocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [PMID: 28629808 DOI: 10.1016/j.pbiomolbio.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a family of seven Ca2+ permeable ion channels, named TRPC1 to 7. These channels are abundantly expressed in the mammalian heart, yet mechanisms underlying activation of TRPC channels and their precise role in cardiac physiology remain poorly understood. In this review, we perused original literature regarding TRPC channels in cardiomyocytes. We first reviewed studies on TRPC channel assembly and sub-cellular localization across multiple species and cell types. Our review indicates that TRPC localization in cardiac cells is still a topic of controversy. We then examined common molecular biology tools used to infer on location and physiological roles of TRPC channels in the heart. We subsequently reviewed pharmacological tools used to modulate TRPC activity in both cardiac and non-cardiac cells. Suggested physiological roles in the heart include modulation of heart rate and sensing of mechanical strain. We examined studies on the contribution of TRPC to cardiac pathophysiology, mainly hypertrophic signaling. Several TRPC channels, particularly TRPC1, 3 and 6 were proposed to play a crucial role in hypertrophic signaling. Finally, we discussed gaps in our understanding of the location and physiological role of TRPC channels in cardiomyocytes. Closing these gaps will be crucial to gain a full understanding of the role of TRPC channels in cardiac pathophysiology and to further explore these channels as targets for treatments for cardiac diseases, in particular, hypertrophy.
Collapse
Affiliation(s)
- Azmi A Ahmad
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Bioengineering Department, University of Utah, Salt Lake City, USA
| | - Molly Streiff
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Bioengineering Department, University of Utah, Salt Lake City, USA
| | - Chris Hunter
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA
| | - Qinghua Hu
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Bioengineering Department, University of Utah, Salt Lake City, USA.
| |
Collapse
|
33
|
Groschner K, Shrestha N, Fameli N. Cardiovascular and Hemostatic Disorders: SOCE in Cardiovascular Cells: Emerging Targets for Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:473-503. [PMID: 28900929 DOI: 10.1007/978-3-319-57732-6_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of the store-operated Ca2+ entry (SOCE) phenomenon is tightly associated with its recognition as a pathway of high (patho)physiological significance in the cardiovascular system. Early on, SOCE has been investigated primarily in non-excitable cell types, and the vascular endothelium received particular attention, while a role of SOCE in excitable cells, specifically cardiac myocytes and pacemakers, was initially ignored and remains largely enigmatic even to date. With the recent gain in knowledge on the molecular components of SOCE as well as their cellular organization within nanodomains, potential tissue/cell type-dependent heterogeneity of the SOCE machinery along with high specificity of linkage to downstream signaling pathways emerged for cardiovascular cells. The basis of precise decoding of cellular Ca2+ signals was recently uncovered to involve correct spatiotemporal organization of signaling components, and even minor disturbances in these assemblies trigger cardiovascular pathologies. With this chapter, we wish to provide an overview on current concepts of cellular organization of SOCE signaling complexes in cardiovascular cells with particular focus on the spatiotemporal aspects of coupling to downstream signaling and the potential disturbance of these mechanisms by pathogenic factors. The significance of these mechanistic concepts for the development of novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Klaus Groschner
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria.
| | - Niroj Shrestha
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
| | - Nicola Fameli
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Tissue Specificity: Store-Operated Ca 2+ Entry in Cardiac Myocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:363-387. [PMID: 28900924 DOI: 10.1007/978-3-319-57732-6_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium (Ca2+) is a key regulator of cardiomyocyte contraction. The Ca2+ channels, pumps, and exchangers responsible for the cyclical cytosolic Ca2+ signals that underlie contraction are well known. In addition to those Ca2+ signaling components responsible for contraction, it has been proposed that cardiomyocytes express channels that promote the influx of Ca2+ from the extracellular milieu to the cytosol in response to depletion of intracellular Ca2+ stores. With non-excitable cells, this store-operated Ca2+ entry (SOCE) is usually easily demonstrated and is essential for prolonging cellular Ca2+ signaling and for refilling depleted Ca2+ stores. The role of SOCE in cardiomyocytes, however, is rather more elusive. While there is published evidence for increased Ca2+ influx into cardiomyocytes following Ca2+ store depletion, it has not been universally observed. Moreover, SOCE appears to be prominent in embryonic cardiomyocytes but declines with postnatal development. In contrast, there is overwhelming evidence that the molecular components of SOCE (e.g., STIM, Orai, and TRPC proteins) are expressed in cardiomyocytes from embryo to adult. Moreover, these proteins have been shown to contribute to disease conditions such as pathological hypertrophy, and reducing their expression can attenuate hypertrophic growth. It is plausible that SOCE might underlie Ca2+ influx into cardiomyocytes and may have important signaling functions perhaps by activating local Ca2+-sensitive processes. However, the STIM, Orai, and TRPC proteins appear to cooperate with multiple protein partners in signaling complexes. It is therefore possible that some of their signaling activities are not mediated by Ca2+ influx signals, but by protein-protein interactions.
Collapse
|
35
|
Cheng H, Curtis AE, Fellingham C, Hancox JC. Multiple ion channel block by the cation channel inhibitor SKF-96365 in myocytes from the rabbit atrioventricular node. Physiol Rep 2016; 4:4/11/e12819. [PMID: 27288059 PMCID: PMC4908495 DOI: 10.14814/phy2.12819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022] Open
Abstract
The atrioventricular node (AVN) of the cardiac conduction system coordinates atrial-ventricular excitation and can act as a subsidiary pacemaker. Recent evidence suggests that an inward background sodium current, IB,Na, carried by nonselective cation channels (NSCCs), contributes to AVN cell pacemaking. The study of the physiological contribution of IB,Na has been hampered, however, by a lack of selective pharmacological antagonists. This study investigated effects of the NSCC inhibitor SKF-96365 on spontaneous activity, IB,Na, and other ionic currents in AVN cells isolated from the rabbit. Whole-cell patch-clamp recordings of action potentials (APs) and ionic currents were made at 35-37°C. A concentration of 10 μmol/L SKF-96365 slowed spontaneous action potential rate by 13.9 ± 5.3% (n = 8) and slope of the diastolic depolarization from 158.1 ± 30.5 to 86.8 ± 30.5 mV sec(-1) (P < 0.01; n = 8). Action potential upstroke velocity and maximum diastolic potential were also reduced. Under IB,Na-selective conditions, 10 μmol/L SKF-96365 inhibited IB,Na at -50 mV by 36.1 ± 6.8% (n = 8); however, effects on additional channel currents were also observed. Thus, the peak l-type calcium current (ICa,L) at +10 mV was inhibited by 38.6 ± 8.1% (n = 8), while the rapid delayed rectifier current, IKr, tails at -40 mV following depolarization to +20 mV were inhibited by 55.6 ± 4.6% (n = 8). The hyperpolarization-activated current, If, was unaffected by SKF-96365. Collectively, these results indicate that SKF-96365 exerts a moderate inhibitory effect on IB,Na and slows AVN cell pacemaking. However, additional effects of the compound on ICa,L and IKr confound the use of SKF-96365 to dissect out selectively the physiological role of IB,Na in the AVN.
Collapse
Affiliation(s)
- Hongwei Cheng
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience University of Bristol, Bristol, UK
| | - Alexander E Curtis
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience University of Bristol, Bristol, UK
| | - Claire Fellingham
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience University of Bristol, Bristol, UK
| | - Jules C Hancox
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology and Neuroscience University of Bristol, Bristol, UK
| |
Collapse
|
36
|
Lukyanenko YO, Younes A, Lyashkov AE, Tarasov KV, Riordon DR, Lee J, Sirenko SG, Kobrinsky E, Ziman B, Tarasova YS, Juhaszova M, Sollott SJ, Graham DR, Lakatta EG. Ca(2+)/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function. J Mol Cell Cardiol 2016; 98:73-82. [PMID: 27363295 DOI: 10.1016/j.yjmcc.2016.06.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 11/29/2022]
Abstract
Constitutive Ca(2+)/calmodulin (CaM)-activation of adenylyl cyclases (ACs) types 1 and 8 in sinoatrial nodal cells (SANC) generates cAMP within lipid-raft-rich microdomains to initiate cAMP-protein kinase A (PKA) signaling, that regulates basal state rhythmic action potential firing of these cells. Mounting evidence in other cell types points to a balance between Ca(2+)-activated counteracting enzymes, ACs and phosphodiesterases (PDEs) within these cells. We hypothesized that the expression and activity of Ca(2+)/CaM-activated PDE Type 1A is higher in SANC than in other cardiac cell types. We found that PDE1A protein expression was 5-fold higher in sinoatrial nodal tissue than in left ventricle, and its mRNA expression was 12-fold greater in the corresponding isolated cells. PDE1 activity (nimodipine-sensitive) accounted for 39% of the total PDE activity in SANC lysates, compared to only 4% in left ventricular cardiomyocytes (LVC). Additionally, total PDE activity in SANC lysates was lowest (10%) in lipid-raft-rich and highest (76%) in lipid-raft-poor fractions (equilibrium sedimentation on a sucrose density gradient). In intact cells PDE1A immunolabeling was not localized to the cell surface membrane (structured illumination microscopy imaging), but located approximately within about 150nm inside of immunolabeling of hyperpolarization-activated cyclic nucleotide-gated potassium channels (HCN4), which reside within lipid-raft-rich microenvironments. In permeabilized SANC, in which surface membrane ion channels are not functional, nimodipine increased spontaneous SR Ca(2+) cycling. PDE1A mRNA silencing in HL-1 cells increased the spontaneous beating rate, reduced the cAMP, and increased cGMP levels in response to IBMX, a broad spectrum PDE inhibitor (detected via fluorescence resonance energy transfer microscopy). We conclude that signaling via cAMP generated by Ca(2+)/CaM-activated AC in SANC lipid raft domains is limited by cAMP degradation by Ca(2+)/CaM-activated PDE1A in non-lipid raft domains. This suggests that local gradients of [Ca(2+)]-CaM or different AC and PDE1A affinity regulate both cAMP production and its degradation, and this balance determines the intensity of Ca(2+)-AC-cAMP-PKA signaling that drives SANC pacemaker function.
Collapse
Affiliation(s)
- Yevgeniya O Lukyanenko
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Antoine Younes
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Alexey E Lyashkov
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, 733 N. Broadway, MRB 835, Baltimore, MD 21205, USA.
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Daniel R Riordon
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Joonho Lee
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Syevda G Sirenko
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Evgeny Kobrinsky
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Bruce Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Yelena S Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - David R Graham
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, 733 N. Broadway, MRB 835, Baltimore, MD 21205, USA.
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
37
|
Tse G, Lai ETH, Yeo JM, Tse V, Wong SH. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology. Front Physiol 2016; 7:182. [PMID: 27303305 PMCID: PMC4885840 DOI: 10.3389/fphys.2016.00182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Eric Tsz Him Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Jie Ming Yeo
- School of Medicine, Imperial College LondonLondon, UK
| | - Vivian Tse
- Department of Physiology, McGill UniversityMontreal, QC, Canada
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Sciences, Chinese University of Hong KongHong Kong, China
| |
Collapse
|
38
|
Murphy C, Lazzara R. Current concepts of anatomy and electrophysiology of the sinus node. J Interv Card Electrophysiol 2016; 46:9-18. [PMID: 27142063 DOI: 10.1007/s10840-016-0137-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
The sinoatrial node, or sinus node, of humans is the principal pacemaker of the heart. Over the last century, studies have unraveled the complex molecular architecture of the sinus node and the expression of unique ion channels within its specialized myocytes. Aim of this review is to describe the embriology, the anatomy, the histology and the electrophisiology of the sinus node.
Collapse
Affiliation(s)
- Cliona Murphy
- University of Oklahoma Health Sciences Center, Heart Rhythm Institute, Oklahoma City, OK, USA.
| | - Ralph Lazzara
- University of Oklahoma Health Sciences Center, Heart Rhythm Institute, Oklahoma City, OK, USA
| |
Collapse
|
39
|
Liu H, Yang L, Chen KH, Sun HY, Jin MW, Xiao GS, Wang Y, Li GR. SKF-96365 blocks human ether-à-go-go-related gene potassium channels stably expressed in HEK 293 cells. Pharmacol Res 2015; 104:61-9. [PMID: 26689773 DOI: 10.1016/j.phrs.2015.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022]
Abstract
SKF-96365 is a TRPC channel antagonist commonly used to characterize the potential functions of TRPC channels in different systems, which was recently reported to induce QTc prolongation on ECG by inhibiting TRPC channels. The present study investigates whether the blockade of cardiac repolarization currents would be involved in the increase of QTc interval. Cardiac repolarization currents were recorded in HEK 293 cells stably expressing human ether-à-go-go-related gene potassium (hERG or hKv11.1) channels, hKCNQ1/hKCNE1 channels (IKs) or hKir2.1 channels and cardiac action potentials were recorded in guinea pig ventricular myocytes using a whole-cell patch technique. The potential effect of SKF-96365 on QT interval was evaluated in ex vivo guinea pig hearts. It was found that SKF-96365 inhibited hERG current in a concentration-dependent manner (IC50, 3.4μM). The hERG mutants S631A in the pore helix and F656V of the S6 region reduced the inhibitory sensitivity with IC50s of 27.4μM and 11.0μM, suggesting a channel pore blocker. In addition, this compound inhibited IKs and hKir2.1currents with IC50s of 10.8 and 8.7μM. SKF-96365 (10μM) significantly prolonged ventricular APD90 in guinea pig ventricular myocytes and QTc interval in ex vivo guinea pig hearts. These results indicate that the TRPC channel antagonist SKF-96365 exerts blocking effects on hERG, IKs, and hKir2.1 channels. Prolongation of ventricular APD and QT interval is related to the inhibition of multiple repolarization potassium currents, especially hERG channels.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lei Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kui-Hao Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hai-Ying Sun
- Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Man-Wen Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China.
| | - Gui-Rong Li
- Departments of Physiology and Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China; Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China.
| |
Collapse
|
40
|
Zhang H, Sun AY, Kim JJ, Graham V, Finch EA, Nepliouev I, Zhao G, Li T, Lederer WJ, Stiber JA, Pitt GS, Bursac N, Rosenberg PB. STIM1-Ca2+ signaling modulates automaticity of the mouse sinoatrial node. Proc Natl Acad Sci U S A 2015; 112:E5618-27. [PMID: 26424448 PMCID: PMC4611639 DOI: 10.1073/pnas.1503847112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cardiac pacemaking is governed by specialized cardiomyocytes located in the sinoatrial node (SAN). SAN cells (SANCs) integrate voltage-gated currents from channels on the membrane surface (membrane clock) with rhythmic Ca(2+) release from internal Ca(2+) stores (Ca(2+) clock) to adjust heart rate to meet hemodynamic demand. Here, we report that stromal interaction molecule 1 (STIM1) and Orai1 channels, key components of store-operated Ca(2+) entry, are selectively expressed in SANCs. Cardiac-specific deletion of STIM1 in mice resulted in depletion of sarcoplasmic reticulum (SR) Ca(2+) stores of SANCs and led to SAN dysfunction, as was evident by a reduction in heart rate, sinus arrest, and an exaggerated autonomic response to cholinergic signaling. Moreover, STIM1 influenced SAN function by regulating ionic fluxes in SANCs, including activation of a store-operated Ca(2+) current, a reduction in L-type Ca(2+) current, and enhancing the activities of Na(+)/Ca(2+) exchanger. In conclusion, these studies reveal that STIM1 is a multifunctional regulator of Ca(2+) dynamics in SANCs that links SR Ca(2+) store content with electrical events occurring in the plasma membrane, thereby contributing to automaticity of the SAN.
Collapse
Affiliation(s)
- Hengtao Zhang
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Albert Y Sun
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Jong J Kim
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Victoria Graham
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Elizabeth A Finch
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Igor Nepliouev
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Guiling Zhao
- Department of Physiology, Center for BioMedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Tianyu Li
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - W J Lederer
- Department of Physiology, Center for BioMedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jonathan A Stiber
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Geoffrey S Pitt
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Paul B Rosenberg
- Department of Medicine, Duke University School of Medicine, Durham, NC 27704;
| |
Collapse
|
41
|
Che H, Li G, Sun HY, Xiao GS, Wang Y, Li GR. Roles of store-operated Ca2+ channels in regulating cell cycling and migration of human cardiac c-kit+ progenitor cells. Am J Physiol Heart Circ Physiol 2015; 309:H1772-81. [PMID: 26453325 DOI: 10.1152/ajpheart.00260.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
Cardiac c-kit(+) progenitor cells are important for maintaining cardiac homeostasis and can potentially contribute to myocardial repair. However, cellular physiology of human cardiac c-kit(+) progenitor cells is not well understood. The present study investigates the functional store-operated Ca(2+) entry (SOCE) channels and the potential role in regulating cell cycling and migration using confocal microscopy, RT-PCR, Western blot, coimmunoprecipitation, cell proliferation, and migration assays. We found that SOCE channels mediated Ca(2+) influx, and TRPC1, STIM1, and Orai1 were involved in the formation of SOCE channels in human cardiac c-kit(+) progenitor cells. Silencing TRPC1, STIM1, or Orai1 with the corresponding siRNA significantly reduced the Ca(2+) signaling through SOCE channels, decreased cell proliferation and migration, and reduced expression of cyclin D1, cyclin E, and/or p-Akt. Our results demonstrate the novel information that Ca(2+) signaling through SOCE channels regulates cell cycling and migration via activating cyclin D1, cyclin E, and/or p-Akt in human cardiac c-kit(+) cells.
Collapse
Affiliation(s)
- Hui Che
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China; and
| | - Gang Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China; and Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China; and
| | - Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Gui-Rong Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China; and Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
42
|
Camacho Londoño JE, Tian Q, Hammer K, Schröder L, Camacho Londoño J, Reil JC, He T, Oberhofer M, Mannebach S, Mathar I, Philipp SE, Tabellion W, Schweda F, Dietrich A, Kaestner L, Laufs U, Birnbaumer L, Flockerzi V, Freichel M, Lipp P. A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur Heart J 2015; 36:2257-66. [PMID: 26069213 DOI: 10.1093/eurheartj/ehv250] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/18/2015] [Indexed: 12/22/2022] Open
Abstract
AIMS Pathological cardiac hypertrophy is a major predictor for the development of cardiac diseases. It is associated with chronic neurohumoral stimulation and with altered cardiac Ca(2+) signalling in cardiomyocytes. TRPC proteins form agonist-induced cation channels, but their functional role for Ca(2+) homeostasis in cardiomyocytes during fast cytosolic Ca(2+) cycling and neurohumoral stimulation leading to hypertrophy is unknown. METHODS AND RESULTS In a systematic analysis of multiple knockout mice using fluorescence imaging of electrically paced adult ventricular cardiomyocytes and Mn(2+)-quench microfluorimetry, we identified a background Ca(2+) entry (BGCE) pathway that critically depends on TRPC1/C4 proteins but not others such as TRPC3/C6. Reduction of BGCE in TRPC1/C4-deficient cardiomyocytes lowers diastolic and systolic Ca(2+) concentrations both, under basal conditions and under neurohumoral stimulation without affecting cardiac contractility measured in isolated hearts and in vivo. Neurohumoral-induced cardiac hypertrophy as well as the expression of foetal genes (ANP, BNP) and genes regulated by Ca(2+)-dependent signalling (RCAN1-4, myomaxin) was reduced in TRPC1/C4 knockout (DKO), but not in TRPC1- or TRPC4-single knockout mice. Pressure overload-induced hypertrophy and interstitial fibrosis were both ameliorated in TRPC1/C4-DKO mice, whereas they did not show alterations in other cardiovascular parameters contributing to systemic neurohumoral-induced hypertrophy such as renin secretion and blood pressure. CONCLUSIONS The constitutively active TRPC1/C4-dependent BGCE fine-tunes Ca(2+) cycling in beating adult cardiomyocytes. TRPC1/C4-gene inactivation protects against development of maladaptive cardiac remodelling without altering cardiac or extracardiac functions contributing to this pathogenesis.
Collapse
Affiliation(s)
- Juan E Camacho Londoño
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany Experimentelle und Klinische Pharmakologie und Toxikologie, 66421 Homburg, Germany DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Qinghai Tian
- Institut für Molekulare Zellbiologie, 66421 Homburg, Germany
| | - Karin Hammer
- Institut für Molekulare Zellbiologie, 66421 Homburg, Germany
| | - Laura Schröder
- Institut für Molekulare Zellbiologie, 66421 Homburg, Germany
| | | | - Jan C Reil
- Innere Medizin III Universität des Saarlandes, 66421 Homburg, Germany
| | - Tao He
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany Research Unit Cardiac Epigenetics, Department of Cardiology, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | | | - Stefanie Mannebach
- Experimentelle und Klinische Pharmakologie und Toxikologie, 66421 Homburg, Germany
| | - Ilka Mathar
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany Experimentelle und Klinische Pharmakologie und Toxikologie, 66421 Homburg, Germany
| | - Stephan E Philipp
- Experimentelle und Klinische Pharmakologie und Toxikologie, 66421 Homburg, Germany
| | | | - Frank Schweda
- Institut für Physiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, LMU, 80336 München, Germany
| | - Lars Kaestner
- Institut für Molekulare Zellbiologie, 66421 Homburg, Germany
| | - Ulrich Laufs
- Innere Medizin III Universität des Saarlandes, 66421 Homburg, Germany
| | - Lutz Birnbaumer
- Transmembrane Signaling Group, NIEHS, PO Box 12233, NC 27709, USA
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, 66421 Homburg, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany Experimentelle und Klinische Pharmakologie und Toxikologie, 66421 Homburg, Germany DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Peter Lipp
- Institut für Molekulare Zellbiologie, 66421 Homburg, Germany
| |
Collapse
|
43
|
Ju YK, Lee BH, Trajanovska S, Hao G, Allen DG, Lei M, Cannell MB. The involvement of TRPC3 channels in sinoatrial arrhythmias. Front Physiol 2015; 6:86. [PMID: 25859221 PMCID: PMC4373262 DOI: 10.3389/fphys.2015.00086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/04/2015] [Indexed: 01/08/2023] Open
Abstract
Atrial fibrillation (AF) is a significant contributor to cardiovascular morbidity and mortality. The currently available treatments are limited and AF continues to be a major clinical challenge. Clinical studies have shown that AF is frequently associated with dysfunction in the sino-atrial node (SAN). The association between AF and SAN dysfunction is probably related to the communication between the SAN and the surrounding atrial cells that form the SAN-atrial pacemaker complex and/or pathological processes that affect both the SAN and atrial simultaneously. Recent evidence suggests that Ca2+ entry through TRPC3 (Transient Receptor Potential Canonical-3) channels may underlie several pathophysiological conditions -including cardiac arrhythmias. However, it is still not known if atrial and sinoatrial node cells are also involved. In this article we will first briefly review TRPC3 and IP3R signaling that relate to store/receptor-operated Ca2+ entry (SOCE/ROCE) mechanisms and cardiac arrhythmias. We will then present some of our recent research progress in this field. Our experiments results suggest that pacing-induced AF in angiotensin II (Ang II) treated mice are significantly reduced in mice lacking the TRPC3 gene (TRPC3−/− mice) compared to wild type controls. We also show that pacemaker cells express TRPC3 and several other molecular components related to SOCE/ROCE signaling, including STIM1 and IP3R. Activation of G-protein coupled receptors (GPCRs) signaling that is able to modulate SOCE/ROCE and Ang II induced Ca2+ homeostasis changes in sinoatrial complex being linked to TRPC3. The results provide new evidence that TRPC3 may play a role in sinoatrial and atrial arrhythmias that are caused by GPCRs activation.
Collapse
Affiliation(s)
- Yue-Kun Ju
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Bon Hyang Lee
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Sofie Trajanovska
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Gouliang Hao
- Department of Pharmacology, University of Oxford Oxford, UK
| | - David G Allen
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Ming Lei
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Mark B Cannell
- Department of Physiology and Pharmacology, University of Bristol Bristol, UK
| |
Collapse
|
44
|
Liu J, Xin L, Benson VL, Allen DG, Ju YK. Store-operated calcium entry and the localization of STIM1 and Orai1 proteins in isolated mouse sinoatrial node cells. Front Physiol 2015; 6:69. [PMID: 25806000 PMCID: PMC4353302 DOI: 10.3389/fphys.2015.00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/19/2015] [Indexed: 01/01/2023] Open
Abstract
In many non-excitable and excitable cells, store-operated calcium entry (SOCE) represents an additional pathway for calcium entry upon Ca2+ store depletion. In a previous study, we demonstrated SOCE activity in intact mouse cardiac pacemaker tissue, specifically from sinoatrial node (SAN) tissue. However, store content as a key determinant of SOCE activity is difficult to measure in intact SAN tissue. Therefore, to investigate the interaction between SOCE and store content and its role in cardiac pacemaking, it is necessary to investigate SOCE activity in single cardiac pacemaker cells. Furthermore, recent studies in other tissues have identified two new proteins involved in SOCE, stromal interacting molecule (STIM), which is an ER Ca2+ sensor, and the surface membrane channel Orai, a prototypic gene encoding for SOCE. However, whether STIM and Orai are expressed in native pacemaker cells is still unknown. In this current study, we examined SOCE activity in single firing pacemaker cells isolated from mouse sinoatrial node tissue. We found a significant rise in Ca2+ entry in response to Ca2+ store depletion. SOCE blockers reduced the amplitude and frequency of spontaneous Ca2+ transients and reduced Ca2+ store content. We demonstrated for the first time that STIM and Orai are expressed in pacemaker cells. After store depletion, STIM1 redistributed to the cell periphery and showed increased co-localization with surface membrane located Orai1, indicating a possible involvement of these proteins in SOCE activity in native cardiac pacemaker cells. These results suggest the novel concept that SOCE plays a functional role in regulating intracellular Ca2+ of cardiac pacemaker cells.
Collapse
Affiliation(s)
- Jie Liu
- School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Li Xin
- Victor Chang Cardiac Research Institute Sydney, NSW, Australia
| | - Victoria L Benson
- School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - David G Allen
- School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Yue-Kun Ju
- School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
45
|
Yue Z, Xie J, Yu AS, Stock J, Du J, Yue L. Role of TRP channels in the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 308:H157-82. [PMID: 25416190 PMCID: PMC4312948 DOI: 10.1152/ajpheart.00457.2014] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Zhichao Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jia Xie
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Albert S Yu
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jonathan Stock
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jianyang Du
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
46
|
Zou G, Hong H, Lin X, Shi X, Wu Y, Chen L. TRPC1, CaN and NFATC3 signaling pathway in the pathogenesis and progression of left ventricular hypertrophy in spontaneously hypertensive rats. Clin Exp Hypertens 2014; 37:223-34. [PMID: 25271479 DOI: 10.3109/10641963.2014.943405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spontaneously hypertensive rats (SHR) was used to study left ventricular hypertrophy (LVH) and its dynamic change after the interventions with Telmisartan and Amlodipine. The results showed that the expression of TRPC1, CaN and NFATC3 increased gradually with the pathogenesis and progression of LVH. Telmisartan reduced blood pressure and LVH, and down-regulated the expression of TRPC1, CaN and NFATC3 in left ventricle of SHR. Amlodipine reduced the blood pressure in SHR but had no impact on the hypertrophy and expression of above factors. Our data suggest that the pathogenesis and progression of LVH in SHR are related to upregulation of TRPC1, CaN and NFATC3 signaling pathway.
Collapse
Affiliation(s)
- Guangrong Zou
- Union Clinical Medical College, Fujian Medical University , Fuzhou, Fujian , China
| | | | | | | | | | | |
Collapse
|
47
|
Benoist D, Stones R, Benson AP, Fowler ED, Drinkhill MJ, Hardy MEL, Saint DA, Cazorla O, Bernus O, White E. Systems approach to the study of stretch and arrhythmias in right ventricular failure induced in rats by monocrotaline. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:162-72. [PMID: 25016242 PMCID: PMC4210667 DOI: 10.1016/j.pbiomolbio.2014.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 02/05/2023]
Abstract
We demonstrate the synergistic benefits of using multiple technologies to investigate complex multi-scale biological responses. The combination of reductionist and integrative methodologies can reveal novel insights into mechanisms of action by tracking changes of in vivo phenomena to alterations in protein activity (or vice versa). We have applied this approach to electrical and mechanical remodelling in right ventricular failure caused by monocrotaline-induced pulmonary artery hypertension in rats. We show arrhythmogenic T-wave alternans in the ECG of conscious heart failure animals. Optical mapping of isolated hearts revealed discordant action potential duration (APD) alternans. Potential causes of the arrhythmic substrate; structural remodelling and/or steep APD restitution and dispersion were observed, with specific remodelling of the Right Ventricular Outflow Tract. At the myocyte level, [Ca(2+)]i transient alternans were observed together with decreased activity, gene and protein expression of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA). Computer simulations of the electrical and structural remodelling suggest both contribute to a less stable substrate. Echocardiography was used to estimate increased wall stress in failure, in vivo. Stretch of intact and skinned single myocytes revealed no effect on the Frank-Starling mechanism in failing myocytes. In isolated hearts acute stretch-induced arrhythmias occurred in all preparations. Significant shortening of the early APD was seen in control but not failing hearts. These observations may be linked to changes in the gene expression of candidate mechanosensitive ion channels (MSCs) TREK-1 and TRPC1/6. Computer simulations incorporating MSCs and changes in ion channels with failure, based on altered gene expression, largely reproduced experimental observations.
Collapse
Affiliation(s)
- David Benoist
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK; L'Institut de Rythmologie et Modelisation Cardiaque, INSERM U1045, Université de Bordeaux, France
| | - Rachel Stones
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK
| | - Alan P Benson
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK
| | - Ewan D Fowler
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK
| | - Mark J Drinkhill
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK
| | - Matthew E L Hardy
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK; Faculty of Life Sciences, University of Manchester, UK
| | - David A Saint
- School of Medical Sciences, University of Adelaide, Australia
| | - Olivier Cazorla
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, France
| | - Olivier Bernus
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK; L'Institut de Rythmologie et Modelisation Cardiaque, INSERM U1045, Université de Bordeaux, France
| | - Ed White
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK.
| |
Collapse
|
48
|
Chen KH, Liu H, Yang L, Jin MW, Li GR. SKF-96365 strongly inhibits voltage-gated sodium current in rat ventricular myocytes. Pflugers Arch 2014; 467:1227-36. [PMID: 25017106 DOI: 10.1007/s00424-014-1565-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022]
Abstract
SKF-96365 (1-(beta-[3-(4-methoxy-phenyl) propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride) is a general TRPC channel antagonist commonly used to characterize the potential functions of TRPC channels in cardiovascular system. Recent reports showed that SKF-96365 induced a reduction in cardiac conduction. The present study investigates whether the reduced cardiac conduction caused by SKF-96365 is related to the blockade of voltage-gated sodium current (I Na) in rat ventricular myocytes using the whole-cell patch voltage-clamp technique. It was found that SKF-96365 inhibited I Na in rat ventricular myocytes in a concentration-dependent manner. The compound (1 μM) negatively shifted the potential of I Na availability by 9.5 mV, increased the closed-state inactivation of I Na, and slowed the recovery of I Na from inactivation. The inhibition of cardiac I Na by SKF-96365 was use-dependent and frequency-dependent, and the IC₅₀ was decreased from 1.36 μM at 0.5 Hz to 1.03, 0.81, 0.61, 0.56 μM at 1, 2, 5, 10 Hz, respectively. However, the selective TRPC3 antagonist Pyr3 decreased cardiac I Na by 8.5% at 10 μM with a weak use and frequency dependence. These results demonstrate that the TRPC channel antagonist SKF-96365 strongly blocks cardiac I Na in use-dependent and frequency-dependent manners. Caution should be taken for interpreting the alteration of cardiac electrical activity when SKF-96365 is used in native cells as a TRPC antagonist.
Collapse
Affiliation(s)
- Kui-Hao Chen
- Department of Physiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
49
|
Maltsev VA, Yaniv Y, Maltsev AV, Stern MD, Lakatta EG. Modern perspectives on numerical modeling of cardiac pacemaker cell. J Pharmacol Sci 2014; 125:6-38. [PMID: 24748434 DOI: 10.1254/jphs.13r04cr] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent "coupled-clock" theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age.
Collapse
Affiliation(s)
- Victor A Maltsev
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, USA
| | | | | | | | | |
Collapse
|
50
|
Monfredi O, Maltsev VA, Lakatta EG. Modern concepts concerning the origin of the heartbeat. Physiology (Bethesda) 2014; 28:74-92. [PMID: 23455768 DOI: 10.1152/physiol.00054.2012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Physiological processes governing the heart beat have been under investigation for several hundred years. Major advances have been made in the recent past. A review of the present paradigm is presented here, including a look back at important steps that led us to where we are today, alongside a glimpse into the exciting future of pacemaker research.
Collapse
Affiliation(s)
- Oliver Monfredi
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|