1
|
Sarad K, Stefańska M, Kraszewska I, Burda G, Szade K, Błyszczuk P, Dulak J, Jaźwa-Kusior A. Endothelial Nrf2 deficiency promotes atherosclerotic lesion formation by shaping a proinflammatory niche. Life Sci 2025; 375:123725. [PMID: 40404122 DOI: 10.1016/j.lfs.2025.123725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
AIMS Dysfunctional endothelium contributes to the initiation and progression of atherosclerosis. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates the expression of antioxidant and cytoprotective genes. Reduced activity of Nrf2 can contribute to endothelial dysfunction. While the role of endothelial Nrf2 in vascular homeostasis is well supported, several knowledge gaps remain, particularly regarding its cell type-specific contributions and crosstalk mechanisms in vascular disease progression. MATERIALS AND METHODS Atherosclerosis was induced in mice with transcriptionally inactive Nrf2 in cadherin 5 (Cdh5)-expressing cells (Nrf2Cdh5tKO) and appropriate control Nrf2flox/flox mice via adeno-associated viral vector (AAV)-mediated overexpression of murine proprotein convertase subtilisin/kexin type 9 (Pcsk9) in the liver and high-fat diet feeding. In addition to histological analysis, single-cell RNA sequencing (scRNA-seq) was performed to investigate the cellular composition of healthy and atherosclerotic mouse aortas and examine their gene expression characteristics. KEY FINDINGS Loss of Nrf2 transcriptional activity in mice promoted aortic root lesions formation. The scRNA-seq analysis performed on the aortas of Nrf2Cdh5tKO mice revealed a specific transcriptomic profile of endothelial cells (ECs) lacking Nrf2 activity, including altered expression of genes regulating shear stress, inflammation, vascular permeability, and secretion of proatherogenic factors. Additionally, cellular crosstalk analysis revealed significant alterations in the atherosclerotic aortas of Nrf2Cdh5tKO mice, including weakened communication probability between ECs and (myo)fibroblasts and enhanced interactions between ECs and inflammatory macrophages. SIGNIFICANCE Endothelial Nrf2 deficiency promotes atherosclerosis by inducing inflammatory traits in ECs and shifting vascular cell communication dynamics.
Collapse
Affiliation(s)
- Katarzyna Sarad
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków, Poland
| | - Monika Stefańska
- Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Gabriela Burda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland; Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
2
|
Chen D, Wang X, Zhang S, Huang J, Li M, Wang L, Jiang T. The experimental study of the effect of fluid shear force on the migration rate of human umbilical vein endothelial cells. Biochem Biophys Res Commun 2025; 758:151619. [PMID: 40117976 DOI: 10.1016/j.bbrc.2025.151619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND The vascular endothelium is a continuous monolayer of flattened cells that cover the surface of the lumen of blood vessels. Endothelial cell damage can readily result in thrombus formation and thickening of the intima. Accelerating the migration and repair of peripheral endothelial cells is essential. Shear force is an important hydrodynamic factor affecting endothelial cell function. We aimed to investigate the effect of different shear forces on the migration rate of endothelial cells. METHODS Human umbilical vein endothelial cells (HUVECs) were used instead of endothelial cells to establish a cell scratch model. Plate flow chambers were then used to intervene in HUVECs growth with different shear force magnitudes (4 dyn/cm2, 8 dyn/cm2, and 12 dyn/cm2). The healing rate of the scratches was observed under light microscopy, and finally the expression of RhoA and CDC42 was detected by molecular experiments. The expression of CDC42 factor was inhibited by siRNA interference, and the wound healing ability of HUVECs in the control group and the CDC42 inhibition group under different fluid shear forces was observed under light microscopy. RESULTS High shear forces promote the healing of scratches. In addition, relatively strong shear forces promoted the expression of cytokines RhoA and CDC42. Compared with untransfected HUVECs, HUVECs with inhibition of CDC42 expression by siRNA interference showed weak migration ability in different fluid shear groups. CONCLUSION Increasing fluid shear force in a range (4-12 dyn/cm2) contributes to endothelial cell migration. Inhibition of CDC42 expression weakened the migration ability of HUVECs under different fluid shear forces.
Collapse
Affiliation(s)
- Dong Chen
- Dalian University of Technology, China; Department of Neurosurgery, Dalian University of Technology Affiliated Central Hospital, China; China Medical University, Shenyang, China
| | - Xianwei Wang
- Department of Neurosurgery, Dalian University of Technology Affiliated Central Hospital, China.
| | - Sen Zhang
- Department of Neurosurgery, Dalian University of Technology Affiliated Central Hospital, China; Dalian Medical University, Dalian, China
| | - Jiaming Huang
- Department of Neurosurgery, Dalian University of Technology Affiliated Central Hospital, China
| | - Mei Li
- Department of Neurosurgery, Dalian University of Technology Affiliated Central Hospital, China
| | | | - Tao Jiang
- Department of Neurosurgery, Dalian University of Technology Affiliated Central Hospital, China; China Medical University, Shenyang, China; West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Chaves AS, Ventura RD, Pacini MF, Magalhães NS, Silva PMRE, Martins MA, Pérez AR, Carvalho VF. Activation of the Nrf2/HO-1 pathway restores N-acetylcysteine-induced impairment of the hypothalamus-pituitary-adrenal axis negative feedback by up-regulating GRα expression and down-regulating GRβ expression into pituitary glands. Front Endocrinol (Lausanne) 2025; 16:1500630. [PMID: 39959616 PMCID: PMC11827418 DOI: 10.3389/fendo.2025.1500630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
We previously showed that antioxidants induced an impairment of negative feedback of the hypothalamus-pituitary-adrenal (HPA) axis in rats, in parallel to a down-regulation of the glucocorticoid receptor (GR) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression in the pituitary gland. This study evaluated the role of the Nrf2-heme-oxygenase-1 (HO-1) pathway on the impairment of the negative feedback of the HPA axis induced by N-acetylcysteine (NAC). Male Swiss-Webster mice were orally supplemented with NAC for 5 consecutive days. The Nrf2-HO-1 pathway activator cobalt protoporphyrin IX (CoPPIX) was injected intraperitoneally on days 2 and 5 after the starting of NAC supplementation. NAC reduced the expression of Nrf2 in the pituitary of mice. Furthermore, NAC induced adrenal enlargement and hypercorticoidism, along with a decrease in the GRα expression and an increase of GRβ expression in the pituitary gland. Treatment with CoPPIX reduced adrenal enlargement, systemic corticosterone levels, and GRβ expression in the pituitary gland of mice supplemented with NAC, besides increasing the expression of GRα. CoPPIX treatment also restored the failure in the negative feedback of the HPA axis induced by NAC. In conclusion, these findings showed that NAC reduced the Nrf2-HO-1 pathway activation in the pituitary gland, in a mechanism probably related to a local downregulation of GRα and an up-regulation of GRβ, leading to a failure of negative feedback of the HPA axis and consequently to the hyperactivity of this neuroendocrine axis.
Collapse
Affiliation(s)
- Amanda Silva Chaves
- Laboratory of Inflammation, Center for Research, Innovation, and Surveillance in Covid-19 and Health Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Raíssa Duarte Ventura
- Laboratory of Inflammation, Center for Research, Innovation, and Surveillance in Covid-19 and Health Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Florencia Pacini
- Institute of Clinical and Experimental Immunology (IDICER-CONICET UNR), Rosario, Argentina
| | - Nathalia Santos Magalhães
- Laboratory of Inflammation, Center for Research, Innovation, and Surveillance in Covid-19 and Health Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia Machado Rodrigues e Silva
- Laboratory of Inflammation, Center for Research, Innovation, and Surveillance in Covid-19 and Health Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Center for Research, Innovation, and Surveillance in Covid-19 and Health Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Rosa Pérez
- Institute of Clinical and Experimental Immunology (IDICER-CONICET UNR), Rosario, Argentina
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Center for Research, Innovation, and Surveillance in Covid-19 and Health Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Zheng H, Li T, Hu Z, Zheng Q, Wang J. The potential of flavonoids to mitigate cellular senescence in cardiovascular disease. Biogerontology 2024; 25:985-1010. [PMID: 39325277 DOI: 10.1007/s10522-024-10141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Aging is one of the most significant factors affecting cardiovascular health, with cellular senescence being a central hallmark. Senescent cells (SCs) secrete a specific set of signaling molecules known as the senescence-associated secretory phenotype (SASP). The SASP has a remarkable impact on age-associated diseases, particularly cardiovascular diseases (CVD). Targeting SCs through anti-aging therapies represents a novel strategy to effectively retard senescence and attenuate disease progression. Accumulating evidence demonstrates that the flavonoids, widely presented in fruits and vegetables worldwide, can delay or treat CVD via selectively eliminating SCs (senolytics) and modulating SASPs (senomorphics). Nevertheless, only sporadic research has illustrated the application of flavonoids in targeting SCs for CVD, which requires further exploration. This review recapitulates the hallmarks and key molecular mechanisms involved in cellular senescence, then summarizes senescence of different types of cardiac cells and describes the mechanisms by which cellular senescence affects CVD development. The discussion culminates with the potential use of flavonoids via exerting their biological effects on cellular senescence to reduce CVD incidence. This summary will provide valuable insights for cardiovascular drug design, development and clinical applications leveraging flavonoids.
Collapse
Affiliation(s)
- Huimin Zheng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Tiantian Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Ziyun Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Qi Zheng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Junsong Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
6
|
Power G, Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Integrating molecular and cellular components of endothelial shear stress mechanotransduction. Am J Physiol Heart Circ Physiol 2024; 327:H989-H1003. [PMID: 39178024 PMCID: PMC11482243 DOI: 10.1152/ajpheart.00431.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces (i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, and the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1), the extracellular glycocalyx and its components, and ion channels such as piezo1. We delineate which molecules are truly mechanosensitive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.
Collapse
Affiliation(s)
- Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
7
|
Arapi B, Unal S, Malikova N, Omeroglu SN, Guven M. A cross-sectional study comparing the expression of DNA repair molecules in subjects with and without atherosclerotic plaques. Mol Biol Rep 2024; 51:953. [PMID: 39230767 DOI: 10.1007/s11033-024-09886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Atherosclerosis, serving as the primary pathological mechanism at the core of cardiovascular disease, is now widely acknowledged to be associated with DNA damage and repair, contributing to atherosclerotic plaque formation. Therefore, molecules involved in the DNA repair process may play an important role in the progression of atherosclerosis. Our research endeavors to explore the contributions of specific and interrelated molecules involved in DNA repair (APE1, BRCA1, ERCC2, miR-221-3p, miR-145-5p, and miR-155-5p) to the development of atherosclerotic plaque and their interactions with each other. METHODS & RESULTS Gene expression study was conducted using the real-time polymerase chain reaction (qRT-PCR) method on samples from carotid artery atherosclerotic plaques and nonatherosclerotic internal mammary arteries obtained from 50 patients diagnosed with coronary artery disease and carotid artery disease. Additionally, 50 healthy controls were included for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Although no difference was observed in mRNA gene expressions, we noted a decrease in miR-155-5p gene expression (p = 0.003) and an increase in miR-221-3p gene expression (p = 0.015) in plaque samples, while miR-145-5p gene expression remained unchanged (p = 0.57). Regarding serum 8-OHdG levels, patients exhibited significantly higher levels (1111.82 ± 28.64) compared to controls (636.23 ± 24.23) (p < 0.0001). CONCLUSIONS In our study demonstrating the role of miR-155-5p and miR-221-3p in atherosclerosis, we propose that these molecules are potential biomarkers and therapeutic targets for coronary artery diseases and carotid artery disease.
Collapse
Affiliation(s)
- Berk Arapi
- Department of Cardiovascular Surgery Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Selin Unal
- Department of Medical Biology, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Narmina Malikova
- Department of Medical Biology, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Suat Nail Omeroglu
- Department of Cardiovascular Surgery Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Guven
- Department of Medical Biology, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey.
| |
Collapse
|
8
|
Li J, Zhu J, Gray O, Sobreira DR, Wu D, Huang RT, Miao B, Sakabe NJ, Krause MD, Kaikkonen MU, Romanoski CE, Nobrega MA, Fang Y. Mechanosensitive super-enhancers regulate genes linked to atherosclerosis in endothelial cells. J Cell Biol 2024; 223:e202211125. [PMID: 38231044 PMCID: PMC10794123 DOI: 10.1083/jcb.202211125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 10/05/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Vascular homeostasis and pathophysiology are tightly regulated by mechanical forces generated by hemodynamics. Vascular disorders such as atherosclerotic diseases largely occur at curvatures and bifurcations where disturbed blood flow activates endothelial cells while unidirectional flow at the straight part of vessels promotes endothelial health. Integrated analysis of the endothelial transcriptome, the 3D epigenome, and human genetics systematically identified the SNP-enriched cistrome in vascular endothelium subjected to well-defined atherosclerosis-prone disturbed flow or atherosclerosis-protective unidirectional flow. Our results characterized the endothelial typical- and super-enhancers and underscored the critical regulatory role of flow-sensitive endothelial super-enhancers. CRISPR interference and activation validated the function of a previously unrecognized unidirectional flow-induced super-enhancer that upregulates antioxidant genes NQO1, CYB5B, and WWP2, and a disturbed flow-induced super-enhancer in endothelium which drives prothrombotic genes EDN1 and HIVEP in vascular endothelium. Our results employing multiomics identify the cis-regulatory architecture of the flow-sensitive endothelial epigenome related to atherosclerosis and highlight the regulatory role of super-enhancers in mechanotransduction mechanisms.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Jiayu Zhu
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Olivia Gray
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Débora R. Sobreira
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Ru-Ting Huang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Bernadette Miao
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Noboru J. Sakabe
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Matthew D. Krause
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Minna U. Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Marcelo A. Nobrega
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Committee on Molecular Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Cheng X, Caruso C, Lam WA, Graham MD. Marginated aberrant red blood cells induce pathologic vascular stress fluctuations in a computational model of hematologic disorders. SCIENCE ADVANCES 2023; 9:eadj6423. [PMID: 38019922 PMCID: PMC10686556 DOI: 10.1126/sciadv.adj6423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Red blood cell (RBC) disorders such as sickle cell disease affect billions worldwide. While much attention focuses on altered properties of aberrant RBCs and corresponding hemodynamic changes, RBC disorders are also associated with vascular dysfunction, whose origin remains unclear and which provoke severe consequences including stroke. Little research has explored whether biophysical alterations of RBCs affect vascular function. We use a detailed computational model of blood that enables characterization of cell distributions and vascular stresses in blood disorders and compare simulation results with experimental observations. Aberrant RBCs, with their smaller size and higher stiffness, concentrate near vessel walls (marginate) because of contrasts in physical properties relative to normal cells. In a curved channel exemplifying the geometric complexity of the microcirculation, these cells distribute heterogeneously, indicating the importance of geometry. Marginated cells generate large transient stress fluctuations on vessel walls, indicating a mechanism for the observed vascular inflammation.
Collapse
Affiliation(s)
- Xiaopo Cheng
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christina Caruso
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Wilbur A. Lam
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307, USA
- Wallace H. Coulter Department of Biomedical Engineering. Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Michael D. Graham
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Hasan M, Al-Thani H, El-Menyar A, Zeidan A, Al-Thani A, Yalcin HC. Disturbed hemodynamics and oxidative stress interaction in endothelial dysfunction and AAA progression: Focus on Nrf2 pathway. Int J Cardiol 2023; 389:131238. [PMID: 37536420 DOI: 10.1016/j.ijcard.2023.131238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Hemodynamic shear stress is one of the major factors that are involved in the pathogenesis of many cardiovascular diseases including atherosclerosis and abdominal aortic aneurysm (AAA), through its modulatory effect on the endothelial cell's redox homeostasis and mechanosensitive gene expression. Among important mechanisms, oxidative stress, endoplasmic reticulum stress activation, and the subsequent endothelial dysfunction are attributed to disturbed blood flow and low shear stress in the vascular curvature and bifurcations which are considered atheroprone regions and aneurysm occurrence spots. Many pathways were shown to be involved in AAA progression. Of particular interest from recent findings is, the (Nrf2)/Keap-1 pathway, where Nrf2 is a transcription factor that has antioxidant properties and is strongly associated with several CVDs, yet, the exact mechanism by which Nrf2 alleviates CVDs still to be elucidated. Nrf2 expression is closely affected by shear stress and was shown to participate in AAA. In the current review paper, we discussed the link between disturbed hemodynamics and its effect on Nrf2 as a mechanosensitive gene and its role in the development of endothelial dysfunction which is linked to the progression of AAA.
Collapse
Affiliation(s)
- Maram Hasan
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hassan Al-Thani
- Department of Surgery, Trauma and Vascular Surgery, Hamad General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ayman El-Menyar
- Department of Surgery, Trauma and Vascular Surgery, Hamad General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar; Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Asad Zeidan
- Department of Basic Sciences, College of Medicine, QU health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Asmaa Al-Thani
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
11
|
Yung S, Chan TM. Endothelial cell activation and glycocalyx shedding - potential as biomarkers in patients with lupus nephritis. Front Immunol 2023; 14:1251876. [PMID: 37854589 PMCID: PMC10579905 DOI: 10.3389/fimmu.2023.1251876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Lupus nephritis (LN) is a common and severe manifestation of systemic lupus erythematosus and an important cause of acute and chronic kidney injury. Early diagnosis of LN and preventing relapses are key to preserving renal reserve. However, due to the complexity and heterogeneity of the disease, clinical management remains challenging. Kidney biopsy remains the gold standard for confirming the diagnosis of LN and subsequent assessment of kidney histopathology, but it is invasive and cannot be repeated frequently. Current clinical indicators of kidney function such as proteinuria and serum creatinine level are non-specific and do not accurately reflect histopathological changes, while anti-dsDNA antibody and C3 levels reflect immunological status but not kidney injury. Identification of novel and specific biomarkers for LN is prerequisite to improve management. Renal function deterioration is associated with changes in the endothelial glycocalyx, a delicate gel-like layer located at the interface between the endothelium and bloodstream. Inflammation induces endothelial cell activation and shedding of glycocalyx constituents into the circulation. This review discusses the potential role of soluble glycocalyx components as biomarkers of active LN, especially in patients in whom conventional serological and biochemical markers do not appear helpful.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tak Mao Chan
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Desai JK, Trangadia BJ, Patel UD, Patel HB, Kalaria VA, Kathiriya JB. Neurotoxicity of 4-nonylphenol in adult zebrafish: Evaluation of behaviour, oxidative stress parameters and histopathology of brain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122206. [PMID: 37473849 DOI: 10.1016/j.envpol.2023.122206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Nonylphenol and its derivatives use as plasticizer or additives in manufacturing industries. Effluents originated from industrial areas are being added to soil, ground water, river and marine water intentionally or unintentionally. Complex mixture of these contaminants enter the food chain and produce sub-lethal deleterious effects mainly on nervous and reproductive systems of aquatic animals and human beings. The information pertaining to oxidative stress-mediated alterations in brain of zebrafish would be helpful to understand the toxicity potential of such compounds in aquatic animals. The aim of the present study was to evaluate the behavioural changes, status of oxidative stress markers; sod, cat, and NF-E2-related factor 2 (nrf2) mRNA gene expression profile; and histopathological changes in the brain of adult zebrafish exposed to 4-nonylphenol (4NP) at concentration of 100 and 200 μg/L of water for 21 days. Zebrafish were divided into four groups viz; control (C1), vehicle (C2, ethanol 10 μg/L of water), treatment 1 (T1, 4-NP, 100 μg/L) and treatment 2 (T2, 4-NP, 200 μg/L). Both exposure levels of 4-NP adversely affected the exploratory behaviour of zebrafish and produced anxiety-like symptom. Concentration-dependent reduction in activity of superoxide dismutase and catalase; and glutathione level, with increased level of malondialdehyde recorded in the brain of exposed zebrafish. Gene expression analysis showed down regulation of sod, cat, nrf2 genes in brain of zebrafish from toxicity groups indicating 4-NP induced oxidative stress in brain. However, noticeable histological alterations were not observed in 4-NP exposed brain of zebrafish.
Collapse
Affiliation(s)
- Jay K Desai
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India.
| | - Bhavesh J Trangadia
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India.
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Harshad B Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Vinay A Kalaria
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Jaysukh B Kathiriya
- Department of Veterinary Public Health & Epidemiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| |
Collapse
|
13
|
Niu C, Zhang P, Zhang L, Lin D, Lai H, Xiao D, Liu Y, Zhuang R, Li M, Ma L, Ye J, Pan Y. Molecular targets and mechanisms of Guanxinning tablet in treating atherosclerosis: Network pharmacology and molecular docking analysis. Medicine (Baltimore) 2023; 102:e35106. [PMID: 37773840 PMCID: PMC10545342 DOI: 10.1097/md.0000000000035106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Guanxinning tablet (GXNT), a Chinese patent medicine, is composed of salvia miltiorrhiza bunge and ligusticum striatum DC, which may play the role of endothelial protection through many pathways. We aimed to explore the molecular mechanisms of GXNT against atherosclerosis (AS) through network pharmacology and molecular docking verification. METHODS The active ingredients and their potential targets of GXNT were obtained in traditional Chinese medicine systems pharmacology database and analysis platform and bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine databases. DrugBank, TTD, DisGeNET, OMIM, and GeneCards databases were used to screen the targets of AS. The intersection targets gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis were performed in DAVID database. GXNT-AS protein-protein interaction network, ingredient-target network and herb-target-pathway network were constructed by Cytoscape. Finally, we used AutoDock for molecular docking. RESULTS We screened 65 active ingredients of GXNT and 70 GXNT-AS intersection targets. The key targets of protein-protein interaction network were AKT1, JUN, STAT3, TNF, TP53, IL6, EGFR, MAPK14, RELA, and CASP3. The Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that pathways in cancer, lipid and atherosclerosis, and PI3K-Akt signaling pathway were the main pathways. The ingredient-target network showed that the key ingredients were luteolin, tanshinone IIA, myricanone, dihydrotanshinlactone, dan-shexinkum d, 2-isopropyl-8-methylphenanthrene-3,4-dione, miltionone I, deoxyneocryptotanshinone, Isotanshinone II and 4-methylenemiltirone. The results of molecular docking showed that tanshinone IIA, dihydrotanshinlactone, dan-shexinkum d, 2-isopropyl-8-methylphenanthrene-3,4-dione, miltionone I, deoxyneocryptotanshinone, Isotanshinone II and 4-methylenemiltirone all had good binding interactions with AKT1, EGFR and MAPK14. CONCLUSION The results of network pharmacology and molecular docking showed that the multiple ingredients within GXNT may confer protective effects on the vascular endothelium against AS through multitarget and multichannel mechanisms. AKT1, EGFR and MAPK14 were the core potential targets of GXNT against AS.
Collapse
Affiliation(s)
- Chaofeng Niu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peiyu Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijing Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dingfeng Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haixia Lai
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Di Xiao
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Liu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhuang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Li
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liyong Ma
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Ye
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Pan
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Yuan W, Zhang J, Huo R, Hou C, Yang J, Wang T. Intraperitoneal Injection of Human Ferritin Heavy Chain Attenuates the Atherosclerotic Process in APOE-Knockout Mice. J Cardiovasc Dev Dis 2023; 10:309. [PMID: 37504565 PMCID: PMC10380433 DOI: 10.3390/jcdd10070309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Background: Iron overload can accelerate the accumulation of lipid oxides and contribute to the progression of atherosclerosis. Ferritin heavy chain (FT-H) exhibits oxidase activity, which inhibits the toxicity of ferrous ions and reduces oxidative damage. We investigated the effect of the intraperitoneal injection of FT-H on the progression of atherosclerosis in APOE-knockout mice (Apo-E(-/-) mice). Methods: All mice were fed on a high-fat diet. After 10 weeks, the mice were divided into an injection group (n = 4) and a control group (n = 4). The injection group was injected intraperitoneally with FT-H (50 mg/kg, once a week), and the control group was treated with PBS buffer (at an equal volume to the injection group, once a week). After 10 weeks of intervention, MRI of the aortas was performed. Then, the animals were sacrificed, and tissues were taken. Hematoxylin-eosin (HE) staining was used for histomorphometry, Masson staining was used to quantify the collagen content in the arteries, Prussian blue staining was used to visualize iron deposition in the arteries, and MRI was used to analyze the structure of the aorta in vivo. Immunohistochemistry was performed to detect the expression of MCP-1, MMP-2, MMP-9, FT-H, FT-L, TfR1, NRF-2 and GPX-4. Results: The serological results showed that the injection group had lower levels of glucose (Glu), triacylglycerol (TG), cholesterol (CHO), low-density lipoprotein-C (LDL-C) and malondialdehyde (MDA) (p = 0.0058, p = 0.0098, p = 0.0019, p = 0.0368 and p = 0.0025, respectively), and their serum ferritin (SF) and superoxide dismutase (SOD) levels were higher (p = 0.0004 and p < 0.0001). The Masson staining and MRI results showed that the injection group had less collagen deposition (p = 0.0226), a larger arterial lumen area and arterial volume (p = 0.0006 and p = 0.0005), thinner arterial wall thickness (p = 0.0013) and a more stable arterial plaque structure (p < 0.0001). The immunohistochemical results showed reduced expression of FT-H, FT-L, TfR1, MMP-2, MMP-9, MCP-1 and NRF-2 in the injection group (p = 0.0054, p = 0.0242, p = 0.0221, p = 0.0477, p = 0.0131, p = 0.0435 and p = 0.0179). Prussian blue staining showed that the area of iron-positive areas in the aortic plaques of the control group was larger than that of injected group. The expression of GPX-4 was lower in the control group than in the injection group (p = 0.016). Conclusions: The intraperitoneal administration of FT-H to Apo-E(-/-) mice resulted in lower blood glucose and lipid levels; reduced iron and iron metabolism protein deposition in the aorta; reduced indices of their ferroptosis, oxidation and inflammatory aggregation; and reduced collagen deposition in the aorta, which delayed the process of aortic atherosclerosis in mice.
Collapse
Affiliation(s)
- Wanzhong Yuan
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
| | - Jianlin Zhang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Ran Huo
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Chaofan Hou
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
| | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
15
|
Liu J, Aylor KW, Liu Z. Liraglutide and Exercise Synergistically Attenuate Vascular Inflammation and Enhance Metabolic Insulin Action in Early Diet-Induced Obesity. Diabetes 2023; 72:918-931. [PMID: 37074396 PMCID: PMC10281235 DOI: 10.2337/db22-0745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Inflammation-induced vascular insulin resistance is an early event in diet-induced obesity and contributes to metabolic insulin resistance. To examine whether exercise and glucagon-like peptide 1 (GLP-1) receptor agonism, alone or in combination, modulate vascular and metabolic insulin actions during obesity development, we performed a euglycemic insulin clamp in adult male rats after 2 weeks of high-fat diet feeding with either access to a running wheel (exercise), liraglutide, or both. Rats exhibited increased visceral adiposity and blunted microvascular and metabolic insulin responses. Exercise and liraglutide alone each improved muscle insulin sensitivity, but their combination fully restored insulin-mediated glucose disposal rates. The combined exercise and liraglutide intervention enhanced insulin-mediated muscle microvascular perfusion, reduced perivascular macrophage accumulation and superoxide production in the muscle, attenuated blood vessel inflammation, and improved endothelial function, along with increasing endothelial nucleus translocation of NRF2 and increasing endothelial AMPK phosphorylation. We conclude that exercise and liraglutide synergistically enhance the metabolic actions of insulin and reduce vascular oxidative stress and inflammation in the early stage of obesity development. Our data suggest that early combination use of exercise and GLP-1 receptor agonism might be an effective strategy in preventing vascular and metabolic insulin resistance and associated complications during the development of obesity. ARTICLE HIGHLIGHTS Inflammation-induced vascular insulin resistance occurs early in diet-induced obesity and contributes to metabolic insulin resistance. We examined whether exercise and GLP-1 receptor agonism, alone or in combination, modulate vascular and metabolic insulin actions during obesity development. We found that exercise and liraglutide synergistically enhanced the metabolic actions of insulin and reduced perimicrovascular macrophage accumulation, vascular oxidative stress, and inflammation in the early stage of obesity development. Our data suggest that early combination use of exercise and a GLP-1 receptor agonist might be an effective strategy in preventing vascular and metabolic insulin resistance and associated complications during the development of obesity.
Collapse
Affiliation(s)
- Jia Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA
| | - Kevin W. Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA
| |
Collapse
|
16
|
Pu L, Meng Q, Li S, Wang Y, Liu B. TXNRD1 knockdown inhibits the proliferation of endothelial cells subjected to oscillatory shear stress via activation of the endothelial nitric oxide synthase/apoptosis pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119436. [PMID: 36754152 DOI: 10.1016/j.bbamcr.2023.119436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Atherosclerosis is the main cause of cardiovascular disease, and fluid shear stress is a key factor regulating its occurrence and development. Oscillatory shear stress (Oss) is an important pro-atherosclerosis factor. Oss mainly occurs in areas that are susceptible to atherosclerosis, but the exact mechanism of atherosclerosis induction remains unclear. Therefore, starting from the atheroprone phenotype that Oss stimulates abnormal vascular endothelial cell proliferation, this study aimed to reveal the underlying mechanism of Oss-induced atherosclerosis formation and to identify new targets for the prevention and treatment of atherosclerosis. In this study, the gene encoding thioredoxin reductase 1 (TXNRD1), which is closely related to atherosclerosis development and cell proliferation, was screened by analyzing the transcriptome sequencing data of static and Oss-treated human aortic endothelial cells (HAECs). Moreover, this study successfully verified that TXNRD1 mRNA and protein were significantly upregulated in Oss-treated HAECs. Oss significantly promoted the proliferation, migration, and tube formation of HAECs, whereas TXNRD1 knockdown impaired the proliferation, migration, and tube formation of Oss-treated HAECs, and this process was mainly achieved via activation of the apoptosis pathway. To further clarify whether Oss-sensitive TXNRD1 affects the apoptosis rate and proliferative ability of HAECs by regulating the endothelial nitric oxide synthase (eNOS) pathway, we used NG-nitro-L-arginine methyl ester (L-NAME) to inhibit eNOS activity and nitric oxide (NO) production. L-NAME significantly reversed the promoting effect of TXNRD1 knockdown on Oss-treated HAEC apoptosis, and it also abolished the inhibitory effect of TXNRD1 knockdown on the proliferation and S + G2 phase cell mass of Oss-treated HAECs. In conclusion, this study showed that TXNRD1 knockdown inhibited the proliferation of HAECs exposed to Oss by activating the eNOS/apoptosis pathway, revealing that TXNRD1 is involved in the dysregulation of Oss-induced endothelial cell proliferation. These findings provide new directions and insights into the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Luya Pu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Shuai Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Yaru Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
17
|
Patel A, Pietromicca JG, Venkatesan M, Maity S, Bard JE, Madesh M, Alevriadou BR. Modulation of the mitochondrial Ca 2+ uniporter complex subunit expression by different shear stress patterns in vascular endothelial cells. Physiol Rep 2023; 11:e15588. [PMID: 36754446 PMCID: PMC9908435 DOI: 10.14814/phy2.15588] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023] Open
Abstract
Mitochondrial calcium (m Ca2+ ) uptake occurs via the Mitochondrial Ca2+ Uniporter (MCU) complex and plays a critical role in mitochondrial dynamics, mitophagy, and apoptosis. MCU complex activity is in part modulated by the expression of its regulatory subunits. Cardiovascular disease models demonstrated altered gene/protein expression of one or multiple subunits in different cells, including vascular endothelial cells (ECs). MCU complex activity was found necessary for stable flow (s-flow)-induced mitophagy and promotion of an atheroprotective EC phenotype. Disturbed flow (d-flow) is known to lead to an atheroprone phenotype. Despite the role of MCU in flow-regulated EC function, flow-induced alterations in MCU complex subunit expression are currently unknown. We exposed cultured human ECs to atheroprotective (steady shear stress, SS) or atheroprone flow (oscillatory shear stress, OS) and measured mRNA and protein levels of the MCU complex members. SS and OS differentially modulated subunit expression at gene/protein levels. Protein expression changes of the core MCU, m Ca2+ uptake 1 (MICU1) and MCU regulator 1 (MCUR1) subunits in SS- and OS-exposed, compared to static, ECs suggested an enhanced m Ca2+ influx under each flow and a potential contribution to EC dysfunction under OS. In silico analysis of a single-cell RNA-sequencing dataset was employed to extract transcript values of MCU subunits in mouse carotid ECs from regions exposed to s-flow or d-flow. Mcu and Mcur1 genes showed significant differences in expression after prolonged exposure to each flow. The differential expression of MCU complex subunits indicated a tight regulation of the complex activity under physiological and pathological hemodynamic conditions.
Collapse
Affiliation(s)
- Akshar Patel
- Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue EngineeringUniversity at Buffalo – The State University of New YorkBuffaloNew YorkUSA
| | - Julia G. Pietromicca
- Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue EngineeringUniversity at Buffalo – The State University of New YorkBuffaloNew YorkUSA
| | - Manigandan Venkatesan
- Department of Medicine, Center for Mitochondrial MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Soumya Maity
- Department of Medicine, Center for Mitochondrial MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Jonathan E. Bard
- Genomics and Bioinformatics Core, Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo – The State University of New YorkBuffaloNew YorkUSA
| | - Muniswamy Madesh
- Department of Medicine, Center for Mitochondrial MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - B. Rita Alevriadou
- Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue EngineeringUniversity at Buffalo – The State University of New YorkBuffaloNew YorkUSA
| |
Collapse
|
18
|
Kachot RL, Patel UD, Patel HB, Modi CM, Chauhan R, Kariya MH, Bhadaniya AR. Neurotoxicity of acrylamide in adult zebrafish following short-term and long-term exposure: evaluation of behavior alterations, oxidative stress markers, expression of antioxidant genes, and histological examination of the brain and eyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40116-40131. [PMID: 36607571 DOI: 10.1007/s11356-022-25112-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
In the present work, 224 adult female zebrafish (56 fish in each group) were randomly divided into four groups (two control groups and two toxicity groups) as per duration of exposure (7 and 21 days). All fish of the two toxicity groups were exposed to 0.610 mM acrylamide (ACR) concentration for 7 and 21 days. The effects of ACR exposure on behavior, oxidative stress biomarkers, molecular expression of antioxidant genes (sod, cat, and nrf2), and histopathological examination of the brain and eye were examined. Our result shows that ACR exposure for 7 days produced an anxiety-like behavior in zebrafish. Short-term exposure of ACR resulted in alterations of oxidative stress markers (SOD and CAT activity, and the level of GSH and MDA) in the brain and eye of zebrafish. However, the antioxidant defense system of adult female zebrafish could be able to counteract the free radicals generated in long-term ACR exposure as indicated by non-significant difference in oxidative insult following short-term and long-term exposure. ACR exposure downregulated the mRNA expression of the sod, cat, and nrf2 (nuclear factor erythroid 2-related factor 2) genes in the brain and eye without significant difference between the two toxicity groups. Mild histological changes in the dorsal telencephalic area, tectum opticum, medulla, and hypothalamus area of the brain of zebrafish have been observed following short-term and long-term ACR exposure. In the eye, marked histological changes in the retinal pigmented epithelium layer (RPE), structural changes of the photoreceptor layer (PRL) with disorganized layer of rods and cones, and reduction of the relative thickness of the RPE, PRL, outer nuclear layer (ONL), and inner nuclear layer (INL) have been noted following ACR exposure for 21 days as compared to 7 days. ACR produced neurobehavioral aberrations and oxidative stress within 7 days of exposure, while various histological changes in the brain and eyes have been observed following long-term exposure (21 days) to ACR.
Collapse
Affiliation(s)
- Rajesh L Kachot
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India.
| | - Harshad B Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Chirag M Modi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - RadheyShyam Chauhan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Mayank H Kariya
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362 001, Gujarat, India
| | - Amit R Bhadaniya
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India
| |
Collapse
|
19
|
Jin W, Li C, Yang S, Song S, Hou W, Song Y, Du Q. Hypolipidemic effect and molecular mechanism of ginsenosides: a review based on oxidative stress. Front Pharmacol 2023; 14:1166898. [PMID: 37188264 PMCID: PMC10175615 DOI: 10.3389/fphar.2023.1166898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Hyperlipidemia is considered a risk factor for cardiovascular and endocrine diseases. However, effective approaches for treating this common metabolic disorder remain limited. Ginseng has traditionally been used as a natural medicine for invigorating energy or "Qi" and has been demonstrated to possess antioxidative, anti-apoptotic, and anti-inflammatory properties. A large number of studies have shown that ginsenosides, the main active ingredient of ginseng, have lipid-lowering effects. However, there remains a lack of systematic reviews detailing the molecular mechanisms by which ginsenosides reduce blood lipid levels, especially in relation to oxidative stress. For this article, research studies detailing the molecular mechanisms through which ginsenosides regulate oxidative stress and lower blood lipids in the treatment of hyperlipidemia and its related diseases (diabetes, nonalcoholic fatty liver disease, and atherosclerosis) were comprehensively reviewed. The relevant papers were search on seven literature databases. According to the studies reviewed, ginsenosides Rb1, Rb2, Rb3, Re, Rg1, Rg3, Rh2, Rh4, and F2 inhibit oxidative stress by increasing the activity of antioxidant enzymes, promoting fatty acid β-oxidation and autophagy, and regulating the intestinal flora to alleviate high blood pressure and improve the body's lipid status. These effects are related to the regulation of various signaling pathways, such as those of PPARα, Nrf2, mitogen-activated protein kinases, SIRT3/FOXO3/SOD, and AMPK/SIRT1. These findings suggest that ginseng is a natural medicine with lipid-lowering effects.
Collapse
Affiliation(s)
- Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunrun Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shihui Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shiyi Song
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Weiwei Hou
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yang Song, ; Quanyu Du,
| | - Quanyu Du
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yang Song, ; Quanyu Du,
| |
Collapse
|
20
|
Patel A, Simkulet M, Maity S, Venkatesan M, Matzavinos A, Madesh M, Alevriadou BR. The mitochondrial Ca 2+ uniporter channel synergizes with fluid shear stress to induce mitochondrial Ca 2+ oscillations. Sci Rep 2022; 12:21161. [PMID: 36476944 PMCID: PMC9729216 DOI: 10.1038/s41598-022-25583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial calcium (Ca2+) uniporter (MCU) channel is responsible for mitochondrial Ca2+ influx. Its expression was found to be upregulated in endothelial cells (ECs) under cardiovascular disease conditions. Since the role of MCU in regulating cytosolic Ca2+ homeostasis in ECs exposed to shear stress (SS) is unknown, we studied mitochondrial Ca2+ dynamics (that is known to decode cytosolic Ca2+ signaling) in sheared ECs. To understand cause-and-effect, we ectopically expressed MCU in ECs. A higher percentage of MCU-transduced ECs exhibited mitochondrial Ca2+ transients/oscillations, and at higher frequency, under SS compared to sheared control ECs. Transients/oscillations correlated with mitochondrial reactive oxygen species (mROS) flashes and mitochondrial membrane potential (ΔΨm) flickers, and depended on activation of the mechanosensitive Piezo1 channel and the endothelial nitric oxide synthase (eNOS). A positive feedback loop composed of mitochondrial Ca2+ uptake/mROS flashes/ΔΨm flickers and endoplasmic reticulum Ca2+ release, in association with Piezo1 and eNOS, provided insights into the mechanism by which SS, under conditions of high MCU activity, may shape vascular EC energetics and function.
Collapse
Affiliation(s)
- Akshar Patel
- grid.273335.30000 0004 1936 9887Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue Engineering, University at Buffalo – The State University of New York, Buffalo, NY 14260 USA
| | - Matthew Simkulet
- grid.273335.30000 0004 1936 9887Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue Engineering, University at Buffalo – The State University of New York, Buffalo, NY 14260 USA
| | - Soumya Maity
- grid.267309.90000 0001 0629 5880Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - Manigandan Venkatesan
- grid.267309.90000 0001 0629 5880Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - Anastasios Matzavinos
- grid.7870.80000 0001 2157 0406Institute for Mathematical and Computational Engineering, Pontifical Catholic University of Chile, Santiago, Chile
| | - Muniswamy Madesh
- grid.267309.90000 0001 0629 5880Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - B. Rita Alevriadou
- grid.273335.30000 0004 1936 9887Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue Engineering, University at Buffalo – The State University of New York, Buffalo, NY 14260 USA
| |
Collapse
|
21
|
Liraglutide Improves the Angiogenic Capability of EPC and Promotes Ischemic Angiogenesis in Mice under Diabetic Conditions through an Nrf2-Dependent Mechanism. Cells 2022; 11:cells11233821. [PMID: 36497087 PMCID: PMC9736458 DOI: 10.3390/cells11233821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The impairment in endothelial progenitor cell (EPC) functions results in dysregulation of vascular homeostasis and dysfunction of the endothelium under diabetic conditions. Improving EPC function has been considered as a promising strategy for ameliorating diabetic vascular complications. Liraglutide has been widely used as a therapeutic agent for diabetes. However, the effects and mechanisms of liraglutide on EPC dysfunction remain unclear. The capability of liraglutide in promoting blood perfusion and angiogenesis under diabetic conditions was evaluated in the hind limb ischemia model of diabetic mice. The effect of liraglutide on the angiogenic function of EPC was evaluated by cell scratch recovery assay, tube formation assay, and nitric oxide production. RNA sequencing was performed to assess the underlying mechanisms. Liraglutide enhanced blood perfusion and angiogenesis in the ischemic hindlimb of db/db mice and streptozotocin-induced type 1 diabetic mice. Additionally, liraglutide improved tube formation, cell migration, and nitric oxide production of high glucose (HG)-treated EPC. Assessment of liraglutide target pathways revealed a network of genes involved in antioxidant activity. Further mechanism study showed that liraglutide decreased the production of reactive oxygen species and increased the activity of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 deficiency attenuated the beneficial effects of liraglutide on improving EPC function and promoting ischemic angiogenesis under diabetic conditions. Moreover, liraglutide activates Nrf2 through an AKT/GSK3β/Fyn pathway, and inhibiting this pathway abolished liraglutide-induced Nrf2 activation and EPC function improvement. Overall, these results suggest that Liraglutide represents therapeutic potential in promoting EPC function and ameliorating ischemic angiogenesis under diabetic conditions, and these beneficial effects relied on Nrf2 activation.
Collapse
|
22
|
Labarrere CA, Kassab GS. Glutathione: A Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation. Front Nutr 2022; 9:1007816. [PMID: 36386929 PMCID: PMC9664149 DOI: 10.3389/fnut.2022.1007816] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022] Open
Abstract
Many local and systemic diseases especially diseases that are leading causes of death globally like chronic obstructive pulmonary disease, atherosclerosis with ischemic heart disease and stroke, cancer and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 19 (COVID-19), involve both, (1) oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels, and (2) inflammation. The GSH tripeptide (γ- L-glutamyl-L-cysteinyl-glycine), the most abundant water-soluble non-protein thiol in the cell (1-10 mM) is fundamental for life by (a) sustaining the adequate redox cell signaling needed to maintain physiologic levels of oxidative stress fundamental to control life processes, and (b) limiting excessive oxidative stress that causes cell and tissue damage. GSH activity is facilitated by activation of the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 that regulates expression of genes controlling antioxidant, inflammatory and immune system responses. GSH exists in the thiol-reduced (>98% of total GSH) and disulfide-oxidized (GSSG) forms, and the concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell. GSH depletion may play a central role in inflammatory diseases and COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of inflammatory diseases and COVID-19 and increasing GSH levels may prevent and subdue these diseases. The life value of GSH makes for a paramount research field in biology and medicine and may be key against systemic inflammation and SARS-CoV-2 infection and COVID-19 disease. In this review, we emphasize on (1) GSH depletion as a fundamental risk factor for diseases like chronic obstructive pulmonary disease and atherosclerosis (ischemic heart disease and stroke), (2) importance of oxidative stress and antioxidants in SARS-CoV-2 infection and COVID-19 disease, (3) significance of GSH to counteract persistent damaging inflammation, inflammaging and early (premature) inflammaging associated with cell and tissue damage caused by excessive oxidative stress and lack of adequate antioxidant defenses in younger individuals, and (4) new therapies that include antioxidant defenses restoration.
Collapse
|
23
|
Wu W, Hendrix A, Nair S, Cui T. Nrf2-Mediated Dichotomy in the Vascular System: Mechanistic and Therapeutic Perspective. Cells 2022; 11:cells11193042. [PMID: 36231004 PMCID: PMC9563590 DOI: 10.3390/cells11193042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2), a transcription factor, controls the expression of more than 1000 genes that can be clustered into different categories with distinct functions ranging from redox balance and metabolism to protein quality control in the cell. The biological consequence of Nrf2 activation can be either protective or detrimental in a context-dependent manner. In the cardiovascular system, most studies have focused on the protective properties of Nrf2, mainly as a key transcription factor of antioxidant defense. However, emerging evidence revealed an unexpected role of Nrf2 in mediating cardiovascular maladaptive remodeling and dysfunction in certain disease settings. Herein we review the role of Nrf2 in cardiovascular diseases with a focus on vascular disease. We discuss the negative effect of Nrf2 on the vasculature as well as the potential underlying mechanisms. We also discuss the clinical relevance of targeting Nrf2 pathways for the treatment of cardiovascular and other diseases.
Collapse
Affiliation(s)
- Weiwei Wu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Andrew Hendrix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sharad Nair
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Columbia VA Health System, Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Columbia VA Health System, Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3804
| |
Collapse
|
24
|
Ward AO, Sala-Newby GB, Ladak S, Angelini GD, Caputo M, Suleiman MS, Evans PC, George SJ, Zakkar M. Nrf2-Keap-1 imbalance under acute shear stress induces inflammatory response in venous endothelial cells. Perfusion 2022; 37:582-589. [PMID: 33899586 DOI: 10.1177/02676591211012571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vascular endothelial cell stimulation is associated with the activation of different signalling pathways and transcription factors. Acute shear stress is known to induce different pro-inflammatory mediators such as IL-8. Nrf2 is activated by prolonged high shear stress promoting an antiinflammatory and athero-protective environment. However, little is known about the impact of acute shear stress on Nrf2 and Keap1 function and its role in IL-8 regulation. We aimed to examine Nrf2-Keap1 complex activation in-vitro and its role in regulating IL-8 transcripts under acute arterial shear stress (12 dyn/cm2) in venous endothelial cells (ECs). We note that acute high shear stress caused a significant upregulation of Nrf2 target genes, HO-1 and GCLM and an increased IL-8 upregulation at 90 and 120 minutes. Mechanistically, acute high shear did not affect Nrf2 nuclear translocation but resulted in reduced nuclear Keap1, suggesting that the reduction in nuclear Keap1 may result in increased free nuclear nrf2 to induce transcription. Consistently, the suppression of Keap1 using shRNA (shKeap1) resulted in significant upregulation of IL-8 transcripts in response to acute shear stress. Interestingly; the over expression of Nrf2 using Nrf2-Ad-WT or Sulforaphane was also associated with significant upregulation of IL-8 compared to controls. This study highlights the role of Keap1 in Nrf2 activation under shear stress and indicates that activation of Nrf2 may be deleterious in ECs in the context of acute haemodynamic injury.
Collapse
Affiliation(s)
- Alexander O Ward
- Bristol Medical School, Bristol Heart Institute, University of Bristol, Bristol, UK
| | | | - Shameem Ladak
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Gianni D Angelini
- Bristol Medical School, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Massimo Caputo
- Bristol Medical School, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - M-Saadeh Suleiman
- Bristol Medical School, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, Sheffield, UK
| | - Sarah J George
- Bristol Medical School, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Mustafa Zakkar
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, University of Leicester, Leicester, UK
| |
Collapse
|
25
|
Ammonium tetrathiomolybdate triggers autophagy-dependent NRF2 activation in vascular endothelial cells. Cell Death Dis 2022; 13:733. [PMID: 36008391 PMCID: PMC9411162 DOI: 10.1038/s41419-022-05183-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
Ammonium tetrathiomolybdate (TTM) is a copper chelator in clinical trials for treatment of Wilson's disease, tumors and other diseases. In the current study, we innovatively discovered that TTM is a novel NRF2 activator and illustrated that autophagy contributed to TTM-induced NRF2 activation. We showed that TTM treatment promoted NRF2 nuclear translocation and upregulated transcription level of NRF2 target genes including HMOX1, GCLM, and SLC7A11 in vascular endothelial cells (HUVECs). Moreover, NRF2 deficiency directly hindered TTM-mediated antioxidative effects. Followingly, we revealed that overexpression of KEAP1, a negative regulator of NRF2, significantly repressed NRF2 activation induced by TTM. Further mutation analysis revealed that KEAP1 Cys151 is a major sensor responsible for TTM-initiated NRF2 signaling, suggesting that KEAP1 is involved in TTM-mediated NRF2 activation. Notably, we found that TTM can trigger autophagy as evidenced by accumulation of autophagosomes, elevation of LC3BI-II/I, increase of LC3 puncta and activation of AMPK/mTOR/ULK1 pathway. Autophagic flux assay indicated that TTM significantly enhanced autophagic flux in HUVECs. Inhibition of autophagy with knockout of autophagy key gene ATG5 resulted in suppression of TTM-induced NRF2 activation. TTM also induced phosphorylation of autophagy receptor SQSTM1 at Ser349, while SQSTM1-deficiency inhibited KEAP1 degradation and blocked NRF2 signaling pathway, suggesting that TTM-induced NRF2 activation is autophagy dependent. As the novel NRF2 activator, TTM protected against sodium arsenite (NaAsO2)-induced oxidative stress and cell death, while NRF2 deficiency weakened TTM antioxidative effects. Finally, we showed that autophagy-dependent NRF2 activation contributed to the protective effects of TTM against NaAsO2-induced oxidative injury, because of ATG5 or SQSTM1 knockout aggravated NaAsO2-induced elevation of HMOX1, cleaved PARP and γH2AX. Taken together, our findings highlight copper chelator TTM is a novel autophagy-dependent NRF2 activator and shed a new light on the cure for oxidative damage-related diseases.
Collapse
|
26
|
Foote CA, Soares RN, Ramirez-Perez FI, Ghiarone T, Aroor A, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Endothelial Glycocalyx. Compr Physiol 2022; 12:3781-3811. [PMID: 35997082 PMCID: PMC10214841 DOI: 10.1002/cphy.c210029] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.
Collapse
Affiliation(s)
- Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rogerio N. Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Annayya Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
27
|
Patel UN, Patel UD, Khadayata AV, Vaja RK, Modi CM, Patel HB. Long-term exposure of the binary mixture of cadmium and mercury damages the developed ovary of adult zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44928-44938. [PMID: 35138535 DOI: 10.1007/s11356-022-18988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of the binary mixture of cadmium (Cd) and mercury (Hg) on the ovary of adult zebrafish was evaluated in the present study. Adult female zebrafish were exposed to cadmium chloride (1 mg/L), mercury chloride (30 µg/L), and a binary mixture of both metals for 21 days. The toxic effects of both metals on the ovary were investigated by evaluating the oxidative stress markers and related gene expression in ovarian tissue along with the histopathological examination. The significantly decreased level of GSH and increased level of MDA in ovarian tissue of adult female zebrafish exposed to Cd + Hg indicated that the exposure of binary mixture of Cd and Hg caused more lipid peroxidation in the ovary. The significant changes in expression of mRNA of catalase (CAT) and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) were not observed in the ovary of zebrafish exposed to the binary mixture. Upon histological evaluation, a decreased number of full-growth (mature) oocytes along with degenerative changes due to Cd exposure were noticed, while ovary of zebrafish of the Hg-exposed group had shown a decreased number of pre-and early vitellogenic oocytes along with atretic previtellogenic oocytes compared to the control group. The ovary of zebrafish of the Cd + Hg-exposed group had shown a decreased number of previtellogenic oocytes with marked pathological changes in mature oocytes. Present findings elucidate that simultaneous long-term exposure of Cd and Hg compared to individual exposure significantly damaged the various stages of oocytes of an ovary of adult zebrafish.
Collapse
Affiliation(s)
- Utsav N Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Junagadh, India
- Kamdhenu University, Gandhinagar, Gujarat, India
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Junagadh, India.
- Kamdhenu University, Gandhinagar, Gujarat, India.
| | - Aniket V Khadayata
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Junagadh, India
- Kamdhenu University, Gandhinagar, Gujarat, India
| | - Rahul K Vaja
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Junagadh, India
- Kamdhenu University, Gandhinagar, Gujarat, India
| | - Chirag M Modi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Junagadh, India
- Kamdhenu University, Gandhinagar, Gujarat, India
| | - Harshad B Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Junagadh, India
- Kamdhenu University, Gandhinagar, Gujarat, India
| |
Collapse
|
28
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
29
|
Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood–Brain Barrier Modeling. J EVOL BIOCHEM PHYS+ 2022; 58:781-806. [PMID: 35789679 PMCID: PMC9243926 DOI: 10.1134/s0022093022030139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023]
Abstract
Here, we discuss pathophysiological approaches to the defining
of endothelial dysfunction criteria (i.e., endothelial activation,
impaired endothelial mechanotransduction, endothelial-to-mesenchymal
transition, reduced nitric oxide release, compromised endothelial
integrity, and loss of anti-thrombogenic properties) in different
in vitro and in vivo models. The canonical definition of endothelial
dysfunction includes insufficient production of vasodilators, pro-thrombotic
and pro-inflammatory activation of endothelial cells, and pathologically
increased endothelial permeability. Among the clinical consequences
of endothelial dysfunction are arterial hypertension, macro- and
microangiopathy, and microalbuminuria. We propose to extend the definition
of endothelial dysfunction by adding altered endothelial mechanotransduction
and endothelial-to-mesenchymal transition to its criteria. Albeit
interleukin-6, interleukin-8, and MCP-1/CCL2 dictate the pathogenic
paracrine effects of dysfunctional endothelial cells and are therefore
reliable endothelial dysfunction biomarkers in vitro, they are non-specific
for endothelial cells and cannot be used for the diagnostics of
endothelial dysfunction in vivo. Conceptual improvements in the
existing methods to model endothelial dysfunction, specifically,
in relation to the blood–brain barrier, include endothelial cell
culturing under pulsatile flow, collagen IV coating of flow chambers,
and endothelial lysate collection from the blood vessels of laboratory
animals in situ for the subsequent gene and protein expression profiling.
Combined with the simulation of paracrine effects by using conditioned
medium from dysfunctional endothelial cells, these flow-sensitive
models have a high physiological relevance, bringing the experimental
conditions to the physiological scenario.
Collapse
Affiliation(s)
- A. G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - D. K. Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - E. A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - M. Yu. Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A. V. Sinitskaya
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - V. E. Markova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
30
|
Brandt MM, Cheng C, Merkus D, Duncker DJ, Sorop O. Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation. Front Physiol 2022; 12:771960. [PMID: 35002759 PMCID: PMC8733629 DOI: 10.3389/fphys.2021.771960] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
The coronary microvasculature plays a key role in regulating the tight coupling between myocardial perfusion and myocardial oxygen demand across a wide range of cardiac activity. Short-term regulation of coronary blood flow in response to metabolic stimuli is achieved via adjustment of vascular diameter in different segments of the microvasculature in conjunction with mechanical forces eliciting myogenic and flow-mediated vasodilation. In contrast, chronic adjustments in flow regulation also involve microvascular structural modifications, termed remodeling. Vascular remodeling encompasses changes in microvascular diameter and/or density being largely modulated by mechanical forces acting on the endothelium and vascular smooth muscle cells. Whereas in recent years, substantial knowledge has been gathered regarding the molecular mechanisms controlling microvascular tone and how these are altered in various diseases, the structural adaptations in response to pathologic situations are less well understood. In this article, we review the factors involved in coronary microvascular functional and structural alterations in obstructive and non-obstructive coronary artery disease and the molecular mechanisms involved therein with a focus on mechanobiology. Cardiovascular risk factors including metabolic dysregulation, hypercholesterolemia, hypertension and aging have been shown to induce microvascular (endothelial) dysfunction and vascular remodeling. Additionally, alterations in biomechanical forces produced by a coronary artery stenosis are associated with microvascular functional and structural alterations. Future studies should be directed at further unraveling the mechanisms underlying the coronary microvascular functional and structural alterations in disease; a deeper understanding of these mechanisms is critical for the identification of potential new targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Maarten M Brandt
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
31
|
Pu Y, Tan Y, Zang C, Zhao F, Cai C, Kong L, Deng H, Chao F, Xia R, Xie M, Ge F, Pan Y, Cai S, Huang D. LAMTOR5-AS1 regulates chemotherapy-induced oxidative stress by controlling the expression level and transcriptional activity of NRF2 in osteosarcoma cells. Cell Death Dis 2021; 12:1125. [PMID: 34862368 PMCID: PMC8642434 DOI: 10.1038/s41419-021-04413-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022]
Abstract
Long-noncoding RNAs (lncRNAs) play roles in regulating cellular functions. High-throughput sequencing analysis identified a new lncRNA, termed LAMTOR5-AS1, the expression of which was much higher in the chemosensitive osteosarcoma (OS) cell line G-292 than in the chemoresistant cell line SJSA-1. Further investigations revealed that LAMTOR5-AS1 significantly inhibits the proliferation and multidrug resistance of OS cells. In vitro assays demonstrated that LAMTOR5-AS1 mediates the interaction between nuclear factor erythroid 2-related factor 2 (NFE2L2, NRF2) and kelch-like ECH-associated protein 1 (KEAP1), which regulate the oxidative stress. Further mechanistic studies revealed that LAMTOR5-AS1 inhibited the ubiquitination degradation pathway of NRF2, resulting in a higher level of NRF2 but a loss of NRF2 transcriptional activity. High level of NRF2 in return upregulated the downstream gene heme oxygenase 1 (HO-1). Moreover, NRF2 controls its own activity by promoting LAMTOR5-AS1 expression, whereas the feedback regulation is weakened in drug-resistant cells due to high antioxidant activity. Overall, we propose that LAMTOR5-AS1 globally regulates chemotherapy-induced cellular oxidative stress by controlling the expression and activity of NRF2.
Collapse
Affiliation(s)
- Youguang Pu
- grid.59053.3a0000000121679639Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui People’s Republic of China
| | - Yiao Tan
- grid.59053.3a0000000121679639Department of Urology Surgery, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui People’s Republic of China
| | - Chunbao Zang
- grid.59053.3a0000000121679639Department of Radiation Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui People’s Republic of China
| | - Fangfang Zhao
- grid.59053.3a0000000121679639Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui People’s Republic of China
| | - Cifeng Cai
- grid.412899.f0000 0000 9117 1462College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, Zhejiang People’s Republic of China
| | - Lingsuo Kong
- grid.59053.3a0000000121679639Department of Anesthesiology, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui People’s Republic of China
| | - Hui Deng
- grid.59053.3a0000000121679639Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui People’s Republic of China
| | - Fengmei Chao
- grid.59053.3a0000000121679639Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui People’s Republic of China
| | - Ran Xia
- grid.59053.3a0000000121679639Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui People’s Republic of China
| | - Minghua Xie
- grid.59053.3a0000000121679639Department of Thoracic Tumor Surgery Department, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui People’s Republic of China
| | - Fangfang Ge
- grid.443626.10000 0004 1798 4069Department of Provincial Clinical College, Wannan Medical College, 241002 Wuhu, Anhui People’s Republic of China
| | - Yueyin Pan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, People's Republic of China.
| | - Shanbao Cai
- Department of Orthopedic Surgery, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, People's Republic of China.
| | - Dabing Huang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
32
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying unidirectional laminar shear stress-mediated Nrf2 activation in endothelial cells: Amplification of low shear stress signaling by primary cilia. Redox Biol 2021; 46:102103. [PMID: 34425388 PMCID: PMC8379703 DOI: 10.1016/j.redox.2021.102103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells are sensitive to mechanical stress and respond differently to oscillatory flow versus unidirectional flow. This review highlights the mechanisms by which a wide range of unidirectional laminar shear stress induces activation of the redox sensitive antioxidant transcription factor nuclear factor-E2-related factor 2 (Nrf2) in cultured endothelial cells. We propose that fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor (BDNF) and 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are potential Nrf2 activators induced by laminar shear stress. Shear stress-dependent secretion of FGF-2 and its receptor-mediated signaling is tightly controlled, requiring neutrophil elastase released by shear stress, αvβ3 integrin and the cell surface glycocalyx. We speculate that primary cilia respond to low laminar shear stress (<10 dyn/cm2), resulting in secretion of insulin-like growth factor 1 (IGF-1), which facilitates αvβ3 integrin-dependent FGF-2 secretion. Shear stress induces generation of heparan-binding epidermal growth factor-like growth factor (HB-EGF), which contributes to FGF-2 secretion and gene expression. Furthermore, HB-EGF signaling modulates FGF-2-mediated NADPH oxidase 1 activation that favors casein kinase 2 (CK2)-mediated phosphorylation/activation of Nrf2 associated with caveolin 1 in caveolae. Higher shear stress (>15 dyn/cm2) induces vesicular exocytosis of BDNF from endothelial cells, and we propose that BDNF via the p75NTR receptor could induce CK2-mediated Nrf2 activation. Unidirectional laminar shear stress upregulates gene expression of FGF-2 and BDNF and generation of 15d-PGJ2, which cooperate in sustaining Nrf2 activation to protect endothelial cells against oxidative damage.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
33
|
Alonso-Piñeiro JA, Gonzalez-Rovira A, Sánchez-Gomar I, Moreno JA, Durán-Ruiz MC. Nrf2 and Heme Oxygenase-1 Involvement in Atherosclerosis Related Oxidative Stress. Antioxidants (Basel) 2021; 10:1463. [PMID: 34573095 PMCID: PMC8466960 DOI: 10.3390/antiox10091463] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis remains the underlying process responsible for cardiovascular diseases and the high mortality rates associated. This chronic inflammatory disease progresses with the formation of occlusive atherosclerotic plaques over the inner walls of vascular vessels, with oxidative stress being an important element of this pathology. Oxidation of low-density lipoproteins (ox-LDL) induces endothelial dysfunction, foam cell activation, and inflammatory response, resulting in the formation of fatty streaks in the atherosclerotic wall. With this in mind, different approaches aim to reduce oxidative damage as a strategy to tackle the progression of atherosclerosis. Special attention has been paid in recent years to the transcription factor Nrf2 and its downstream-regulated protein heme oxygenase-1 (HO-1), both known to provide protection against atherosclerotic injury. In the current review, we summarize the involvement of oxidative stress in atherosclerosis, focusing on the role that these antioxidant molecules exert, as well as the potential therapeutic strategies applied to enhance their antioxidant and antiatherogenic properties.
Collapse
Affiliation(s)
- Jose Angel Alonso-Piñeiro
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Almudena Gonzalez-Rovira
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofia, 14004 Cordoba, Spain;
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain
| | - Ma Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| |
Collapse
|
34
|
Hartwick Bjorkman S, Oliveira Pereira R. The Interplay Between Mitochondrial Reactive Oxygen Species, Endoplasmic Reticulum Stress, and Nrf2 Signaling in Cardiometabolic Health. Antioxid Redox Signal 2021; 35:252-269. [PMID: 33599550 PMCID: PMC8262388 DOI: 10.1089/ars.2020.8220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Mitochondria-derived reactive oxygen species (mtROS) are by-products of normal physiology that may disrupt cellular redox homeostasis on a regular basis. Nonetheless, failure to resolve sustained mitochondrial stress to mitigate high levels of mtROS might contribute to the etiology of numerous pathological conditions, such as obesity, insulin resistance, and cardiovascular disease (CVD). Recent Advances: Notably, recent studies have demonstrated that moderate mitochondrial stress might result in the induction of different stress response pathways that ultimately improve the organism's ability to deal with subsequent stress, a process termed mitohormesis. mtROS have been shown to play a key role in regulating this adaptation. Critical Issue: mtROS regulate the convergence of different signaling pathways that, when disturbed, might impair cardiometabolic health. Conversely, mtROS seem to be required to mediate activation of prosurvival pathways, contributing to improved cardiometabolic fitness. In the present review, we will primarily focus on the role of mtROS in the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and examine the role of endoplasmic reticulum (ER) stress in coordinating the convergence of ER stress and oxidative stress signaling through activation of Nrf2 and activating transcription factor 4 (ATF4). Future Directions: The mechanisms underlying cardiometabolic protection in response to mitochondrial stress have only started to be investigated. Integrated understanding of how mtROS and ER stress cooperatively promote activation of prosurvival pathways might shed mechanistic insight into the role of mitohormesis in mediating cardiometabolic protection and might inform future therapeutic avenues for the treatment of metabolic diseases contributing to CVD. Antioxid. Redox Signal. 35, 252-269.
Collapse
Affiliation(s)
- Sarah Hartwick Bjorkman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Renata Oliveira Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
35
|
Lee JH, Chen Z, He S, Zhou JK, Tsai A, Truskey GA, Leong KW. Emulating Early Atherosclerosis in a Vascular Microphysiological System Using Branched Tissue-Engineered Blood Vessels. Adv Biol (Weinh) 2021; 5:e2000428. [PMID: 33852179 PMCID: PMC9951769 DOI: 10.1002/adbi.202000428] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Indexed: 02/04/2023]
Abstract
Atherosclerosis begins with the accumulation of cholesterol-carrying lipoproteins on blood vessel walls and progresses to endothelial cell dysfunction, monocyte adhesion, and foam cell formation. Endothelialized tissue-engineered blood vessels (TEBVs) have previously been fabricated to recapitulate artery functionalities, including vasoconstriction, vasodilation, and endothelium activation. Here, the initiation of atherosclerosis is emulated by designing branched TEBVs (brTEBVs) of various geometries treated with enzyme-modified low-density-lipoprotein (eLDL) and TNF-α to induce endothelial cell dysfunction and adhesion of perfused human monocytes. Locations of monocyte adhesion under pulsatile flow are identified, and the hemodynamics in the brTEBVs are characterized using particle image velocimetry (PIV) and computational fluid dynamics (CFD). Monocyte adhesion is greater at the side outlets than at the main outlets or inlets, and is greatest at larger side outlet branching angles (60° or 80° vs 45°). In PIV experiments, the branched side outlets are identified as atherosclerosis-prone areas where fluorescent particles show a transient swirling motion following flow pulses; in CFD simulations, side outlets with larger branching angles show higher vorticity magnitude and greater flow disturbance than other areas. These results suggest that the branched TEBVs with eLDL/TNF-α treatment provide a physiologically relevant model of early atherosclerosis for preclinical studies.
Collapse
Affiliation(s)
- Jounghyun H. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Zaozao Chen
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Joyce K. Zhou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Alexander Tsai
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
36
|
Liu Y, Deng J, Fan D. G-Rh4 improves pancreatic β-cells dysfunction in vivo and in vitro by increased expression of Nrf2 and its target genes. Food Chem Toxicol 2021; 148:111925. [PMID: 33359794 DOI: 10.1016/j.fct.2020.111925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/10/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023]
Abstract
The aim of this study is to investigate the hypoglycemic mechanism of ginsenoside Rh4 (G-Rh4) in vivo and in vitro models. Our results showed that G-Rh4 markedly improved the symptoms of diabetes, normalized glucose metabolism, and promoted insulin secretion which contributed to attenuate symptoms of hyperglycemia in high-fat diet/streptozocin induced type 2 diabetes mellitus mice. This positive effect was associated with increased expression of Nrf2 by G-Rh4. Further results demonstrated that G-Rh4 promoted Nrf2 nucleus translocation as well as up-regulated the expression of HO-1, NQO1 and GCLC. Furthermore, we also found that G-Rh4 increased insulin secretion by activating the signal pathway of PDX-1, GLUT2 and GCK. More importantly, the protective effects of G-Rh4 on alloxan-induced upregulation of Nrf2 target gene and insulin secretion were abolished by Nrf2 knockdown. Finally, we explored the mechanism of G-Rh4 associated with Nrf2 activation and found that the Akt deficiency inhibited G-Rh4-mediated Nrf2 nuclear translocation. Altogether, we present evidence that G-Rh4 increased expression of Nrf2 and results in increased antioxidant gene, as well as a rise in insulin secretion in vivo and in vitro. Exploiting the Nrf2 pathway may show great potential as a therapeutic strategy to improve pancreatic β-cells dysfunction in the diabetic population.
Collapse
Affiliation(s)
- Yao Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
37
|
Hirata T, Yamamoto K, Ikeda K, Arita M. Functional lipidomics of vascular endothelial cells in response to laminar shear stress. FASEB J 2021; 35:e21301. [PMID: 33421194 DOI: 10.1096/fj.202002144r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022]
Abstract
Laminar shear stress generated by blood flow stimulates endothelial cells and activates signal transduction, which plays an important role in vascular homeostasis. Several lines of evidence indicate that membrane and intracellular lipids are involved in the signal transduction of biomechanical stresses. In this study, we performed global profiling of cellular lipids from human pulmonary artery endothelial cells (HPAEC) exposed to laminar shear stress. A total of 761 species of lipids were successfully annotated, with 198 of these species significantly changed in response to shear stress for 24 hours. Ether-linked lipids containing an alkyl moiety with a medium chain length (C11-C14) were uniquely upregulated, and the administration of their biosynthetic precursor 1-O-dodecyl-rac-glycerol attenuated phorbol 12-myristate 13-acetate (PMA) induced vascular cell adhesion molecule-1 (VCAM-1) expression. Given the pro-inflammatory and atherogenic roles of VCAM-1, our findings suggest that the induction of a specific group of lipids (ie, ether-linked lipids with medium length alkyl side chain) may confer atheroprotective and anti-inflammatory roles to vascular endothelial cells under flow conditions.
Collapse
Affiliation(s)
- Tsuyoshi Hirata
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory of Biomolecule Analysis, Kazusa DNA Research Institute, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| |
Collapse
|
38
|
Psefteli PM, Kitscha P, Vizcay G, Fleck R, Chapple SJ, Mann GE, Fowler M, Siow RC. Glycocalyx sialic acids regulate Nrf2-mediated signaling by fluid shear stress in human endothelial cells. Redox Biol 2021; 38:101816. [PMID: 33340902 PMCID: PMC7750408 DOI: 10.1016/j.redox.2020.101816] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is critical for vascular endothelial redox homeostasis in regions of high, unidirectional shear stress (USS), however the underlying mechanosensitive mediators are not fully understood. The endothelial glycocalyx is disrupted in arterial areas exposed to disturbed blood flow that also exhibit enhanced oxidative stress leading to atherogenesis. We investigated the contribution of glycocalyx sialic acids (SIA) to Nrf2 signaling in human endothelial cells (EC) exposed to atheroprotective USS or atherogenic low oscillatory shear stress (OSS). Cells exposed to USS exhibited a thicker glycocalyx and enhanced turnover of SIA which was reduced in cells cultured under OSS. Physiological USS, but not disturbed OSS, enhanced Nrf2-mediated expression of antioxidant enzymes, which was attenuated following SIA cleavage with exogenous neuraminidase. SIA removal disrupted kinase signaling involved in the nuclear accumulation of Nrf2 elicited by USS and promoted mitochondrial reactive oxygen species accumulation. Notably, knockdown of the endogenous sialidase NEU1 potentiated Nrf2 target gene expression, directly implicating SIA in regulation of Nrf2 signaling by USS. In the absence of SIA, deficits in Nrf2 responses to physiological flow were also associated with a pro-inflammatory EC phenotype. This study demonstrates that the glycocalyx modulates endothelial redox state in response to shear stress and provides the first evidence of an atheroprotective synergism between SIA and Nrf2 antioxidant signaling. The endothelial glycocalyx therefore represents a potential therapeutic target against EC dysfunction in cardiovascular disease and redox dyshomeostasis in ageing.
Collapse
Affiliation(s)
- Paraskevi-Maria Psefteli
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9NH, United Kingdom
| | - Phoebe Kitscha
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9NH, United Kingdom
| | - Gema Vizcay
- Centre for Ultrastructural Imaging, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Roland Fleck
- Centre for Ultrastructural Imaging, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Sarah J Chapple
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9NH, United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9NH, United Kingdom
| | - Mark Fowler
- Strategic Science Group, Unilever R&D, Colworth Science Park, Bedford, MK44 1LQ, United Kingdom
| | - Richard C Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9NH, United Kingdom.
| |
Collapse
|
39
|
In Vitro/Ex Vivo Models for the Study of Ischemia Reperfusion Injury during Kidney Perfusion. Int J Mol Sci 2020; 21:ijms21218156. [PMID: 33142791 PMCID: PMC7662866 DOI: 10.3390/ijms21218156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a key element of ischemia–reperfusion injury, occurring during kidney preservation and transplantation. Current options for kidney graft preservation prior to transplantation are static cold storage (CS) and hypothermic machine perfusion (HMP), the latter demonstrating clear improvement of preservation quality, particularly for marginal donors, such as extended criteria donors (ECDs) and donation after circulatory death (DCDs). Nevertheless, complications still exist, fostering the need to improve kidney preservation. This review highlights the most promising avenues of in kidney perfusion improvement on two critical aspects: ex vivo and in vitro evaluation.
Collapse
|
40
|
Targeting the Nrf2/ARE Signalling Pathway to Mitigate Isoproterenol-Induced Cardiac Hypertrophy: Plausible Role of Hesperetin in Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9568278. [PMID: 32952852 PMCID: PMC7482027 DOI: 10.1155/2020/9568278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Cardiac hypertrophy is the underlying cause of heart failure and is characterized by excessive oxidative stress leading to collagen deposition. Therefore, understanding the signalling mechanisms involved in excessive extracellular matrix deposition is necessary to prevent cardiac remodelling and heart failure. In this study, we hypothesized that hesperetin, a flavanone that elicits the activation of Nrf2 signalling and thereby suppresses oxidative stress, mediated pathological cardiac hypertrophy progression. A cardiac hypertrophy model was established with subcutaneous injection of isoproterenol in male Wistar rats. Oxidative stress markers, antioxidant defense status, and its upstream signalling molecules were evaluated to discover the impacts of hesperetin in ameliorating cardiac hypertrophy. Our results implicate that hesperetin pretreatment resulted in the mitigation of oxidative stress by upregulating antioxidant capacity of the heart. This curative effect might be owing to the activation of the master regulator of antioxidant defense system, known as Nrf2. Further, analysis of Nrf2 revealed that hesperetin enhances its nuclear translocation as well as the expression of its downstream targets (GCLC, NQO1, and HO-1) to boost the antioxidative status of the cells. To support this notion, in vitro studies were carried out in isoproterenol-treated H9c2 cells. Immunocytochemical analysis showed augmented nuclear localization of Nrf2 implicating the action of hesperetin at the molecular level to maintain the cellular redox homeostasis. Thus, it is conceivable that hesperetin could be a potential therapeutic candidate that enhances Nrf2 signalling and thereby ameliorates pathological cardiac remodelling.
Collapse
|
41
|
Filippini A, D’Alessio A. Caveolae and Lipid Rafts in Endothelium: Valuable Organelles for Multiple Functions. Biomolecules 2020; 10:biom10091218. [PMID: 32825713 PMCID: PMC7563503 DOI: 10.3390/biom10091218] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Caveolae are flask-shaped invaginations of the plasma membrane found in numerous cell types and are particularly abundant in endothelial cells and adipocytes. The lipid composition of caveolae largely matches that of lipid rafts microdomains that are particularly enriched in cholesterol, sphingomyelin, glycosphingolipids, and saturated fatty acids. Unlike lipid rafts, whose existence remains quite elusive in living cells, caveolae can be clearly distinguished by electron microscope. Despite their similar composition and the sharing of some functions, lipid rafts appear more heterogeneous in terms of size and are more dynamic than caveolae. Following the discovery of caveolin-1, the first molecular marker as well as the unique scaffolding protein of caveolae, we have witnessed a remarkable increase in studies aimed at investigating the role of these organelles in cell functions and human disease. The goal of this review is to discuss the most recent studies related to the role of caveolae and caveolins in endothelial cells. We first recapitulate the major embryological processes leading to the formation of the vascular tree. We next discuss the contribution of caveolins and cavins to membrane biogenesis and cell response to extracellular stimuli. We also address how caveolae and caveolins control endothelial cell metabolism, a central mechanism involved in migration proliferation and angiogenesis. Finally, as regards the emergency caused by COVID-19, we propose to study the caveolar platform as a potential target to block virus entry into endothelial cells.
Collapse
Affiliation(s)
- Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Roma, Italy;
| | - Alessio D’Alessio
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Roma, Italia
- Correspondence:
| |
Collapse
|
42
|
Guo Z, Mo Z. Keap1‐Nrf2 signaling pathway in angiogenesis and vascular diseases. J Tissue Eng Regen Med 2020; 14:869-883. [PMID: 32336035 DOI: 10.1002/term.3053] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Zi Guo
- Department of EndocrinologyThe Third Xiangya Hospital, Central South University Changsha China
| | - Zhaohui Mo
- Department of EndocrinologyThe Third Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
43
|
He D, Mao A, Zheng CB, Kan H, Zhang K, Zhang Z, Feng L, Ma X. Aortic heterogeneity across segments and under high fat/salt/glucose conditions at the single-cell level. Natl Sci Rev 2020; 7:881-896. [PMID: 34692110 PMCID: PMC8289085 DOI: 10.1093/nsr/nwaa038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/23/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
The aorta, with ascending, arch, thoracic and abdominal segments, responds to the heartbeat, senses metabolites and distributes blood to all parts of the body. However, the heterogeneity across aortic segments and how metabolic pathologies change it are not known. Here, a total of 216 612 individual cells from the ascending aorta, aortic arch, and thoracic and abdominal segments of mouse aortas under normal conditions or with high blood glucose levels, high dietary salt, or high fat intake were profiled using single-cell RNA sequencing. We generated a compendium of 10 distinct cell types, mainly endothelial (EC), smooth muscle (SMC), stromal and immune cells. The distributions of the different cells and their intercommunication were influenced by the hemodynamic microenvironment across anatomical segments, and the spatial heterogeneity of ECs and SMCs may contribute to differential vascular dilation and constriction that were measured by wire myography. Importantly, the composition of aortic cells, their gene expression profiles and their regulatory intercellular networks broadly changed in response to high fat/salt/glucose conditions. Notably, the abdominal aorta showed the most dramatic changes in cellular composition, particularly involving ECs, fibroblasts and myeloid cells with cardiovascular risk factor-related regulons and gene expression networks. Our study elucidates the nature and range of aortic cell diversity, with implications for the treatment of metabolic pathologies.
Collapse
Affiliation(s)
- Dongxu He
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aiqin Mao
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Hao Kan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ka Zhang
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Zhang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lei Feng
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Ma
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
44
|
Zhan B, Zhu B, Hu J, Huang Q, Bao H, Huang X, Cheng X. The efficacy of remote ischemic conditioning in preventing contrast-induced nephropathy among patients undergoing coronary angiography or intervention: An updated systematic review and meta-analysis. Ann Noninvasive Electrocardiol 2020; 25:e12706. [PMID: 31605431 PMCID: PMC7358796 DOI: 10.1111/anec.12706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 11/26/2022] Open
Abstract
Background Numerous trials have investigated the effect of remote ischemic conditioning (RIC) in preventing contrast‐induced nephropathy (CIN) in patients receiving contrast medium (CM). This meta analysis aims to validate the role of RIC in preventing CIN. Methods We searched the PubMed, EMBASE, and Web of Science databases for eligible randomized controlled trials (RCTs) published before April 27, 2019. Two investigators independently extracted basic characteristics from each study. Odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were used to examine the treatment effect. Results A total of 18 studies comprising 2,503 patients were included in our meta‐analysis. Compared with conventional therapy, RIC significantly reduced the risk of CIN (OR = 0.43, 95% CI: 0.33, 0.56, p < .05). Subgroup analyses showed that the protective effect of RIC was stronger in the low‐osmolar contrast media group (OR = 0.32; 95% CI: 0.23, 0.45, p < .05) and the nondiabetic group (OR = 0.39; 95% CI: 0.29, 0.53 p < .05). RIC also significantly reduced major adverse cardiovascular events within the first 6 months (OR = 0.39; p < .05), but the influence was not present after long‐term follow‐up. Conclusions Our meta‐analysis showed that RIC could effectively reduce CIN risk and decrease the short‐term incidence of relevant adverse events. Furthermore, the effects of CIN are more pronounced in nondiabetic patients and with the use of low‐osmolar contrast medium. This meta‐analysis of small trials suggests a possible protective effect of RIC on contrast‐induced nephropathy and favors the performance of a large randomized trial to further investigate this strategy.
Collapse
Affiliation(s)
- Biming Zhan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Zhu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianxin Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qianghui Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huihui Bao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
45
|
Ramprasath T, Freddy AJ, Velmurugan G, Tomar D, Rekha B, Suvekbala V, Ramasamy S. Context-Dependent Regulation of Nrf2/ARE Axis on Vascular Cell Function during Hyperglycemic Condition. Curr Diabetes Rev 2020; 16:797-806. [PMID: 32000646 DOI: 10.2174/1573399816666200130094512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/03/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is associated with an increased risk of micro and macrovascular complications. During hyperglycemic conditions, endothelial cells and vascular smooth muscle cells are exquisitely sensitive to high glucose. This high glucose-induced sustained reactive oxygen species production leads to redox imbalance, which is associated with endothelial dysfunction and vascular wall remodeling. Nrf2, a redox-regulated transcription factor plays a key role in the antioxidant response element (ARE)-mediated expression of antioxidant genes. Although accumulating data indicate the molecular mechanisms underpinning the Nrf2 regulated redox balance, understanding the influence of the Nrf2/ARE axis during hyperglycemic condition on vascular cells is paramount. This review focuses on the context-dependent role of Nrf2/ARE signaling on vascular endothelial and smooth muscle cell function during hyperglycemic conditions. This review also highlights improving the Nrf2 system in vascular tissues, which could be a potential therapeutic strategy for vascular dysfunction.
Collapse
Affiliation(s)
- Tharmarajan Ramprasath
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Allen John Freddy
- Department of Zoology, Madras Christian College, Chennai 600 059, Tamil Nadu, India
| | - Ganesan Velmurugan
- Chemomicrobiomics Laboratory, KMCH Research Foundation, Kovai Medical Center & Hospital, Coimbatore 641 014, Tamil Nadu, India
| | - Dhanendra Tomar
- Center for Translational Medicine, Temple University, Philadelphia 19140, United States
| | - Balakrishnan Rekha
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Vemparthan Suvekbala
- Department of Biomedical Sciences & Technology, Noorul Islam Centre for Higher Education, Kumaracoil, Thucklay, Tamilnadu 629180, India
| | - Subbiah Ramasamy
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
46
|
Tao WY, Yu LJ, Jiang S, Cao X, Chen J, Bao XY, Li F, Xu Y, Zhu XL. Neuroprotective effects of ZL006 in Aβ 1-42-treated neuronal cells. Neural Regen Res 2020; 15:2296-2305. [PMID: 32594052 PMCID: PMC7749460 DOI: 10.4103/1673-5374.285006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amyloid beta (Aβ)-induced neurotoxicity and oxidative stress plays an important role in the pathogenesis of Alzheimer’s disease (AD). ZL006 is shown to reduce over-produced nitric oxide and oxidative stress in ischemic stroke by interrupting the interaction of neuronal nitric oxide synthase and postsynaptic density protein 95. However, few studies are reported on the role of ZL006 in AD. To investigate whether ZL006 exerted neuroprotective effects in AD, we used Aβ1–42 to treat primary cortical neurons and N2a neuroblastoma cells as an in vitro model of AD. Cortical neurons were incubated with ZL006 or dimethyl sulfoxide for 2 hours and treated with Aβ1–42 or NH3•H2O for another 24 hours. The results of cell counting Kit-8 (CCK-8) assay and calcein-acetoxymethylester/propidium iodide staining showed that ZL006 pretreatment rescued the neuronal death induced by Aβ1–42. Fluorescence and western blot assay were used to detect oxidative stress and apoptosis-related proteins in each group of cells. Results showed that ZL006 pretreatment decreased neuronal apoptosis and oxidative stress induced by Aβ1–42. The results of CCK8 assay showed that inhibition of Akt or NF-E2-related factor 2 (Nrf2) in cortical neurons abolished the protective effects of ZL006. Moreover, similar results were also observed in N2a neuroblastoma cells. ZL006 inhibited N2a cell death and oxidative stress induced by Aβ1–42, while inhibition of Akt or Nrf2 abolished the protective effect of ZL006. These results demonstrated that ZL006 reduced Aβ1–42-induced neuronal damage and oxidative stress, and the mechanisms might be associated with the activation of Akt/Nrf2/heme oxygenase-1 signaling pathways.
Collapse
Affiliation(s)
- Wen-Yuan Tao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Lin-Jie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Su Jiang
- Taizhou People's Hospital, Taizhou, Jiangsu Province, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Xin-Yu Bao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Xiao-Lei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
47
|
Ungvari Z, Tarantini S, Nyúl-Tóth Á, Kiss T, Yabluchanskiy A, Csipo T, Balasubramanian P, Lipecz A, Benyo Z, Csiszar A. Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature: from increased cellular senescence to the pathogenesis of age-related vascular diseases. GeroScience 2019; 41:727-738. [PMID: 31655958 PMCID: PMC6925097 DOI: 10.1007/s11357-019-00107-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023] Open
Abstract
Aging is associated with increased oxidative stress in vascular endothelial and smooth muscle cells, which contribute to the development of a wide range of diseases affecting the circulatory system in older adults. There is growing evidence that in addition to increased production of reactive oxygen species (ROS), aging critically impairs pathways determining cellular resilience to oxidative stressors. In young organisms, the evolutionarily conserved nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated antioxidant response pathway maintains cellular reduction-oxidation homeostasis and promotes a youthful cellular phenotype by regulating the transcription of an array of cytoprotective (antioxidant, pro-survival, anti-inflammatory and macromolecular damage repair) genes. A critical mechanism by which increased ROS production and Nrf2 dysfunction promote vascular aging and exacerbate pathogenesis of age-related vascular diseases is induction of cellular senescence, an evolutionarily conserved cellular stress response mechanism. Senescent cells cease dividing and undergo distinctive phenotypic alterations, contributing to impairment of angiogenic processes, chronic sterile inflammation, remodeling of the extracellular matrix, and barrier dysfunction. Herein, we review mechanisms contributing to dysregulation of Nrf2-driven cytoprotective responses in the aged vasculature and discuss the multifaceted role of Nrf2 dysfunction in the genesis of age-related pathologies affecting the circulatory system, including its role in induction of cellular senescence. Therapeutic strategies that restore Nrf2 signaling and improve vascular resilience in aging are explored to reduce cardiovascular mortality and morbidity in older adults.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma HSC, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA.
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Kalman Laki Doctoral School, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Benyo
- Doctoral School of Basic and Translational Medicine, Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Doctoral School of Basic and Translational Medicine, Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
48
|
Tang T, Duan Z, Xu J, Liang J, Zhang S, Zhang H, Zhang X, Wang Y. Pterostilbene reduces endothelial cell injury in vascular arterial walls by regulating the Nrf2-mediated AMPK/STAT3 pathway in an atherosclerosis rat model. Exp Ther Med 2019; 19:45-52. [PMID: 31853271 PMCID: PMC6909712 DOI: 10.3892/etm.2019.8211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Endothelial cell injury in vascular arterial walls is a hallmark of atherosclerosis. Pterostilbene (Pts) has been shown to have an anti-oxidative and anti-apoptotic effect in numerous diseases via regulation of intracellular metabolism. The purpose of this study was to investigate the protective effect and possible mechanism of Pts against endothelial cell apoptosis in an atherosclerotic rat model. An atherosclerotic rat model was established using a high-fat, high glucose and high cholesterol diet. The effects of Pts on apoptosis and oxidative stress injury were measured using atherosclerotic lesion analysis, western blot analysis, hematoxylin and eosin straining, TUNEL assay and immunohistochemistry. In vivo results in an atherosclerosis rat model showed that Pts administration decreased the inflammatory response. Pts administration attenuated atherogenesis, reduced aortic plaque size, reduced macrophage infiltration, and suppressed oxidative stress and apoptosis of vascular arterial walls. In vitro assays using cultured human endothelial cells showed that Pts administration decreased hydrogen peroxide-induced cytotoxicity, oxidative stress injury and apoptosis via nuclear factor erythroid 2-related factor 2 (Nrf2) activation in endothelial cells. Additionally, Pts administration increased the expression level of Nrf2 and 5′ adenosine monophosphate-activated protein kinase (AMPK), and the phosphorylation level of AMPK and decreased signal transducer and activator of transcription 3 (STAT3) expression in these cells. Furthermore, knockdown of Nrf2 prevented Pts-decrease oxidative stress injury and apoptosis. In conclusion, these data suggest that Pts can protect endothelial cells in the vascular arterial walls against atherosclerosis-induced injury through regulation of the Nrf2-mediated AMPK/STAT3 pathway.
Collapse
Affiliation(s)
- Tieyu Tang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Zuowei Duan
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jiang Xu
- Department of Neurology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China.,Department of Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou, Jiangsu 225001, P.R. China
| | - Shuai Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Haifeng Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xinjiang Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yingge Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
49
|
Jia L, Xiong Y, Zhang W, Ma X, Xu X. Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway. Exp Cell Res 2019; 386:111717. [PMID: 31715142 DOI: 10.1016/j.yexcr.2019.111717] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
Periodontal ligament stem cell (PDLSC)-based tissue engineering is an important method for regenerating lost bone in periodontitis. Maintaining or enhancing the osteogenic differentiation of PDLSCs, as well as enhancing the resistance of PDLSCs to oxidative stress, is necessary in this process. As a common hypoglycemic drug, metformin has been reported to have multiple effects on cell functions. This study found that low concentrations of metformin did not affect cell proliferation but did inhibit adipogenic differentiation and promote osteogenic differentiation of PDLSCs. This positive effect was associated with activation of Akt signaling by metformin. Moreover, applying metformin as either a pretreatment or co-treatment could reduce the amount of reactive oxygen species, enhance antioxidant capacity, and rescue the cell viability and osteogenic differentiation that were negatively affected by H2O2-induced oxidative stress in PDLSCs. In addition, metformin was found to activate the Nrf2 signaling pathway in PDLSCs, and knockdown of Nrf2 by siRNA impaired the protective effect of metformin. Taken together, these results indicate that metformin not only promotes osteogenic differentiation of PDLSCs, but also protects PDLSCs against oxidative stress-induced damage, suggesting that metformin could be potentially useful in promoting PDLSC-based bone regeneration in the treatment of periodontitis.
Collapse
Affiliation(s)
- Linglu Jia
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Yixuan Xiong
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Wenjing Zhang
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Xiaoni Ma
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
50
|
Peng Z, Shu B, Zhang Y, Wang M. Endothelial Response to Pathophysiological Stress. Arterioscler Thromb Vasc Biol 2019; 39:e233-e243. [PMID: 31644356 DOI: 10.1161/atvbaha.119.312580] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Located in the innermost layer of the vasculature and directly interacting with blood flow, endothelium integrates various biochemical and biomechanical signals to maintain barrier function with selective permeability, vascular tone, blood fluidity, and vascular formation. Endothelial cells respond to laminar and disturbed flow by structural and functional adaption, which involves reprogramming gene expression, cell proliferation and migration, senescence, autophagy and cell death, as well as synthesizing signal molecules (nitric oxide and prostanoids, etc) that act in manners of autocrine, paracrine, or juxtacrine. Inflammation occurs after infection or tissue injury. Dysregulated inflammatory response participates in pathogenesis of many diseases. Endothelial cells exposed to inflammatory stimuli from the circulation or the microenvironment exhibit impaired vascular tone, increased permeability, elevated procoagulant activity, and dysregulated vascular formation, collectively contributing to the development of vascular diseases. Understanding the endothelial response to pathophysiological stress of hemodynamics and inflammation provides mechanistic insights into cardiovascular diseases, as well as therapeutic opportunities.
Collapse
Affiliation(s)
- Zekun Peng
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingyan Shu
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yurong Zhang
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|