1
|
Zhou P, Yu SN, Zhang HF, Wang YL, Tao P, Tan YZ, Wang HJ. c-kit +VEGFR-2 + Mesenchymal Stem Cells Differentiate into Cardiovascular Cells and Repair Infarcted Myocardium after Transplantation. Stem Cell Rev Rep 2023; 19:230-247. [PMID: 35962935 PMCID: PMC9823054 DOI: 10.1007/s12015-022-10430-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 01/29/2023]
Abstract
Resent study suggests that c-kit+ cells in bone marrow-derived MSCs may differentiate toward cardiamyocytes. However, the properties of c-kit+ MSCs remain unclear. This study isolated c-kit+VEGFR-2+ cells from rat bone marrow-derived MSCs, and assessed potential of c-kit+VEGFR-2+ MSCs to differentiate towards cardiovascular cells and their efficiency of repairing the infarcted myocardium after transplantation. Gene expression profile of the cells was analyzed with RNA-sequencing. Potential of differentiation of the cells was determined after induction. Rat models of myocardial infarction were established by ligation of the left anterior descending coronary artery. The cells were treated with hypoxia and serum deprivation for four hours before transplantation. Improvement of cardiac function and repair of the infarcted myocardium were assessed at four weeks after transplantation. Gene expression profile revealed that c-kit+VEGFR-2+ MSCs expressed most smooth muscle-specific and myocardium-specific genes, while expression of endothelium-specific genes was upregulated significantly. After induction with VEGF or TGF-β for two weeks, the cells expressed CD31 and α-SMA respectively. At three weeks, BMP-2-induced cells expressed cTnT. After transplantation of the cells, cardiac function was improved, scar size of the infarcted myocardium was decreased, and angiogenesis and myocardial regeneration were enhanced significantly. Moreover, paracrine in the myocardium was increased after transplantation. These results suggest that c-kit+VEGFR-2+ MSCs have a potential of differentiation towards cardiovascular cells. Transplantation of c-kit+VEGFR-2+ MSCs is effective for repair of the infarcted myocardium. c-kit+VEGFR-2+ MSCs may be a reliable source for cell therapy of ischaemic diseases.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Shu-Na Yu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Hai-Feng Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Yong-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Ping Tao
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China.
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
2
|
Cardiac regeneration following myocardial infarction: the need for regeneration and a review of cardiac stromal cell populations used for transplantation. Biochem Soc Trans 2022; 50:269-281. [PMID: 35129611 PMCID: PMC9042388 DOI: 10.1042/bst20210231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Myocardial infarction is a leading cause of death globally due to the inability of the adult human heart to regenerate after injury. Cell therapy using cardiac-derived progenitor populations emerged about two decades ago with the aim of replacing cells lost after ischaemic injury. Despite early promise from rodent studies, administration of these populations has not translated to the clinic. We will discuss the need for cardiac regeneration and review the debate surrounding how cardiac progenitor populations exert a therapeutic effect following transplantation into the heart, including their ability to form de novo cardiomyocytes and the release of paracrine factors. We will also discuss limitations hindering the cell therapy field, which include the challenges of performing cell-based clinical trials and the low retention of administered cells, and how future research may overcome them.
Collapse
|
3
|
Liu X, Shi GP, Guo J. Innate Immune Cells in Pressure Overload-Induced Cardiac Hypertrophy and Remodeling. Front Cell Dev Biol 2021; 9:659666. [PMID: 34368120 PMCID: PMC8343105 DOI: 10.3389/fcell.2021.659666] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Pressure overload and heart failure are among the leading causes of cardiovascular morbidity and mortality. Accumulating evidence suggests that inflammatory cell activation and release of inflammatory mediators are of vital importance during the pathogenesis of these cardiac diseases. Yet, the roles of innate immune cells and subsequent inflammatory events in these processes remain poorly understood. Here, we outline the possible underlying mechanisms of innate immune cell participation, including mast cells, macrophages, monocytes, neutrophils, dendritic cells, eosinophils, and natural killer T cells in these pathological processes. Although these cells accumulate in the atrium or ventricles at different time points after pressure overload, their cardioprotective or cardiodestructive activities differ from each other. Among them, mast cells, neutrophils, and dendritic cells exert detrimental function in experimental models, whereas eosinophils and natural killer T cells display cardioprotective activities. Depending on their subsets, macrophages and monocytes may exacerbate cardiodysfunction or negatively regulate cardiac hypertrophy and remodeling. Pressure overload stimulates the secretion of cytokines, chemokines, and growth factors from innate immune cells and even resident cardiomyocytes that together assist innate immune cell infiltration into injured heart. These infiltrates are involved in pro-hypertrophic events and cardiac fibroblast activation. Immune regulation of cardiac innate immune cells becomes a promising therapeutic approach in experimental cardiac disease treatment, highlighting the significance of their clinical evaluation in humans.
Collapse
Affiliation(s)
- Xin Liu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Junli Guo
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Mollace V, Rosano GMC, Anker SD, Coats AJS, Seferovic P, Mollace R, Tavernese A, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Macrì R, Bosco F, Chiocchi M, Romeo F, Metra M, Volterrani M. Pathophysiological Basis for Nutraceutical Supplementation in Heart Failure: A Comprehensive Review. Nutrients 2021; 13:257. [PMID: 33477388 PMCID: PMC7829856 DOI: 10.3390/nu13010257] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/25/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
There is evidence demonstrating that heart failure (HF) occurs in 1-2% of the global population and is often accompanied by comorbidities which contribute to increasing the prevalence of the disease, the rate of hospitalization and the mortality. Although recent advances in both pharmacological and non-pharmacological approaches have led to a significant improvement in clinical outcomes in patients affected by HF, residual unmet needs remain, mostly related to the occurrence of poorly defined strategies in the early stages of myocardial dysfunction. Nutritional support in patients developing HF and nutraceutical supplementation have recently been shown to possibly contribute to protection of the failing myocardium, although their place in the treatment of HF requires further assessment, in order to find better therapeutic solutions. In this context, the Optimal Nutraceutical Supplementation in Heart Failure (ONUS-HF) working group aimed to assess the optimal nutraceutical approach to HF in the early phases of the disease, in order to counteract selected pathways that are imbalanced in the failing myocardium. In particular, we reviewed several of the most relevant pathophysiological and molecular changes occurring during the early stages of myocardial dysfunction. These include mitochondrial and sarcoplasmic reticulum stress, insufficient nitric oxide (NO) release, impaired cardiac stem cell mobilization and an imbalanced regulation of metalloproteinases. Moreover, we reviewed the potential of the nutraceutical supplementation of several natural products, such as coenzyme Q10 (CoQ10), a grape seed extract, Olea Europea L.-related antioxidants, a sodium-glucose cotransporter (SGLT2) inhibitor-rich apple extract and a bergamot polyphenolic fraction, in addition to their support in cardiomyocyte protection, in HF. Such an approach should contribute to optimising the use of nutraceuticals in HF, and the effect needs to be confirmed by means of more targeted clinical trials exploring the efficacy and safety of these compounds.
Collapse
Affiliation(s)
- Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Giuseppe M. C. Rosano
- Cardiology Clinical Academic Group, St George’s Hospitals NHS Trust University of London, London SW17 0QT, UK;
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (A.J.S.C.); (M.V.)
| | - Stefan D. Anker
- Department of Cardiology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Andrew J. S. Coats
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (A.J.S.C.); (M.V.)
| | - Petar Seferovic
- Faculty of Medicine, Belgrade University, 11000 Belgrade, Serbia;
| | - Rocco Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
- Department of Experimental and Applied Medicine, Institute of Cardiology, University of Brescia, 25121 Brescia, Italy;
| | - Annamaria Tavernese
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
- Department of Experimental and Applied Medicine, Institute of Cardiology, University of Brescia, 25121 Brescia, Italy;
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Vincenzo Musolino
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Cristina Carresi
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Jessica Maiuolo
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Francesca Bosco
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Marcello Chiocchi
- Department of Diagnostic Imaging and Interventional Radiology, Policlinico Tor Vergata, 00199 Rome, Italy;
| | - Francesco Romeo
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00199 Rome, Italy;
| | - Marco Metra
- Department of Experimental and Applied Medicine, Institute of Cardiology, University of Brescia, 25121 Brescia, Italy;
| | - Maurizio Volterrani
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (A.J.S.C.); (M.V.)
| |
Collapse
|
5
|
Nicks AM, Kesteven SH, Li M, Wu J, Chan AY, Naqvi N, Husain A, Feneley MP, Smith NJ, Iismaa SE, Graham RM. Pressure overload by suprarenal aortic constriction in mice leads to left ventricular hypertrophy without c-Kit expression in cardiomyocytes. Sci Rep 2020; 10:15318. [PMID: 32948799 PMCID: PMC7501855 DOI: 10.1038/s41598-020-72273-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
Animal models of pressure overload are valuable for understanding hypertensive heart disease. We characterised a surgical model of pressure overload-induced hypertrophy in C57BL/6J mice produced by suprarenal aortic constriction (SAC). Compared to sham controls, at one week post-SAC systolic blood pressure was significantly elevated and left ventricular (LV) hypertrophy was evident by a 50% increase in the LV weight-to-tibia length ratio due to cardiomyocyte hypertrophy. As a result, LV end-diastolic wall thickness-to-chamber radius (h/R) ratio increased, consistent with the development of concentric hypertrophy. LV wall thickening was not sufficient to normalise LV wall stress, which also increased, resulting in LV systolic dysfunction with reductions in ejection fraction and fractional shortening, but no evidence of heart failure. Pathological LV remodelling was evident by the re-expression of fetal genes and coronary artery perivascular fibrosis, with ischaemia indicated by enhanced cardiomyocyte Hif1a expression. The expression of stem cell factor receptor, c-Kit, was low basally in cardiomyocytes and did not change following the development of robust hypertrophy, suggesting there is no role for cardiomyocyte c-Kit signalling in pathological LV remodelling following pressure overload.
Collapse
Affiliation(s)
- Amy M Nicks
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Scott H Kesteven
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ming Li
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW, 2010, Australia
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jianxin Wu
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Andrea Y Chan
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Nawazish Naqvi
- Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Ahsan Husain
- Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Michael P Feneley
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicola J Smith
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Siiri E Iismaa
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Robert M Graham
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
PIM1 Promotes Survival of Cardiomyocytes by Upregulating c-Kit Protein Expression. Cells 2020; 9:cells9092001. [PMID: 32878131 PMCID: PMC7563506 DOI: 10.3390/cells9092001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Enhancing cardiomyocyte survival is crucial to blunt deterioration of myocardial structure and function following pathological damage. PIM1 (Proviral Insertion site in Murine leukemia virus (PIM) kinase 1) is a cardioprotective serine threonine kinase that promotes cardiomyocyte survival and antagonizes senescence through multiple concurrent molecular signaling cascades. In hematopoietic stem cells, PIM1 interacts with the receptor tyrosine kinase c-Kit upstream of the ERK (Extracellular signal-Regulated Kinase) and Akt signaling pathways involved in cell proliferation and survival. The relationship between PIM1 and c-Kit activity has not been explored in the myocardial context. This study delineates the interaction between PIM1 and c-Kit leading to enhanced protection of cardiomyocytes from stress. Elevated c-Kit expression is induced in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1. Co-immunoprecipitation and proximity ligation assay reveal protein–protein interaction between PIM1 and c-Kit. Following treatment with Stem Cell Factor, PIM1-overexpressing cardiomyocytes display elevated ERK activity consistent with c-Kit receptor activation. Functionally, elevated c-Kit expression confers enhanced protection against oxidative stress in vitro. This study identifies the mechanistic relationship between PIM1 and c-Kit in cardiomyocytes, demonstrating another facet of cardioprotection regulated by PIM1 kinase.
Collapse
|
7
|
Zhang J, An H, Ni K, Chen B, Li H, Li Y, Sheng G, Zhou C, Xie M, Chen S, Zhou T, Yang G, Chen X, Wu G, Jin S, Li M. Glutathione prevents chronic oscillating glucose intake-induced β-cell dedifferentiation and failure. Cell Death Dis 2019; 10:321. [PMID: 30975975 PMCID: PMC6459929 DOI: 10.1038/s41419-019-1552-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Modern lifestyles have altered diet and metabolic homeostasis, with increased sugar intake, glycemic index, and prediabetes. A strong positive correlation between sugar consumption and diabetic incidence is revealed, but the underlying mechanisms remain obscure. Here we show that oral intake of long-term oscillating glucose (LOsG) (4 times/day) for 38 days, which produces physiological glycemic variability in rats, can lead to β-cells gaining metabolic memory in reactive oxygen species (ROS) stress. This stress leads to suppression of forkhead box O1 (FoxO1) signaling and subsequent upregulation of thioredoxin interacting protein, inhibition of insulin and SOD-2 expression, re-expression of Neurog3, and β-cell dedifferentiation and functional failure. LOsG-treated animals develop prediabetes exhibiting hypoinsulinemia and glucose intolerance. Dynamic and timely administration of antioxidant glutathione prevents LOsG/ROS-induced β-cell failure and prediabetes. We propose that ROS stress is the initial step in LOsG-inducing prediabetes. Manipulating glutathione-related pathways may offer novel options for preventing the occurrence and development of diabetes.
Collapse
Affiliation(s)
- Jitai Zhang
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Hui An
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Kaidi Ni
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Bin Chen
- Department of Medical Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hui Li
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China.,Department of Medical Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanqin Li
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Guilian Sheng
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Chuanzan Zhou
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Mengzhen Xie
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Saijing Chen
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Tong Zhou
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaoxiong Yang
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Xiufang Chen
- Department of Biochemistry, School of Basic Medical Science, Whenzhou Medical University, Wenzhou, China
| | - Gaojun Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Ming Li
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Narumanchi S, Kalervo K, Perttunen S, Wang H, Immonen K, Kosonen R, Laine M, Ruskoaho H, Tikkanen I, Lakkisto P, Paavola J. Inhibition of let-7c Regulates Cardiac Regeneration after Cryoinjury in Adult Zebrafish. J Cardiovasc Dev Dis 2019; 6:jcdd6020016. [PMID: 30987331 PMCID: PMC6617397 DOI: 10.3390/jcdd6020016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
The let-7c family of micro-RNAs (miRNAs) is expressed during embryonic development and plays an important role in cell differentiation. We have investigated the role of let-7c in heart regeneration after injury in adult zebrafish. let-7c antagomir or scramble injections were given at one day after cryoinjury (1 dpi). Tissue samples were collected at 7 dpi, 14 dpi and 28 dpi and cardiac function was assessed before cryoinjury, 1 dpi, 7 dpi, 14 dpi and 28 dpi. Inhibition of let-7c increased the rate of fibrinolysis, increased the number of proliferating cell nuclear antigen (PCNA) positive cardiomyocytes at 7 dpi and increased the expression of the epicardial marker raldh2 at 7 dpi. Additionally, cardiac function measured with echocardiography recovered slightly more rapidly after inhibition of let-7c. These results reveal a beneficial role of let-7c inhibition in adult zebrafish heart regeneration.
Collapse
Affiliation(s)
- Suneeta Narumanchi
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
| | - Karri Kalervo
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
- Department of Surgery, South Karelia Central Hospital, 53130 Lappeenranta, Finland.
| | - Sanni Perttunen
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
| | - Hong Wang
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
| | - Katariina Immonen
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
| | - Riikka Kosonen
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
| | - Mika Laine
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland.
| | - Heikki Ruskoaho
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00014 Helsinki, Finland.
| | - Ilkka Tikkanen
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland.
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
- Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland.
| | - Jere Paavola
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
- Clinical Neurosciences, Neurology, University of Helsinki and Jorvi Hospital of Helsinki University Hospital, 02740 Espoo, Finland.
| |
Collapse
|
9
|
Marino F, Scalise M, Cianflone E, Mancuso T, Aquila I, Agosti V, Torella M, Paolino D, Mollace V, Nadal-Ginard B, Torella D. Role of c-Kit in Myocardial Regeneration and Aging. Front Endocrinol (Lausanne) 2019; 10:371. [PMID: 31275242 PMCID: PMC6593054 DOI: 10.3389/fendo.2019.00371] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
c-Kit, a type III receptor tyrosine kinase (RTK), is involved in multiple intracellular signaling whereby it is mainly considered a stem cell factor receptor, which participates in vital functions of the mammalian body, including the human. Furthermore, c-kit is a necessary yet not sufficient marker to detect and isolate several types of tissue-specific adult stem cells. Accordingly, c-kit was initially used as a marker to identify and enrich for adult cardiac stem/progenitor cells (CSCs) that were proven to be clonogenic, self-renewing and multipotent, being able to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro as well as in vivo after myocardial injury. Afterwards it was demonstrated that c-kit expression labels a heterogenous cardiac cell population, which is mainly composed by endothelial cells while only a very small fraction represents CSCs. Furthermore, c-kit as a signaling molecule is expressed at different levels in this heterogenous c-kit labeled cardiac cell pool, whereby c-kit low expressers are enriched for CSCs while c-kit high expressers are endothelial and mast cells. This heterogeneity in cell composition and expression levels has been neglected in recent genetic fate map studies focusing on c-kit, which have claimed that c-kit identifies cells with robust endothelial differentiation potential but with minimal if not negligible myogenic commitment potential. However, modification of c-kit gene for Cre Recombinase expression in these Cre/Lox genetic fate map mouse models produced a detrimental c-kit haploinsufficiency that prevents efficient labeling of true CSCs on one hand while affecting the regenerative potential of these cells on the other. Interestingly, c-kit haploinsufficiency in c-kit-deficient mice causes a worsening myocardial repair after injury and accelerates cardiac aging. Therefore, these studies have further demonstrated that adult c-kit-labeled CSCs are robustly myogenic and that the adult myocardium relies on c-kit expression to regenerate after injury and to counteract aging effects on cardiac structure and function.
Collapse
Affiliation(s)
- Fabiola Marino
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- Department of Health Sciences, Interregional Research Center on Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Teresa Mancuso
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Valter Agosti
- Interdepartmental Center of Services (CIS) of Genomics, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania L. Vanvitelli, Naples, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Interregional Research Center on Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- StemCell OpCo, Madrid, Spain
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- *Correspondence: Daniele Torella
| |
Collapse
|
10
|
A novel system-level approach using RNA-sequencing data identifies miR-30-5p and miR-142a-5p as key regulators of apoptosis in myocardial infarction. Sci Rep 2018; 8:14638. [PMID: 30279543 PMCID: PMC6168573 DOI: 10.1038/s41598-018-33020-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 11/08/2022] Open
Abstract
This study identified microRNAs involved in myocardial infarction (MI) through a novel system-level approach using RNA sequencing data in an MI mouse model. This approach involved the extraction of DEGs and DEmiRs from RNA-seq data in sham and MI samples and the subsequent selection of two miRNAs: miR-30-5p (family) and miR-142a-5p, which were downregulated and upregulated in MI, respectively. Gene Set Enrichment Analysis (GSEA) using the predicted targets of the two miRNAs suggested that apoptosis is an essential gene ontology (GO)-associated term. In vitro functional assays using neonatal rat ventricular myocytes (NRVMs) demonstrated that miR-30-5p is anti-apoptotic and miR-142a-5p is pro-apoptotic. Luciferase assays showed that the apoptotic genes, Picalm and Skil, and the anti-apoptotic genes, Ghr and Kitl, are direct targets of miR-30-5p and miR-142a-5p, respectively. siRNA studies verified the results of the luciferase assays for target validation. The results of the system-level high throughput approach identified a pair of functionally antagonistic miRNAs and their targets in MI. This study provides an in-depth analysis of the role of miRNAs in the pathogenesis of MI which could lead to the development of therapeutic tools. The system-level approach could be used to identify miRNAs involved in variety of other diseases.
Collapse
|
11
|
Günthel M, Barnett P, Christoffels VM. Development, Proliferation, and Growth of the Mammalian Heart. Mol Ther 2018; 26:1599-1609. [PMID: 29929790 PMCID: PMC6037201 DOI: 10.1016/j.ymthe.2018.05.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
During development, the embryonic heart grows by addition of cells from a highly proliferative progenitor pool and by subsequent precisely controlled waves of cardiomyocyte proliferation. In this period, the heart can compensate for cardiomyocyte loss by an increased proliferation rate of the remaining cardiomyocytes. This proliferative capacity is lost soon after birth, with heart growth continuing by an increase in cardiomyocyte volume. The failure of the injured adult heart to regenerate often leads to the development of heart failure, a major cause of death. With the recent observation of a small fraction of cardiomyocytes that appear to have retained the proliferative capacity within the adult heart, as well as the identification of developmental pathways such as the Hippo-signaling pathway that can invoke mature cardiomyocyte proliferation, more studies are taking a knowledge-based mechanistic approach to heart regeneration. A key question being asked is if this knowledge can be used therapeutically to reinitiate cardiomyocyte proliferation after injury such as myocardial infarction. In this respect, uncovering and understanding the mechanisms and conditions that give rise to a fully functional and adaptive heart in the developing embryo could provide us with the answers to many of the questions that are now being asked.
Collapse
Affiliation(s)
- Marie Günthel
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Cianflone E, Aquila I, Scalise M, Marotta P, Torella M, Nadal-Ginard B, Torella D. Molecular basis of functional myogenic specification of Bona Fide multipotent adult cardiac stem cells. Cell Cycle 2018; 17:927-946. [PMID: 29862928 PMCID: PMC6103696 DOI: 10.1080/15384101.2018.1464852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/01/2018] [Accepted: 04/08/2018] [Indexed: 01/14/2023] Open
Abstract
Ischemic Heart Disease (IHD) remains the developed world's number one killer. The improved survival from Acute Myocardial Infarction (AMI) and the progressive aging of western population brought to an increased incidence of chronic Heart Failure (HF), which assumed epidemic proportions nowadays. Except for heart transplantation, all treatments for HF should be considered palliative because none of the current therapies can reverse myocardial degeneration responsible for HF syndrome. To stop the HF epidemic will ultimately require protocols to reduce the progressive cardiomyocyte (CM) loss and to foster their regeneration. It is now generally accepted that mammalian CMs renew throughout life. However, this endogenous regenerative reservoir is insufficient to repair the extensive damage produced by AMI/IHD while the source and degree of CM turnover remains strongly disputed. Independent groups have convincingly shown that the adult myocardium harbors bona-fide tissue specific cardiac stem cells (CSCs). Unfortunately, recent reports have challenged the identity and the endogenous myogenic capacity of the c-kit expressing CSCs. This has hampered progress and unless this conflict is settled, clinical tests of repair/regenerative protocols are unlikely to provide convincing answers about their clinical potential. Here we review recent data that have eventually clarified the specific phenotypic identity of true multipotent CSCs. These cells when coaxed by embryonic cardiac morphogens undergo a precisely orchestrated myogenic commitment process robustly generating bona-fide functional cardiomyocytes. These data should set the path for the revival of further investigation untangling the regenerative biology of adult CSCs to harness their potential for HF prevention and treatment.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania Campus “Salvatore Venuta” Viale Europa- Loc. Germaneto “L. Vanvitelli”, Naples, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
13
|
|
14
|
Iismaa SE, Li M, Kesteven S, Wu J, Chan AY, Holman SR, Calvert JW, Haq AU, Nicks AM, Naqvi N, Husain A, Feneley MP, Graham RM. Cardiac hypertrophy limits infarct expansion after myocardial infarction in mice. Sci Rep 2018; 8:6114. [PMID: 29666426 PMCID: PMC5904135 DOI: 10.1038/s41598-018-24525-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/22/2018] [Indexed: 01/19/2023] Open
Abstract
We have previously demonstrated that adult transgenic C57BL/6J mice with CM-restricted overexpression of the dominant negative W v mutant protein (dn-c-kit-Tg) respond to pressure overload with robust cardiomyocyte (CM) cell cycle entry. Here, we tested if outcomes after myocardial infarction (MI) due to coronary artery ligation are improved in this transgenic model. Compared to non-transgenic littermates (NTLs), adult male dn-c-kit-Tg mice displayed CM hypertrophy and concentric left ventricular (LV) hypertrophy in the absence of an increase in workload. Stroke volume and cardiac output were preserved and LV wall stress was markedly lower than that in NTLs, leading to a more energy-efficient heart. In response to MI, infarct size in adult (16-week old) dn-c-kit-Tg hearts was similar to that of NTL after 24 h but was half that in NTL hearts 12 weeks post-MI. Cumulative CM cell cycle entry was only modestly increased in dn-c-kit-Tg hearts. However, dn-c-kit-Tg mice were more resistant to infarct expansion, adverse LV remodelling and contractile dysfunction, and suffered no early death from LV rupture, relative to NTL mice. Thus, pre-existing cardiac hypertrophy lowers wall stress in dn-c-kit-Tg hearts, limits infarct expansion and prevents death from myocardial rupture.
Collapse
Affiliation(s)
- Siiri E Iismaa
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ming Li
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Scott Kesteven
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Jianxin Wu
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Andrea Y Chan
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Sara R Holman
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - John W Calvert
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30308, USA
| | - Ahtesham Ul Haq
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Amy M Nicks
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Nawazish Naqvi
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ahsan Husain
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Michael P Feneley
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert M Graham
- Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
15
|
Gude NA, Firouzi F, Broughton KM, Ilves K, Nguyen KP, Payne CR, Sacchi V, Monsanto MM, Casillas AR, Khalafalla FG, Wang BJ, Ebeid DE, Alvarez R, Dembitsky WP, Bailey BA, van Berlo J, Sussman MA. Cardiac c-Kit Biology Revealed by Inducible Transgenesis. Circ Res 2018; 123:57-72. [PMID: 29636378 DOI: 10.1161/circresaha.117.311828] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 12/24/2022]
Abstract
RATIONALE Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. OBJECTIVE The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. METHODS AND RESULTS In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart, upregulating c-Kit expression in response to pathological stress. CONCLUSIONS c-Kit myocardial biology is more complex and varied than previously appreciated or documented, demonstrating validity in multiple points of coexisting yet heretofore seemingly irreconcilable published findings.
Collapse
Affiliation(s)
- Natalie A Gude
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Fareheh Firouzi
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Kathleen M Broughton
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Kelli Ilves
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Kristine P Nguyen
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Christina R Payne
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Veronica Sacchi
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Megan M Monsanto
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Alexandria R Casillas
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Farid G Khalafalla
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Bingyan J Wang
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - David E Ebeid
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Roberto Alvarez
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| | - Walter P Dembitsky
- San Diego State University, CA; Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | | | - Jop van Berlo
- Department of Medicine, University of Minnesota, Minneapolis (J.v.B.)
| | - Mark A Sussman
- From the SDSU Heart Institute, Department of Biology (N.A.G., F.F., K.M.B., K.I., K.P.N., C.R.P., V.S., M.M.M., A.R.C., F.G.K., B.J.W., D.E.E., R.A., M.A.S.)
| |
Collapse
|
16
|
Orphan receptor GPR37L1 contributes to the sexual dimorphism of central cardiovascular control. Biol Sex Differ 2018; 9:14. [PMID: 29625592 PMCID: PMC5889568 DOI: 10.1186/s13293-018-0173-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/27/2018] [Indexed: 11/29/2022] Open
Abstract
Background Over 100 mammalian G protein-coupled receptors are yet to be matched with endogenous ligands; these so-called orphans are prospective drug targets for the treatment of disease. GPR37L1 is one such orphan, abundant in the brain and detectable as mRNA in the heart and kidney. GPR37L1 ablation was reported to cause hypertension and left ventricular hypertrophy, and thus, we sought to further define the role of GPR37L1 in blood pressure homeostasis. Methods We investigated the cardiovascular effects of GPR37L1 using wild-type (GPR37L1wt/wt) and null (GPR37L1KO/KO) mice established on a C57BL/6J background, both under baseline conditions and during AngII infusion. We profiled GPR37L1 tissue expression, examining the endogenous receptor by immunoblotting and a β-galactosidase reporter mouse by immunohistochemistry. Results GPR37L1 protein was abundant in the brain but not detectable in the heart and kidney. We measured blood pressure in GPR37L1wt/wt and GPR37L1KO/KO mice and found that deletion of GPR37L1 causes a female-specific increase in systolic, diastolic, and mean arterial pressures. When challenged with short-term AngII infusion, only male GPR37L1KO/KO mice developed exacerbated left ventricular hypertrophy and evidence of heart failure, while the female GPR37L1KO/KO mice were protected from cardiac fibrosis. Conclusions Despite its absence in the heart and kidney, GPR37L1 regulates baseline blood pressure in female mice and is crucial for cardiovascular compensatory responses in males. The expression of GPR37L1 in the brain, yet absence from peripheral cardiovascular tissues, suggests this orphan receptor is a hitherto unknown contributor to central cardiovascular control. Electronic supplementary material The online version of this article (10.1186/s13293-018-0173-y) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Yang G, Yan R, Tong H, Zhang J, Chen B, Xue X, Wang J, Chu M, Jin S, Li M. Chronic oscillating glucose challenges disarrange innate immune homeostasis to potentiate the variation of neutrophil-lymphocyte ratio in rats with or without hidden diabetes mellitus. Diabetes Metab Syndr Obes 2018; 11:277-288. [PMID: 29942142 PMCID: PMC6005307 DOI: 10.2147/dmso.s160301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The neutrophil-lymphocyte ratio (NLR) has been considered as an inflammatory marker in various disorders, but it is not clear whether the NLR is also elevated with hidden diabetes (HD), which is normal in fasting blood glucose (FBG) but abnormal in the oral glucose tolerance test (OGTT). MATERIALS AND METHODS An HD animal model for 27 days and an animal model with oscillating glucose (OG) for 7 days were applied on adult female Sprague-Dawley rats. OGTT, leukogram analysis, histology, and immunohistochemistry were carried out. RESULTS In HD rats, the percentage of neutrophils increased but the percentage of lymphocytes decreased; hence, the NLR rose relative to sham. This may be a result of the OG levels often experienced by diabetic subjects, as normal rats given OG (6 g/kg/6 h) for 7 days had significantly reduced lymphocyte numbers and increased NLR compared with the values before and 1 h after oral glucose administration during OGTT. Glucose-induced disarrangement of partitions of circulating immune cells and NLR was involved in the increase in oxidative stress, as these changes were totally blocked by the antioxidant glutathione (GSH). GSH (50 mg/kg/6 h) totally blocked the glucose-induced alterations in lymphocyte and NLR values. CONCLUSION HD associated with elevation of NLR values may be partly attributed to a homeostasis disorder of the innate inflammatory state, caused by oscillating hyperglycemia. Acute high glucose administration produced a significant decrease in lymphocyte number. OG administration potentiated this effect and increased the NLR value, which was blocked by GSH, suggesting that reactive oxygen species play a critical role in maintaining lymphocyte numbers.
Collapse
Affiliation(s)
- Gaoxiong Yang
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Rui Yan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Huanjun Tong
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jitai Zhang
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Bin Chen
- Department of Medical Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jue Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Maoping Chu
- Children’s Heart Center, The Second Affiliated Hospital and Yuying Children’s Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Shengwei Jin, Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035 Zhejiang, China, Email
| | - Ming Li
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, China
- Correspondence: Ming Li, Cardiac Regeneration Research Institute, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035 Zhejiang, China, Email
| |
Collapse
|
18
|
Abstract
Stem cell mediated cardiac repair is an exciting and controversial area of cardiovascular research that holds the potential to produce novel, revolutionary therapies for the treatment of heart disease. Extensive investigation to define cell types contributing to cardiac formation, homeostasis and regeneration has produced several candidates, including adult cardiac c-Kit+ expressing stem and progenitor cells that have even been employed in a Phase I clinical trial demonstrating safety and feasibility of this therapeutic approach. However, the field of cardiac cell based therapy remains deeply divided due to strong disagreement among researchers and clinicians over which cell types, if any, are the best candidates for these applications. Research models that identify and define specific cardiac cells that effectively contribute to heart repair are urgently needed to resolve this debate. In this review, current c-Kit reporter models are discussed with respect to myocardial c-Kit cell biology and function, and future designs imagined to better represent endogenous myocardial c-Kit expression.
Collapse
|
19
|
Li M, Tejada T, Lambert JP, Nicholson CK, Yahiro E, Ambai VT, Ali SF, Bradley EW, Graham RM, Dell’Italia LJ, Calvert JW, Naqvi N. Angiotensin type 2-receptor (AT2R) activation induces hypotension in apolipoprotein E-deficient mice by activating peroxisome proliferator-activated receptor-γ. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2016; 6:118-128. [PMID: 27679746 PMCID: PMC5030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Angiotensin II (Ang II) modulates blood pressure and atherosclerosis development through its vascular type-1 (AT1R) and type-2 (AT2R) receptors, which have opposing effects. AT2R activation produces hypotension, and is anti-atherogenic. Targeted overexpression of AT2Rs in vascular smooth muscle cells (VSMCs) indicates that these effects are due to increased nitric oxide (NO) generation. However, the role of endogenous VSMC AT2Rs in these events is unknown. Effect of 7-day low-dose Ang II-infusion (12 µg/kg/hr) on blood pressure was tested in 9-week-old apoE((-/-)) mice fed a low or high cholesterol diet (LCD or HCD, respectively). Cardiac output was measured by echocardiography. Immunohistochemistry was performed to localize and quantify AT2Rs and p-Ser(1177)-endothelial nitric oxide synthase (eNOS) levels in the aortic arch. PD123319 and GW-9662 were used to selectively block the AT2R and peroxisome proliferator-activated receptor-γ (PPAR-γ), respectively. Ang II infusion decreased blood pressure by 12 mmHg (P < 0.001) in LCD/apoE((-/-)) mice without altering cardiac output; a response blocked by PD123319. Although, AT2R stimulation neither activated eNOS (p-Ser(1177)-eNOS) nor changed plasma NO metabolites, it caused an ~6-fold increase in VSMC PPAR-γ levels (P < 0.001) and the AT2R-mediated hypotension was abolished by GW-9662. AT2R-mediated hypotension was also inhibited by HCD, which selectively decreased VSMC AT2R expression by ~6-fold (P < 0.01). These findings suggest a novel pathway for the Ang II/AT2R-mediated hypotensive response that involves PPAR-γ, and is down regulated by a HCD.
Collapse
Affiliation(s)
- Ming Li
- Division of Cardiology, Department of Medicine, Emory UniversityAtlanta, Georgia, USA
- Cardiac Regeneration Research Institute, Wenzhou Medical UniversityWenzhou 325035, China
| | - Thor Tejada
- Division of Cardiology, Department of Medicine, Emory UniversityAtlanta, Georgia, USA
| | - Jonathan P Lambert
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory UniversityAtlanta, Georgia, USA
| | - Chad K Nicholson
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory UniversityAtlanta, Georgia, USA
| | - Eiji Yahiro
- Division of Cardiology, Department of Medicine, Emory UniversityAtlanta, Georgia, USA
| | - Vats T Ambai
- Division of Cardiology, Department of Medicine, Emory UniversityAtlanta, Georgia, USA
| | - Syeda F Ali
- Division of Cardiology, Department of Medicine, Emory UniversityAtlanta, Georgia, USA
| | - Eddie W Bradley
- Department of Medicine, University of Alabama at BirminghamBirmingham, Alabama, USA
| | - Robert M Graham
- Victor Chang Cardiac Research InstituteDarlinghurst, NSW 2010, Australia
| | - Louis J Dell’Italia
- Department of Medicine, University of Alabama at BirminghamBirmingham, Alabama, USA
- VA Medical CenterBirmingham, Alabama, USA
| | - John W Calvert
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory UniversityAtlanta, Georgia, USA
| | - Nawazish Naqvi
- Division of Cardiology, Department of Medicine, Emory UniversityAtlanta, Georgia, USA
| |
Collapse
|
20
|
Santini MP, Forte E, Harvey RP, Kovacic JC. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development 2016; 143:1242-58. [PMID: 27095490 DOI: 10.1242/dev.111591] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT(+), PDGFRα(+), ISL1(+)and SCA1(+)cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair.
Collapse
Affiliation(s)
- Maria Paola Santini
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Elvira Forte
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst 2010, Australia St Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst 2010, Australia St Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington 2052, Australia
| | - Jason C Kovacic
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York City, NY, USA Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
21
|
Sattler S, Rosenthal N. The neonate versus adult mammalian immune system in cardiac repair and regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1813-21. [DOI: 10.1016/j.bbamcr.2016.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/17/2015] [Accepted: 01/18/2016] [Indexed: 12/24/2022]
|
22
|
Jonker SS, Louey S. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment. J Endocrinol 2016; 228:R1-18. [PMID: 26432905 PMCID: PMC4677998 DOI: 10.1530/joe-15-0309] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 01/09/2023]
Abstract
Immature contractile cardiomyocytes proliferate to rapidly increase cell number, establishing cardiomyocyte endowment in the perinatal period. Developmental changes in cellular maturation, size and attrition further contribute to cardiac anatomy. These physiological processes occur concomitant with a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life. There are complex interactions between endocrine, hemodynamic and nutritional regulators of cardiac development. Birth has been long assumed to be the trigger for major differences between the fetal and postnatal cardiomyocyte growth patterns, but investigations in normally growing sheep and rodents suggest this may not be entirely true; in sheep, these differences are initiated before birth, while in rodents they occur after birth. The aim of this review is to draw together our understanding of the temporal regulation of these signals and cardiomyocyte responses relative to birth. Further, we consider how these dynamics are altered in stressed and suboptimal intrauterine environments.
Collapse
Affiliation(s)
- S S Jonker
- Knight Cardiovascular Institute Center for Developmental HealthOregon Health and Science University, Portland, Oregon 97239, USA
| | - S Louey
- Knight Cardiovascular Institute Center for Developmental HealthOregon Health and Science University, Portland, Oregon 97239, USA
| |
Collapse
|
23
|
Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells. Sci Rep 2015; 5:17686. [PMID: 26657817 PMCID: PMC4677315 DOI: 10.1038/srep17686] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023] Open
Abstract
It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration.
Collapse
|
24
|
Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Res 2015; 26:119-30. [PMID: 26634606 PMCID: PMC4816131 DOI: 10.1038/cr.2015.143] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/28/2022] Open
Abstract
Cardiac cells marked by c-Kit or Kit, dubbed cardiac stem cells (CSCs), are in clinical trials to investigate their ability to stimulate cardiac regeneration and repair. These studies were initially motivated by the purported cardiogenic activity of these cells. Recent lineage tracing studies using Kit promoter to drive expression of the inducible Cre recombinase showed that these CSCs had highly limited cardiogenic activity, inadequate to support efficient cardiac repair. Here we reassess the lineage tracing data by investigating the identity of cells immediately after Cre labeling. Our instant lineage tracing approach identifies Kit-expressing cardiomyocytes, which are labeled immediately after tamoxifen induction. In combination with long-term lineage tracing experiments, these data reveal that the large majority of long-term labeled cardiomyocytes are pre-existing Kit-expressing cardiomyocytes rather than cardiomyocytes formed de novo from CSCs. This study presents a new interpretation for the contribution of Kit+ cells to cardiomyocytes and shows that Kit genetic lineage tracing over-estimates the cardiogenic activity of Kit+ CSCs.
Collapse
|
25
|
Williams C, Sullivan K, Black LD. Partially Digested Adult Cardiac Extracellular Matrix Promotes Cardiomyocyte Proliferation In Vitro. Adv Healthc Mater 2015; 4:1545-54. [PMID: 25988681 PMCID: PMC4504755 DOI: 10.1002/adhm.201500035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/19/2015] [Indexed: 12/13/2022]
Abstract
Stimulating or maintaining the proliferative capacity of postnatal mammalian cardiomyocytes is a major challenge to cardiac regeneration. Previously, it is found that fetal cardiac extracellular matrix (ECM) can promote neonatal rat cardiomyocyte proliferation in vitro better than neonatal or adult ECM. It is hypothesized that partial digestion of adult ECM (PD-ECM) would liberate less crosslinked components that promote cardiomyocyte proliferation, similar to fetal ECM. Neonatal rat cardiac cells are seeded onto substrates coated with adult rat cardiac ECM that has been solubilized in pepsin-HCl for 1, 3, 6, 12, 24, or 48 h. Cardiomyocyte proliferation and fold-change in numbers from 1 to 5 d are highest on 1 and 3 h PD-ECM compared to other conditions. Sarcomeres tend to mature on 24 and 48 h PD-ECM where low proliferation is observed. 3 h PD-ECM is primarily composed of Fibrillin-1, Fibrinogen, and Laminins while 48 h PD-ECM is dominated by Collagen I. Our results suggest that adult ECM retains regenerative cues that may be masked by more abundant, mature ECM components. PD-ECM provides a simple yet powerful approach to promoting cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Corin Williams
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155 USA
| | - Kelly Sullivan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155 USA
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155 USA
- Cellular, Molecular and Developmental Biology Program, Sackler School for Graduate Biomedical Sciences, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111 USA
| |
Collapse
|
26
|
Nigro P, Perrucci GL, Gowran A, Zanobini M, Capogrossi MC, Pompilio G. c-kit(+) cells: the tell-tale heart of cardiac regeneration? Cell Mol Life Sci 2015; 72:1725-40. [PMID: 25575564 PMCID: PMC11113938 DOI: 10.1007/s00018-014-1832-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/18/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the developed world. Although ongoing therapeutic strategies ameliorate symptoms and prolong life for patients with cardiovascular diseases, they do not solve the critical issue related to the loss of cardiac tissue. Accordingly, stem/progenitor cell therapy has emerged as a paramount approach for cardiac repair and regeneration. In this regard, c-kit(+) cells have animated much interest and controversy. These cells are self-renewing, clonogenic, and multipotent and display a noteworthy potential to differentiate into all cardiovascular lineages. However, their functional contribution to cardiomyocyte turnover is one of the centrally debated issues concerning their regenerative potential. Regardless, plentiful preclinical and clinical studies have been conducted which provide evidence for the capacity of c-kit(+) cells to improve cardiac function. The purpose of this review is to give a comprehensive, impartial, critical description and evaluation of the literature on c-kit(+) cells from bench to bedside in order to address their true potential, benefits and controversies.
Collapse
Affiliation(s)
- Patrizia Nigro
- Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138, Milan, Italy,
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Cardiac c-kit+ cells isolated from cardiac explant-derived cells modestly improve cardiac functions after myocardial infarction; however, their full potential has not yet been realized. The present study was undertaken to determine the isolation and culture of c-kit+ cardiac stem cells (CSCs), and the roles of myocardial injection of CSCs on the survival of rat cardiac allograft. Recipient Sprague-Dawley rats were transplanted with hearts from Wistar rats. In the in vitro experiment, c-kit+ cells were isolated from mouse heart fragment culture by magnetic cell sorting. CSCs expressed of cardiomyocyte specific protein cardiac troponin I, α smooth muscle actin and von Willebrand factor in conditioned culture. CSC injection increased graft survival of cardiac allograft rats. The effects of CSCs on increase in graft survival of cardiac allograft rats were blocked by stromal-derived factor-1 (SDF-1) knockdown. The expression of SDF-1 was increased after CSC injection into the cardiac of cardiac allograft rats. These results indicate that CSC injection into the cardiac prolongs graft survival of cardiac allograft rats. SDF-1 plays an important role in the effects of CSCs on the graft survival of cardiac allograft rats.
Collapse
|
28
|
Ishikawa K, Fish K, Aguero J, Yaniz-Galende E, Jeong D, Kho C, Tilemann L, Fish L, Liang L, Eltoukhy AA, Anderson DG, Zsebo K, Costa KD, Hajjar RJ. Stem cell factor gene transfer improves cardiac function after myocardial infarction in swine. Circ Heart Fail 2015; 8:167-74. [PMID: 25342737 PMCID: PMC4303518 DOI: 10.1161/circheartfailure.114.001711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/21/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stem cell factor (SCF), a ligand of the c-kit receptor, is a critical cytokine, which contributes to cell migration, proliferation, and survival. It has been shown that SCF expression increases after myocardial infarction (MI) and may be involved in cardiac repair. The aim of this study was to determine whether gene transfer of membrane-bound human SCF improves cardiac function in a large animal model of MI. METHODS AND RESULTS A transmural MI was created by implanting an embolic coil in the left anterior descending artery in Yorkshire pigs. One week after the MI, the pigs received direct intramyocardial injections of either a recombinant adenovirus encoding for SCF (Ad.SCF, n=9) or β-gal (Ad.β-gal, n=6) into the infarct border area. At 3 months post-MI, ejection fraction increased by 12% relative to baseline after Ad.SCF therapy, whereas it decreased by 4.2% (P=0.004) in pigs treated with Ad.β-gal. Preload-recruitable stroke work was significantly higher in pigs after SCF treatment (Ad.SCF, 55.5±11.6 mm Hg versus Ad.β-gal, 31.6±12.6 mm Hg, P=0.005), indicating enhanced cardiac function. Histological analyses confirmed the recruitment of c-kit(+) cells as well as a reduced degree of apoptosis 1 week after Ad.SCF injection. In addition, increased capillary density compared with pigs treated with Ad.β-gal was found at 3 months and suggests an angiogenic role of SCF. CONCLUSIONS Local overexpression of SCF post-MI induces the recruitment of c-kit(+) cells at the infarct border area acutely. In the chronic stages, SCF gene transfer was associated with improved cardiac function in a preclinical model of ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Kiyotake Ishikawa
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.).
| | - Kenneth Fish
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| | - Jaume Aguero
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| | - Elisa Yaniz-Galende
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| | - Dongtak Jeong
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| | - Changwon Kho
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| | - Lisa Tilemann
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| | - Lauren Fish
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| | - Lifan Liang
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| | - Ahmed A Eltoukhy
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| | - Daniel G Anderson
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| | - Krisztina Zsebo
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| | - Kevin D Costa
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| | - Roger J Hajjar
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY (K.I., K.F., J.A., E.Y.-G., D.J., C.K., L.T., L.F., L.L., K.D.C., R.J.H.); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)-Epidemiology, Atherothrombosis and Imaging Department, Madrid, Spain (J.A.); David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (A.A.E., D.G.A.); and Celladon Corporation, San Diego, CA (K.Z.)
| |
Collapse
|
29
|
Kawaguchi N. Stem cells for cardiac regeneration and possible roles of the transforming growth factor-β superfamily. Biomol Concepts 2014; 3:99-106. [PMID: 25436527 DOI: 10.1515/bmc.2011.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 10/25/2011] [Indexed: 11/15/2022] Open
Abstract
Abstract Heart failure is a leading cause of death worldwide. Studies of stem cell biology are essential for developing efficient treatments. Recently, we established and characterized c-kit-positive cardiac stem cells from the adult rat heart. Using a MethoCult culture system with a methyl-cellulose-based medium, stem-like left-atrium-derived pluripotent cells could be regulated to differentiate into skeletal/cardiac myocytes or adipocytes with almost 100% purity. Microarray and pathway analyses of these cells showed that transforming growth factor-β1 (TGF-β1) and noggin were significantly involved in the differentiation switch. Furthermore, TGF-β1 may act as a regulator for this switch because it simultaneously inhibits adipogenesis and activates myogenesis in a dose-dependent manner. However, the effect of TGF-β varies with developmental stage, dosage, and timing of treatment. In the present review, the findings of recent studies, in particular the use of c-kit-positive cardiac stem cells, are discussed. The effects of the TGF-β superfamily on differentiation, especially on adipogenesis and/or myogenesis, have important implications for future regenerative medicine.
Collapse
|
30
|
Chong JJ, Forte E, Harvey RP. Developmental origins and lineage descendants of endogenous adult cardiac progenitor cells. Stem Cell Res 2014; 13:592-614. [DOI: 10.1016/j.scr.2014.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 12/30/2022] Open
|
31
|
Sowah D, Brown BF, Quon A, Alvarez BV, Casey JR. Resistance to cardiomyocyte hypertrophy in ae3-/- mice, deficient in the AE3 Cl-/HCO3- exchanger. BMC Cardiovasc Disord 2014; 14:89. [PMID: 25047106 PMCID: PMC4120010 DOI: 10.1186/1471-2261-14-89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022] Open
Abstract
Background Cardiac hypertrophy is central to the etiology of heart failure. Understanding the molecular pathways promoting cardiac hypertrophy may identify new targets for therapeutic intervention. Sodium-proton exchanger (NHE1) activity and expression levels in the heart are elevated in many models of hypertrophy through protein kinase C (PKC)/MAPK/ERK/p90RSK pathway stimulation. Sustained NHE1 activity, however, requires an acid-loading pathway. Evidence suggests that the Cl−/HCO3− exchanger, AE3, provides this acid load. Here we explored the role of AE3 in the hypertrophic growth cascade of cardiomyocytes. Methods AE3-deficient (ae3−/−) mice were compared to wildtype (WT) littermates to examine the role of AE3 protein in the development of cardiomyocyte hypertrophy. Mouse hearts were assessed by echocardiography. As well, responses of cultured cardiomyocytes to hypertrophic stimuli were measured. pH regulation capacity of ae3−/− and WT cardiomyocytes was assessed in cultured cells loaded with the pH-sensitive dye, BCECF-AM. Results ae3−/− mice were indistinguishable from wild type (WT) mice in terms of cardiovascular performance. Stimulation of ae3−/− cardiomyocytes with hypertrophic agonists did not increase cardiac growth or reactivate the fetal gene program. ae3−/− mice are thus protected from pro-hypertrophic stimulation. Steady state intracellular pH (pHi) in ae3−/− cardiomyocytes was not significantly different from WT, but the rate of recovery of pHi from imposed alkalosis was significantly slower in ae3−/− cardiomyocytes. Conclusions These data reveal the importance of AE3-mediated Cl−/HCO3− exchange in cardiovascular pH regulation and the development of cardiomyocyte hypertrophy. Pharmacological antagonism of AE3 is an attractive approach in the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
| | | | | | | | - Joseph R Casey
- Department of Biochemistry and Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2H7, Canada.
| |
Collapse
|
32
|
Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, Kesteven SH, Holman SR, Matsuda T, Lovelock JD, Howard WW, Iismaa SE, Chan AY, Crawford BH, Wagner MB, Martin DIK, Lefer DJ, Graham RM, Husain A. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 2014; 157:795-807. [PMID: 24813607 DOI: 10.1016/j.cell.2014.03.035] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 01/22/2014] [Accepted: 03/12/2014] [Indexed: 12/11/2022]
Abstract
It is widely believed that perinatal cardiomyocyte terminal differentiation blocks cytokinesis, thereby causing binucleation and limiting regenerative repair after injury. This suggests that heart growth should occur entirely by cardiomyocyte hypertrophy during preadolescence when, in mice, cardiac mass increases many-fold over a few weeks. Here, we show that a thyroid hormone surge activates the IGF-1/IGF-1-R/Akt pathway on postnatal day 15 and initiates a brief but intense proliferative burst of predominantly binuclear cardiomyocytes. This proliferation increases cardiomyocyte numbers by ~40%, causing a major disparity between heart and cardiomyocyte growth. Also, the response to cardiac injury at postnatal day 15 is intermediate between that observed at postnatal days 2 and 21, further suggesting persistence of cardiomyocyte proliferative capacity beyond the perinatal period. If replicated in humans, this may allow novel regenerative therapies for heart diseases.
Collapse
Affiliation(s)
- Nawazish Naqvi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ming Li
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - John W Calvert
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308, USA
| | - Thor Tejada
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan P Lambert
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308, USA
| | - Jianxin Wu
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Scott H Kesteven
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Sara R Holman
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Torahiro Matsuda
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joshua D Lovelock
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wesley W Howard
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; University of New South Wales, Kensington, NSW 2033, Australia
| | - Andrea Y Chan
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Brian H Crawford
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Cardiovascular Biology, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mary B Wagner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Cardiovascular Biology, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - David I K Martin
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - David J Lefer
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308, USA
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; University of New South Wales, Kensington, NSW 2033, Australia.
| | - Ahsan Husain
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Porrello ER, Olson EN. A neonatal blueprint for cardiac regeneration. Stem Cell Res 2014; 13:556-70. [PMID: 25108892 DOI: 10.1016/j.scr.2014.06.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/13/2014] [Accepted: 06/24/2014] [Indexed: 12/26/2022] Open
Abstract
Adult mammals undergo minimal regeneration following cardiac injury, which severely compromises cardiac function and contributes to the ongoing burden of heart failure. In contrast, the mammalian heart retains a transient capacity for cardiac regeneration during fetal and early neonatal life. Recent studies have established the importance of several evolutionarily conserved mechanisms for heart regeneration in lower vertebrates and neonatal mammals including induction of cardiomyocyte proliferation, epicardial cell activation, angiogenesis, extracellular matrix deposition and immune cell infiltration. In this review, we provide an up-to-date account of the molecular and cellular basis for cardiac regeneration in lower vertebrates and neonatal mammals. The historical context for these recent findings and their ramifications for the future development of cardiac regenerative therapies are also discussed.
Collapse
Affiliation(s)
- Enzo R Porrello
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Eric N Olson
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
34
|
Suzuki T, Suzuki S, Fujino N, Ota C, Yamada M, Suzuki T, Yamaya M, Kondo T, Kubo H. c-Kit immunoexpression delineates a putative endothelial progenitor cell population in developing human lungs. Am J Physiol Lung Cell Mol Physiol 2014; 306:L855-65. [PMID: 24583878 DOI: 10.1152/ajplung.00211.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Expression of c-Kit and its ligand, stem cell factor (SCF), in developing human lung tissue was investigated by immunohistochemistry. Twenty-eight human fetal lungs [age range 13 to 38 gestational wk (GW)] and 12 postnatal lungs (age range 1-79 yr) were evaluated. We identified c-Kit(+) cells in the lung mesenchyme as early as 13 GW. These mesenchymal c-Kit(+) cells in the lung did not express mast cell tryptase or α-smooth muscle actin. However, these cells did express CD34, VEGFR2, and Tie-2, indicating their endothelial lineage. Three-dimensional reconstructions of confocal laser scanning images revealed that c-Kit(+) cells displayed a closed-end tube formation that did not contain hematopoietic cells. From the pseudoglandular phase to the canalicular phase, c-Kit(+) cells appeared to continuously proliferate, to connect with central pulmonary vessels, and finally, to develop the lung capillary plexus. The spatial distribution of c-Kit- and SCF-positive cells was also demonstrated, and these cells were shown to be in close association. Our results suggest that c-Kit expression in early fetal lungs marks a progenitor population that is restricted to endothelial lineage. This study also suggests the potential involvement of c-Kit signaling in lung vascular development.
Collapse
Affiliation(s)
- Takaya Suzuki
- Dept. of Advanced Preventive Medicine for Infectious Disease, Tohoku Univ. School of Medicine, 2-1 Seiryoumachi, Aobaku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Malliaras K, Terrovitis J. Cardiomyocyte proliferation vs progenitor cells in myocardial regeneration: The debate continues. Glob Cardiol Sci Pract 2013; 2013:303-15. [PMID: 24689031 PMCID: PMC3963760 DOI: 10.5339/gcsp.2013.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/11/2013] [Indexed: 12/18/2022] Open
Abstract
In recent years, several landmark studies have provided compelling evidence that cardiomyogenesis occurs in the adult mammalian heart. However, the rate of new cardiomyocyte formation is inadequate for complete restoration of the normal mass of myocardial tissue, should a significant myocardial injury occur, such as myocardial infarction. The cellular origin of postnatal cardiomyogenesis in mammals remains a controversial issue and two mechanisms seem to be participating, proliferation of pre-existing cardiomyocytes and myogenic differentiation of progenitor cells. We will discuss the relative importance of these two processes in different settings, such as normal ageing and post-myocardial injury, as well as the strengths and limitations of the existing experimental methodologies used in the relevant studies. Further clarification of the mechanisms underlying cardiomyogenesis in mammals will open the way for their therapeutic exploitation in the clinical field, with the scope of myocardial regeneration.
Collapse
|
36
|
Kiper C, Grimes B, Van Zant G, Satin J. Mouse strain determines cardiac growth potential. PLoS One 2013; 8:e70512. [PMID: 23940585 PMCID: PMC3734269 DOI: 10.1371/journal.pone.0070512] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 06/24/2013] [Indexed: 01/14/2023] Open
Abstract
Rationale The extent of heart disease varies from person to person, suggesting that genetic background is important in pathology. Genetic background is also important when selecting appropriate mouse models to study heart disease. This study examines heart growth as a function of strain, specifically C57BL/6 and DBA/2 mouse strains. Objective In this study, we test the hypothesis that two strains of mice, C57BL/6 and DBA/2, will produce varying degrees of heart growth in both physiological and pathological settings. Methods and Results Differences in heart dimensions are detectable by echocardiography at 8 weeks of age. Percentages of cardiac progenitor cells (c-kit+ cells) and mononucleated cells were found to be in a higher percentage in DBA/2 mice, and more tri- and quad-nucleated cells were in C57BL/6 mice. Cardiomyocyte turnover shows no significant changes in mitotic activity, however, there is more apoptotic activity in DBA/2 mice. Cardiomyocyte cell size increased with age, but increased more in DBA/2 mice, although percentages of nucleated cells remained the same in both strains. Two-week isoproterenol stimulation showed an increase in heart growth in DBA/2 mice, both at cardiomyocyte and whole heart level. In isoproterenol-treated DBA/2 mice, there was also a greater expression level of the hypertrophy marker, ANF, compared to C57BL/6 mice. Conclusion We conclude that the DBA/2 mouse strain has a more immature cardiac phenotype, which correlates to a cardiac protective response to hypertrophy in both physiological and pathological stimulations.
Collapse
Affiliation(s)
- Carmen Kiper
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Barry Grimes
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Gary Van Zant
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jonathan Satin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
37
|
Song D, Li Y, Cao J, Han Z, Gao L, Xu Z, Yin Z, Wang G, Fan Y, Wang C. Effect of iron deficiency on c-kit⁺ cardiac stem cells in vitro. PLoS One 2013; 8:e65721. [PMID: 23762416 PMCID: PMC3677875 DOI: 10.1371/journal.pone.0065721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/27/2013] [Indexed: 12/05/2022] Open
Abstract
AIM Iron deficiency is a common comorbidity in chronic heart failure (CHF) which may exacerbate CHF. The c-kit⁺ cardiac stem cells (CSCs) play a vital role in cardiac function repair. However, much is unknown regarding the role of iron deficiency in regulating c-kit⁺ CSCs function. In this study, we investigated whether iron deficiency regulates c-kit⁺ CSCs proliferation, migration, apoptosis, and differentiation in vitro. METHOD All c-kit⁺ CSCs were isolated from adult C57BL/6 mice. The c-kit⁺ CSCs were cultured with deferoxamine (DFO, an iron chelator), mimosine (MIM, another iron chelator), or a complex of DFO and iron (Fe(III)), respectively. Cell migration was assayed using a 48-well chamber system. Proliferation, cell cycle, and apoptosis of c-kit⁺ CSCs were analyzed with BrdU labeling, population doubling time assay, CCK-8 assay, and flow cytometry. Caspase-3 protein level and activity were examined with Western blotting and spectrophotometric detection. The changes in the expression of cardiac-specific proteins (GATA-4,TNI, and β-MHC) and cell cycle-related proteins (cyclin D1, RB, and pRB) were detected with Western blotting. RESULT DFO and MIM suppressed c-kit⁺ CSCs proliferation and differentiation. They also modulated cell cycle and cardiac-specific protein expression. Iron chelators down-regulated the expression and phosphorylation of cell cycle-related proteins. Iron reversed those suppressive effects of DFO. DFO and MIM didn't affect c-kit⁺ CSCs migration and apoptosis. CONCLUSION Iron deficiency suppressed proliferation and differentiation of c-kit⁺ CSCs. This may partly explain how iron deficiency affects CHF prognosis.
Collapse
Affiliation(s)
- Dongqiang Song
- Department of Cardiology, Ninth People’s Hospital, Shanghai Jiaotong University Medical School, Shanghai, PR China
| | - Yuanmin Li
- Department of Cardiology, Ninth People’s Hospital, Shanghai Jiaotong University Medical School, Shanghai, PR China
| | - Jiatian Cao
- Department of Cardiology, Ninth People’s Hospital, Shanghai Jiaotong University Medical School, Shanghai, PR China
| | - Zhihua Han
- Department of Cardiology, Ninth People’s Hospital, Shanghai Jiaotong University Medical School, Shanghai, PR China
| | - Lin Gao
- Department of Cardiology, Ninth People’s Hospital, Shanghai Jiaotong University Medical School, Shanghai, PR China
| | - Zuojun Xu
- Department of Cardiology, Ninth People’s Hospital, Shanghai Jiaotong University Medical School, Shanghai, PR China
| | - Zhaofang Yin
- Department of Cardiology, Ninth People’s Hospital, Shanghai Jiaotong University Medical School, Shanghai, PR China
| | - Guifang Wang
- Shanghai Key Laboratory of Stomatology, Ninth People’s Hospital, Shanghai Jiaotong University Medical School, Shanghai, PR China
| | - Yuqi Fan
- Department of Cardiology, Ninth People’s Hospital, Shanghai Jiaotong University Medical School, Shanghai, PR China
| | - Changqian Wang
- Department of Cardiology, Ninth People’s Hospital, Shanghai Jiaotong University Medical School, Shanghai, PR China
| |
Collapse
|
38
|
Chong JJH, Reinecke H, Iwata M, Torok-Storb B, Stempien-Otero A, Murry CE. Progenitor cells identified by PDGFR-alpha expression in the developing and diseased human heart. Stem Cells Dev 2013; 22:1932-43. [PMID: 23391309 DOI: 10.1089/scd.2012.0542] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Platelet-derived growth factors (PDGFs) and their tyrosine kinase receptors play instrumental roles in embryonic organogenesis and diseases of adult organs. In particular, platelet-derived growth factor receptor-alpha (PDGFRα) is expressed by multipotent cardiovascular progenitors in mouse and human embryonic stem cell systems. Although cardiac PDGFRα expression has been studied in multiple species, little is known about its expression in the human heart. Using immunofluorescence, we analyzed PDGFRα expression in both human fetal and diseased adult hearts, finding strong expression in the interstitial cells of the epicardium, myocardium, and endocardium, as well as the coronary smooth muscle. Only rare endothelial cells and cardiomyocytes expressed PDGFRα. This pattern was consistent for both the fetal and adult diseased hearts, although more PDGFRα+ cardiomyocytes were noted in the latter. In vitro differentiation assays were then performed on the PDGFRα+ cell fraction isolated from the cardiomyocyte-depleted human fetal hearts. Protocols previously reported to direct differentiation to a cardiomyocyte (5-azacytidine), smooth muscle (PDGF-BB), or endothelial cell fates (vascular endothelial growth factor [VEGF]) were used. Although no significant cardiomyocyte differentiation was observed, PDGFRα+ cells generated significant numbers of smooth muscle cells (smooth muscle-α-actin+ and smooth muscle myosin+) and endothelial cells (CD31+). These data suggest that a subfraction of the cardiac PDGFRα+ populations are progenitors contributing predominantly to the vascular and mesenchymal compartments of the human heart. It may be possible to control the fate of these progenitors to promote vascularization or limit fibrosis in the injured heart.
Collapse
Affiliation(s)
- James J H Chong
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
39
|
Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A 2013; 110:187-92. [PMID: 23248315 PMCID: PMC3538265 DOI: 10.1073/pnas.1208863110] [Citation(s) in RCA: 587] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We recently identified a brief time period during postnatal development when the mammalian heart retains significant regenerative potential after amputation of the ventricular apex. However, one major unresolved question is whether the neonatal mouse heart can also regenerate in response to myocardial ischemia, the most common antecedent of heart failure in humans. Here, we induced ischemic myocardial infarction (MI) in 1-d-old mice and found that this results in extensive myocardial necrosis and systolic dysfunction. Remarkably, the neonatal heart mounted a robust regenerative response, through proliferation of preexisting cardiomyocytes, resulting in full functional recovery within 21 d. Moreover, we show that the miR-15 family of microRNAs modulates neonatal heart regeneration through inhibition of postnatal cardiomyocyte proliferation. Finally, we demonstrate that inhibition of the miR-15 family from an early postnatal age until adulthood increases myocyte proliferation in the adult heart and improves left ventricular systolic function after adult MI. We conclude that the neonatal mammalian heart can regenerate after myocardial infarction through proliferation of preexisting cardiomyocytes and that the miR-15 family contributes to postnatal loss of cardiac regenerative capacity.
Collapse
Affiliation(s)
- Enzo R. Porrello
- Departments of Molecular Biology and
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ahmed I. Mahmoud
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | | | | | - David Grinsfelder
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Diana Canseco
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Pradeep P. Mammen
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Beverly A. Rothermel
- Departments of Molecular Biology and
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | | | - Hesham A. Sadek
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| |
Collapse
|
40
|
Kitagawa D, Yokota K, Gouda M, Narumi Y, Ohmoto H, Nishiwaki E, Akita K, Kirii Y. Activity-based kinase profiling of approved tyrosine kinase inhibitors. Genes Cells 2012; 18:110-22. [PMID: 23279183 DOI: 10.1111/gtc.12022] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 10/28/2012] [Indexed: 12/13/2022]
Abstract
The specificities of nine approved tyrosine kinase inhibitors (imatinib, dasatinib, nilotinib, gefitinib, erlotinib, lapatinib, sorafenib, sunitinib, and pazopanib) were determined by activity-based kinase profiling using a large panel of human recombinant active kinases. This panel consisted of 79 tyrosine kinases, 199 serine/threonine kinases, three lipid kinases, and 29 disease-relevant mutant kinases. Many potential targets of each inhibitor were identified by kinase profiling at the K(m) for ATP. In addition, profiling at a physiological ATP concentration (1 mm) was carried out, and the IC(50) values of the inhibitors against each kinase were compared with the estimated plasma-free concentration (calculated from published pharmacokinetic parameters of plasma C(trough) and C(max) values). This analysis revealed that the approved kinase inhibitors were well optimized for their target kinases. This profiling also implicates activity at particular off-target kinases in drug side effects. Thus, large-scale kinase profiling at both K(m) and physiological ATP concentrations could be useful in characterizing the targets and off-targets of kinase inhibitors.
Collapse
Affiliation(s)
- Daisuke Kitagawa
- Carna Biosciences Inc., 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wen Z, Mai Z, Zhang H, Chen Y, Geng D, Zhou S, Wang J. Local activation of cardiac stem cells for post-myocardial infarction cardiac repair. J Cell Mol Med 2012; 16:2549-63. [PMID: 22613044 PMCID: PMC4118225 DOI: 10.1111/j.1582-4934.2012.01589.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/08/2012] [Indexed: 12/23/2022] Open
Abstract
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite continuous advancements in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. The emergence of stem cell transplantation approaches has recently represented promising alternatives to stimulate myocardial regeneration. Regarding their tissue-specific properties, cardiac stem cells (CSCs) residing within the heart have advantages over other stem cell types to be the best cell source for cell transplantation. However, time-consuming and costly procedures to expanse cells prior to cell transplantation and the reliability of cell culture and expansion may both be major obstacles in the clinical application of CSC-based transplantation therapy after MI. The recognition that the adult heart possesses endogenous CSCs that can regenerate cardiomyocytes and vascular cells has raised the unique therapeutic strategy to reconstitute dead myocardium via activating these cells post-MI. Several strategies, such as growth factors, mircoRNAs and drugs, may be implemented to potentiate endogenous CSCs to repair infarcted heart without cell transplantation. Most molecular and cellular mechanism involved in the process of CSC-based endogenous regeneration after MI is far from understanding. This article reviews current knowledge opening up the possibilities of cardiac repair through CSCs activation in situ in the setting of MI.
Collapse
Affiliation(s)
- Zhuzhi Wen
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Zun Mai
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Haifeng Zhang
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Yangxin Chen
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Dengfeng Geng
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Shuxian Zhou
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Jingfeng Wang
- Sun Yat-sen Memorial Hospital of Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
42
|
Lennartsson J, Rönnstrand L. Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiol Rev 2012; 92:1619-49. [DOI: 10.1152/physrev.00046.2011] [Citation(s) in RCA: 485] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell factor (SCF) is a dimeric molecule that exerts its biological functions by binding to and activating the receptor tyrosine kinase c-Kit. Activation of c-Kit leads to its autophosphorylation and initiation of signal transduction. Signaling proteins are recruited to activated c-Kit by certain interaction domains (e.g., SH2 and PTB) that specifically bind to phosphorylated tyrosine residues in the intracellular region of c-Kit. Activation of c-Kit signaling has been found to mediate cell survival, migration, and proliferation depending on the cell type. Signaling from c-Kit is crucial for normal hematopoiesis, pigmentation, fertility, gut movement, and some aspects of the nervous system. Deregulated c-Kit kinase activity has been found in a number of pathological conditions, including cancer and allergy. The observation that gain-of-function mutations in c-Kit can promote tumor formation and progression has stimulated the development of therapeutics agents targeting this receptor, e.g., the clinically used inhibitor imatinib mesylate. Also other clinically used multiselective kinase inhibitors, for instance, sorafenib and sunitinib, have c-Kit included in their range of targets. Furthermore, loss-of-function mutations in c-Kit have been observed and shown to give rise to a condition called piebaldism. This review provides a summary of our current knowledge regarding structural and functional aspects of c-Kit signaling both under normal and pathological conditions, as well as advances in the development of low-molecular-weight molecules inhibiting c-Kit function.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lars Rönnstrand
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
43
|
Wang K, Zhao X, Kuang C, Qian D, Wang H, Jiang H, Deng M, Huang L. Overexpression of SDF-1α enhanced migration and engraftment of cardiac stem cells and reduced infarcted size via CXCR4/PI3K pathway. PLoS One 2012; 7:e43922. [PMID: 22984452 PMCID: PMC3439464 DOI: 10.1371/journal.pone.0043922] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/27/2012] [Indexed: 01/19/2023] Open
Abstract
Cardiac stem cells (CSCs) can home to the infarcted area and regenerate myocardium. Stromal cell-derived factor-1α/C-X-C chemokine receptor type 4 (SDF-1α/CXCR4) axis is pivotal in inducing CSCs migration. However, the mechanisms remain unclear. This study set out to detect if SDF-1α promotes migration and engraftment of CSCs through the CXCR4/PI3K (phosphatidylinositol 3-kinase) pathway. In the in vitro experiment, c-kit+ cells were isolated from neonatal mouse heart fragment culture by magnetic cell sorting. Fluorescence-activated cell sorting results demonstrated that a few c-kit+ cells expressed CD45 (4.54%) and Sca-1 (2.58%), the hematopoietic stem cell marker. Conditioned culture could induce c-kit+ cells multipotent differentiation, which was confirmed by cardiac troponin I (cTn-I), α-smooth muscle actin (α-SMA), and von Willebrand factor (vWF) staining. In vitro chemotaxis assays were performed using Transwell cell chambers to detect CSCs migration. The results showed that the cardiomyocytes infected with rAAV1-SDF-1α-eGFP significantly increased SDF-1α concentration, 5-fold more in supernatant than that in the control group, and subsequently attracted more CSCs migration. This effect was diminished by administration of AMD3100 (10 µg/ml, CXCR4 antagonist) or LY294002 (20 µmol/L, PI3K inhibitor). In myocardial infarction mice, overexpression of SDF-1α in the infarcted area by rAAV1-SDF-1α-eGFP infection resulted in more CSCs retention to the infarcted myocardium, a higher percentage of proliferation, and reduced infarcted area which was attenuated by AMD3100 or ly294002 pretreatment. These results indicated that overexpression of SDF-1α enhanced CSCs migration in vitro and engraftment of transplanted CSCs and reduced infarcted size via CXCR4/PI3K pathway.
Collapse
Affiliation(s)
- Kui Wang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiaohui Zhao
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Chunyan Kuang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Dehui Qian
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hang Wang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hong Jiang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Mengyang Deng
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
- * E-mail:
| |
Collapse
|
44
|
Seshadri G, Che PL, Boopathy AV, Davis ME. Characterization of superoxide dismutases in cardiac progenitor cells demonstrates a critical role for manganese superoxide dismutase. Stem Cells Dev 2012; 21:3136-46. [PMID: 22758933 DOI: 10.1089/scd.2012.0191] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transplantation of cardiac progenitor cells (CPCs) is currently in early clinical testing as a potential therapeutic strategy. Superoxide is increased in the ischemic myocardium and poor survival of cells is one of the major limitations of cell transplantation therapy. Superoxide dismutase (SOD) levels were analyzed in c-kit-positive CPCs isolated from rat myocardium to identify their roles in protection against oxidative stress-induced apoptosis in vitro. CPCs were subjected to oxidative stress using xanthine/xanthine oxidase (XXO) and little apoptosis was detected. CPCs contained significantly higher levels of SOD1 and SOD2 as compared with adult cardiac cell types, both at the protein and activity levels. Both SOD1 and SOD2 were increased by XXO at the mRNA and protein level, suggesting compensatory adaptation. Only knockdown of SOD2 and not SOD1 with siRNA sensitized the cells to XXO-apoptosis, despite only accounting for 10% of total SOD levels. Finally, we found XXO activated Akt within 10 min, and this regulated both SOD2 gene expression and protection against apoptosis. Rat CPCs are resistant to superoxide-induced cell death, primarily through higher levels of SOD2 compared to adult cardiac-derived cells. Exposure to superoxide increases expression of SOD2 in an Akt-dependent manner and regulates CPC survival during oxidative stress.
Collapse
Affiliation(s)
- Gokulakrishnan Seshadri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
45
|
Mahmoud AI, Porrello ER. Turning Back the Cardiac Regenerative Clock: Lessons From the Neonate. Trends Cardiovasc Med 2012; 22:128-33. [DOI: 10.1016/j.tcm.2012.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 01/07/2023]
|
46
|
Chong JJH, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, Heffernan C, Menon MK, Scarlett CJ, Rashidianfar A, Biben C, Zoellner H, Colvin EK, Pimanda JE, Biankin AV, Zhou B, Pu WT, Prall OWJ, Harvey RP. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 2012; 9:527-40. [PMID: 22136928 DOI: 10.1016/j.stem.2011.10.002] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 08/03/2011] [Accepted: 10/11/2011] [Indexed: 02/02/2023]
Abstract
Colony-forming units - fibroblast (CFU-Fs), analogous to those giving rise to bone marrow (BM) mesenchymal stem cells (MSCs), are present in many organs, although the relationship between BM and organ-specific CFU-Fs in homeostasis and tissue repair is unknown. Here we describe a population of adult cardiac-resident CFU-Fs (cCFU-Fs) that occupy a perivascular, adventitial niche and show broad trans-germ layer potency in vitro and in vivo. CRE lineage tracing and embryo analysis demonstrated a proepicardial origin for cCFU-Fs. Furthermore, in BM transplantation chimeras, we found no interchange between BM and cCFU-Fs after aging, myocardial infarction, or BM stem cell mobilization. BM and cardiac and aortic CFU-Fs had distinct CRE lineage signatures, indicating that they arise from different progenitor beds during development. These diverse origins for CFU-Fs suggest an underlying basis for differentiation biases seen in different CFU-F populations, and could also influence their capacity for participating in tissue repair.
Collapse
Affiliation(s)
- James J H Chong
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pressure overload leads to an increase of cardiac resident stem cells. Basic Res Cardiol 2012; 107:252. [PMID: 22361741 DOI: 10.1007/s00395-012-0252-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/29/2011] [Accepted: 02/06/2012] [Indexed: 01/13/2023]
Abstract
Recent studies suggest that the mammalian heart possesses some capacity for cardiac regeneration. This regenerative capacity is primarily documented postnatally and after myocardial infarction or pressure overload. Although the cell type that mediates endogenous regeneration is unclear, cardiac stem cells might be considered as potential candidates. To determine the number of c-kit + cardiac resident cells under conditions of pressure overload, we evaluated specimens derived from n = 8 patients with pressure overloaded single right ventricles in comparison to n = 4 explanted hearts from patients with dilated cardiomyopathy and n = 14 biopsies from children after heart transplantation. The age of the patients ranged from 16 days to 19 years. For quantification of cardiac stem cells, c-kit+/mast cell tryptase-/CD45- cells were counted and expressed as percent of the total nuclei. In specimens from patients with dilated cardiomyopathy, 0.13 ± 0.09% c-kit +/mast cell tryptase-/CD45- cells were detected. However, in specimens from patients with pressure overloaded single right ventricles, the numbers of c-kit+/mast cell tryptase-/CD45- cells were significantly higher (0.41 ±0.24%, p < 0.05). Under conditions of pressure overload, the right ventricle shows an approximately three-fold increase in c-kit+/mast cell tryptase-/CD45- cardiac resident cells. Despite the fact that this increased number of c-kit+ cells is not sufficient to prevent the failing heart from congestive heart failure, understanding the mechanism that leads to an increase of presumably cardiac resident stem cells under conditions of pressure overload might help to develop new strategies to enhance endogenous repair.
Collapse
|
48
|
Ferreira-Martins J, Ogórek B, Cappetta D, Matsuda A, Signore S, D'Amario D, Kostyla J, Steadman E, Ide-Iwata N, Sanada F, Iaffaldano G, Ottolenghi S, Hosoda T, Leri A, Kajstura J, Anversa P, Rota M. Cardiomyogenesis in the developing heart is regulated by c-kit-positive cardiac stem cells. Circ Res 2012; 110:701-15. [PMID: 22275487 DOI: 10.1161/circresaha.111.259507] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Embryonic and fetal myocardial growth is characterized by a dramatic increase in myocyte number, but whether the expansion of the myocyte compartment is dictated by activation and commitment of resident cardiac stem cells (CSCs), division of immature myocytes or both is currently unknown. OBJECTIVE In this study, we tested whether prenatal cardiac development is controlled by activation and differentiation of CSCs and whether division of c-kit-positive CSCs in the mouse heart is triggered by spontaneous Ca(2+) oscillations. METHODS AND RESULTS We report that embryonic-fetal c-kit-positive CSCs are self-renewing, clonogenic and multipotent in vitro and in vivo. The growth and commitment of c-kit-positive CSCs is responsible for the generation of the myocyte progeny of the developing heart. The close correspondence between values computed by mathematical modeling and direct measurements of myocyte number at E9, E14, E19 and 1 day after birth strongly suggests that the organogenesis of the embryonic heart is dependent on a hierarchical model of cell differentiation regulated by resident CSCs. The growth promoting effects of c-kit-positive CSCs are triggered by spontaneous oscillations in intracellular Ca(2+), mediated by IP3 receptor activation, which condition asymmetrical stem cell division and myocyte lineage specification. CONCLUSIONS Myocyte formation derived from CSC differentiation is the major determinant of cardiac growth during development. Division of c-kit-positive CSCs in the mouse is promoted by spontaneous Ca(2+) spikes, which dictate the pattern of stem cell replication and the generation of a myocyte progeny at all phases of prenatal life and up to one day after birth.
Collapse
Affiliation(s)
- João Ferreira-Martins
- Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kanashiro-Takeuchi RM, Takeuchi LM, Hatzistergos K, Quevedo H, Selem SM, Treuer AV, Premer C, Balkan W, Margitich I, Song Y, Hu Q, Hare JM. Effects of combination of proliferative agents and erythropoietin on left ventricular remodeling post-myocardial infarction. Clin Transl Sci 2011; 4:168-74. [PMID: 21707946 DOI: 10.1111/j.1752-8062.2011.00278.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
UNLABELLED Erythropoietin (EPO) has the potential to improve ischemic tissue by mobilizing endothelial progenitor cells and enhancing neovascularization. We hypothesized that combining EPO with human chorionic gonadotrophin (hCG) would improve post-myocardial infarction (MI) effects synergistically. METHODS After MI, five to seven animals were randomly assigned to each of the following treatments: control; hCG; EPO; hCG + EPO, and prolactin (PRL) + EPO. Follow-up echocardiograms were performed to assess cardiac structure and function. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and western blot analysis for apoptosis-related proteins, and cell proliferation by immunostaining for Ki67 and c-kit cells. RESULTS The MI-mediated increased chamber systolic dimension (p < 0.05 in controls) was attenuated by hCG, EPO, and hCG + EPO (p < 0.05 vs. control) but not PRL + EPO. Similarly all treatment groups, except PRL + EPO, reduced MI-induced increases (p < 0.05 vs. control) in ejection fraction (EF). The functional improvement in the EPO-treated groups was accompanied by increased capillary density. Apoptosis was markedly reduced in all treated groups. Significantly more cardiac c-kit(+) cells were found in the hCG + EPO group. CONCLUSION Our findings revealed that EPO, hCG, or their combination ameliorate cardiac remodeling post-MI. Whereas EPO stimulates neovascularization only and hCG + EPO stimulates c-kit+ cell proliferation. These data suggest that combining mobilizing and proliferative agents adds to the durability and sustainability of cytokine-based therapies for remodeling post-MI.
Collapse
|
50
|
Surgical Therapy of End-Stage Heart Failure: Understanding Cell-Mediated Mechanisms Interacting with Myocardial Damage. Int J Artif Organs 2011; 34:529-45. [DOI: 10.5301/ijao.5000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2011] [Indexed: 01/19/2023]
Abstract
Worldwide, cardiovascular disease results in an estimated 14.3 million deaths per year, giving rise to an increased demand for alternative and advanced treatment. Current approaches include medical management, cardiac transplantation, device therapy, and, most recently, stem cell therapy. Research into cell-based therapies has shown this option to be a promising alternative to the conventional methods. In contrast to early trials, modern approaches now attempt to isolate specific stem cells, as well as increase their numbers by means of amplifying in a culture environment. The method of delivery has also been improved to minimize the risk of micro-infarcts and embolization, which were often observed after the use of coronary catheterization. The latest approach entails direct, surgical, transepicardial injection of the stem cell mixture, as well as the use of tissue-engineered meshes consisting of embedded progenitor cells.
Collapse
|