1
|
Teixeira RB, Albro JH, Sabra M, Abedin T, Tucker AN, Sidharth R, Sellke FW, Wipf P, Abid MR. Mitochondria-targeted ROS scavenger JP4-039 improves cardiac function in a post-myocardial infarction animal model and induces angiogenesis in vitro. PLoS One 2025; 20:e0320703. [PMID: 40273045 PMCID: PMC12021227 DOI: 10.1371/journal.pone.0320703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/22/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND This study aimed at evaluating the effects of JP4-039, a mitochondria-specific reactive oxygen species (mito-ROS) scavenger, on coronary angiogenesis and cardiac function in a post-myocardial infarction (MI) animal model. METHODS Mice underwent ligation of the left anterior descending (LAD) artery to induce MI and received intraperitoneal (i.p.) injections of JP4-039 or vehicle (n=8 animals/group) three times/week for four weeks. Echocardiography for cardiac function and immunohistochemistry for Infarction area and capillary density were carried out. Angiogenic potential of endothelial cells (EC) was assessed by ex vivo tube formation using mouse heart EC (MHEC) and by aortic and atrial sprouting. Western blots were conducted using mouse cardiac tissue and lysates from HCAECs that were treated with or without JP4-039. RESULTS Cardiac function including ejection fraction, fractional shortening, and fractional area change were improved significantly in JP4-039-treated animals compared to the vehicle group. JP4-039-treated hearts demonstrated significant reduction in infarction size and increased capillary density in the ischemic area. These findings were consistent with increased ex vivo endothelial sprouting of the aortae and atrial tissue from the mice treated with JP4-039. Western blots using cardiac tissue lysates from JP4-039-treated animals showed decrease in phosphorylation of AMPKα at the Threonine 172, suggesting a plausible increase in the ATP:AMP ratio. Interestingly, JP4-039 increased expression of mitochondrial complexes I and IV and increased ATP synthesis in EC. CONCLUSIONS JP4-039-mediated reduction in mito-ROS results in significantly increased coronary vascular density in ischemic myocardium, improved ATP synthesis, and recovery of post-MI cardiac function. Together, these results suggest that nitroxide nanodrug-mediated reduction in mito-ROS may help recover post-MI cardiac function.
Collapse
Affiliation(s)
- Rayane Brinck Teixeira
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Jane H. Albro
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Mohamed Sabra
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Taslova Abedin
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Aja N. Tucker
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Raj Sidharth
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Frank W. Sellke
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Ruhul Abid
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
2
|
Dancker TA, Elhawy MI, Rittershauß R, Tian Q, Schwarz Y, Hoffmann MDA, Carlein C, Wyatt A, Wahl V, Speyerer D, Kandah A, Boehm U, Prates Roma L, Bruns D, Lipp P, Krasteva-Christ G, Lauterbach MA. Functional Microendoscopy Reveals Calcium Responses of Single Cells in Tracheal Tuft Cells and Kidney Podocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411341. [PMID: 40166809 DOI: 10.1002/smll.202411341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Microendoscopy, a crucial technology for minimally invasive investigations of organs, facilitates studies within confined cavities. However, conventional microendoscopy is often limited by probe size and the constraint of using a single excitation wavelength. In response to these constraints, a multichannel microendoscope with a slender profile of only 360 µm is engineered. Functional signals both in situ and in vivo are successfully captured from individual single cells, employing a specially developed software suite for image processing, and exhibiting an effective resolution of 4.6 µm, allowing for the resolution of subcellular neuronal structures. This system enabled the first examination of calcium dynamics in vivo in murine tracheal tuft cells (formerly named brush cells) and in situ in kidney podocytes. Additionally, it recorded ratiometric redox reactions in various biological settings, including intact explanted organs and pancreatic islet cultures. The flexibility and streamlined operation of the microendoscopic technique open new avenues for conducting in vivo research, allowing for studies of tissue and organ function at cellular resolution.
Collapse
Affiliation(s)
- Tobias A Dancker
- Molecular Imaging, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Mohamed Ibrahem Elhawy
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Str. 100, building 61, 66421, Homburg, Saarland, Germany
- Center for Gender Specific Biology and Medicine (CGBM), Saarland University, Kirrberger Str. 100, 66421, Homburg, Saarland, Germany
| | - Ramona Rittershauß
- Molecular Cell Biology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. 100, building 61, 66421, Homburg, Saarland, Germany
| | - Qinghai Tian
- Molecular Cell Biology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. 100, building 61, 66421, Homburg, Saarland, Germany
| | - Yvonne Schwarz
- Molecular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Markus D A Hoffmann
- Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Christopher Carlein
- Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. 100, building 45&46, 66421, Homburg, Saarland, Germany
- Center for Gender Specific Biology and Medicine (CGBM), Saarland University, Kirrberger Str. 100, 66421, Homburg, Saarland, Germany
| | - Vanessa Wahl
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. 100, building 45&46, 66421, Homburg, Saarland, Germany
- Center for Gender Specific Biology and Medicine (CGBM), Saarland University, Kirrberger Str. 100, 66421, Homburg, Saarland, Germany
| | - Daniel Speyerer
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Str. 100, building 61, 66421, Homburg, Saarland, Germany
- Center for Gender Specific Biology and Medicine (CGBM), Saarland University, Kirrberger Str. 100, 66421, Homburg, Saarland, Germany
| | - Alaa Kandah
- Molecular Imaging, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. 100, building 45&46, 66421, Homburg, Saarland, Germany
- Center for Gender Specific Biology and Medicine (CGBM), Saarland University, Kirrberger Str. 100, 66421, Homburg, Saarland, Germany
| | - Leticia Prates Roma
- Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Dieter Bruns
- Molecular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| | - Peter Lipp
- Molecular Cell Biology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str. 100, building 61, 66421, Homburg, Saarland, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Str. 100, building 61, 66421, Homburg, Saarland, Germany
- Center for Gender Specific Biology and Medicine (CGBM), Saarland University, Kirrberger Str. 100, 66421, Homburg, Saarland, Germany
| | - Marcel A Lauterbach
- Molecular Imaging, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Kirrberger Str. 100, building 48, 66421, Homburg, Saarland, Germany
| |
Collapse
|
3
|
Aaronson PI. The Role of Hydrogen Sulfide in the Regulation of the Pulmonary Vasculature in Health and Disease. Antioxidants (Basel) 2025; 14:341. [PMID: 40227402 PMCID: PMC11939758 DOI: 10.3390/antiox14030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The gasotransmitter hydrogen sulfide (H2S; also termed sulfide) generally acts as a vasodilator in the systemic vasculature but causes a paradoxical constriction of pulmonary arteries (PAs). In light of evidence that a fall in the partial pressure in oxygen (pO2) increases cellular sulfide levels, it was proposed that a rise in sulfide in pulmonary artery smooth muscle cells (PASMCs) is responsible for hypoxic pulmonary vasoconstriction, the contraction of PAs which develops rapidly in lung regions undergoing alveolar hypoxia. In contrast, pulmonary hypertension (PH), a sustained elevation of pulmonary artery pressure (PAP) which can develop in the presence of a diverse array of pathological stimuli, including chronic hypoxia, is associated with a decrease in the expression of sulfide -producing enzymes in PASMCs and a corresponding fall in sulfide production by the lung. Evidence that PAP in animal models of PH can be lowered by administration of exogenous sulfide has led to an interest in using sulfide-donating agents for treating this condition in humans. Notably, intracellular H2S exists in equilibrium with other sulfur-containing species such as polysulfides and persulfides, and it is these reactive sulfur species which are thought to mediate most of its effects on cells through persulfidation of cysteine thiols on proteins, leading to changes in function in a manner similar to thiol oxidation by reactive oxygen species. This review sets out what is currently known about the mechanisms by which H2S and related sulfur species exert their actions on pulmonary vascular tone, both acutely and chronically, and discusses the potential of sulfide-releasing drugs as treatments for the different types of PH which arise in humans.
Collapse
Affiliation(s)
- Philip I Aaronson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| |
Collapse
|
4
|
Farha S, Asosingh K, Hassoun PM, Barnard J, Comhair S, Reichard A, Wanner N, Radeva M, Aldred MA, Beck GJ, Berman-Rosenzweig E, Borlaug BA, Finet JE, Frantz RP, Grunig G, Hemnes AR, Hill N, Horn EM, Jellis C, Leopold JA, Mehra R, Park MM, Rischard FP, Tang WHW, Erzurum SC. Alterations in Mitochondrial Function in Pulmonary Vascular Diseases. Antioxid Redox Signal 2025; 42:361-377. [PMID: 39655485 DOI: 10.1089/ars.2024.0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Aims: Alterations of mitochondrial bioenergetics and arginine metabolism are universally present and mechanistically linked to pulmonary arterial hypertension (PAH), but there is little knowledge of arginine metabolism and mitochondrial functions across the different pulmonary hypertension (PH) groups. We hypothesize that abnormalities in mitochondrial functions are present across all PH groups and associated with clinical phenotypes. We test the hypothesis in PH patients and healthy controls from the Pulmonary Vascular Disease Phenomics Program cohort, who had comprehensive clinical phenotyping and follow-up for at least 4 years for death or transplant status. Mitochondrial transmembrane potential, superoxide production, and mass were measured by flow cytometry in fresh platelets. Metabolomics analysis was performed on plasma samples. Global arginine bioavailability was calculated as the ratio of arginine/(ornithine+citrulline). Results: Global arginine bioavailability is consistently lower than controls in all PH groups. Although the mitochondrial mass is similar across all PH groups and controls, superoxide production and transmembrane potential vary across groups. Mitochondrial superoxide is higher in group 1 PAH and lowest in group 3 compared with other groups, while transmembrane potential is lower in group 1 PAH than controls or group 3. The alterations in mitochondrial functions of group 1 PAH are associated with changes in fatty acid metabolism. Mitochondrial transmembrane potential in group 1 PAH is associated with transplant-free survival. Conclusion: While alterations in mitochondrial function are found in all PH groups, group 1 PAH has a unique mitochondrial phenotype with greater superoxide and lower transmembrane potential linked to fatty acid metabolism, and clinically to survival. Antioxid. Redox Signal. 42, 361-377.
Collapse
Affiliation(s)
- Samar Farha
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Kewal Asosingh
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - John Barnard
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Suzy Comhair
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrew Reichard
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Milena Radeva
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Micheala A Aldred
- Department of Medicine, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, USA
| | - Gerald J Beck
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - J Emanuel Finet
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert P Frantz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gabriele Grunig
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicholas Hill
- Division of Pulmonary, Critical Care, and Sleep Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Evelyn M Horn
- Division of Cardiology, Weill Cornell Medical Center, New York, New York, USA
| | - Christine Jellis
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reena Mehra
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Margaret M Park
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Franz P Rischard
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona, USA
| | - W H Wilson Tang
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil C Erzurum
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Ohio, USA
| |
Collapse
|
5
|
Gonzalez GA, Osuji EU, Fiur NC, Clark MG, Ma S, Lukov LL, Zhang C. Alteration of Lipid Metabolism in Hypoxic Cancer Cells. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:25-34. [PMID: 39886224 PMCID: PMC11775851 DOI: 10.1021/cbmi.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 02/01/2025]
Abstract
Due to uncontrolled cell proliferation and disrupted vascularization, many cancer cells in solid tumors have limited oxygen supply. The hypoxic microenvironments of tumors lead to metabolic reprogramming of cancer cells, contributing to therapy resistance and metastasis. To identify better targets for the effective removal of hypoxia-adaptive cancer cells, it is crucial to understand how cancer cells alter their metabolism in hypoxic conditions. Here, we studied lipid metabolic changes in cancer cells under hypoxia using coherent Raman scattering (CRS) microscopy. We discovered the accumulation of lipid droplets (LDs) in the endoplasmic reticulum (ER) in hypoxia. Time-lapse CRS microscopy revealed the release of old LDs and the reaccumulated LDs in the ER during hypoxia exposure. Additionally, we explored the impact of carbon sources on LD formation and found that MIA PaCa2 cells preferred fatty acid uptake for LD formation, while glucose was essential to alleviate lipotoxicity. Hyperspectral-stimulated Raman scattering (SRS) microscopy revealed a reduction in cholesteryl ester content and a decrease in lipid saturation levels of LDs in hypoxic MIA PaCa2 cancer cells. This alteration in LD content is linked to reduced efficacy of treatments targeting cholesteryl ester formation. This study unveils important lipid metabolic changes in hypoxic cancer cells, providing insights that could lead to better treatment strategies for hypoxia-resistant cancer cells.
Collapse
Affiliation(s)
- Gil A. Gonzalez
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Ezinne U. Osuji
- College
of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana 47907, United States
| | - Natalie C. Fiur
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana 47907, United States
| | - Matthew G. Clark
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Seohee Ma
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Laura L. Lukov
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Chi Zhang
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana 47907, United States
- Purdue
Institute of Inflammation, Immunology, and Infectious Disease, 207 S. Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Zhang P, Li J, Gou X, Zhu L, Yang Y, Li Y, Zhang Y, Ding L, Ansabayeva A, Meng Y, Shan W. The Phytophthora infestans effector Pi05910 suppresses and destabilizes host glycolate oxidase StGOX4 to promote plant susceptibility. MOLECULAR PLANT PATHOLOGY 2024; 25:e70021. [PMID: 39487604 PMCID: PMC11530570 DOI: 10.1111/mpp.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Phytophthora infestans is a notorious oomycete pathogen that causes potato late blight. It secretes numerous effector proteins to manipulate host immunity. Understanding mechanisms underlying their host cell manipulation is crucial for developing disease resistance strategies. Here, we report that the conserved RXLR effector Pi05910 of P. infestans is a genotype-specific avirulence elicitor on potato variety Longshu 12 and contributes virulence by suppressing and destabilizing host glycolate oxidase StGOX4. By performing co-immunoprecipitation, yeast-two-hybrid assays, luciferase complementation imaging, bimolecular fluorescence complementation and isothermal titration calorimetry assays, we identified and confirmed potato StGOX4 as a target of Pi05910. Further analysis revealed that StGOX4 and its homologue NbGOX4 are positive immune regulators against P. infestans, as indicated by infection assays on potato and Nicotiana benthamiana overexpressing StGOX4 and TRV-NbGOX4 plants. StGOX4-mediated disease resistance involves enhanced reactive oxygen species accumulation and activated the salicylic acid signalling pathway. Pi05910 binding inhibited enzymatic activity and destabilized StGOX4. Furthermore, mutagenesis analyses indicated that the 25th residue (tyrosine, Y25) of StGOX4 mediates Pi05910 binding and is required for its immune function. Our results revealed that the core RXLR effector of P. infestans Pi05910 suppresses plant immunity by targeting StGOX4, which results in decreased enzymatic activity and protein accumulation, leading to enhanced plant susceptibility.
Collapse
Affiliation(s)
- Peiling Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinyang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiuhong Gou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Lin Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yilin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yingqi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Liwen Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Assiya Ansabayeva
- Department of AgronomyA. Baitursynov Kostanay Regional UniversityKostanayKazakhstan
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
7
|
Twigger SA, Dominguez B, Porto V, Hacker L, Chalmers AJ, Breckenridge R, Treder M, Sedgwick AC, Dominguez F, Hammond EM. The activity of therapeutic molecular cluster Ag5 is dependent on oxygen level and HIF-1 mediated signalling. Redox Biol 2024; 76:103326. [PMID: 39180984 PMCID: PMC11388176 DOI: 10.1016/j.redox.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Regions of hypoxia occur in most solid tumours and are known to significantly impact therapy response and patient prognosis. Ag5 is a recently reported silver molecular cluster which inhibits both glutathione and thioredoxin signalling therefore limiting cellular antioxidant capacity. Ag5 treatment significantly reduces cell viability in a range of cancer cell lines with little to no impact on non-transformed cells. Characterisation of redox homeostasis in hypoxia demonstrated an increase in reactive oxygen species and glutathione albeit with different kinetics. Significant Ag5-mediated loss of viability was observed in a range of hypoxic conditions which mimic the tumour microenvironment however, this effect was reduced compared to normoxic conditions. Reduced sensitivity to Ag5 in hypoxia was attributed to HIF-1 mediated signalling to reduce PDH via PDK1/3 activity and changes in mitochondrial oxygen availability. Importantly, the addition of Ag5 significantly increased radiation-induced cell death in hypoxic conditions associated with radioresistance. Together, these data demonstrate Ag5 is a potent and cancer specific agent which could be used effectively in combination with radiotherapy.
Collapse
Affiliation(s)
- Sophie A Twigger
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Blanca Dominguez
- Department of physiology and CIMUS Universidade de Santiago de Compostela, Spain
| | - Vanesa Porto
- Department of physiology and CIMUS Universidade de Santiago de Compostela, Spain
| | - Lina Hacker
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | | | - Adam C Sedgwick
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Fernando Dominguez
- Department of physiology and CIMUS Universidade de Santiago de Compostela, Spain
| | - Ester M Hammond
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
8
|
Alva R, Wiebe JE, Stuart JA. Revisiting reactive oxygen species production in hypoxia. Pflugers Arch 2024; 476:1423-1444. [PMID: 38955833 DOI: 10.1007/s00424-024-02986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Cellular responses to hypoxia are crucial in various physiological and pathophysiological contexts and have thus been extensively studied. This has led to a comprehensive understanding of the transcriptional response to hypoxia, which is regulated by hypoxia-inducible factors (HIFs). However, the detailed molecular mechanisms of HIF regulation in hypoxia remain incompletely understood. In particular, there is controversy surrounding the production of mitochondrial reactive oxygen species (ROS) in hypoxia and how this affects the stabilization and activity of HIFs. This review examines this controversy and attempts to shed light on its origin. We discuss the role of physioxia versus normoxia as baseline conditions that can affect the subsequent cellular response to hypoxia and highlight the paucity of data on pericellular oxygen levels in most experiments, leading to variable levels of hypoxia that might progress to anoxia over time. We analyze the different outcomes reported in isolated mitochondria, versus intact cells or whole organisms, and evaluate the reliability of various ROS-detecting tools. Finally, we examine the cell-type and context specificity of oxygen's various effects. We conclude that while recent evidence suggests that the effect of hypoxia on ROS production is highly dependent on the cell type and the duration of exposure, efforts should be made to conduct experiments under carefully controlled, physiological microenvironmental conditions in order to rule out potential artifacts and improve reproducibility in research.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - Jacob E Wiebe
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
9
|
Xiao R, Liu J, Shi L, Zhang T, Liu J, Qiu S, Ruiz M, Dupuis J, Zhu L, Wang L, Wang Z, Hu Q. Au-modified ceria nanozyme prevents and treats hypoxia-induced pulmonary hypertension with greatly improved enzymatic activity and safety. J Nanobiotechnology 2024; 22:492. [PMID: 39160624 PMCID: PMC11331617 DOI: 10.1186/s12951-024-02738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Despite recent advances the prognosis of pulmonary hypertension remains poor and warrants novel therapeutic options. Extensive studies, including ours, have revealed that hypoxia-induced pulmonary hypertension is associated with high oxidative stress. Cerium oxide nanozyme or nanoparticles (CeNPs) have displayed catalytic activity mimicking both catalase and superoxide dismutase functions and have been widely used as an anti-oxidative stress approach. However, whether CeNPs can attenuate hypoxia-induced pulmonary vascular oxidative stress and pulmonary hypertension is unknown. RESULTS In this study, we designed a new ceria nanozyme or nanoparticle (AuCeNPs) exhibiting enhanced enzyme activity. The AuCeNPs significantly blunted the increase of reactive oxygen species and intracellular calcium concentration while limiting proliferation of pulmonary artery smooth muscle cells and pulmonary vasoconstriction in a model of hypoxia-induced pulmonary hypertension. In addition, the inhalation of nebulized AuCeNPs, but not CeNPs, not only prevented but also blunted hypoxia-induced pulmonary hypertension in rats. The benefits of AuCeNPs were associated with limited increase of intracellular calcium concentration as well as enhancement of extracellular calcium-sensing receptor (CaSR) activity and expression in rat pulmonary artery smooth muscle cells. Nebulised AuCeNPs showed a favorable safety profile, systemic arterial pressure, liver and kidney function, plasma Ca2+ level, and blood biochemical parameters were not affected. CONCLUSION We conclude that AuCeNPs is an improved reactive oxygen species scavenger that effectively prevents and treats hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Jie Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Shuyi Qiu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of medicine, Université de Montréal, Montréal, Québec, Canada
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| |
Collapse
|
10
|
Moreno-Domínguez A, Colinas O, Arias-Mayenco I, Cabeza JM, López-Ogayar JL, Chandel NS, Weissmann N, Sommer N, Pascual A, López-Barneo J. Hif1α-dependent mitochondrial acute O 2 sensing and signaling to myocyte Ca 2+ channels mediate arterial hypoxic vasodilation. Nat Commun 2024; 15:6649. [PMID: 39103356 PMCID: PMC11300585 DOI: 10.1038/s41467-024-51023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Vasodilation in response to low oxygen (O2) tension (hypoxic vasodilation) is an essential homeostatic response of systemic arteries that facilitates O2 supply to tissues according to demand. However, how blood vessels react to O2 deficiency is not well understood. A common belief is that arterial myocytes are O2-sensitive. Supporting this concept, it has been shown that the activity of myocyte L-type Ca2+channels, the main ion channels responsible for vascular contractility, is reversibly inhibited by hypoxia, although the underlying molecular mechanisms have remained elusive. Here, we show that genetic or pharmacological disruption of mitochondrial electron transport selectively abolishes O2 modulation of Ca2+ channels and hypoxic vasodilation. Mitochondria function as O2 sensors and effectors that signal myocyte Ca2+ channels due to constitutive Hif1α-mediated expression of specific electron transport subunit isoforms. These findings reveal the acute O2-sensing mechanisms of vascular cells and may guide new developments in vascular pharmacology.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Olalla Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ignacio Arias-Mayenco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José M Cabeza
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Juan L López-Ogayar
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
11
|
Cao Y, Zhang Q, Liu Y, Yan T, Ding L, Yang Y, Meng Y, Shan W. The RXLR effector PpE18 of Phytophthora parasitica is a virulence factor and suppresses peroxisome membrane-associated ascorbate peroxidase NbAPX3-1-mediated plant immunity. THE NEW PHYTOLOGIST 2024; 243:1472-1489. [PMID: 38877698 DOI: 10.1111/nph.19902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Phytophthora parasitica causes diseases on a broad range of host plants. It secretes numerous effectors to suppress plant immunity. However, only a few virulence effectors in P. parasitica have been characterized. Here, we highlight that PpE18, a conserved RXLR effector in P. parasitica, was a virulence factor and suppresses Nicotiana benthamiana immunity. Utilizing luciferase complementation, co-immunoprecipitation, and GST pull-down assays, we determined that PpE18 targeted NbAPX3-1, a peroxisome membrane-associated ascorbate peroxidase with reactive oxygen species (ROS)-scavenging activity and positively regulates plant immunity in N. benthamiana. We show that the ROS-scavenging activity of NbAPX3-1 was critical for its immune function and was hindered by the binding of PpE18. The interaction between PpE18 and NbAPX3-1 resulted in an elevation of ROS levels in the peroxisome. Moreover, we discovered that the ankyrin repeat-containing protein NbANKr2 acted as a positive immune regulator, interacting with both NbAPX3-1 and PpE18. NbANKr2 was required for NbAPX3-1-mediated disease resistance. PpE18 competitively interfered with the interaction between NbAPX3-1 and NbANKr2, thereby weakening plant resistance. Our results reveal an effective counter-defense mechanism by which P. parasitica employed effector PpE18 to suppress host cellular defense, by suppressing biochemical activity and disturbing immune function of NbAPX3-1 during infection.
Collapse
Affiliation(s)
- Yimeng Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tiantian Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liwen Ding
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuling Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weixing Shan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
12
|
Liu T, Zhang M, Hanson S, Juarez R, Wilson S, Schroeder H, Li Q, Zhu L, Zhang G, Blood AB. H 2S Increases Blood Pressure via Activation of L-Type Calcium Channels with Mediation by HS • Generated from Reactions with Oxyhemoglobin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305866. [PMID: 38685626 PMCID: PMC11234399 DOI: 10.1002/advs.202305866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/04/2024] [Indexed: 05/02/2024]
Abstract
Although the gasotransmitter hydrogen sulfide (H2S) is well known for its vasodilatory effects, H2S also exhibits vasoconstricting properties. Herein, it is demonstrated that administration of H2S as intravenous sodium sulfide (Na2S) increased blood pressure in sheep and rats, and this effect persisted after H2S has disappeared from the blood. Inhibition of the L-type calcium channel (LTCC) diminished the hypertensive effects. Incubation of Na2S with whole blood, red blood cells, methemoglobin, or oxyhemoglobin produced a hypertensive product of H2S, which is not hydrogen thioperoxide, metHb-SH- complexes, per-/poly- sulfides, or thiolsulfate, but rather a labile intermediate. One-electron oxidation of H2S by oxyhemoglobin generated its redox cousin, sulfhydryl radical (HS•). Consistent with the role of HS• as the hypertensive intermediate, scavenging HS• inhibited Na2S-induced vasoconstriction and activation of LTCCs. In conclusion, H2S causes vasoconstriction that is dependent on the activation of LTCCs and generation of HS• by oxyhemoglobin.
Collapse
Affiliation(s)
- Taiming Liu
- Division of NeonatologyDepartment of PediatricsLoma Linda University School of MedicineLoma LindaCA92354USA
| | - Meijuan Zhang
- Division of NeonatologyDepartment of PediatricsLoma Linda University School of MedicineLoma LindaCA92354USA
| | - Shawn Hanson
- Lawrence D. Longo Center for Perinatal BiologyLoma Linda University School of MedicineLoma LindaCA92354USA
| | - Rucha Juarez
- Lawrence D. Longo Center for Perinatal BiologyLoma Linda University School of MedicineLoma LindaCA92354USA
| | - Sean Wilson
- Lawrence D. Longo Center for Perinatal BiologyLoma Linda University School of MedicineLoma LindaCA92354USA
| | - Hobe Schroeder
- Lawrence D. Longo Center for Perinatal BiologyLoma Linda University School of MedicineLoma LindaCA92354USA
| | - Qian Li
- Department of MedicineGregory Fleming James Cystic Fibrosis Research CenterUniversity of Alabama at BirminghamBirminghamAL35294UK
| | - Lingchao Zhu
- Department of ChemistryUniversity of CaliforniaRiversideCA92521USA
| | - Guangyu Zhang
- Mass spectrometry core facilityLoma Linda UniversityLoma LindaCA92354USA
| | - Arlin B. Blood
- Division of NeonatologyDepartment of PediatricsLoma Linda University School of MedicineLoma LindaCA92354USA
- Lawrence D. Longo Center for Perinatal BiologyLoma Linda University School of MedicineLoma LindaCA92354USA
| |
Collapse
|
13
|
Deep SN, Seelig S, Paul S, Poddar R. Homocysteine-induced sustained GluN2A NMDA receptor stimulation leads to mitochondrial ROS generation and neurotoxicity. J Biol Chem 2024; 300:107253. [PMID: 38569938 PMCID: PMC11081806 DOI: 10.1016/j.jbc.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Homocysteine, a sulfur-containing amino acid derived from methionine metabolism, is a known agonist of N-methyl-D-aspartate receptor (NMDAR) and is involved in neurotoxicity. Our previous findings showed that neuronal exposure to elevated homocysteine levels leads to sustained low-level increase in intracellular Ca2+, which is dependent on GluN2A subunit-containing NMDAR (GluN2A-NMDAR) stimulation. These studies further showed a role of ERK MAPK in homocysteine-GluN2A-NMDAR-mediated neuronal death. However, the intracellular mechanisms associated with such sustained GluN2A-NMDAR stimulation and subsequent Ca2+ influx have remained unexplored. Using live-cell imaging with Fluo3-AM and biochemical approaches, we show that homocysteine-GluN2A NMDAR-induced initial Ca2+ influx triggers sequential phosphorylation and subsequent activation of the proline rich tyrosine kinase 2 (Pyk2) and Src family kinases, which in turn phosphorylates GluN2A-Tyr1325 residue of GluN2A-NMDARs to maintain channel activity. The continuity of this cycle of events leads to sustained Ca2+ influx through GluN2A-NMDAR. Our findings also show that lack of activation of the regulatory tyrosine phosphatase STEP, which can limit Pyk2 and Src family kinase activity further contributes to the maintenance of this cycle. Additional studies using live-cell imaging of neurons expressing a redox-sensitive GFP targeted to the mitochondrial matrix show that treatment with homocysteine leads to a progressive increase in mitochondrial reactive oxygen species generation, which is dependent on GluN2A-NMDAR-mediated sustained ERK MAPK activation. This later finding demonstrates a novel role of GluN2A-NMDAR in homocysteine-induced mitochondrial ROS generation and highlights the role of ERK MAPK as the intermediary signaling pathway between GluN2A-NMDAR stimulation and mitochondrial reactive oxygen species generation.
Collapse
Affiliation(s)
- Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Sarah Seelig
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
14
|
Guo R, Spyropoulos F, Michel T. FRBM Mini REVIEW: Chemogenetic approaches to probe redox dysregulation in heart failure. Free Radic Biol Med 2024; 217:173-178. [PMID: 38565399 PMCID: PMC11221410 DOI: 10.1016/j.freeradbiomed.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Chemogenetics refers to experimental methods that use novel recombinant proteins that can be dynamically and uniquely regulated by specific biochemicals. Chemogenetic approaches allow the precise manipulation of cellular signaling to delineate the molecular pathways involved in both physiological and pathological disease states. Approaches utilizing yeast d-amino acid oxidase (DAAO) enable manipulation of intracellular redox metabolism through generation of hydrogen peroxide in the presence of d-amino acids and have led to the development of new and informative animal models to characterize the impact of oxidative stress in heart failure and neurodegeneration. These chemogenetic models, in which DAAO expression is regulated by different tissue-specific promoters, have led to a range of cardiac phenotypes. This review discusses chemogenetic approaches to manipulate oxidative stress in models of heart failure. These approaches provide new insights into the relationships between redox metabolism and normal and pathologic states in the heart, as well as in other diseases characterized by oxidative stress.
Collapse
Affiliation(s)
- Ruby Guo
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 02115, USA
| | - Fotios Spyropoulos
- Newborn Medicine Division, Department of Pediatrics, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, USA
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 02115, USA.
| |
Collapse
|
15
|
Qi Y, Cai G, Yang W. Protocol for in situ visualization of mitochondrial ROS and apoptosis in spatially confined cells and sample preparation for biochemical analysis. STAR Protoc 2024; 5:102802. [PMID: 38159272 PMCID: PMC10787287 DOI: 10.1016/j.xpro.2023.102802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Locomotion through spatially confining spaces is an important in vivo migration mode. Here, we present a protocol for in situ visualization of mitochondrial reactive oxygen species and apoptosis in cancer cells during confined migration. We then detail sample preparation of confined cells for transcriptome and immunoblotting analysis by using transwell chambers. This approach allows in situ evaluation of a variety of cellular functions during confined migration and preparation of the samples of confined cells for further biochemical analysis. For complete details on the use and execution of this protocol, please refer to Cai et al.1.
Collapse
Affiliation(s)
- Yijun Qi
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guoqing Cai
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiwei Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
16
|
Chen P, Sharma A, Weiher H, Schmidt-Wolf IGH. Biological mechanisms and clinical significance of endoplasmic reticulum oxidoreductase 1 alpha (ERO1α) in human cancer. J Exp Clin Cancer Res 2024; 43:71. [PMID: 38454454 PMCID: PMC10921667 DOI: 10.1186/s13046-024-02990-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
A firm link between endoplasmic reticulum (ER) stress and tumors has been wildly reported. Endoplasmic reticulum oxidoreductase 1 alpha (ERO1α), an ER-resident thiol oxidoreductase, is confirmed to be highly upregulated in various cancer types and associated with a significantly worse prognosis. Of importance, under ER stress, the functional interplay of ERO1α/PDI axis plays a pivotal role to orchestrate proper protein folding and other key processes. Multiple lines of evidence propose ERO1α as an attractive potential target for cancer treatment. However, the unavailability of specific inhibitor for ERO1α, its molecular inter-relatedness with closely related paralog ERO1β and the tightly regulated processes with other members of flavoenzyme family of enzymes, raises several concerns about its clinical translation. Herein, we have provided a detailed description of ERO1α in human cancers and its vulnerability towards the aforementioned concerns. Besides, we have discussed a few key considerations that may improve our understanding about ERO1α in tumors.
Collapse
Affiliation(s)
- Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, 53127, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, 53359, Rheinbach, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany.
| |
Collapse
|
17
|
Mise K, Long J, Galvan DL, Ye Z, Fan G, Sharma R, Serysheva II, Moore TI, Jeter CR, Anna Zal M, Araki M, Wada J, Schumacker PT, Chang BH, Danesh FR. NDUFS4 regulates cristae remodeling in diabetic kidney disease. Nat Commun 2024; 15:1965. [PMID: 38438382 PMCID: PMC10912198 DOI: 10.1038/s41467-024-46366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generate diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that conditional male mice with genetic overexpression of Ndufs4 exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping protein STOML2 in linking NDUFS4 with improved cristae morphology. Together, we provide the evidence on the central role of NDUFS4 as a regulator of cristae remodeling and mitochondrial function in kidney podocytes. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.
Collapse
Affiliation(s)
- Koki Mise
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan
| | - Jianyin Long
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel L Galvan
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zengchun Ye
- Division of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rajesh Sharma
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Travis I Moore
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Anna Zal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan
| | - Paul T Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Benny H Chang
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad R Danesh
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Zhang J, Li Q, Liao P, Xiao R, Zhu L, Hu Q. Calcium sensing receptor: A promising therapeutic target in pulmonary hypertension. Life Sci 2024; 340:122472. [PMID: 38290572 DOI: 10.1016/j.lfs.2024.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Pulmonary hypertension (PH) is characterized by elevation of pulmonary arterial pressure and pulmonary vascular resistance. The increased pulmonary arterial pressure and pulmonary vascular resistance due to sustained pulmonary vasoconstriction and pulmonary vascular remodeling can lead to right heart failure and eventual death. A rise in intracellular Ca2+ concentration ([Ca2+]i) and enhanced pulmonary arterial smooth muscle cells (PASMCs) proliferation contribute to pulmonary vasoconstriction and pulmonary vascular remodeling. Recent studies demonstrated that extracellular calcium sensing receptor (CaSR) as a G-protein coupled receptor participates in [Ca2+]i increase induced by hypoxia in the experimental animals of PH and in PH patients. Pharmacological blockade or gene knockout of CaSR significantly attenuates the development of PH. This review will aim to discuss and update the pathogenicity of CaSR attributed to onset and progression in PH.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinli Li
- Department of Clinical Laboratory Medicine, People's Hospital of Dongxihu District Wuhan City and Union Dongxihu Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Liao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiao
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zhu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghua Hu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Calvo-Rodriguez M, Kharitonova EK, Snyder AC, Hou SS, Sanchez-Mico MV, Das S, Fan Z, Shirani H, Nilsson KPR, Serrano-Pozo A, Bacskai BJ. Real-time imaging of mitochondrial redox reveals increased mitochondrial oxidative stress associated with amyloid β aggregates in vivo in a mouse model of Alzheimer's disease. Mol Neurodegener 2024; 19:6. [PMID: 38238819 PMCID: PMC10797952 DOI: 10.1186/s13024-024-00702-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Reactive oxidative stress is a critical player in the amyloid beta (Aβ) toxicity that contributes to neurodegeneration in Alzheimer's disease (AD). Damaged mitochondria are one of the main sources of reactive oxygen species and accumulate in Aβ plaque-associated dystrophic neurites in the AD brain. Although Aβ causes neuronal mitochondria reactive oxidative stress in vitro, this has never been directly observed in vivo in the living mouse brain. Here, we tested for the first time whether Aβ plaques and soluble Aβ oligomers induce mitochondrial oxidative stress in surrounding neurons in vivo, and whether this neurotoxic effect can be abrogated using mitochondrial-targeted antioxidants. METHODS We expressed a genetically encoded fluorescent ratiometric mitochondria-targeted reporter of oxidative stress in mouse models of the disease and performed intravital multiphoton microscopy of neuronal mitochondria and Aβ plaques. RESULTS For the first time, we demonstrated by direct observation in the living mouse brain exacerbated mitochondrial oxidative stress in neurons after both Aβ plaque deposition and direct application of soluble oligomeric Aβ onto the brain, and determined the most likely pathological sequence of events leading to oxidative stress in vivo. Oxidative stress could be inhibited by both blocking calcium influx into mitochondria and treating with the mitochondria-targeted antioxidant SS31. Remarkably, the latter ameliorated plaque-associated dystrophic neurites without impacting Aβ plaque burden. CONCLUSIONS Considering these results, combination of mitochondria-targeted compounds with other anti-amyloid beta or anti-tau therapies hold promise as neuroprotective drugs for the prevention and/or treatment of AD.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
- Present address: Foundational Neuroscience Center, AbbVie Inc, Cambridge, MA, USA
| | - Elizabeth K Kharitonova
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Austin C Snyder
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Steven S Hou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Maria Virtudes Sanchez-Mico
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16Th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
20
|
Guhathakurta S, Erdogdu NU, Hoffmann JJ, Grzadzielewska I, Schendzielorz A, Seyfferth J, Mårtensson CU, Corrado M, Karoutas A, Warscheid B, Pfanner N, Becker T, Akhtar A. COX17 acetylation via MOF-KANSL complex promotes mitochondrial integrity and function. Nat Metab 2023; 5:1931-1952. [PMID: 37813994 PMCID: PMC10663164 DOI: 10.1038/s42255-023-00904-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Reversible acetylation of mitochondrial proteins is a regulatory mechanism central to adaptive metabolic responses. Yet, how such functionally relevant protein acetylation is achieved remains unexplored. Here we reveal an unprecedented role of the MYST family lysine acetyltransferase MOF in energy metabolism via mitochondrial protein acetylation. Loss of MOF-KANSL complex members leads to mitochondrial defects including fragmentation, reduced cristae density and impaired mitochondrial electron transport chain complex IV integrity in primary mouse embryonic fibroblasts. We demonstrate COX17, a complex IV assembly factor, as a bona fide acetylation target of MOF. Loss of COX17 or expression of its non-acetylatable mutant phenocopies the mitochondrial defects observed upon MOF depletion. The acetylation-mimetic COX17 rescues these defects and maintains complex IV activity even in the absence of MOF, suggesting an activatory role of mitochondrial electron transport chain protein acetylation. Fibroblasts from patients with MOF syndrome who have intellectual disability also revealed respiratory defects that could be restored by alternative oxidase, acetylation-mimetic COX17 or mitochondrially targeted MOF. Overall, our findings highlight the critical role of MOF-KANSL complex in mitochondrial physiology and provide new insights into MOF syndrome.
Collapse
Affiliation(s)
- Sukanya Guhathakurta
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Niyazi Umut Erdogdu
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliane J Hoffmann
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Iga Grzadzielewska
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Janine Seyfferth
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Christoph U Mårtensson
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Adam Karoutas
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
21
|
Marchetti M, Ronda L, Cozzi M, Bettati S, Bruno S. Genetically Encoded Biosensors for the Fluorescence Detection of O 2 and Reactive O 2 Species. SENSORS (BASEL, SWITZERLAND) 2023; 23:8517. [PMID: 37896609 PMCID: PMC10611200 DOI: 10.3390/s23208517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
The intracellular concentrations of oxygen and reactive oxygen species (ROS) in living cells represent critical information for investigating physiological and pathological conditions. Real-time measurement often relies on genetically encoded proteins that are responsive to fluctuations in either oxygen or ROS concentrations. The direct binding or chemical reactions that occur in their presence either directly alter the fluorescence properties of the binding protein or alter the fluorescence properties of fusion partners, mostly consisting of variants of the green fluorescent protein. Oxygen sensing takes advantage of several mechanisms, including (i) the oxygen-dependent hydroxylation of a domain of the hypoxia-inducible factor-1, which, in turn, promotes its cellular degradation along with fluorescent fusion partners; (ii) the naturally oxygen-dependent maturation of the fluorophore of green fluorescent protein variants; and (iii) direct oxygen binding by proteins, including heme proteins, expressed in fusion with fluorescent partners, resulting in changes in fluorescence due to conformational alterations or fluorescence resonance energy transfer. ROS encompass a group of highly reactive chemicals that can interconvert through various chemical reactions within biological systems, posing challenges for their selective detection through genetically encoded sensors. However, their general reactivity, and particularly that of the relatively stable oxygen peroxide, can be exploited for ROS sensing through different mechanisms, including (i) the ROS-induced formation of disulfide bonds in engineered fluorescent proteins or fusion partners of fluorescent proteins, ultimately leading to fluorescence changes; and (ii) conformational changes of naturally occurring ROS-sensing domains, affecting the fluorescence properties of fusion partners. In this review, we will offer an overview of these genetically encoded biosensors.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Monica Cozzi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| |
Collapse
|
22
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
23
|
Ježek P. Pitfalls of Mitochondrial Redox Signaling Research. Antioxidants (Basel) 2023; 12:1696. [PMID: 37759999 PMCID: PMC10525995 DOI: 10.3390/antiox12091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Redox signaling from mitochondria (mt) to the cytosol and plasma membrane (PM) has been scarcely reported, such as in the case of hypoxic cell adaptation or (2-oxo-) 2-keto-isocaproate (KIC) β-like-oxidation stimulating insulin secretion in pancreatic β-cells. Mutual redox state influence between mitochondrial major compartments, the matrix and the intracristal space, and the cytosol is therefore derived theoretically in this article to predict possible conditions, when mt-to-cytosol and mt-to-PM signals may occur, as well as conditions in which the cytosolic redox signaling is not overwhelmed by the mitochondrial antioxidant capacity. Possible peroxiredoxin 3 participation in mt-to-cytosol redox signaling is discussed, as well as another specific case, whereby mitochondrial superoxide release is diminished, whereas the matrix MnSOD is activated. As a result, the enhanced conversion to H2O2 allows H2O2 diffusion into the cytosol, where it could be a predominant component of the H2O2 release. In both of these ways, mt-to-cytosol and mt-to-PM signals may be realized. Finally, the use of redox-sensitive probes is discussed, which disturb redox equilibria, and hence add a surplus redox-buffering to the compartment, where they are localized. Specifically, when attempts to quantify net H2O2 fluxes are to be made, this should be taken into account.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| |
Collapse
|
24
|
Cai G, Qi Y, Wei P, Gao H, Xu C, Zhao Y, Qu X, Yao F, Yang W. IGFBP1 Sustains Cell Survival during Spatially-Confined Migration and Promotes Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206540. [PMID: 37296072 PMCID: PMC10375137 DOI: 10.1002/advs.202206540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/09/2023] [Indexed: 06/12/2023]
Abstract
Cell migration is a pivotal step in metastatic process, which requires cancer cells to navigate a complex spatially-confined environment, including tracks within blood vessels and in the vasculature of target organs. Here it is shown that during spatially-confined migration, the expression of insulin-like growth factor-binding protein 1 (IGFBP1) is upregulated in tumor cells. Secreted IGFBP1 inhibits AKT1-mediated phosphorylation of mitochondrial superoxide dismutase (SOD2) serine (S) 27 and enhances SOD2 activity. Enhanced SOD2 attenuates mitochondrial reactive oxygen species (ROS) accumulation in confined cells, which supports tumor cell survival in blood vessels of lung tissues, thereby accelerating tumor metastasis in mice. The levels of blood IGFBP1 correlate with metastatic recurrence of lung cancer patients. This finding reveals a unique mechanism by which IGFBP1 sustains cell survival during confined migration by enhancing mitochondrial ROS detoxification, thereby promoting tumor metastasis.
Collapse
Affiliation(s)
- Guoqing Cai
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yijun Qi
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Hong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chenqi Xu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, shanghai, 200031, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
25
|
Sabharwal SS, Dudley VJ, Landwerlin C, Schumacker PT. H 2O 2 transit through the mitochondrial intermembrane space promotes tumor cell growth in vitro and in vivo. J Biol Chem 2023; 299:104624. [PMID: 36935009 PMCID: PMC10127139 DOI: 10.1016/j.jbc.2023.104624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Cancer cells experience increased levels of oxidant stress as a consequence of oncogene activation, nucleotide biosynthesis, and growth factor receptor signaling. Mitochondria contribute to this redox stress by generating reactive oxygen species (ROS) along the electron transport chain, which are released to the matrix and the intermembrane space (IMS). Assessing the contribution of mitochondrial ROS in cancer cells is technically difficult, as electron transport chain inhibitors can increase or decrease ROS generation, while they also block oxidative phosphorylation and ATP synthesis. Mitochondria-targeted antioxidant compounds can scavenge ROS in the matrix compartment but do not act on ROS released to the IMS. We assessed the importance of mitochondrial ROS for tumor cell proliferation, survival, and for tumor xenograft growth by stably expressing a hydrogen peroxide (H2O2) scavenger, peroxiredoxin-5, in the mitochondrial IMS (IMS-Prdx5) in 143B osteosarcoma and HCT116 colorectal cancer cell lines. IMS-Prdx5 attenuates hypoxia-induced ROS signaling as assessed independently in cytosol and IMS, HIF-1α stabilization and activity, and cellular proliferation under normoxic and hypoxic culture conditions. It also suppressed tumor growth in vivo. Stable expression of nondegradable HIF-1α only partially rescued proliferation in IMS-Prdx5-expressing cells, indicating that mitochondrial H2O2 signaling contributes to tumor cell proliferation and survival through HIF-dependent and HIF-independent mechanisms.
Collapse
Affiliation(s)
- Simran S Sabharwal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Stanley Manne Children's Research Institute of the Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - V Joseph Dudley
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Stanley Manne Children's Research Institute of the Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Charlène Landwerlin
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Stanley Manne Children's Research Institute of the Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Paul T Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Stanley Manne Children's Research Institute of the Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
26
|
Transgenic NADH dehydrogenase restores oxygen regulation of breathing in mitochondrial complex I-deficient mice. Nat Commun 2023; 14:1172. [PMID: 36859533 PMCID: PMC9977773 DOI: 10.1038/s41467-023-36894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The hypoxic ventilatory response (HVR) is a life-saving reflex, triggered by the activation of chemoreceptor glomus cells in the carotid body (CB) connected with the brainstem respiratory center. The molecular mechanisms underlying glomus cell acute oxygen (O2) sensing are unclear. Genetic disruption of mitochondrial complex I (MCI) selectively abolishes the HVR and glomus cell responsiveness to hypoxia. However, it is unknown what functions of MCI (metabolic, proton transport, or signaling) are essential for O2 sensing. Here we show that transgenic mitochondrial expression of NDI1, a single-molecule yeast NADH/quinone oxidoreductase that does not directly contribute to proton pumping, fully recovers the HVR and glomus cell sensitivity to hypoxia in MCI-deficient mice. Therefore, maintenance of mitochondrial NADH dehydrogenase activity and the electron transport chain are absolutely necessary for O2-dependent regulation of breathing. NDI1 expression also rescues other systemic defects caused by MCI deficiency. These data explain the role of MCI in acute O2 sensing by arterial chemoreceptors and demonstrate the optimal recovery of complex organismal functions by gene therapy.
Collapse
|
27
|
Moreno-Domínguez A, Colinas O, Smani T, Ureña J, López-Barneo J. Acute oxygen sensing by vascular smooth muscle cells. Front Physiol 2023; 14:1142354. [PMID: 36935756 PMCID: PMC10020353 DOI: 10.3389/fphys.2023.1142354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
An adequate supply of oxygen (O2) is essential for most life forms on earth, making the delivery of appropriate levels of O2 to tissues a fundamental physiological challenge. When O2 levels in the alveoli and/or blood are low, compensatory adaptive reflexes are produced that increase the uptake of O2 and its distribution to tissues within a few seconds. This paper analyzes the most important acute vasomotor responses to lack of O2 (hypoxia): hypoxic pulmonary vasoconstriction (HPV) and hypoxic vasodilation (HVD). HPV affects distal pulmonary (resistance) arteries, with its homeostatic role being to divert blood to well ventilated alveoli to thereby optimize the ventilation/perfusion ratio. HVD is produced in most systemic arteries, in particular in the skeletal muscle, coronary, and cerebral circulations, to increase blood supply to poorly oxygenated tissues. Although vasomotor responses to hypoxia are modulated by endothelial factors and autonomic innervation, it is well established that arterial smooth muscle cells contain an acute O2 sensing system capable of detecting changes in O2 tension and to signal membrane ion channels, which in turn regulate cytosolic Ca2+ levels and myocyte contraction. Here, we summarize current knowledge on the nature of O2 sensing and signaling systems underlying acute vasomotor responses to hypoxia. We also discuss similarities and differences existing in O2 sensors and effectors in the various arterial territories.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Olaia Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Tarik Smani
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Juan Ureña
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- *Correspondence: José López-Barneo,
| |
Collapse
|
28
|
Gui T, Chen Q, Li J, Lu K, Li C, Xu B, Chen Y, Men J, Kullak-Ublick GA, Wang W, Gai Z. Astragaloside IV alleviates 1-deoxysphinganine-induced mitochondrial dysfunction during the progression of chronic kidney disease through p62-Nrf2 antioxidant pathway. Front Pharmacol 2023; 14:1092475. [PMID: 37033627 PMCID: PMC10079923 DOI: 10.3389/fphar.2023.1092475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Chronic kidney disease (CKD) can lead to significant elevation of 1-deoxysphingolipids (1-deoxySL). The increase of 1-deoxySL in turn can result in mitochondrial damage and oxidative stress, which can cause further progression of CKD. Methods: This study assessed the therapeutic effect of Astragaloside IV (AST) against 1-deoxySL-induced cytotoxicity in vitro and in rats with CKD. HK-2 cells were exposed to 1-deoxysphinganine (doxSA) or doxSA + AST. doxSA-induced mitochondrial dysfunction and oxidative stress were evaluated by immunostaining, real-time PCR, oxidative stress sensor, and transmission electron microscopy. The potential effects of AST on kidney damage were evaluated in a rat 5/6 nephrectomy (5/6 Nx) model of CKD. Results: The findings of in vitro experiments showed that doxSA induced mitochondrial damage, oxidative stress, and apoptosis. AST markedly reduced the level of mitochondrial reactive oxygen species, lowered apoptosis, and improved mitochondrial function. In addition, exposure to AST significantly induced the phosphorylation of p62 and the nuclear translocation of Nrf2 as well as its downstream anti-oxidant genes. p62 knock-down fully abolished Nrf2 nuclear translocation in cells after AST treatment. However, p62 knock-down did not affect TBHQ-induced Nrf2 nuclear translocation, indicating that AST can ameliorate doxSA-induced oxidative stress through modulation of p62 phosphorylation and Nrf2 nuclear translocation. Conclusion: The findings indicate that AST can activate Nrf2 antioxidant pathway in a p62 dependent manner. The anti-oxidative stress effect and the further mitochondrial protective effect of AST represent a promising therapeutic strategy for the progression of CKD.
Collapse
Affiliation(s)
- Ting Gui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingfa Chen
- Research Center of Basic Medicine, Jinan Central Hospital, Jinan, China
- Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People’s Hospital, Liaocheng, China
| | - Jiangsong Li
- Department of Urology, Liaocheng People’s Hospital, Liaocheng, China
| | - Ke Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingwen Men
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, CMO and Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
- *Correspondence: Zhibo Gai, ; Weihua Wang, ; Gerd A. Kullak-Ublick,
| | - Weihua Wang
- The Central Laboratory, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Zhibo Gai, ; Weihua Wang, ; Gerd A. Kullak-Ublick,
| | - Zhibo Gai
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Zhibo Gai, ; Weihua Wang, ; Gerd A. Kullak-Ublick,
| |
Collapse
|
29
|
Zhao R, Xu Y, Wang X, Zhou X, Liu Y, Jiang S, Zhang L, Yu Z. Withaferin A Enhances Mitochondrial Biogenesis and BNIP3-Mediated Mitophagy to Promote Rapid Adaptation to Extreme Hypoxia. Cells 2022; 12:cells12010085. [PMID: 36611879 PMCID: PMC9818179 DOI: 10.3390/cells12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Rapid adaptation to extreme hypoxia is a challenging problem, and there is no effective scheme to achieve rapid adaptation to extreme hypoxia. In this study, we found that withaferin A (WA) can significantly reduce myocardial damage, maintain cardiac function, and improve survival in rats in extremely hypoxic environments. Mechanistically, WA protects against extreme hypoxia by affecting BCL2-interacting protein 3 (BNIP3)-mediated mitophagy and the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α)-mediated mitochondrial biogenesis pathway among mitochondrial quality control mechanisms. On the one hand, enhanced mitophagy eliminates hypoxia-damaged mitochondria and prevents the induction of apoptosis; on the other hand, enhanced mitochondrial biogenesis can supplement functional mitochondria and maintain mitochondrial respiration to ensure mitochondrial ATP production under acute extreme hypoxia. Our study shows that WA can be used as an effective drug to improve tolerance to extreme hypoxia.
Collapse
Affiliation(s)
- Ruzhou Zhao
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Yixin Xu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaobo Wang
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Xiang Zhou
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Yanqi Liu
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Shuai Jiang
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Lin Zhang
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Zhibin Yu
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
- Correspondence:
| |
Collapse
|
30
|
Serikbaeva A, Li Y, Ganesh B, Zelkha R, Kazlauskas A. Hyperglycemia Promotes Mitophagy and Thereby Mitigates Hyperglycemia-Induced Damage. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1779-1794. [PMID: 36063899 PMCID: PMC9765315 DOI: 10.1016/j.ajpath.2022.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022]
Abstract
The observation that diabetic retinopathy (DR) typically takes decades to develop suggests the existence of an endogenous system that protects from diabetes-induced damage. To investigate the existance of such a system, primary human retinal endothelial cells were cultured in either normal glucose (5 mmol/L) or high glucose (30 mmol/L; HG). Prolonged exposure to HG was beneficial instead of detrimental. Although tumor necrosis factor-α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 was unaffected after 1 day of HG, it waned as the exposure to HG was extended. Similarly, oxidative stress-induced death decreased with prolonged exposure to HG. Furthermore, mitochondrial functionality, which was compromised by 1 day of HG, was improved by 10 days of HG, and this change required increased clearance of damaged mitochondria (mitophagy). Finally, antagonizing mitochondrial dynamics compromised the cells' ability to endure HG: susceptibility to cell death increased, and basal barrier function and responsiveness to vascular endothelial growth factor deteriorated. These observations indicate the existence of an endogenous system that protects human retinal endothelial cells from the deleterious effects of HG. Hyperglycemia-induced mitochondrial adaptation is a plausible contributor to the mechanism responsible for the delayed onset of DR; loss of hyperglycemia-induced mitochondrial adaptation may set the stage for the development of DR.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Yueru Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Balaji Ganesh
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois
| | - Ruth Zelkha
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
31
|
Kumari M, Bajad SM, Kshirsagar SR, Chinde S, Balaji AS, Jerald Mahesh Kumar M, Saxena S, Kumari SI. Sub-chronic oral toxicity evaluation of herbo-metallic formulation Arshakuthar rasa in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115306. [PMID: 35443217 DOI: 10.1016/j.jep.2022.115306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/15/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arshakuthar rasa (AR) is a mercury based Ayurvedic herbo-metallic formulation. The concerns are being raised about the probable toxicity of mercury after prolonged use of AR. Hence, there is need for a long-term repeated in vivo toxicity study. The study will provide data with scientific evidence to enable safe use of the drug. Moreover, lack of toxicity study with AR incited us to perform sub-chronic study on rats. AIM OF THE STUDY The aim of the study is to generate data by performing a sub-chronic study to assess the toxicity of AR after its prolonged oral intake. MATERIALS AND METHODS The female and male rats were administered with 30 (low), 300 (medium) and 600 mg/kg BW/day (high) dose of AR for 90 consecutive days. The body weight, feed consumption and water intake were monitored weekly. On 91st day, blood was collected from retro-orbital plexus of rats and then sacrificed to harvest the vital organs for biochemical, haematological, histopathological, genotoxicity along with the expression study of oxidative stress related genes and the biodistribution of elements in the blood. RESULTS Significant alterations in serum biochemical parameters were observed at the medium and high doses. The histopathological changes were in corroboration with biochemical changes at high dose in liver. There was no detectable level of mercury in blood, less to moderate biochemical changes, no haematological changes, moderate regulation of stress-related genes, and low genotoxicity. These results indicated that AR can be considered as moderately toxic above 600 mg/kg BW and mildly toxic at 300 mg/kg BW. CONCLUSIONS It may be interpreted that AR may not induce grave toxic response in human after long-duration of oral administration at therapeutic doses.
Collapse
Affiliation(s)
- Monika Kumari
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, Telangana, India
| | - Shatrughna Madhukar Bajad
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shripad Rajendra Kshirsagar
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srinivas Chinde
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, Telangana, India
| | - Andugulapati Sai Balaji
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, Telangana, India
| | - M Jerald Mahesh Kumar
- Animal House Division, CSIR-Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Saileshnath Saxena
- Department of Rasa Sastra & Bhaishajya Kalpana, Dr. B.R.K.R. Govt. Ayurvedic College, Erragadda, Hyderabad, 500 038, Telangana, India
| | - Srinivas Indu Kumari
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
32
|
Pak O, Nolte A, Knoepp F, Giordano L, Pecina P, Hüttemann M, Grossman LI, Weissmann N, Sommer N. Mitochondrial oxygen sensing of acute hypoxia in specialized cells - Is there a unifying mechanism? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148911. [PMID: 35988811 DOI: 10.1016/j.bbabio.2022.148911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Acclimation to acute hypoxia through cardiorespiratory responses is mediated by specialized cells in the carotid body and pulmonary vasculature to optimize systemic arterial oxygenation and thus oxygen supply to the tissues. Acute oxygen sensing by these cells triggers hyperventilation and hypoxic pulmonary vasoconstriction which limits pulmonary blood flow through areas of low alveolar oxygen content. Oxygen sensing of acute hypoxia by specialized cells thus is a fundamental pre-requisite for aerobic life and maintains systemic oxygen supply. However, the primary oxygen sensing mechanism and the question of a common mechanism in different specialized oxygen sensing cells remains unresolved. Recent studies unraveled basic oxygen sensing mechanisms involving the mitochondrial cytochrome c oxidase subunit 4 isoform 2 that is essential for the hypoxia-induced release of mitochondrial reactive oxygen species and subsequent acute hypoxic responses in both, the carotid body and pulmonary vasculature. This review compares basic mitochondrial oxygen sensing mechanisms in the pulmonary vasculature and the carotid body.
Collapse
Affiliation(s)
- Oleg Pak
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Anika Nolte
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Fenja Knoepp
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Luca Giordano
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology CAS, Prague, Czech Republic
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Norbert Weissmann
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Natascha Sommer
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
33
|
The mitochondrial calcium uniporter of pulmonary type 2 cells determines severity of acute lung injury. Nat Commun 2022; 13:5837. [PMID: 36192486 PMCID: PMC9529882 DOI: 10.1038/s41467-022-33543-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Acute Lung Injury (ALI) due to inhaled pathogens causes high mortality. Underlying mechanisms are inadequately understood. Here, by optical imaging of live mouse lungs we show that a key mechanism is the viability of cytosolic Ca2+ buffering by the mitochondrial Ca2+ uniporter (MCU) in the lung’s surfactant-secreting, alveolar type 2 cells (AT2). The buffering increased mitochondrial Ca2+ and induced surfactant secretion in wild-type mice, but not in mice with AT2-specific MCU knockout. In the knockout mice, ALI due to intranasal LPS instillation caused severe pulmonary edema and mortality, which were mitigated by surfactant replenishment prior to LPS instillation, indicating surfactant’s protective effect against alveolar edema. In wild-type mice, intranasal LPS, or Pseudomonas aeruginosa decreased AT2 MCU. Loss of MCU abrogated buffering. The resulting mortality was reduced by spontaneous recovery of MCU expression, or by MCU replenishment. Enhancement of AT2 mitochondrial buffering, hence endogenous surfactant secretion, through MCU replenishment might be a therapy against ALI. Acute lung injury caused by inhalation of pathogens leads to mortality, but the mechanisms are unclear. Here, the authors show in mice that that loss of the mitochondrial calcium uniporter (MCU) of alveolar type 2 cells (AT2) impaired mitochondrial Ca2+ buffering and surfactant secretion, and increased mortality, in response to LPS instillation, suggesting the MCU as a potential therapeutic target in ALI.
Collapse
|
34
|
Oxygen regulation of breathing is abolished in mitochondrial complex III-deficient arterial chemoreceptors. Proc Natl Acad Sci U S A 2022; 119:e2202178119. [PMID: 36122208 PMCID: PMC9522341 DOI: 10.1073/pnas.2202178119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Oxygen sensing by chemoreceptor glomus cells in the carotid body plays an essential adaptive function in health and disease; however, the underlying mechanisms are not fully understood. Glomus cells survive genetic disruption of mitochondrial complex III, although this results in a functional disconnection between the distal and proximal components of the mitochondrial electron transport chain (ETC). These cells exhibit selective abolition of mitochondrial and cellular responsiveness to hypoxia, as well as altered systemic hyperventilation and acclimatization to hypoxia, indicating that acute oxygen-sensing and -signaling during hypoxia result from the integrated action of mitochondrial ETC components. The mitochondrial ETC emerges as a complex oxygen-sensing and -signaling system of potential pathophysiological relevance in maladaptive responses to hypoxia. Acute oxygen (O2) sensing is essential for adaptation of organisms to hypoxic environments or medical conditions with restricted exchange of gases in the lung. The main acute O2-sensing organ is the carotid body (CB), which contains neurosecretory chemoreceptor (glomus) cells innervated by sensory fibers whose activation by hypoxia elicits hyperventilation and increased cardiac output. Glomus cells have mitochondria with specialized metabolic and electron transport chain (ETC) properties. Reduced mitochondrial complex (MC) IV activity by hypoxia leads to production of signaling molecules (NADH and reactive O2 species) in MCI and MCIII that modulate membrane ion channel activity. We studied mice with conditional genetic ablation of MCIII that disrupts the ETC in the CB and other catecholaminergic tissues. Glomus cells survived MCIII dysfunction but showed selective abolition of responsiveness to hypoxia (increased [Ca2+] and transmitter release) with normal responses to other stimuli. Mitochondrial hypoxic NADH and reactive O2 species signals were also suppressed. MCIII-deficient mice exhibited strong inhibition of the hypoxic ventilatory response and altered acclimatization to sustained hypoxia. These data indicate that a functional ETC, with coupling between MCI and MCIV, is required for acute O2 sensing. O2 regulation of breathing results from the integrated action of mitochondrial ETC complexes in arterial chemoreceptors.
Collapse
|
35
|
Li W, Qu X, Kang X, Zhang H, Zhang X, Hu H, Yao L, Zhang L, Zheng J, Zheng Y, Zhang J, Xu Y. Silibinin eliminates mitochondrial ROS and restores autophagy through IL6ST/JAK2/STAT3 signaling pathway to protect cardiomyocytes from doxorubicin-induced injury. Eur J Pharmacol 2022; 929:175153. [PMID: 35839932 DOI: 10.1016/j.ejphar.2022.175153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Growing evidence indicates that silibinin (SLB), a main component extracted from Chinese herb Silybum marianum, can effectively antagonize doxorubicin (DOX) induced myocardial injury (DIMI), but the specific molecular mechanism is still unelucidated. Herein, DOX induced human AC16 cardiomyocyte injury model and Network Pharmacology are used to predict and verify the potential mechanism. The analysis results of the core PPI network of SLB against DIMI show that JAK/STAT signaling pathway and autophagy are significantly enriched. Molecular docking results indicate that SLB has stronger binding ability to signaling key proteins IL6ST, JAK2 and STAT3 (affinity ≤ -7.0 kcal/mol). The detection results of pathway activation and autophagy level demonstrate that SLB significantly alleviates DOX induced IL6ST/JAK2/STAT3 signaling pathway inhibition and autophagy inhibition, reduces the death rate of cardiomyocytes. This protective effect of SLB is eliminated when key pathway proteins (IL6ST, JAK2, STAT3) are knocked down or autophagy is inhibited (3-MA or Beclin1 knockdown). These results suggest that the regulation of IL6ST/JAK2/STAT3 signaling pathway and autophagy may be important mechanism for SLB's protective effect on DOX injured cardiomyocytes. Further experimental results prove that knockdown of IL6ST, JAK2 and STAT3 eliminate the mitochondrial ROS scavenging effect and autophagy promoting effect of SLB. In sum, SLB can decrease the mitochondrial ROS and restore autophagy to antagonize DOX-induced cardiomyocyte injury by activating IL6ST/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Wenbiao Li
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinni Qu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiangping Kang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiyin Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xueli Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiyan Hu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lingai Yao
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lina Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zheng
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianghong Zhang
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China.
| | - Yanwu Xu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
36
|
Gao L, Ortega-Sáenz P, Moreno-Domínguez A, López-Barneo J. Mitochondrial Redox Signaling in O 2-Sensing Chemoreceptor Cells. Antioxid Redox Signal 2022; 37:274-289. [PMID: 35044243 DOI: 10.1089/ars.2021.0255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Acute responses to hypoxia are essential for the survival of mammals. The carotid body (CB), the main arterial chemoreceptor, contains glomus cells with oxygen (O2)-sensitive K+ channels, which are inhibited during hypoxia to trigger adaptive cardiorespiratory reflexes. Recent Advances: In this review, recent advances in molecular mechanisms of acute O2 sensing in CB glomus cells are discussed, with a special focus on the signaling role of mitochondria through regulating cellular redox status. These advances have been achieved thanks to the use of genetically engineered redox-sensitive green fluorescent protein (roGFP) probes, which allowed us to monitor rapid changes in ROS production in real time in different subcellular compartments during hypoxia. This methodology was used in combination with conditional knockout mice models, pharmacological approaches, and transcriptomic studies. We have proposed a mitochondria-to-membrane signaling model of acute O2 sensing in which H2O2 released in the mitochondrial intermembrane space serves as a signaling molecule to inhibit K+ channels on the plasma membrane. Critical Issues: Changes in mitochondrial reactive oxygen species (ROS) production during acute hypoxia are highly compartmentalized in the submitochondrial regions. The use of redox-sensitive probes targeted to specific compartments is essential to fully understand the role of mitochondrial ROS in acute O2 sensing. Future Directions: Further studies are needed to specify the ROS and to characterize the target(s) of ROS in chemoreceptor cells during acute hypoxia. These data may also contribute to a more complete understanding of the implication of ROS in acute responses to hypoxia in O2-sensing cells in other organs. Antioxid. Redox Signal. 37, 274-289.
Collapse
Affiliation(s)
- Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
37
|
Hu XQ, Song R, Dasgupta C, Romero M, Juarez R, Hanson J, Blood AB, Wilson SM, Zhang L. MicroRNA-210-mediated mitochondrial reactive oxygen species confer hypoxia-induced suppression of spontaneous transient outward currents in ovine uterine arteries. Br J Pharmacol 2022; 179:4640-4654. [PMID: 35776536 PMCID: PMC9474621 DOI: 10.1111/bph.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/26/2022] [Accepted: 06/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Purpose Hypoxia during pregnancy is associated with increased uterine vascular resistance and elevated blood pressure both in women and female sheep. A previous study demonstrated a causal role of microRNA‐210 (miR‐210) in gestational hypoxia‐induced suppression of Ca2+ sparks/spontaneous transient outward currents (STOCs) in ovine uterine arteries, but the underlying mechanisms remain undetermined. We tested the hypothesis that miR‐210 perturbs mitochondrial metabolism and increases mitochondrial reactive oxygen species (mtROS) that confer hypoxia‐induced suppression of STOCs in uterine arteries. Experimental Approach Resistance‐sized uterine arteries were isolated from near‐term pregnant sheep and were treated ex vivo in normoxia and hypoxia (10.5% O2) for 48 h. Key Results Hypoxia increased mtROS and suppressed mitochondrial respiration in uterine arteries, which were also produced by miR‐210 mimic to normoxic arteries and blocked by antagomir miR‐210‐LNA in hypoxic arteries. Hypoxia or miR‐210 mimic inhibited Ca2+ sparks/STOCs and increased uterine arterial myogenic tone, which were inhibited by the mitochondria‐targeted antioxidant MitoQ. Hypoxia and miR‐210 down‐regulated iron–sulfur cluster scaffold protein (ISCU) in uterine arteries and knockdown of ISCU via siRNAs suppressed mitochondrial respiration, increased mtROS, and inhibited STOCs. In addition, blockade of mitochondrial electron transport chain with antimycin and rotenone inhibited large‐conductance Ca2+‐activated K+ channels, decreased STOCs and increased uterine arterial myogenic tone. Conclusion and Implications This study demonstrates a novel mechanistic role for the miR‐210‐ISCU‐mtROS axis in inhibiting Ca2+ sparks/STOCs in the maladaptation of uterine arteries and provides new insights into the understanding of mitochondrial perturbations in the pathogenesis of pregnancy complications resulted from hypoxia.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Rui Song
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Monica Romero
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Rucha Juarez
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Jenna Hanson
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
38
|
Impact of Zinc on Oxidative Signaling Pathways in the Development of Pulmonary Vasoconstriction Induced by Hypobaric Hypoxia. Int J Mol Sci 2022; 23:ijms23136974. [PMID: 35805984 PMCID: PMC9266543 DOI: 10.3390/ijms23136974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Hypobaric hypoxia is a condition that occurs at high altitudes (>2500 m) where the partial pressure of gases, particularly oxygen (PO2), decreases. This condition triggers several physiological and molecular responses. One of the principal responses is pulmonary vascular contraction, which seeks to optimize gas exchange under this condition, known as hypoxic pulmonary vasoconstriction (HPV); however, when this physiological response is exacerbated, it contributes to the development of high-altitude pulmonary hypertension (HAPH). Increased levels of zinc (Zn2+) and oxidative stress (known as the “ROS hypothesis”) have been demonstrated in the vasoconstriction process. Therefore, the aim of this review is to determine the relationship between molecular pathways associated with altered Zn2+ levels and oxidative stress in HPV in hypobaric hypoxic conditions. The results indicate an increased level of Zn2+, which is related to increasing mitochondrial ROS (mtROS), alterations in nitric oxide (NO), metallothionein (MT), zinc-regulated, iron-regulated transporter-like protein (ZIP), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-induced protein kinase C epsilon (PKCε) activation in the development of HPV. In conclusion, there is an association between elevated Zn2+ levels and oxidative stress in HPV under different models of hypoxia, which contribute to understanding the molecular mechanism involved in HPV to prevent the development of HAPH.
Collapse
|
39
|
ROS and cGMP signaling modulate persistent escape from hypoxia in Caenorhabditis elegans. PLoS Biol 2022; 20:e3001684. [PMID: 35727855 PMCID: PMC9249223 DOI: 10.1371/journal.pbio.3001684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/01/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
The ability to detect and respond to acute oxygen (O2) shortages is indispensable to aerobic life. The molecular mechanisms and circuits underlying this capacity are poorly understood. Here, we characterize the behavioral responses of feeding Caenorhabditis elegans to approximately 1% O2. Acute hypoxia triggers a bout of turning maneuvers followed by a persistent switch to rapid forward movement as animals seek to avoid and escape hypoxia. While the behavioral responses to 1% O2 closely resemble those evoked by 21% O2, they have distinct molecular and circuit underpinnings. Disrupting phosphodiesterases (PDEs), specific G proteins, or BBSome function inhibits escape from 1% O2 due to increased cGMP signaling. A primary source of cGMP is GCY-28, the ortholog of the atrial natriuretic peptide (ANP) receptor. cGMP activates the protein kinase G EGL-4 and enhances neuroendocrine secretion to inhibit acute responses to 1% O2. Triggering a rise in cGMP optogenetically in multiple neurons, including AIA interneurons, rapidly and reversibly inhibits escape from 1% O2. Ca2+ imaging reveals that a 7% to 1% O2 stimulus evokes a Ca2+ decrease in several neurons. Defects in mitochondrial complex I (MCI) and mitochondrial complex I (MCIII), which lead to persistently high reactive oxygen species (ROS), abrogate acute hypoxia responses. In particular, repressing the expression of isp-1, which encodes the iron sulfur protein of MCIII, inhibits escape from 1% O2 without affecting responses to 21% O2. Both genetic and pharmacological up-regulation of mitochondrial ROS increase cGMP levels, which contribute to the reduced hypoxia responses. Our results implicate ROS and precise regulation of intracellular cGMP in the modulation of acute responses to hypoxia by C. elegans. The ability to detect and respond to acute oxygen shortages is indispensable to aerobic life, but the molecular mechanisms underlying this capacity are poorly understood. This study reveals that high levels of cGMP and reactive oxygen species (ROS) prevent the nematode Caenorhabditis elegans from escaping hypoxia.
Collapse
|
40
|
Heat shock protein 60 couples an oxidative stress-responsive p38/MK2 signaling and NF-κB survival machinery in cancer cells. Redox Biol 2022; 51:102293. [PMID: 35316673 PMCID: PMC8943299 DOI: 10.1016/j.redox.2022.102293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria communicate with other cellular compartments via the secretion of protein factors. Here, we report an unexpected messenger role for heat shock protein 60 (HSP60) as a mitochondrial-releasing protein factor that couples stress-sensing signaling and cell survival machineries. We show that mild oxidative stress predominantly activates the p38/MK2 complex, which phosphorylates mitochondrial fission factor 1 (MFF1) at the S155 site. Such phosphorylated MFF1 leads to the oligomerization of voltage anion-selective channel 1, thereby triggering the formation of a mitochondrial membrane pore through which the matrix protein HSP60 passes. The liberated HSP60 associates with and activates the IκB kinase (IKK) complex in the cytosol, which consequently induces the NF-κB-dependent expression of survival genes in nucleus. Indeed, inhibition of the HSP60 release or HSP60-IKK interaction sensitizes the cancer cells to mild oxidative stress and regresses the tumorigenic growth of cancer cells in the mouse xenograft model. Thus, this study reveals a novel mitonuclear survival axis responding to oxidative stress. Mitochondria release the matrix protein HSP60 to the cytosol under mild oxidative stress. Mild oxidative stress activates p38/MK2 complex, which phosphorylates MFF1 at S155 site. MFF1 phosphorylation triggers the VDAC1 oligomerizationto form a mitochondrial membrane pore for the HSP60 release. The released HSP60 activates the IKK/NF-κB survival signaling in the in vitro and in vivo models.
Collapse
|
41
|
Jeong YY, Han S, Jia N, Zhang M, Sheshadri P, Tammineni P, Cheung J, Nissenbaum M, Baskar SS, Kwan K, Margolis DJ, Jiang P, Kusnecov AW, Cai Q. Broad activation of the Parkin pathway induces synaptic mitochondrial deficits in early tauopathy. Brain 2022; 145:305-323. [PMID: 35022692 PMCID: PMC8967101 DOI: 10.1093/brain/awab243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/20/2021] [Accepted: 06/17/2021] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial defects are a hallmark of early pathophysiology in Alzheimer's disease, with pathologically phosphorylated tau reported to induce mitochondrial toxicity. Mitophagy constitutes a key pathway in mitochondrial quality control by which damaged mitochondria are targeted for autophagy. However, few details are known regarding the intersection of mitophagy and pathologies in tauopathy. Here, by applying biochemical and cell biological approaches including time-lapse confocal imaging in live tauopathy neurons, combined with gene rescue experiments via stereotactic injections of adeno-associated virus particles into tauopathy mouse brains, electrophysiological recordings and behavioural tests, we demonstrate for the first time that mitochondrial distribution deficits at presynaptic terminals are an early pathological feature in tauopathy brains. Furthermore, Parkin-mediated mitophagy is extensively activated in tauopathy neurons, which accelerates mitochondrial Rho GTPase 1 (Miro1) turnover and consequently halts Miro1-mediated mitochondrial anterograde movement towards synaptic terminals. As a result, mitochondrial supply at tauopathy synapses is disrupted, impairing synaptic function. Strikingly, increasing Miro1 levels restores the synaptic mitochondrial population by enhancing mitochondrial anterograde movement and thus reverses tauopathy-associated synaptic failure. In tauopathy mouse brains, overexpression of Miro1 markedly elevates synaptic distribution of mitochondria and protects against synaptic damage and neurodegeneration, thereby counteracting impairments in learning and memory as well as synaptic plasticity. Taken together, our study reveals that activation of the Parkin pathway triggers an unexpected effect-depletion of mitochondria from synaptic terminals, a characteristic feature of early tauopathy. We further provide new mechanistic insights into how parkin activation-enhanced Miro1 degradation and impaired mitochondrial anterograde transport drive tauopathy-linked synaptic pathogenesis and establish a foundation for future investigations into new therapeutic strategies to prevent synaptic deterioration in Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Yu Young Jeong
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sinsuk Han
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nuo Jia
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mingyang Zhang
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Preethi Sheshadri
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Prasad Tammineni
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jasmine Cheung
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Marialaina Nissenbaum
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sindhuja S Baskar
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kelvin Kwan
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David J Margolis
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Peng Jiang
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexander W. Kusnecov
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Qian Cai
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
42
|
Plasmodium berghei-Mediated NRF2 Activation in Infected Hepatocytes Enhances Parasite Survival. Cell Microbiol 2022. [DOI: 10.1155/2022/7647976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protozoan parasite Plasmodium, causative agent of malaria, initially invades and develops in hepatocytes where it resides in a parasitophorous vacuole (PV). A single invaded parasite develops into thousands of daughter parasites. Survival of the host cell is crucial for successful completion of liver stage development. Nuclear factor erythroid-derived 2-related factor 2 (NRF2) is a transcription factor known to induce transcription of cytoprotective genes when activated. Here we show that NRF2 is activated in Plasmodium berghei-infected hepatocytes. We observed that this NRF2 activation depends on PV membrane resident p62 recruiting KEAP1, the negative regulator of NRF2. Disrupting the NRF2 gene results in reduced parasite survival, indicating that NRF2 signaling is an important event for parasite development in hepatocytes. Together, our observations uncovered a novel mechanism of how Plasmodium parasites ensure host cell survival during liver stage development.
Collapse
|
43
|
Metabolism, Mitochondrial Dysfunction, and Redox Homeostasis in Pulmonary Hypertension. Antioxidants (Basel) 2022; 11:antiox11020428. [PMID: 35204311 PMCID: PMC8869288 DOI: 10.3390/antiox11020428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Pulmonary hypertension (PH) represents a group of disorders characterized by elevated mean pulmonary artery (PA) pressure, progressive right ventricular failure, and often death. Some of the hallmarks of pulmonary hypertension include endothelial dysfunction, intimal and medial proliferation, vasoconstriction, inflammatory infiltration, and in situ thrombosis. The vascular remodeling seen in pulmonary hypertension has been previously linked to the hyperproliferation of PA smooth muscle cells. This excess proliferation of PA smooth muscle cells has recently been associated with changes in metabolism and mitochondrial biology, including changes in glycolysis, redox homeostasis, and mitochondrial quality control. In this review, we summarize the molecular mechanisms that have been reported to contribute to mitochondrial dysfunction, metabolic changes, and redox biology in PH.
Collapse
|
44
|
Umansky C, Morellato AE, Rieckher M, Scheidegger MA, Martinefski MR, Fernández GA, Pak O, Kolesnikova K, Reingruber H, Bollini M, Crossan GP, Sommer N, Monge ME, Schumacher B, Pontel LB. Endogenous formaldehyde scavenges cellular glutathione resulting in redox disruption and cytotoxicity. Nat Commun 2022; 13:745. [PMID: 35136057 PMCID: PMC8827065 DOI: 10.1038/s41467-022-28242-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Formaldehyde (FA) is a ubiquitous endogenous and environmental metabolite that is thought to exert cytotoxicity through DNA and DNA-protein crosslinking, likely contributing to the onset of the human DNA repair condition Fanconi Anaemia. Mutations in the genes coding for FA detoxifying enzymes underlie a human inherited bone marrow failure syndrome (IBMFS), even in the presence of functional DNA repair, raising the question of whether FA causes relevant cellular damage beyond genotoxicity. Here, we report that FA triggers cellular redox imbalance in human cells and in Caenorhabditis elegans. Mechanistically, FA reacts with the redox-active thiol group of glutathione (GSH), altering the GSH:GSSG ratio and causing oxidative stress. FA cytotoxicity is prevented by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), which metabolizes FA-GSH products, lastly yielding reduced GSH. Furthermore, we show that GSH synthesis protects human cells from FA, indicating an active role of GSH in preventing FA toxicity. These findings might be relevant for patients carrying mutations in FA-detoxification systems and could suggest therapeutic benefits from thiol-rich antioxidants like N-acetyl-L-cysteine.
Collapse
Affiliation(s)
- Carla Umansky
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Agustín E Morellato
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Marco A Scheidegger
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Manuela R Martinefski
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Gabriela A Fernández
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Oleg Pak
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ksenia Kolesnikova
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Hernán Reingruber
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Mariela Bollini
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Natascha Sommer
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Lucas B Pontel
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina.
| |
Collapse
|
45
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
46
|
Steinhorn B, Eroglu E, Michel T. Chemogenetic Approaches to Probe Redox Pathways: Implications for Cardiovascular Pharmacology and Toxicology. Annu Rev Pharmacol Toxicol 2022; 62:551-571. [PMID: 34530645 PMCID: PMC10507364 DOI: 10.1146/annurev-pharmtox-012221-082339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemogenetics refers to experimental systems that dynamically regulate the activity of a recombinant protein by providing or withholding the protein's specific biochemical stimulus. Chemogenetic tools permit precise dynamic control of specific signaling molecules to delineate the roles of those molecules in physiology and disease. Yeast d-amino acid oxidase (DAAO) enables chemogenetic manipulation of intracellular redox balance by generating hydrogen peroxide only in the presence of d-amino acids. Advances in biosensors have allowed the precise quantitation of these signaling molecules. The combination of chemogenetic approaches with biosensor methodologies has opened up new lines of investigation, allowing the analysis of intracellular redox pathways that modulate physiological and pathological cell responses. We anticipate that newly developed transgenic chemogenetic models will permit dynamic modulation of cellularredox balance in diverse cells and tissues and will facilitate the identification and validation of novel therapeutic targets involved in both physiological redox pathways and pathological oxidative stress.
Collapse
Affiliation(s)
- Benjamin Steinhorn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Emrah Eroglu
- Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Department of Molecular Biology and Biochemistry, Medical University of Graz, 8036 Graz, Austria
| | - Thomas Michel
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
47
|
li X, Huo F, Zhang Y, Cheng F, Yin C. Enzyme-activated Prodrugs and Their Release Mechanisms for Treatment of Cancer. J Mater Chem B 2022; 10:5504-5519. [DOI: 10.1039/d2tb00922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme-activated prodrugs have received a lot of attention in recent years. These prodrugs have low toxicity to cells before they are activated, and when they interact with specific enzymes, they...
Collapse
|
48
|
Mitochondrial Toxicity of Organic Arsenicals. Methods Mol Biol 2022; 2497:173-184. [PMID: 35771442 DOI: 10.1007/978-1-0716-2309-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Arsenic is either notorious toxicant or miracle cure for acute promyelocytic leukemia and several other diseases. It interacts with mitochondria directly or indirectly, by interacting with mitochondrial enzymes, such as respiratory chain complexes and tricarboxylic acid cycle proteins, or affecting mitochondrial homeostasis via ROS or mitochondrial outer membrane permeabilization. Given the ubiquitous presence of mitochondria and indispensable role in cellular metabolism, arsenical-mitochondrial interactions may manifest clinical importance by revealing mechanism of disease curation, preventing severe side effects, and foreseeing potential health issues. Here, we described the interaction between isolated mitochondria and arsenicals.
Collapse
|
49
|
Sandberg AA, Manning E, Wilkins HM, Mazzarino R, Minckley T, Swerdlow RH, Patterson D, Qin Y, Linseman DA. Mitochondrial Targeting of Amyloid-β Protein Precursor Intracellular Domain Induces Hippocampal Cell Death via a Mechanism Distinct from Amyloid-β. J Alzheimers Dis 2022; 86:1727-1744. [PMID: 35253745 PMCID: PMC10084495 DOI: 10.3233/jad-215108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Amyloid-β (Aβ) is a principal cleavage product of amyloid-β protein precursor (AβPP) and is widely recognized as a key pathogenic player in Alzheimer's disease (AD). Yet, there is increasing evidence of a neurotoxic role for the AβPP intracellular domain (AICD) which has been proposed to occur through its nuclear function. Intriguingly, there is a γ-secretase resident at the mitochondria which could produce AICD locally. OBJECTIVE We examined the potential of AICD to induce neuronal apoptosis when targeted specifically to the mitochondria and compared its mechanism of neurotoxicity to that of Aβ. METHODS We utilized transient transfection of HT22 neuronal cells with bicistronic plasmids coding for DsRed and either empty vector (Ires), Aβ, AICD59, or mitochondrial-targeted AICD (mitoAICD) in combination with various inhibitors of pathways involved in apoptosis. RESULTS AICD induced significant neuronal apoptosis only when targeted to the mitochondria. Apoptosis required functional mitochondria as neither Aβ nor mitoAICD induced significant toxicity in cells devoid of mitochondrial DNA. Both glutathione and a Bax inhibitor protected HT22 cells from either peptide. However, inhibition of the mitochondrial permeability transition pore only protected from Aβ, while pan-caspase inhibitors uniquely rescued cells from mitoAICD. CONCLUSION Our results show that AICD displays a novel neurotoxic function when targeted to mitochondria. Moreover, mitoAICD induces apoptosis via a mechanism that is distinct from that of Aβ. These findings suggest that AICD produced locally at mitochondria via organelle-specific γ-secretase could act in a synergistic manner with Aβ to cause mitochondrial dysfunction and neuronal death in AD.
Collapse
Affiliation(s)
- Alexandra A. Sandberg
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Evan Manning
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Heather M. Wilkins
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, USA
| | - Randall Mazzarino
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Taylor Minckley
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, USA
| | - David Patterson
- Knoebel Institute for Healthy Aging and Eleanor Roosevelt Institute, University of Denver, 2155 E. Wesley Ave., Denver, CO, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Daniel A. Linseman
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
- Knoebel Institute for Healthy Aging and Eleanor Roosevelt Institute, University of Denver, 2155 E. Wesley Ave., Denver, CO, USA
| |
Collapse
|
50
|
Azoulay IS, Qi X, Rozenfeld M, Liu F, Hu Q, Ben Kasus Nissim T, Stavsky A, Zhu MX, Xu TL, Sekler I. ASIC1a senses lactate uptake to regulate metabolism in neurons. Redox Biol 2022; 51:102253. [PMID: 35247821 PMCID: PMC8894274 DOI: 10.1016/j.redox.2022.102253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
|