1
|
Chen Y, Lu S, Shan S, Wu W, He X, Farag MA, Chen W, Zhao C. New insights into phytochemicals via protein glycosylation focused on aging and diabetes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156673. [PMID: 40220419 DOI: 10.1016/j.phymed.2025.156673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/29/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Protein glycosylation as a common post-translational modification that has significant impacts on protein folding, enzymatic activity, and interfering with receptor functioning. In recent years, with the rapid development of glycopeptide enrichment and analysis technology and the deepening of glycosylation research, glycosylation has gradually become a sign of disease occurrence and development. Multiple investigations suggest that protein glycosylation affect the advances of diabetes and aging. PURPOSE AND METHODS This review was focused on the action mechanisms of glycosylated proteins production, permanent abnormalities in extracellular matrix component function, inflammatory and reactive oxygen species production, as well as the glycosylated characterizations of diabetes and aging. Further, advances in glycosylation analysis and detection methods are presented for the first time, highlighting for needed future developments. All literatures were gathered from PubMed and Google Scholar. RESULTS Herein, we review how protein glycosylation impacts the progression of diabetes and aging. Specifically, we focus on various types of glycosylation, including N-linked glycosylation, O-linked glycosylation, C-glycosylation, S-glycosylation, and glycophosphatidylinositol (GPI) anchors. N-linked glycosylation and O-linked glycosylation are commonly observed glycosylation forms, wherein O-GlcNAcylation plays a significant role in diabetes, while N-glycan could serve as biomarkers for identifying inflammation and aging. CONCLUSIONS Protein glycosylation produces a vastly larger number of core glycan structures through utilizing at least 173 glycosyltransferases and repeated common scaffolds. Single protein may contain multiple glycosylation sites, and the structure and occupancy of glycan at each site may be different, resulting in the macro heterogeneity of protein glycosylation. This review will contribute to how protein glycosylation impacts the life progress of cells and its association with diseases.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Suyue Lu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuo Shan
- University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| | - Weihao Wu
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Xinxin He
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Liu Y, Wu Z, Li Y, Chen Y, Zhao X, Wu M, Xia Y. Metabolic reprogramming and interventions in angiogenesis. J Adv Res 2025; 70:323-338. [PMID: 38704087 PMCID: PMC11976431 DOI: 10.1016/j.jare.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Endothelial cell (EC) metabolism plays a crucial role in the process of angiogenesis. Intrinsic metabolic events such as glycolysis, fatty acid oxidation, and glutamine metabolism, support secure vascular migration and proliferation, energy and biomass production, as well as redox homeostasis maintenance during vessel formation. Nevertheless, perturbation of EC metabolism instigates vascular dysregulation-associated diseases, especially cancer. AIM OF REVIEW In this review, we aim to discuss the metabolic regulation of angiogenesis by EC metabolites and metabolic enzymes, as well as prospect the possible therapeutic opportunities and strategies targeting EC metabolism. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we discuss various aspects of EC metabolism considering normal and diseased vasculature. Of relevance, we highlight that the implications of EC metabolism-targeted intervention (chiefly by metabolic enzymes or metabolites) could be harnessed in orchestrating a spectrum of pathological angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Yun Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yating Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Zhang L, Feng Y, Zhang Y, Sun X, Ma Q, Ma F. The Sweet Relationship between the Endometrium and Protein Glycosylation. Biomolecules 2024; 14:770. [PMID: 39062484 PMCID: PMC11274983 DOI: 10.3390/biom14070770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The endometrium is an important part of women's bodies for menstruation and pregnancy. Various proteins are widely expressed on the surface of endometrial cells, and glycosylation is an important post-translational modification of proteins. Glycosylation modification is closely related not only to endometrial receptivity but also to common diseases related to endometrial receptivity. Glycosylation can improve endometrial receptivity, promote embryo localization and trophoblast cell adhesion and invasion, and contribute to successful implantation. Two diseases related to endometrial receptivity include endometriosis and endometrial cancer. As a common benign disease in women, endometriosis is often accompanied by an increased menstrual volume, prolonged menstrual periods, progressive and aggravated dysmenorrhea, and may be accompanied by infertility. Protein glycosylation modification of the endometrial surface indicates the severity of the disease and may be an important pathogenesis of endometriosis. In cancer, glycosylation modifications on the surface of tumor cells can be a marker to distinguish the type and severity of endometrial cancer. This review highlights the role of protein glycosylation in embryo-maternal endometrial dialogue and explores its potential mechanisms in diseases related to endometrial receptivity, which could provide a new clinical approach for their diagnosis and treatment.
Collapse
Affiliation(s)
- Linyu Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yue Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Xinrui Sun
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Qianhong Ma
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Mathur P, Saxena S, Saxena B, Rani V. MicroRNAs Targeting Critical Molecular Pathways in Diabetic Cardiomyopathy Emerging Valuable for Therapy. Cardiovasc Hematol Agents Med Chem 2024; 22:298-307. [PMID: 38265401 DOI: 10.2174/0118715257265947231129074526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 01/25/2024]
Abstract
MicroRNAs have emerged as an important regulator of post-transcriptional gene expression studied extensively in many cancers, fetal development, and cardiovascular diseases. Their endogenous nature and easy manipulation have made them potential diagnostic and therapeutic molecules. Diseases with complex pathophysiology such as Diabetic Cardiomyopathy display symptoms at a late stage when the risk of heart failure has become very high. Therefore, the utilization of microRNAs as a tool to study pathophysiology and device-sustainable treatments for DCM could be considered. The present review focuses on the mechanistic insights of diabetic cardiomyopathy and the potential role of microRNAs.
Collapse
Affiliation(s)
- Priyanka Mathur
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Sharad Saxena
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Bhawna Saxena
- Department of Computer Science & Engineering and Information Technology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, Uttar Pradesh, India
| | - Vibha Rani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| |
Collapse
|
5
|
Narayanan B, Sinha P, Henry R, Reeves RA, Paolocci N, Kohr MJ, Zachara NE. Cardioprotective O-GlcNAc signaling is elevated in murine female hearts via enhanced O-GlcNAc transferase activity. J Biol Chem 2023; 299:105447. [PMID: 37949223 PMCID: PMC10711226 DOI: 10.1016/j.jbc.2023.105447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The post-translational modification of intracellular proteins by O-linked β-GlcNAc (O-GlcNAc) has emerged as a critical regulator of cardiac function. Enhanced O-GlcNAcylation activates cytoprotective pathways in cardiac models of ischemia-reperfusion (I/R) injury; however, the mechanisms underpinning O-GlcNAc cycling in response to I/R injury have not been comprehensively assessed. The cycling of O-GlcNAc is regulated by the collective efforts of two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and hydrolysis of O-GlcNAc, respectively. It has previously been shown that baseline heart physiology and pathophysiology are impacted by sex. Here, we hypothesized that sex differences in molecular signaling may target protein O-GlcNAcylation both basally and in ischemic hearts. To address this question, we subjected male and female WT murine hearts to ex vivo ischemia or I/R injury. We assessed hearts for protein O-GlcNAcylation, abundance of OGT, OGA, and glutamine:fructose-6-phosphate aminotransferase (GFAT2), activity of OGT and OGA, and UDP-GlcNAc levels. Our data demonstrate elevated O-GlcNAcylation in female hearts both basally and during ischemia. We show that OGT activity was enhanced in female hearts in all treatments, suggesting a mechanism for these observations. Furthermore, we found that ischemia led to reduced O-GlcNAcylation and OGT-specific activity. Our findings provide a foundation for understanding molecular mechanisms that regulate O-GlcNAcylation in the heart and highlight the importance of sex as a significant factor when assessing key regulatory events that control O-GlcNAc cycling. These data suggest the intriguing possibility that elevated O-GlcNAcylation in females contributes to reduced ischemic susceptibility.
Collapse
Affiliation(s)
- Bhargavi Narayanan
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Prithvi Sinha
- The Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Roger Henry
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell A Reeves
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Mark J Kohr
- The Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Natasha E Zachara
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Department of Oncology at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
6
|
Costa TJ, Wilson EW, Fontes MT, Pernomian L, Tostes RC, Wenceslau CF, McCarthy CG. The O-GlcNAc dichotomy: when does adaptation become pathological? Clin Sci (Lond) 2023; 137:1683-1697. [PMID: 37986614 DOI: 10.1042/cs20220309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
O-Linked attachment of β-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues of nuclear, cytoplasmic, and mitochondrial proteins is a highly dynamic and ubiquitous post-translational modification that impacts the function, activity, subcellular localization, and stability of target proteins. Physiologically, acute O-GlcNAcylation serves primarily to modulate cellular signaling and transcription regulatory pathways in response to nutrients and stress. To date, thousands of proteins have been revealed to be O-GlcNAcylated and this number continues to grow as the technology for the detection of O-GlcNAc improves. The attachment of a single O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), and their removal is catalyzed by O-GlcNAcase (OGA). O-GlcNAcylation is regulated by the metabolism of glucose via the hexosamine biosynthesis pathway, and the metabolic abnormalities associated with pathophysiological conditions are all associated with increased flux through this pathway and elevate O-GlcNAc levels. While chronic O-GlcNAcylation is well associated with cardiovascular dysfunction, only until recently, and with genetically modified animals, has O-GlcNAcylation as a contributing mechanism of cardiovascular disease emerged. This review will address and critically evaluate the current literature on the role of O-GlcNAcylation in vascular physiology, with a view that this pathway can offer novel targets for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Tiago J Costa
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Emily W Wilson
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
| | - Milene T Fontes
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Laena Pernomian
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Camilla F Wenceslau
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| |
Collapse
|
7
|
Zhang X, Hu C, Ma ZG, Hu M, Yuan XP, Yuan YP, Wang SS, Kong CY, Teng T, Tang QZ. Tisp40 prevents cardiac ischemia/reperfusion injury through the hexosamine biosynthetic pathway in male mice. Nat Commun 2023; 14:3383. [PMID: 37291168 PMCID: PMC10250363 DOI: 10.1038/s41467-023-39159-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
The hexosamine biosynthetic pathway (HBP) produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) to facilitate O-linked GlcNAc (O-GlcNAc) protein modifications, and subsequently enhance cell survival under lethal stresses. Transcript induced in spermiogenesis 40 (Tisp40) is an endoplasmic reticulum membrane-resident transcription factor and plays critical roles in cell homeostasis. Here, we show that Tisp40 expression, cleavage and nuclear accumulation are increased by cardiac ischemia/reperfusion (I/R) injury. Global Tisp40 deficiency exacerbates, whereas cardiomyocyte-restricted Tisp40 overexpression ameliorates I/R-induced oxidative stress, apoptosis and acute cardiac injury, and modulates cardiac remodeling and dysfunction following long-term observations in male mice. In addition, overexpression of nuclear Tisp40 is sufficient to attenuate cardiac I/R injury in vivo and in vitro. Mechanistic studies indicate that Tisp40 directly binds to a conserved unfolded protein response element (UPRE) of the glutamine-fructose-6-phosphate transaminase 1 (GFPT1) promoter, and subsequently potentiates HBP flux and O-GlcNAc protein modifications. Moreover, we find that I/R-induced upregulation, cleavage and nuclear accumulation of Tisp40 in the heart are mediated by endoplasmic reticulum stress. Our findings identify Tisp40 as a cardiomyocyte-enriched UPR-associated transcription factor, and targeting Tisp40 may develop effective approaches to mitigate cardiac I/R injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Xiao-Pin Yuan
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Sha-Sha Wang
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China.
| |
Collapse
|
8
|
Cabrera JT, Si R, Tsuji-Hosokawa A, Cai H, Yuan JXJ, Dillmann WH, Makino A. Restoration of coronary microvascular function by OGA overexpression in a high-fat diet with low-dose streptozotocin-induced type 2 diabetic mice. Diab Vasc Dis Res 2023; 20:14791641231173630. [PMID: 37186669 PMCID: PMC10196148 DOI: 10.1177/14791641231173630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Sustained hyperglycemia results in excess protein O-GlcNAcylation, leading to vascular complications in diabetes. This study aims to investigate the role of O-GlcNAcylation in the progression of coronary microvascular disease (CMD) in inducible type 2 diabetic (T2D) mice generated by a high-fat diet with a single injection of low-dose streptozotocin. Inducible T2D mice exhibited an increase in protein O-GlcNAcylation in cardiac endothelial cells (CECs) and decreases in coronary flow velocity reserve (CFVR, an indicator of coronary microvascular function) and capillary density accompanied by increased endothelial apoptosis in the heart. Endothelial-specific O-GlcNAcase (OGA) overexpression significantly lowered protein O-GlcNAcylation in CECs, increased CFVR and capillary density, and decreased endothelial apoptosis in T2D mice. OGA overexpression also improved cardiac contractility in T2D mice. OGA gene transduction augmented angiogenic capacity in high-glucose treated CECs. PCR array analysis revealed that seven out of 92 genes show significant differences among control, T2D, and T2D + OGA mice, and Sp1 might be a great target for future study, the level of which was significantly increased by OGA in T2D mice. Our data suggest that reducing protein O-GlcNAcylation in CECs has a beneficial effect on coronary microvascular function, and OGA is a promising therapeutic target for CMD in diabetic patients.
Collapse
Affiliation(s)
- Jody Tori Cabrera
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
| | - Rui Si
- Department of Physiology, The University of
Arizona, Tucson, AZ, USA
- Department of Cardiology, Xijing
Hospital, Fourth Military Medical
University, Shaanxi, China
| | | | - Hua Cai
- Department of Anesthesiology, University of California, Los
Angeles, Los Angeles, CA, USA
| | - Jason X-J Yuan
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
| | - Ayako Makino
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
- Department of Physiology, The University of
Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Wang HF, Wang YX, Zhou YP, Wei YP, Yan Y, Zhang ZJ, Jing ZC. Protein O-GlcNAcylation in cardiovascular diseases. Acta Pharmacol Sin 2023; 44:8-18. [PMID: 35817809 PMCID: PMC9813366 DOI: 10.1038/s41401-022-00934-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023]
Abstract
O-GlcNAcylation is a post-translational modification of protein in response to genetic variations or environmental factors, which is controlled by two highly conserved enzymes, i.e. O-GlcNAc transferase (OGT) and protein O-GlcNAcase (OGA). Protein O-GlcNAcylation mainly occurs in the cytoplasm, nucleus, and mitochondrion, and it is ubiquitously implicated in the development of cardiovascular disease (CVD). Alterations of O-GlcNAcylation could cause massive metabolic imbalance and affect cardiovascular function, but the role of O-GlcNAcylation in CVD remains controversial. That is, acutely increased O-GlcNAcylation is an adaptive heart response, which temporarily protects cardiac function. While it is harmful to cardiomyocytes if O-GlcNAcylation levels remain high in chronic conditions or in the long run. The underlying mechanisms include regulation of transcription, energy metabolism, and other signal transduction reactions induced by O-GlcNAcylation. In this review, we will focus on the interactions between protein O-GlcNAcylation and CVD, and discuss the potential molecular mechanisms that may be able to pave a new avenue for the treatment of cardiovascular events.
Collapse
Affiliation(s)
- Hui-Fang Wang
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Yi-Xuan Wang
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Yu-Ping Zhou
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yun-Peng Wei
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ze-Jian Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Silva-Aguiar RP, Peruchetti DB, Pinheiro AAS, Caruso-Neves C, Dias WB. O-GlcNAcylation in Renal (Patho)Physiology. Int J Mol Sci 2022; 23:ijms231911260. [PMID: 36232558 PMCID: PMC9569498 DOI: 10.3390/ijms231911260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Kidneys maintain internal milieu homeostasis through a well-regulated manipulation of body fluid composition. This task is performed by the correlation between structure and function in the nephron. Kidney diseases are chronic conditions impacting healthcare programs globally, and despite efforts, therapeutic options for its treatment are limited. The development of chronic degenerative diseases is associated with changes in protein O-GlcNAcylation, a post-translation modification involved in the regulation of diverse cell function. O-GlcNAcylation is regulated by the enzymatic balance between O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) which add and remove GlcNAc residues on target proteins, respectively. Furthermore, the hexosamine biosynthetic pathway provides the substrate for protein O-GlcNAcylation. Beyond its physiological role, several reports indicate the participation of protein O-GlcNAcylation in cardiovascular, neurodegenerative, and metabolic diseases. In this review, we discuss the impact of protein O-GlcNAcylation on physiological renal function, disease conditions, and possible future directions in the field.
Collapse
Affiliation(s)
- Rodrigo P. Silva-Aguiar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Diogo B. Peruchetti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ana Acacia S. Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro 21045-900, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro 21045-900, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Wagner B. Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Correspondence:
| |
Collapse
|
11
|
Liu Y, Hu YJ, Fan WX, Quan X, Xu B, Li SZ. O-GlcNAcylation: The Underestimated Emerging Regulators of Skeletal Muscle Physiology. Cells 2022; 11:1789. [PMID: 35681484 PMCID: PMC9180116 DOI: 10.3390/cells11111789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
O-GlcNAcylation is a highly dynamic, reversible and atypical glycosylation that regulates the activity, biological function, stability, sublocation and interaction of target proteins. O-GlcNAcylation receives and coordinates different signal inputs as an intracellular integrator similar to the nutrient sensor and stress receptor, which target multiple substrates with spatio-temporal analysis specifically to maintain cellular homeostasis and normal physiological functions. Our review gives a brief description of O-GlcNAcylation and its only two processing enzymes and HBP flux, which will help to better understand its physiological characteristics of sensing nutrition and environmental cues. This nutritional and stress-sensitive properties of O-GlcNAcylation allow it to participate in the precise regulation of skeletal muscle metabolism. This review discusses the mechanism of O-GlcNAcylation to alleviate metabolic disorders and the controversy about the insulin resistance of skeletal muscle. The level of global O-GlcNAcylation is precisely controlled and maintained in the "optimal zone", and its abnormal changes is a potential factor in the pathogenesis of cancer, neurodegeneration, diabetes and diabetic complications. Although the essential role of O-GlcNAcylation in skeletal muscle physiology has been widely studied and recognized, it still is underestimated and overlooked. This review highlights the latest progress and potential mechanisms of O-GlcNAcylation in the regulation of skeletal muscle contraction and structural properties.
Collapse
Affiliation(s)
| | | | | | | | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| |
Collapse
|
12
|
Xue Q, Yan R, Ji S, Yu S. Regulation of mitochondrial network homeostasis by O-GlcNAcylation. Mitochondrion 2022; 65:45-55. [DOI: 10.1016/j.mito.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022]
|
13
|
Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer. Nat Rev Cardiol 2022; 19:414-425. [PMID: 35440740 PMCID: PMC10112835 DOI: 10.1038/s41569-022-00698-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared risk factors that predispose individuals to both cardiovascular disease and cancer, as well the possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in understanding the fundamental biological mechanisms that are central to the relationship between cardiovascular disease and cancer. Metabolism, appropriate regulation of energy, energy substrate utilization, and macromolecular synthesis and breakdown are fundamental processes for cellular and organismal survival. In this Review, we explore the emerging data identifying metabolic dysregulation as an important theme in cardio-oncology. We discuss the growing recognition of metabolic reprogramming in cardiovascular disease and cancer and view the novel area of cardio-oncology through the lens of metabolism.
Collapse
|
14
|
Huang AW, Janssen PML. The Case for, and Challenges of, Human Cardiac Tissue in Advancing Phosphoprotein Research. Front Physiol 2022; 13:853511. [PMID: 35399265 PMCID: PMC8984461 DOI: 10.3389/fphys.2022.853511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular disease (CVD) and stroke affect over 92 million Americans and account for nearly 1 out of 3 deaths in the US. The use of animal models in cardiovascular research has led to considerable advances in treatment and in our understanding of the pathophysiology of many CVDs. Still, animals may not fully recapitulate human disease states; species differences have long been postulated to be one of the main reasons for a failure of translation between animals and humans in drug discovery and development. Indeed, it has become increasingly clear over the past few decades that to answer certain biomedical questions, like the physiological mechanisms that go awry in many human CVDs, animal tissues may not always be the best option to use. While human cardiac tissue has long been used for laboratory research, published findings often contradict each other, leading to difficulties in interpretation. Current difficulties in utilizing human cardiac tissue include differences in acquisition time, varying tissue procurement protocols, and the struggle to define a human “control” sample. With the tremendous emphasis on translational research that continues to grow, research studies using human tissues are becoming more common. This mini review will discuss advantages, disadvantages, and considerations of using human cardiac tissue in the study of CVDs, paying specific attention to the study of phosphoproteins.
Collapse
|
15
|
Emanuelli G, Zoccarato A, Reumiller CM, Papadopoulos A, Chong M, Rebs S, Betteridge K, Beretta M, Streckfuss-Bömeke K, Shah AM. A roadmap for the characterization of energy metabolism in human cardiomyocytes derived from induced pluripotent stem cells. J Mol Cell Cardiol 2022; 164:136-147. [PMID: 34923199 DOI: 10.1016/j.yjmcc.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 01/16/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are an increasingly employed model in cardiac research and drug discovery. As cellular metabolism plays an integral role in determining phenotype, the characterization of the metabolic profile of hiPSC-CM during maturation is crucial for their translational application. In this study we employ a combination of methods including extracellular flux, 13C-glucose enrichment and targeted metabolomics to characterize the metabolic profile of hiPSC-CM during their maturation in culture from 6 weeks, up to 12 weeks. Results show a progressive remodeling of pathways involved in energy metabolism and substrate utilization along with an increase in sarcomere regularity. The oxidative capacity of hiPSC-CM and particularly their ability to utilize fatty acids increased with time. In parallel, relative glucose oxidation was reduced while glutamine oxidation was maintained at similar levels. There was also evidence of increased coupling of glycolysis to mitochondrial respiration, and away from glycolytic branch pathways at later stages of maturation. The rate of glycolysis as assessed by lactate production was maintained at both stages but with significant alterations in proximal glycolytic enzymes such as hexokinase and phosphofructokinase. We observed a progressive maturation of mitochondrial oxidative capacity at comparable levels of mitochondrial content between these time-points with enhancement of mitochondrial network structure. These results show that the metabolic profile of hiPSC-CM is progressively restructured, recapitulating aspects of early post-natal heart development. This would be particularly important to consider when employing these cell model in studies where metabolism plays an important role.
Collapse
Affiliation(s)
- Giulia Emanuelli
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom; Clinic for Cardiology and Pneumonology, University Medical Center Göttingen, Germany and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Anna Zoccarato
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.
| | - Christina M Reumiller
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Angelos Papadopoulos
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Mei Chong
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Sabine Rebs
- Clinic for Cardiology and Pneumonology, University Medical Center Göttingen, Germany and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Kai Betteridge
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Matteo Beretta
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumonology, University Medical Center Göttingen, Germany and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.
| |
Collapse
|
16
|
Zhan J, Chen C, Wang DW, Li H. Hyperglycemic memory in diabetic cardiomyopathy. Front Med 2021; 16:25-38. [PMID: 34921674 DOI: 10.1007/s11684-021-0881-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases account for approximately 80% of deaths among individuals with diabetes mellitus, with diabetic cardiomyopathy as the major diabetic cardiovascular complication. Hyperglycemia is a symptom that abnormally activates multiple downstream pathways and contributes to cardiac hypertrophy, fibrosis, apoptosis, and other pathophysiological changes. Although glycemic control has long been at the center of diabetes therapy, multicenter randomized clinical studies have revealed that intensive glycemic control fails to reduce heart failure-associated hospitalization and mortality in patients with diabetes. This finding indicates that hyperglycemic stress persists in the cardiovascular system of patients with diabetes even if blood glucose level is tightly controlled to the normal level. This process is now referred to as hyperglycemic memory (HGM) phenomenon. We briefly reviewed herein the current advances that have been achieved in research on the underlying mechanisms of HGM in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
17
|
Nabeebaccus AA, Verma S, Zoccarato A, Emanuelli G, Santos CX, Streckfuss-Bömeke K, Shah AM. Cardiomyocyte protein O-GlcNAcylation is regulated by GFAT1 not GFAT2. Biochem Biophys Res Commun 2021; 583:121-127. [PMID: 34735873 PMCID: PMC8606754 DOI: 10.1016/j.bbrc.2021.10.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022]
Abstract
In response to cardiac injury, increased activity of the hexosamine biosynthesis pathway (HBP) is linked with cytoprotective as well as adverse effects depending on the type and duration of injury. Glutamine-fructose amidotransferase (GFAT; gene name gfpt) is the rate-limiting enzyme that controls flux through HBP. Two protein isoforms exist in the heart called GFAT1 and GFAT2. There are conflicting data on the relative importance of GFAT1 and GFAT2 during stress-induced HBP responses in the heart. Using neonatal rat cardiac cell preparations, targeted knockdown of GFPT1 and GFPT2 were performed and HBP activity measured. Immunostaining with specific GFAT1 and GFAT2 antibodies was undertaken in neonatal rat cardiac preparations and murine cardiac tissues to characterise cell-specific expression. Publicly available human heart single cell sequencing data was interrogated to determine cell-type expression. Western blots for GFAT isoform protein expression were performed in human cardiomyocytes derived from induced pluripotent stem cells (iPSCs). GFPT1 but not GFPT2 knockdown resulted in a loss of stress-induced protein O-GlcNAcylation in neonatal cardiac cell preparations indicating reduced HBP activity. In rodent cells and tissue, immunostaining for GFAT1 identified expression in both cardiac myocytes and fibroblasts whereas immunostaining for GFAT2 was only identified in fibroblasts. Further corroboration of findings in human heart cells identified an enrichment of GFPT2 gene expression in cardiac fibroblasts but not ventricular myocytes whereas GFPT1 was expressed in both myocytes and fibroblasts. In human iPSC-derived cardiomyocytes, only GFAT1 protein was expressed with an absence of GFAT2. In conclusion, these results indicate that GFAT1 is the primary cardiomyocyte isoform and GFAT2 is only present in cardiac fibroblasts. Cell-specific isoform expression may have differing effects on cell function and should be considered when studying HBP and GFAT functions in the heart.
Collapse
Affiliation(s)
- Adam A Nabeebaccus
- BHF Centre of Excellence King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| | - Sharwari Verma
- BHF Centre of Excellence King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Anna Zoccarato
- BHF Centre of Excellence King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Giulia Emanuelli
- BHF Centre of Excellence King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Celio Xc Santos
- BHF Centre of Excellence King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Katrin Streckfuss-Bömeke
- German Centre for Cardiovascular Research, 10785 Berlin, partnersite Göttingen, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Ajay M Shah
- BHF Centre of Excellence King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| |
Collapse
|
18
|
Loaeza-Reyes KJ, Zenteno E, Moreno-Rodríguez A, Torres-Rosas R, Argueta-Figueroa L, Salinas-Marín R, Castillo-Real LM, Pina-Canseco S, Cervera YP. An Overview of Glycosylation and its Impact on Cardiovascular Health and Disease. Front Mol Biosci 2021; 8:751637. [PMID: 34869586 PMCID: PMC8635159 DOI: 10.3389/fmolb.2021.751637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiovascular system is a complex and well-organized system in which glycosylation plays a vital role. The heart and vascular wall cells are constituted by an array of specific receptors; most of them are N- glycosylated and mucin-type O-glycosylated. There are also intracellular signaling pathways regulated by different post-translational modifications, including O-GlcNAcylation, which promote adequate responses to extracellular stimuli and signaling transduction. Herein, we provide an overview of N-glycosylation and O-glycosylation, including O-GlcNAcylation, and their role at different levels such as reception of signal, signal transduction, and exogenous molecules or agonists, which stimulate the heart and vascular wall cells with effects in different conditions, like the physiological status, ischemia/reperfusion, exercise, or during low-grade inflammation in diabetes and aging. Furthermore, mutations of glycosyltransferases and receptors are associated with development of cardiovascular diseases. The knowledge on glycosylation and its effects could be considered biochemical markers and might be useful as a therapeutic tool to control cardiovascular diseases.
Collapse
Affiliation(s)
- Karen Julissa Loaeza-Reyes
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rafael Torres-Rosas
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Liliana Argueta-Figueroa
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Conacyt - Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lizet Monserrat Castillo-Real
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Yobana Pérez Cervera
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
19
|
Zou L, Collins HE, Young ME, Zhang J, Wende AR, Darley-Usmar VM, Chatham JC. The Identification of a Novel Calcium-Dependent Link Between NAD + and Glucose Deprivation-Induced Increases in Protein O-GlcNAcylation and ER Stress. Front Mol Biosci 2021; 8:780865. [PMID: 34950703 PMCID: PMC8691773 DOI: 10.3389/fmolb.2021.780865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
The modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is associated with the regulation of numerous cellular processes. Despite the importance of O-GlcNAc in mediating cellular function our understanding of the mechanisms that regulate O-GlcNAc levels is limited. One factor known to regulate protein O-GlcNAc levels is nutrient availability; however, the fact that nutrient deficient states such as ischemia increase O-GlcNAc levels suggests that other factors also contribute to regulating O-GlcNAc levels. We have previously reported that in unstressed cardiomyocytes exogenous NAD+ resulted in a time and dose dependent decrease in O-GlcNAc levels. Therefore, we postulated that NAD+ and cellular O-GlcNAc levels may be coordinately regulated. Using glucose deprivation as a model system in an immortalized human ventricular cell line, we examined the influence of extracellular NAD+ on cellular O-GlcNAc levels and ER stress in the presence and absence of glucose. We found that NAD+ completely blocked the increase in O-GlcNAc induced by glucose deprivation and suppressed the activation of ER stress. The NAD+ metabolite cyclic ADP-ribose (cADPR) had similar effects on O-GlcNAc and ER stress suggesting a common underlying mechanism. cADPR is a ryanodine receptor (RyR) agonist and like caffeine, which also activates the RyR, both mimicked the effects of NAD+. SERCA inhibition, which also reduces ER/SR Ca2+ levels had similar effects to both NAD+ and cADPR on O-GlcNAc and ER stress responses to glucose deprivation. The observation that NAD+, cADPR, and caffeine all attenuated the increase in O-GlcNAc and ER stress in response to glucose deprivation, suggests a potential common mechanism, linked to ER/SR Ca2+ levels, underlying their activation. Moreover, we showed that TRPM2, a plasma membrane cation channel was necessary for the cellular responses to glucose deprivation. Collectively, these findings support a novel Ca2+-dependent mechanism underlying glucose deprivation induced increase in O-GlcNAc and ER stress.
Collapse
Affiliation(s)
- Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Helen E. Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,Birmingham VA Medical Center, Birmingham, AL, United States
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor M. Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
20
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy.
| |
Collapse
|
21
|
Prisco SZ, Eklund M, Raveendran R, Thenappan T, Prins KW. With No Lysine Kinase 1 Promotes Metabolic Derangements and RV Dysfunction in Pulmonary Arterial Hypertension. JACC. BASIC TO TRANSLATIONAL SCIENCE 2021; 6:834-850. [PMID: 34869947 PMCID: PMC8617575 DOI: 10.1016/j.jacbts.2021.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
Small molecule inhibition of with no lysine kinase 1 (WNK1) (WNK463) signaling activates adenosine monophosphate-activated protein kinase signaling and mitigates membrane enrichment of glucose transporters 1 and 4, which decreases protein O-GlcNAcylation and glycation. Quantitative proteomics of right ventricular (RV) mitochondrial enrichments shows WNK463 prevents down-regulation of several mitochondrial metabolic enzymes. and metabolomics analysis suggests multiple metabolic processes are corrected. Physiologically, WNK463 augments RV systolic and diastolic function independent of pulmonary arterial hypertension severity. Hypochloremia, a condition of predicted WNK1 activation in patients with pulmonary arterial hypertension, is associated with more severe RV dysfunction. These results suggest WNK1 may be a druggable target to combat metabolic dysregulation and may improve RV function and survival in pulmonary arterial hypertension.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- AS160, 160 kDa substrate of the Akt serine/threonine kinase
- DCA, dicarboxylic fatty acid
- FAO, fatty acid oxidation
- GLO1, glyoxalase 1
- GLO2, glyoxalase 2
- GLUT1, glucose transporter 1
- GLUT4, glucose transporter 4
- LV, left ventricle/ventricular
- MCT, monocrotaline
- MCT-V, monocrotaline-vehicle
- PAH, pulmonary arterial hypertension
- PTM, post-translationally modify/modifications
- PV, pressure-volume
- PVR, pulmonary vascular resistance
- RA, right atrial
- RV, right ventricle/ventricular
- RVD, right ventricular dysfunction
- TCA, tricarboxylic acid
- Tau/τ, right ventricular relaxation time
- UDP-GlcNAC, uridine diphosphate N-acetylglucosamine
- WNK, with no lysine kinase
- lipotoxicity
- metabolism
- mitochondria
- pulmonary arterial hypertension
- right ventricular dysfunction
- with no lysine kinase 1
Collapse
Affiliation(s)
| | | | | | | | - Kurt W. Prins
- Address for correspondence: Dr Kurt Prins, Lillehei Heart Institute, Cardiovascular Division, University of Minnesota Medical School, 312 Church Street Southeast, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
22
|
Li R, Shen Y, Li X, Lu L, Wang Z, Sheng H, Hoffmann U, Yang W. Activation of the XBP1s/O-GlcNAcylation Pathway Improves Functional Outcome After Cardiac Arrest and Resuscitation in Young and Aged Mice. Shock 2021; 56:755-761. [PMID: 34652341 PMCID: PMC9059164 DOI: 10.1097/shk.0000000000001732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT After cardiac arrest (CA) and resuscitation, the unfolded protein response (UPR) is activated in various organs including the brain. However, the role of the UPR in CA outcome remains largely unknown. One UPR branch involves spliced X-box-binding protein-1 (XBP1s). Notably, XBP1s, a transcriptional factor, can upregulate expression of specific enzymes related to glucose metabolism, and subsequently boost O-linked β-N-acetylglucosamine modification (O-GlcNAcylation). The current study is focused on effects of the XBP1 UPR branch and its downstream O-GlcNAcylation on CA outcome. Using both loss-of-function and gain-of-function mouse genetic tools, we provide the first evidence that activation of the XBP1 UPR branch in the post-CA brain is neuroprotective. Specifically, neuron-specific Xbp1 knockout mice had worse CA outcome, while mice with neuron-specific expression of Xbp1s in the brain had better CA outcome. Since it has been shown that the protective role of the XBP1s signaling pathway under ischemic conditions is mediated by increasing O-GlcNAcylation, we then treated young mice with glucosamine, and found that functional deficits were mitigated on day 3 post CA. Finally, after confirming that glucosamine can boost O-GlcNAcylation in the aged brain, we subjected aged mice to 8 min CA, and then treated them with glucosamine. We found that glucosamine-treated aged mice performed significantly better in behavioral tests. Together, our data indicate that the XBP1s/O-GlcNAc pathway is a promising target for CA therapy.
Collapse
Affiliation(s)
- Ran Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
23
|
OSMI-1 Enhances TRAIL-Induced Apoptosis through ER Stress and NF-κB Signaling in Colon Cancer Cells. Int J Mol Sci 2021; 22:ijms222011073. [PMID: 34681736 PMCID: PMC8539180 DOI: 10.3390/ijms222011073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Levels of O-GlcNAc transferase (OGT) and hyper-O-GlcNAcylation expression levels are associated with cancer pathogenesis. This study aimed to find conditions that maximize the therapeutic effect of cancer and minimize tissue damage by combining an OGT inhibitor (OSMI-1) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found that OSMI-1 treatment in HCT116 human colon cancer cells has a potent synergistic effect on TRAIL-induced apoptosis signaling. Interestingly, OSMI-1 significantly increased TRAIL-mediated apoptosis by increasing the expression of the cell surface receptor DR5. ROS-induced endoplasmic reticulum (ER) stress by OSMI-1 not only upregulated CHOP-DR5 signaling but also activated Jun-N-terminal kinase (JNK), resulting in a decrease in Bcl2 and the release of cytochrome c from mitochondria. TRAIL induced the activation of NF-κB and played a role in resistance as an antiapoptotic factor. During this process, O-GlcNAcylation of IκB kinase (IKK) and IκBα degradation occurred, followed by translocation of p65 into the nucleus. However, combination treatment with OSMI-1 counteracted the effect of TRAIL-mediated NF-κB signaling, resulting in a more synergistic effect on apoptosis. Therefore, the combined treatment of OSMI-1 and TRAIL synergistically increased TRAIL-induced apoptosis through caspase-8 activation. Conclusively, OSMI-1 potentially sensitizes TRAIL-induced cell death in HCT116 cells through the blockade of NF-κB signaling and activation of apoptosis through ER stress response.
Collapse
|
24
|
A global map of associations between types of protein posttranslational modifications and human genetic diseases. iScience 2021; 24:102917. [PMID: 34430807 PMCID: PMC8365368 DOI: 10.1016/j.isci.2021.102917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/27/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
There are >200 types of protein posttranslational modifications (PTMs) described in eukaryotes, each with unique proteome coverage and functions. We hypothesized that some genetic diseases may be caused by the removal of a specific type of PTMs by genomic variants and the consequent deregulation of particular functions. We collected >320,000 human PTMs representing 59 types and crossed them with >4M nonsynonymous DNA variants annotated with predicted pathogenicity and disease associations. We report >1.74M PTM-variant co-occurrences that an enrichment analysis distributed into 215 pairwise associations between 18 PTM types and 148 genetic diseases. Of them, 42% were not previously described. Removal of lysine acetylation exerts the most pronounced effect, and less studied PTM types such as S-glutathionylation or S-nitrosylation show relevance. Using pathogenicity predictions, we identified PTM sites that may produce particular diseases if prevented. Our results provide evidence of a substantial impact of PTM-specific removal on the pathogenesis of genetic diseases and phenotypes. There is an enrichment of disease-associated nsSNVs preventing certain types of PTMs We report 215 pairwise associations between 18 PTM types and 148 genetic diseases The removal of lysine acetylation exerts the most pronounced effect We report a set of PTM sites that may produce particular diseases if prevented
Collapse
|
25
|
Ou W, Liang Y, Qin Y, Wu W, Xie M, Zhang Y, Zhang Y, Ji L, Yu H, Li T. Hypoxic acclimation improves cardiac redox homeostasis and protects heart against ischemia-reperfusion injury through upregulation of O-GlcNAcylation. Redox Biol 2021; 43:101994. [PMID: 33964586 PMCID: PMC8121980 DOI: 10.1016/j.redox.2021.101994] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/11/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is detrimental to cardiovascular system. Alteration in glucose metabolism has been recognized as an important adaptive response under hypoxic conditions. However, the biological benefits underlying this metabolic phenotype remain to be elucidated. This study was designed to investigate the impact of hypoxic acclimation (HA) on cardiac I/R injury and the antioxidative mechanism(s). Male adult mice were acclimated in a hypoxic chamber (10% oxygen [O2]) for 8 h/day for 14 days, and then subjected to cardiac I/R injury by ligation of left anterior descending coronary artery for 30 min and reperfusion for 24 h or 7 days. Our results showed that HA attenuated oxidative stress and reduced infarct size in the I/R hearts. This cardioprotective effect is coupled with an elevation of protein O-linked N-acetylglucosamine (O-GlcNAc) modification partially due to inflammatory stimulation. Hyperglycosylation activated glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme in the pentose phosphate pathway, resulting in an upregulation of NADPH/NADP+ and GSH/GSSG couples and enhancement of redox homeostasis in the heart. Pharmacological suppression of O-GlcNAcylation totally abolished the influence of HA on the G6PDH activity, redox balance and post-I/R damage in the hearts and cultured cardiomyocytes, whereby augmentation of O-GlcNAcylation further enhanced the benefits, suggesting a central role of O-GlcNAcylation in HA-initiated antioxidative and cardioprotective effects. These findings, therefore, identified HA as a promising anti-I/R strategy for the heart and proposed O-GlcNAc modification of G6PDH as a therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- Wei Ou
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Department of Anesthesiology, Nanchong Central Hospital, Nanchong, 637000, China
| | - Yu Liang
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yu Qin
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wei Wu
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Maodi Xie
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yabing Zhang
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yarong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liwei Ji
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Yang Y, Jiang K, Liu X, Qin M, Xiang Y. CaMKII in Regulation of Cell Death During Myocardial Reperfusion Injury. Front Mol Biosci 2021; 8:668129. [PMID: 34141722 PMCID: PMC8204011 DOI: 10.3389/fmolb.2021.668129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. In spite of the mature managements of myocardial infarction (MI), post-MI reperfusion (I/R) injury results in high morbidity and mortality. Cardiomyocyte Ca2+ overload is a major factor of I/R injury, initiating a cascade of events contributing to cardiomyocyte death and myocardial dysfunction. Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in cardiomyocyte death response to I/R injury, whose activation is a key feature of myocardial I/R in causing intracellular mitochondrial swelling, endoplasmic reticulum (ER) Ca2+ leakage, abnormal myofilament contraction, and other adverse reactions. CaMKII is a multifunctional serine/threonine protein kinase, and CaMKIIδ, the dominant subtype in heart, has been widely studied in the activation, location, and related pathways of cardiomyocytes death, which has been considered as a potential targets for pharmacological inhibition. In this review, we summarize a brief overview of CaMKII with various posttranslational modifications and its properties in myocardial I/R injury. We focus on the molecular mechanism of CaMKII involved in regulation of cell death induced by myocardial I/R including necroptosis and pyroptosis of cardiomyocyte. Finally, we highlight that targeting CaMKII modifications and cell death involved pathways may provide new insights to understand the conversion of cardiomyocyte fate in the setting of myocardial I/R injury.
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
27
|
Moiz B, Garcia J, Basehore S, Sun A, Li A, Padmanabhan S, Albus K, Jang C, Sriram G, Clyne AM. 13C Metabolic Flux Analysis Indicates Endothelial Cells Attenuate Metabolic Perturbations by Modulating TCA Activity. Metabolites 2021; 11:metabo11040226. [PMID: 33917224 PMCID: PMC8068087 DOI: 10.3390/metabo11040226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Disrupted endothelial metabolism is linked to endothelial dysfunction and cardiovascular disease. Targeted metabolic inhibitors are potential therapeutics; however, their systemic impact on endothelial metabolism remains unknown. In this study, we combined stable isotope labeling with 13C metabolic flux analysis (13C MFA) to determine how targeted inhibition of the polyol (fidarestat), pentose phosphate (DHEA), and hexosamine biosynthetic (azaserine) pathways alters endothelial metabolism. Glucose, glutamine, and a four-carbon input to the malate shuttle were important carbon sources in the baseline human umbilical vein endothelial cell (HUVEC) 13C MFA model. We observed two to three times higher glutamine uptake in fidarestat and azaserine-treated cells. Fidarestat and DHEA-treated HUVEC showed decreased 13C enrichment of glycolytic and TCA metabolites and amino acids. Azaserine-treated HUVEC primarily showed 13C enrichment differences in UDP-GlcNAc. 13C MFA estimated decreased pentose phosphate pathway flux and increased TCA activity with reversed malate shuttle direction in fidarestat and DHEA-treated HUVEC. In contrast, 13C MFA estimated increases in both pentose phosphate pathway and TCA activity in azaserine-treated cells. These data show the potential importance of endothelial malate shuttle activity and suggest that inhibiting glycolytic side branch pathways can change the metabolic network, highlighting the need to study systemic metabolic therapeutic effects.
Collapse
Affiliation(s)
- Bilal Moiz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Jonathan Garcia
- School of Bioengineering, Science, and Heath Systems, Drexel University, Philadelphia, PA 19104, USA; (J.G.); (S.B.)
| | - Sarah Basehore
- School of Bioengineering, Science, and Heath Systems, Drexel University, Philadelphia, PA 19104, USA; (J.G.); (S.B.)
| | - Angela Sun
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Andrew Li
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Surya Padmanabhan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Kaitlyn Albus
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA;
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA;
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (B.M.); (A.S.); (A.L.); (S.P.); (K.A.)
- Correspondence: ; Tel.: +1-301-405-9806
| |
Collapse
|
28
|
Wang Z, Li X, Spasojevic I, Lu L, Shen Y, Qu X, Hoffmann U, Warner DS, Paschen W, Sheng H, Yang W. Increasing O-GlcNAcylation is neuroprotective in young and aged brains after ischemic stroke. Exp Neurol 2021; 339:113646. [PMID: 33600817 DOI: 10.1016/j.expneurol.2021.113646] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Spliced X-box binding protein-1 (XBP1s) together with the hexosamine biosynthetic pathway (HBP) and O-GlcNAcylation forms the XBP1s/HBP/O-GlcNAc axis. Our previous studies have provided evidence that activation of this axis is neuroprotective after ischemic stroke and critically, ischemia-induced O-GlcNAcylation is impaired in the aged brain. However, the XBP1s' neuroprotective role and its link to O-GlcNAcylation in stroke, as well as the therapeutic potential of targeting this axis in stroke, have not been well established. Moreover, the mechanisms underlying this age-related impairment of O-GlcNAcylation induction after brain ischemia remain completely unknown. In this study, using transient ischemic stroke models, we first demonstrated that neuron-specific overexpression of Xbp1s improved outcome, and pharmacologically boosting O-GlcNAcylation with thiamet-G reversed worse outcome observed in neuron-specific Xbp1 knockout mice. We further showed that thiamet-G treatment improved long-term functional recovery in both young and aged animals after transient ischemic stroke. Mechanistically, using an analytic approach developed here, we discovered that availability of UDP-GlcNAc was compromised in the aged brain, which may constitute a novel mechanism responsible for the impaired O-GlcNAcylation activation in the aged brain after ischemia. Finally, based on this new mechanistic finding, we evaluated and confirmed the therapeutic effects of glucosamine treatment in young and aged animals using both transient and permanent stroke models. Our data together support that increasing O-GlcNAcylation is a promising strategy in stroke therapy.
Collapse
Affiliation(s)
- Zhuoran Wang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xuan Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ivan Spasojevic
- Department of Medicine - Oncology, Duke University Medical Center, Durham, NC, USA; PK/PD Core Laboratory, Duke Cancer Institute, Duke School of Medicine, Durham, NC, USA
| | - Liping Lu
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yuntian Shen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xingguang Qu
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ulrike Hoffmann
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - David S Warner
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wulf Paschen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Huaxin Sheng
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
29
|
Prakoso D, Lim SY, Erickson JR, Wallace RS, Lees JG, Tate M, Kiriazis H, Donner DG, Henstridge DC, Davey JR, Qian H, Deo M, Parry LJ, Davidoff AJ, Gregorevic P, Chatham JC, De Blasio MJ, Ritchie RH. Fine-tuning the cardiac O-GlcNAcylation regulatory enzymes governs the functional and structural phenotype of the diabetic heart. Cardiovasc Res 2021; 118:212-225. [PMID: 33576380 DOI: 10.1093/cvr/cvab043] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS The glucose-driven enzymatic modification of myocardial proteins by the sugar moiety, β-N-acetylglucosamine (O-GlcNAc), is increased in pre-clinical models of diabetes, implicating protein O-GlcNAc modification in diabetes-induced heart failure. Our aim was to specifically examine cardiac manipulation of the two regulatory enzymes of this process on the cardiac phenotype, in the presence and absence of diabetes, utilising cardiac-targeted recombinant-adeno-associated viral-vector-6 (rAAV6)-mediated gene delivery. METHODS AND RESULTS In human myocardium, total protein O-GlcNAc modification was elevated in diabetic relative to non-diabetic patients, and correlated with left ventricular (LV) dysfunction. The impact of rAAV6-delivered O-GlcNAc transferase (rAAV6-OGT, facilitating protein O-GlcNAcylation), O-GlcNAcase (rAAV6-OGA, facilitating de-O-GlcNAcylation) and empty vector (null) were determined in non-diabetic and diabetic mice. In non-diabetic mice, rAAV6-OGT was sufficient to impair LV diastolic function and induce maladaptive cardiac remodelling, including cardiac fibrosis and increased Myh-7 and Nppa pro-hypertrophic gene expression, recapitulating characteristics of diabetic cardiomyopathy. In contrast, rAAV6-OGA (but not rAAV6-OGT) rescued LV diastolic function and adverse cardiac remodelling in diabetic mice. Molecular insights implicated impaired cardiac PI3K(p110α)-Akt signalling as a potential contributing mechanism to the detrimental consequences of rAAV6-OGT in vivo. In contrast, rAAV6-OGA preserved PI3K(p110α)-Akt signalling in diabetic mouse myocardium in vivo and prevented high glucose-induced impairments in mitochondrial respiration in human cardiomyocytes in vitro. CONCLUSION Maladaptive protein O-GlcNAc modification is evident in human diabetic myocardium, and is a critical regulator of the diabetic heart phenotype. Selective targeting of cardiac protein O-GlcNAcylation to restore physiological O-GlcNAc balance may represent a novel therapeutic approach for diabetes-induced heart failure. TRANSLATIONAL PERSPECTIVE There remains a lack of effective clinical management of diabetes-induced cardiac dysfunction, even via conventional intensive glucose-lowering approaches. Here we reveal that the modification of myocardial proteins by O-GlcNAc, a glucose-driven process, is not only increased in human diabetic myocardium, but correlates with reduced cardiac function in affected patients. Moreover, manipulation of the two regulatory enzymes of this process exert opposing influences on the heart, whereby increasing O-GlcNAc transferase (OGT) is sufficient to replicate the cardiac phenotype of diabetes (in the absence of this disease), while increasing O-GlcNAc-ase (OGA) rescues diabetes-induced impairments in both cardiac dysfunction and remodelling. Cardiac O-GlcNAcylation thus represents a novel therapeutic target for diabetes-induced heart failure.
Collapse
Affiliation(s)
- Darnel Prakoso
- School of Biosciences, Parkville, Victoria, Australia, 3010.,Centre for Muscle Research, Dept of Physiology, The University of Melbourne, Parkville, Victoria, Australia, 3010.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia, 3052
| | - Shiang Y Lim
- O'Brien Institute Dept, St Vincent Institute of Medical Research, Fitzroy, Victoria, Australia, 3065
| | - Jeffrey R Erickson
- Dept of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand, 9054
| | - Rachel S Wallace
- Dept of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand, 9054
| | - Jarmon G Lees
- O'Brien Institute Dept, St Vincent Institute of Medical Research, Fitzroy, Victoria, Australia, 3065
| | - Mitchel Tate
- School of Biosciences, Parkville, Victoria, Australia, 3010.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia, 3052
| | - Helen Kiriazis
- School of Biosciences, Parkville, Victoria, Australia, 3010
| | | | - Darren C Henstridge
- School of Biosciences, Parkville, Victoria, Australia, 3010.,College of Health and Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia, 7250
| | - Jonathan R Davey
- Centre for Muscle Research, Dept of Physiology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Hongwei Qian
- Centre for Muscle Research, Dept of Physiology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Minh Deo
- School of Biosciences, Parkville, Victoria, Australia, 3010.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia, 3052
| | - Laura J Parry
- Centre for Muscle Research, Dept of Physiology, The University of Melbourne, Parkville, Victoria, Australia, 3010
| | - Amy J Davidoff
- Dept of Biomedical Sciences, University of New England, Biddeford, Maine, USA, 04005
| | - Paul Gregorevic
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia, 3004.,Centre for Muscle Research, Dept of Physiology, The University of Melbourne, Parkville, Victoria, Australia, 3010.,Depts of Biochemistry and Molecular Biology, Clayton, Victoria, Australia, 3800.,Dept of Neurology, The University of Washington, Seattle, Washington, USA, 98195
| | - John C Chatham
- Dept of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA 35924
| | - Miles J De Blasio
- School of Biosciences, Parkville, Victoria, Australia, 3010.,Centre for Muscle Research, Dept of Physiology, The University of Melbourne, Parkville, Victoria, Australia, 3010.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia, 3052.,Pharmacology, Monash University, Clayton, Victoria, Australia, 3800
| | - Rebecca H Ritchie
- School of Biosciences, Parkville, Victoria, Australia, 3010.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia, 3052.,Pharmacology, Monash University, Clayton, Victoria, Australia, 3800
| |
Collapse
|
30
|
Brainard RE, Facundo HT. Cardiac hypertrophy drives PGC-1α suppression associated with enhanced O-glycosylation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166080. [PMID: 33486096 DOI: 10.1016/j.bbadis.2021.166080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
The peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) regulates metabolism and is essential for normal cardiac function. Its activity is suppressed during pressure overload induced cardiac hypertrophy and such suppression at least partially contributes to the associated morbidity. The O-linked β-N-acetylglucosamine post-translational modification (O-GlcNAc) of proteins is a glucose-derived metabolic signal. The relationship between O-GlcNAc, and PGC-1α activity in cardiac hypertrophy is unknown. We hypothesized that hypertrophy-induced suppression of PGC-1α was at least partially regulated by O-GlcNAc signaling. Treatment of neonatal rat cardiac myocytes with phenylephrine (an inducer of cardiomyocyte hypertrophy) significantly enhanced global O-GlcNAc signaling. Quantitative real-time PCR analysis revealed a downregulation of PGC-1α with concomitant suppression of fatty acid oxidation/mitochondrial genes. Transverse aortic constriction in mice decreased the basal expression of PGC-1α and its downstream genes. Reduction of O-GlcNAc signaling alleviated suppression of PGC-1α and most of its downstream genes. Interestingly, augmentation of O-GlcNAc signaling with glucosamine or PUGNAC (a O-GlcNAcase inhibitor) reduced glucose starvation-induced PGC-1α upregulation even in the absence of hypertrophy. Finally, we found that PGC-1α itself is O-GlcNAcylated. Together, these results reveal the recruitment of O-GlcNAc signaling as a potentially novel regulator of PGC-1α activity during cardiac hypertrophy. Furthermore, O-GlcNAc signaling may mediate constitutive suppression of PGC-1α activity in the heart. Such findings illuminate new possibilities regarding the inter-regulation of O-GlcNAc signaling and also may have some implications for metabolic dysregulation during cardiac diseases.
Collapse
Affiliation(s)
- Robert E Brainard
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Heberty T Facundo
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
31
|
Yin X, Li J, Chen S, Wu Y, She Z, Liu L, Wang Y, Gao Z. An Economical High-Throughput "FP-Tag" Assay for Screening Glycosyltransferase Inhibitors*. Chembiochem 2021; 22:1391-1395. [PMID: 33259119 DOI: 10.1002/cbic.202000746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/29/2020] [Indexed: 11/10/2022]
Abstract
O-GlcNAc transferase (OGT) is involved in many cellular processes, and selective OGT inhibitors are valuable tools to investigate O-GlcNAcylation functions, and could potentially lead to therapeutics. However, high-throughput OGT assays that are suitable for large-scale HTS and can identify inhibitors targeting both acceptor, donor sites, and allosteric binding-sites are still lacking. Here, we report the development of a high-throughput "FP-Tag" OGT assay with bovine serum albumin (BSA) as a low-cost and superior "FP-Tag". With this assay, 2-methyleurotinone was identified as a low-micromolar OGT inhibitor. This type of assay with BSA as "FP-Tag" would find more applications with other glycosyltransferases.
Collapse
Affiliation(s)
- Xinjian Yin
- School of Marine Science, Sun Yat-sen University, 519080, Zhuhai, P. R. China
| | - Jiaxin Li
- School of Marine Science, Sun Yat-sen University, 519080, Zhuhai, P. R. China
| | - Senhua Chen
- School of Marine Science, Sun Yat-sen University, 519080, Zhuhai, P. R. China
| | - Yuping Wu
- School of Marine Science, Sun Yat-sen University, 519080, Zhuhai, P. R. China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, 519275, Guangzhou, P. R. China
| | - Lan Liu
- School of Marine Science, Sun Yat-sen University, 519080, Zhuhai, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519080, Zhuhai, P. R. China
| | - Yue Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd No. 38, 100191, Beijing, P. R. China
| | - Zhizeng Gao
- School of Marine Science, Sun Yat-sen University, 519080, Zhuhai, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519080, Zhuhai, P. R. China
| |
Collapse
|
32
|
Dassanayaka S, Brittian KR, Long BW, Higgins LA, Bradley JA, Audam TN, Jurkovic A, Gumpert AM, Harrison LT, Hartyánszky I, Perge P, Merkely B, Radovits T, Hanover JA, Jones SP. Cardiomyocyte Oga haploinsufficiency increases O-GlcNAcylation but hastens ventricular dysfunction following myocardial infarction. PLoS One 2020; 15:e0242250. [PMID: 33253217 PMCID: PMC7703924 DOI: 10.1371/journal.pone.0242250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/29/2020] [Indexed: 01/02/2023] Open
Abstract
Rationale The beta-O-linkage of N-acetylglucosamine (i.e., O-GlcNAc) to proteins is a pro-adaptive response to cellular insults. To this end, increased protein O-GlcNAcylation improves short-term survival of cardiomyocytes subjected to acute injury. This observation has been repeated by multiple groups and in multiple models; however, whether increased protein O-GlcNAcylation plays a beneficial role in more chronic settings remains an open question. Objective Here, we queried whether increasing levels of cardiac protein O-GlcNAcylation would be beneficial during infarct-induced heart failure. Methods and results To achieve increased protein O-GlcNAcylation, we targeted Oga, the gene responsible for removing O-GlcNAc from proteins. Here, we generated mice with cardiomyocyte-restricted, tamoxifen-inducible haploinsufficient Oga gene. In the absence of infarction, we observed a slight reduction in ejection fraction in Oga deficient mice. Overall, Oga reduction had no major impact on ventricular function. In additional cohorts, mice of both sexes and both genotypes were subjected to infarct-induced heart failure and followed for up to four weeks, during which time cardiac function was assessed via echocardiography. Contrary to our prediction, the Oga deficient mice exhibited exacerbated—not improved—cardiac function at one week following infarction. When the observation was extended to 4 wk post-MI, this acute exacerbation was lost. Conclusions The present findings, coupled with our previous work, suggest that altering the ability of cardiomyocytes to either add or remove O-GlcNAc modifications to proteins exacerbates early infarct-induced heart failure. We speculate that more nuanced approaches to regulating O-GlcNAcylation are needed to understand its role—and, in particular, the possibility of cycling, in the pathophysiology of the failing heart.
Collapse
Affiliation(s)
- Sujith Dassanayaka
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Kenneth R. Brittian
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Bethany W. Long
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Lauren A. Higgins
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - James A. Bradley
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Timothy N. Audam
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Andrea Jurkovic
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Anna M. Gumpert
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - Linda T. Harrison
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
| | - István Hartyánszky
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary, United states of America
| | - Péter Perge
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary, United states of America
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary, United states of America
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary, United states of America
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, NIH-NIDDK, Bethesda, MD, United states of America
| | - Steven P. Jones
- Department of Medicine, University of Louisville, Louisville, KY, United states of America
- * E-mail:
| |
Collapse
|
33
|
Alhayaza R, Haque E, Karbasiafshar C, Sellke FW, Abid MR. The Relationship Between Reactive Oxygen Species and Endothelial Cell Metabolism. Front Chem 2020; 8:592688. [PMID: 33330380 PMCID: PMC7732658 DOI: 10.3389/fchem.2020.592688] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) has been the leading cause of death for many decades, highlighting the importance of new research and treatments in the field. The role of hypoxia and subsequent free radical production [reactive oxygen species (ROS)] have become an area of particular interest in CVD. Interestingly, our laboratory and other laboratories have recently reported positive roles of subcellular ROS in modulating endothelial cell (EC) metabolism, proliferation, and angiogenesis. This bidirectional relationship between ROS and EC metabolism, as well as functional changes, continues to be an area of active research. Interestingly, ECs have been shown to rely on anaerobic processes for ATP generation, despite their direct access to oxygen. This paradox has proven to be beneficial as the major reliance on glycolysis produces ATP faster, preserves oxygen, and results in reduced ROS levels in contrast to oxidative phosphorylation. This review will address the relationship between ROS and carbohydrate, lipid, and nitrogen metabolism in ECs, and their effects on EC phenotype such as sprouting angiogenesis.
Collapse
Affiliation(s)
- Raid Alhayaza
- Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Emaan Haque
- Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Catherine Karbasiafshar
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| |
Collapse
|
34
|
Miura M, Hasegawa T, Matsumoto A, Nishiyama M, Someya Y, Satoh W, Kumasaka K, Shindoh C, Sato H. Effect of transient elevation of glucose on contractile properties in non-diabetic rat cardiac muscle. Heart Vessels 2020; 36:568-576. [PMID: 33226494 DOI: 10.1007/s00380-020-01726-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
In non-diabetic patients with severe disease, such as acute myocardial infarction or acute heart failure, admission blood glucose level is associated with their short-term and long-term mortality. We examined whether transient elevation of glucose affects contractile properties in non-diabetic hearts. Force, intracellular Ca2+ ([Ca2+]i), and sarcomere length were measured in trabeculae from rat hearts. To assess contractile properties, maximum velocity of contraction (Max dF/dt) and minimum velocity of relaxation (Min dF/dt) were calculated. The ratio of phosphorylated troponin I (P-TnI) to troponin I (TnI) was measured. One hour after elevation of glucose from 150 to 400 mg/dL, developed force, Max dF/dt, and Min dF/dt were reduced without changes in [Ca2+]i transients at 2.5 Hz stimulation and 2.0 mM [Ca2+]o, while developed force and [Ca2+]i transients showed no changes at 0.5 Hz stimulation and 0.7 mM [Ca2+]o. In the presence of 1 μM KN-93, a Ca2+/calmodulin-dependent protein kinaseII (CaMKII) inhibitor, or 50 μM diazo-5-oxonorleucine, a L-glutamine-D-fructose-6-phosphate amidotransferase inhibitor, the reduction of contractile properties after elevation of glucose was suppressed. Furthermore, 1 h after elevation of glucose to 400 mg/dL at 2.0 mM [Ca2+]o, the ratio of P-TnI to TnI was increased. These results suggest that in non-diabetic hearts under higher Ca2+-load, transient elevation of glucose for 1 h reduces contractile properties probably by activating CaMKII through O-GlcNAcylation. Thus, in the patients with severe disease, transient elevation of blood glucose, such as due to stress, may worsen cardiac function and thereby affect their mortality without known diabetes.
Collapse
Affiliation(s)
- Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Taiki Hasegawa
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ayana Matsumoto
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masami Nishiyama
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yuka Someya
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Wakako Satoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kazunori Kumasaka
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Chiyohiko Shindoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Haruka Sato
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
35
|
Prisco SZ, Rose L, Potus F, Tian L, Wu D, Hartweck L, Al-Qazazi R, Neuber-Hess M, Eklund M, Hsu S, Thenappan T, Archer SL, Prins KW. Excess Protein O-GlcNAcylation Links Metabolic Derangements to Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:E7278. [PMID: 33019763 PMCID: PMC7582480 DOI: 10.3390/ijms21197278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The hexosamine biosynthetic pathway (HBP) converts glucose to uridine-diphosphate-N-acetylglucosamine, which, when added to serines or threonines, modulates protein function through protein O-GlcNAcylation. Glutamine-fructose-6-phosphate amidotransferase (GFAT) regulates HBP flux, and AMP-kinase phosphorylation of GFAT blunts GFAT activity and O-GlcNAcylation. While numerous studies demonstrate increased right ventricle (RV) glucose uptake in pulmonary arterial hypertension (PAH), the relationship between O-GlcNAcylation and RV function in PAH is unexplored. Therefore, we examined how colchicine-mediated AMP-kinase activation altered HBP intermediates, O-GlcNAcylation, mitochondrial function, and RV function in pulmonary artery-banded (PAB) and monocrotaline (MCT) rats. AMPK activation induced GFAT phosphorylation and reduced HBP intermediates and O-GlcNAcylation in MCT but not PAB rats. Reduced O-GlcNAcylation partially restored the RV metabolic signature and improved RV function in MCT rats. Proteomics revealed elevated expression of O-GlcNAcylated mitochondrial proteins in MCT RVs, which fractionation studies corroborated. Seahorse micropolarimetry analysis of H9c2 cardiomyocytes demonstrated colchicine improved mitochondrial function and reduced O-GlcNAcylation. Presence of diabetes in PAH, a condition of excess O-GlcNAcylation, reduced RV contractility when compared to nondiabetics. Furthermore, there was an inverse relationship between RV contractility and HgbA1C. Finally, RV biopsy specimens from PAH patients displayed increased O-GlcNAcylation. Thus, excess O-GlcNAcylation may contribute to metabolic derangements and RV dysfunction in PAH.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Acylation
- Adult
- Aged
- Animals
- Cell Line
- Cohort Studies
- Colchicine/pharmacology
- Diabetes Mellitus/diagnostic imaging
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/physiopathology
- Disease Models, Animal
- Echocardiography
- Gene Expression Regulation
- Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics
- Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism
- Hexosamines/metabolism
- Humans
- Hypertrophy, Right Ventricular/diagnostic imaging
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Male
- Metabolome
- Middle Aged
- Mitochondria/drug effects
- Mitochondria/metabolism
- Monocrotaline/administration & dosage
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Protein Processing, Post-Translational
- Rats
- Rats, Sprague-Dawley
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/physiopathology
Collapse
Affiliation(s)
- Sasha Z. Prisco
- Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (S.Z.P.); (L.R.); (L.H.); (M.E.); (T.T.)
| | - Lauren Rose
- Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (S.Z.P.); (L.R.); (L.H.); (M.E.); (T.T.)
| | - Francois Potus
- Department of Medicine, Queen’s University, Kingston, ON K7L3N6, Canada; (F.P.); (L.T.); (D.W.); (R.A.-Q.); (M.N.-H.); (S.L.A.)
| | - Lian Tian
- Department of Medicine, Queen’s University, Kingston, ON K7L3N6, Canada; (F.P.); (L.T.); (D.W.); (R.A.-Q.); (M.N.-H.); (S.L.A.)
| | - Danchen Wu
- Department of Medicine, Queen’s University, Kingston, ON K7L3N6, Canada; (F.P.); (L.T.); (D.W.); (R.A.-Q.); (M.N.-H.); (S.L.A.)
| | - Lynn Hartweck
- Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (S.Z.P.); (L.R.); (L.H.); (M.E.); (T.T.)
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON K7L3N6, Canada; (F.P.); (L.T.); (D.W.); (R.A.-Q.); (M.N.-H.); (S.L.A.)
| | - Monica Neuber-Hess
- Department of Medicine, Queen’s University, Kingston, ON K7L3N6, Canada; (F.P.); (L.T.); (D.W.); (R.A.-Q.); (M.N.-H.); (S.L.A.)
| | - Megan Eklund
- Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (S.Z.P.); (L.R.); (L.H.); (M.E.); (T.T.)
| | - Steven Hsu
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Thenappan Thenappan
- Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (S.Z.P.); (L.R.); (L.H.); (M.E.); (T.T.)
| | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, ON K7L3N6, Canada; (F.P.); (L.T.); (D.W.); (R.A.-Q.); (M.N.-H.); (S.L.A.)
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (S.Z.P.); (L.R.); (L.H.); (M.E.); (T.T.)
| |
Collapse
|
36
|
Schnelle M, Chong M, Zoccarato A, Elkenani M, Sawyer GJ, Hasenfuss G, Ludwig C, Shah AM. In vivo [U- 13C]glucose labeling to assess heart metabolism in murine models of pressure and volume overload. Am J Physiol Heart Circ Physiol 2020; 319:H422-H431. [PMID: 32648823 PMCID: PMC7473922 DOI: 10.1152/ajpheart.00219.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alterations in the metabolism of substrates such as glucose are integrally linked to the structural and functional changes that occur in the remodeling heart. Assessment of such metabolic changes under in vivo conditions would provide important insights into this interrelationship. We aimed to investigate glucose carbon metabolism in pressure-overload and volume-overload cardiac hypertrophy by using an in vivo [U-13C]glucose labeling strategy to enable analyses of the metabolic fates of glucose carbons in the mouse heart. Therefore, [U-13C]glucose was administered in anesthetized mice by tail vein infusion, and the optimal duration of infusion was established. Hearts were then excised for 13C metabolite isotopomer analysis by NMR spectroscopy. [U-13C]glucose infusions were performed in mice 2 wk following transverse aortic constriction (TAC) or aortocaval fistula (Shunt) surgery. At this time point, there were similar increases in left ventricular (LV) mass in both groups, but TAC resulted in concentric hypertrophy with impaired LV function, whereas Shunt caused eccentric hypertrophy with preserved LV function. TAC was accompanied by significant changes in glycolysis, mitochondrial oxidative metabolism, glucose metabolism to anaplerotic substrates, and de novo glutamine synthesis. In contrast to TAC, hardly any metabolic changes could be observed in the Shunt group. Taken together, in vivo [U-13C]glucose labeling is a valuable method to investigate the fate of nutrients such as glucose in the remodeling heart. We find that concentric and eccentric cardiac remodeling are accompanied by distinct differences in glucose carbon metabolism. NEW & NOTEWORTHY This study implemented a method for assessing the fate of glucose carbons in the heart in vivo and used this to demonstrate that pressure and volume overload are associated with distinct changes. In contrast to volume overload, pressure overload-induced changes affect the tricarboxylic acid cycle, glycolytic pathways, and glutamine synthesis. A better understanding of cardiac glucose metabolism under pathological conditions in vivo may provide new therapeutic strategies specific for different types of hemodynamic overload. Listen to this article’s corresponding podcast at: https://ajpheart.podbean.com/e/u-13c-glucose-and-in-vivo-heart-metabolism/.
Collapse
Affiliation(s)
- Moritz Schnelle
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.,Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany.,Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Goettingen, Goettingen, Germany
| | - Mei Chong
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Anna Zoccarato
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Manar Elkenani
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.,Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Goettingen, Goettingen, Germany
| | - Greta Jane Sawyer
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Goettingen, Goettingen, Germany
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| |
Collapse
|
37
|
Abstract
Endothelial cell (EC) metabolism is important for health and disease. Metabolic pathways, such as glycolysis, fatty acid oxidation, and amino acid metabolism, determine vasculature formation. These metabolic pathways have different roles in securing the production of energy and biomass and the maintenance of redox homeostasis in vascular migratory tip cells, proliferating stalk cells, and quiescent phalanx cells, respectively. Emerging evidence demonstrates that perturbation of EC metabolism results in EC dysfunction and vascular pathologies. Here, we summarize recent insights into EC metabolic pathways and their deregulation in vascular diseases. We further discuss the therapeutic implications of targeting EC metabolism in various pathologies.
Collapse
Affiliation(s)
- Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; ,
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; ,
| | - Peter Carmeliet
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; , .,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven B-3000, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven B-3000, Belgium
| |
Collapse
|
38
|
Miura M, Handoh T, Taguchi Y, Hasegawa T, Takahashi Y, Morita N, Matsumoto A, Shindoh C, Sato H. Transient Elevation of Glucose Increases Arrhythmia Susceptibility in Non-Diabetic Rat Trabeculae With Non-Uniform Contraction. Circ J 2020; 84:551-558. [PMID: 32092718 DOI: 10.1253/circj.cj-19-0715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND In non-diabetic patients with acute coronary syndrome, stress hyperglycemia occasionally occurs and is related to their mortality. Whether transient elevation of glucose affects arrhythmia susceptibility in non-diabetic hearts with non-uniform contraction was examined. METHODS AND RESULTS Force, intracellular Ca2+([Ca2+]i), and membrane potential were measured in trabeculae from rat hearts. Non-uniform contraction was produced by a jet of paralyzing solution. Ca2+waves and arrhythmias were induced by electrical stimulation (2.0 mmol/L [Ca2+]o). The activity of Ca2+/calmodulin-dependent protein kinaseII (CaMKII) was measured. An elevation of glucose from 150 to 400 mg/dL increased the velocity of Ca2+waves and the number of spontaneous action potentials triggered by electrical stimulation. Besides, the elevation of glucose increased the CaMKII activity. In the presence of 1 μmol/L KN-93, the elevation of glucose did not increase the velocity of Ca2+waves and the number of triggered action potentials. In addition, in the presence of 1 μmol/L autocamtide-2 related inhibitory peptide or 50 μmol/L diazo-5-oxonorleucine, the elevation of glucose did not increase the number of triggered action potentials. Furthermore, the elevation of glucose by adding L-glucose did not increase their number. CONCLUSIONS In non-diabetic hearts with non-uniform contraction, transient elevation of glucose increases the velocity of Ca2+waves by activating CaMKII,probably through glycosylation with O-linked β-N-acetylglucosamine, thereby increasing arrhythmia susceptibility.
Collapse
Affiliation(s)
- Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Tetsuya Handoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Yuhto Taguchi
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Taiki Hasegawa
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Yui Takahashi
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Natsuki Morita
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Ayana Matsumoto
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Chiyohiko Shindoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Haruka Sato
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| |
Collapse
|
39
|
Sindi HA, Russomanno G, Satta S, Abdul-Salam VB, Jo KB, Qazi-Chaudhry B, Ainscough AJ, Szulcek R, Jan Bogaard H, Morgan CC, Pullamsetti SS, Alzaydi MM, Rhodes CJ, Piva R, Eichstaedt CA, Grünig E, Wilkins MR, Wojciak-Stothard B. Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nat Commun 2020; 11:1185. [PMID: 32132543 PMCID: PMC7055281 DOI: 10.1038/s41467-020-14966-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disorder of lung vasculature that causes right heart failure. Homoeostatic effects of flow-activated transcription factor Krüppel-like factor 2 (KLF2) are compromised in PAH. Here, we show that KLF2-induced exosomal microRNAs, miR-181a-5p and miR-324-5p act together to attenuate pulmonary vascular remodelling and that their actions are mediated by Notch4 and ETS1 and other key regulators of vascular homoeostasis. Expressions of KLF2, miR-181a-5p and miR-324-5p are reduced, while levels of their target genes are elevated in pre-clinical PAH, idiopathic PAH and heritable PAH with missense p.H288Y KLF2 mutation. Therapeutic supplementation of miR-181a-5p and miR-324-5p reduces proliferative and angiogenic responses in patient-derived cells and attenuates disease progression in PAH mice. This study shows that reduced KLF2 signalling is a common feature of human PAH and highlights the potential therapeutic role of KLF2-regulated exosomal miRNAs in PAH and other diseases associated with vascular remodelling.
Collapse
Affiliation(s)
- Hebah A. Sindi
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK ,University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| | - Giusy Russomanno
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Sandro Satta
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Vahitha B. Abdul-Salam
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Kyeong Beom Jo
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Basma Qazi-Chaudhry
- 0000 0001 2322 6764grid.13097.3cDepartment of Physics, King’s College London UK, London, UK
| | - Alexander J. Ainscough
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert Szulcek
- Amsterdam UMC, VU University Medical Center, Department of Pulmonary Diseases, Amsterdam Cardiovascular Sciences (ACS), Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Amsterdam UMC, VU University Medical Center, Department of Pulmonary Diseases, Amsterdam Cardiovascular Sciences (ACS), Amsterdam, The Netherlands
| | - Claire C. Morgan
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Soni S. Pullamsetti
- grid.452624.3Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany ,0000 0001 2165 8627grid.8664.cDepartment of Internal MedicineUniversities of Giessen and Marburg Lung Center (UGMLC), Member of the DZL, Justus Liebig University, Giessen, Germany
| | - Mai M. Alzaydi
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK ,0000 0000 8808 6435grid.452562.2National Center for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Christopher J. Rhodes
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Roberto Piva
- 0000 0001 2336 6580grid.7605.4Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Christina A. Eichstaedt
- grid.452624.3Centre for Pulmonary Hypertension, Thoraxclinic, Institute for Human Genetics, University of Heidelberg, Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany ,0000 0001 2190 4373grid.7700.0Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ekkehard Grünig
- grid.452624.3Centre for Pulmonary Hypertension, Thoraxclinic, Institute for Human Genetics, University of Heidelberg, Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martin R. Wilkins
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Beata Wojciak-Stothard
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
40
|
Pravata VM, Gundogdu M, Bartual SG, Ferenbach AT, Stavridis M, Õunap K, Pajusalu S, Žordania R, Wojcik MH, van Aalten DMF. A missense mutation in the catalytic domain of O-GlcNAc transferase links perturbations in protein O-GlcNAcylation to X-linked intellectual disability. FEBS Lett 2020; 594:717-727. [PMID: 31627256 PMCID: PMC7042088 DOI: 10.1002/1873-3468.13640] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/25/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023]
Abstract
X-linked intellectual disabilities (XLID) are common developmental disorders. The enzyme O-GlcNAc transferase encoded by OGT, a recently discovered XLID gene, attaches O-GlcNAc to nuclear and cytoplasmic proteins. As few missense mutations have been described, it is unclear what the aetiology of the patient phenotypes is. Here, we report the discovery of a missense mutation in the catalytic domain of OGT in an XLID patient. X-ray crystallography reveals that this variant leads to structural rearrangements in the catalytic domain. The mutation reduces in vitro OGT activity on substrate peptides/protein. Mouse embryonic stem cells carrying the mutation reveal reduced O-GlcNAcase (OGA) and global O-GlcNAc levels. These data suggest a direct link between changes in the O-GlcNAcome and intellectual disability observed in patients carrying OGT mutations.
Collapse
Affiliation(s)
- Veronica M. Pravata
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeUK
| | - Mehmet Gundogdu
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeUK
| | - Sergio G. Bartual
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeUK
| | - Andrew T. Ferenbach
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeUK
| | - Marios Stavridis
- Division of Cell and Developmental BiologySchool of Life SciencesUniversity of DundeeUK
| | - Katrin Õunap
- Department of Clinical Genetics, United LaboratoriesTartu University HospitalEstonia
- Department of Clinical GeneticsInstitute of Clinical MedicineUniversity of TartuEstonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United LaboratoriesTartu University HospitalEstonia
- Department of Clinical GeneticsInstitute of Clinical MedicineUniversity of TartuEstonia
| | - Riina Žordania
- Department of Clinical Genetics, United LaboratoriesTartu University HospitalEstonia
| | - Monica H. Wojcik
- Divisions of Newborn Medicine and Genetics and GenomicsDepartment of MedicineBoston Children’s HospitalHarvard Medical SchoolBostonMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
| | - Daan M. F. van Aalten
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
41
|
Yoon CK, Yoon SY, Hwang JS, Shin YJ. O-GlcNAc Signaling Augmentation Protects Human Corneal Endothelial Cells from Oxidative Stress via AKT Pathway Activation. Curr Eye Res 2020; 45:556-562. [PMID: 31920129 DOI: 10.1080/02713683.2019.1686154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Purpose: To investigate the effect of inhibitor of O-glycosylation on human corneal endothelial cells (HCECs) under oxidative stress.Methods: HCECs were cultured and treated with 10 mM tert-butyl hydroperoxide (tBHP) with or without PUGNAc, a known inhibitor of OGA. Cell viability was assessed. Mitochondrial membrane potential (ΔΨm) was measured. Intracellular Ca2+ levels and mitochondrial Ca2+ levels were measured. Intracellular reactive oxygen species formation was measured. Levels of O-linked β-N-acetylglucosamine (O-GlcNAc), AKT, and pAKT were evaluated by Western blotting.Results: O-GlcNAc augmentation by PUGNAc increased cell viability, attenuated the loss of ΔΨm, and intracellular ROS against tBHP-induced oxidative stress (p < .05). O-GlcNAc augmentation reduced tBHP-induced mitochondrial calcium overload (p < .05) while it did not have any effect on intracellular calcium overload with tBHP. Furthermore, AKT signaling was activated in the cells with O-GlcNAc augmentation.Conclusions: O-GlcNAc signaling augmentation protects HCECs from oxidative stress via activation of AKT pathways.
Collapse
Affiliation(s)
- Chang Ki Yoon
- Department of Ophthalmology, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sam Young Yoon
- Department of Ophthalmology, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
42
|
Augmented O-GlcNAcylation attenuates intermittent hypoxia-induced cardiac remodeling through the suppression of NFAT and NF-κB activities in mice. Hypertens Res 2019; 42:1858-1871. [PMID: 31409917 DOI: 10.1038/s41440-019-0311-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/04/2019] [Accepted: 07/03/2019] [Indexed: 11/08/2022]
Abstract
Type 2 diabetes mellitus (T2DM) has been reported to be associated with cardiac remodeling. Although O-GlcNAcylation is known to be elevated in diabetic and ischemic hearts, the effects of O-GlcNAcylation on cardiac remodeling induced by intermittent hypoxia (IH), such as sleep apnea syndrome (SAS), remain unknown. To evaluate the effects, we induced IH in wild-type (WT) and transgenic O-GlcNAc transferase (Ogt-Tg) mice. Two weeks of IH increased O-GlcNAcylation in the heart tissues of both strains of mice, whereas O-GlcNAcylation in Ogt-Tg mice was significantly higher than that in WT mice under both normoxic and IH conditions. WT mice exhibited cardiac remodeling after IH, whereas cardiac remodeling was significantly attenuated in Ogt-Tg mice. Oxidative stress and apoptosis increased after IH in both strains of mice, whereas the rate of increase in these processes in Ogt-Tg mice was significantly lower than that in WT mice. To examine the mechanism of cardiac remodeling attenuation in Ogt-Tg mice after IH, the effects of O-GlcNAcylation on the activities of the master regulators nuclear factor of activated T cells (NFAT) and NF-κB were determined. The O-GlcNAcylation of GSK-3β, a negative regulator of NFAT, was significantly increased in Ogt-Tg mice, whereas the phosphorylation of GSK-3β was reciprocally reduced. The same result was observed for NF-κB p65. An in vitro reporter assay showed that the augmentation of O-GlcNAcylation by an O-GlcNAcase inhibitor suppressed NFAT and NF-κB promoter activity. These data suggest that augmented O-GlcNAcylation mitigates IH-induced cardiac remodeling by suppressing NFAT and NF-κB activities through the O-GlcNAcylation of GSK-3β and NF-κB p65.
Collapse
|
43
|
Ni Z, Deng J, Potter CMF, Nowak WN, Gu W, Zhang Z, Chen T, Chen Q, Hu Y, Zhou B, Xu Q, Zhang L. Recipient c-Kit Lineage Cells Repopulate Smooth Muscle Cells of Transplant Arteriosclerosis in Mouse Models. Circ Res 2019; 125:223-241. [PMID: 31079549 PMCID: PMC6615935 DOI: 10.1161/circresaha.119.314855] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Transplantation-accelerated arteriosclerosis is one of the major challenges for long-term survival of patients with solid organ transplantation. Although stem/progenitor cells have been implicated to participate in this process, the cells of origin and underlying mechanisms have not been fully defined. Objective: The objective of our study was to investigate the role of c-Kit lineage cells in allograft-induced neointima formation and to explore the mechanisms underlying this process. Methods and Results: Using an inducible lineage tracing Kit-CreER;Rosa26-tdTomato mouse model, we observed that c-Kit is expressed in multiple cell types in the blood vessels, rather than a specific stem/progenitor cell marker. We performed allograft transplantation between different donor and recipient mice, as well as bone marrow transplantation experiments, demonstrating that recipient c-Kit+ cells repopulate neointimal smooth muscle cells (SMCs) and leukocytes, and contribute to neointima formation in an allograft transplantation model. c-Kit–derived SMCs originate from nonbone marrow tissues, whereas bone marrow-derived c-Kit+ cells mainly generate CD45+ leukocytes. However, the exact identity of c-Kit lineage cells contributing to neointimal SMCs remains unclear. ACK2 (anti-c-Kit antibody), which specifically binds and blocks c-Kit function, ameliorates allograft-induced arteriosclerosis. Stem cell factor and TGF (transforming growth factor)-β1 levels were significantly increased in blood and neointimal lesions after allograft transplantation, by which stem cell factor facilitated c-Kit+ cell migration through the stem cell factor/c-Kit axis and downstream activation of small GTPases, MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal–regulated kinase)/MLC (myosin light chain), and JNK (c-Jun N-terminal kinase)/c-Jun signaling pathways, whereas TGF-β1 induces c-Kit+ cell differentiation into SMCs via HK (hexokinase)-1–dependent metabolic reprogramming and a possible downstream O-GlcNAcylation of myocardin and serum response factor. Conclusions: Our findings provide evidence that recipient c-Kit lineage cells contribute to vascular remodeling in an allograft transplantation model, in which the stem cell factor/c-Kit axis is responsible for cell migration and HK-1–dependent metabolic reprogramming for SMC differentiation.
Collapse
Affiliation(s)
- Zhichao Ni
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Jiacheng Deng
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Claire M F Potter
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Witold N Nowak
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Wenduo Gu
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Ting Chen
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (T.C., Q.C., Q.X., L.Z.)
| | - Qishan Chen
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (T.C., Q.C., Q.X., L.Z.)
| | - Yanhua Hu
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, China (B.Z.)
| | - Qingbo Xu
- From the School of Cardiovascular Medicine and Sciences, King's College London, BHF Centre, United Kingdom (Z.N., J.D., C.M.F.P., W.N.N., W.G., Z.Z., Y.H., Q.X.).,Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (T.C., Q.C., Q.X., L.Z.)
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (T.C., Q.C., Q.X., L.Z.)
| |
Collapse
|
44
|
O-deGlcNAcylation is required for Entamoeba histolytica-induced HepG2 cell death. Microb Pathog 2018; 123:285-295. [DOI: 10.1016/j.micpath.2018.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022]
|
45
|
Huang L, Yuan P, Yu P, Kong Q, Xu Z, Yan X, Shen Y, Yang J, Wan R, Hong K, Tang Y, Hu J. O-GlcNAc-modified SNAP29 inhibits autophagy-mediated degradation via the disturbed SNAP29-STX17-VAMP8 complex and exacerbates myocardial injury in type I diabetic rats. Int J Mol Med 2018; 42:3278-3290. [PMID: 30221662 PMCID: PMC6202107 DOI: 10.3892/ijmm.2018.3866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) modification and autophagy are associated with diabetic myocardial injury, however, the molecular mechanisms between the two processes remain to be fully elucidated. The purpose of the present study was to elucidate the molecular regulation of autophagy by O-GlcNAc-modified synaptosomal-associated protein 29 (SNAP29) in diabetic myocardial injury. A rat model of type I diabetes was established via intraperitoneal injection of streptozotocin (STZ; 55 mg/kg). Significant increases in the O-GlcNAc modification and accumulation of the autophagy markers microtubule-associated protein 1 light chain 3α II/I and P62, which suggest that autophagic flux is inhibited, were observed in rats 8 weeks following STZ induction. Subsequently, the selective O-GlcNAcase inhibitor, thiamet G, increased the level of O-GlcNAc modification, which further disrupted autophagic flux; deteriorated cardiac diastolic function, as indicated by an increased left ventricular filling peak velocity/atrial contraction flow peak velocity ratio shown by echocardiography; and exacerbated myocardial abnormalities, as characterized by cardiomyocyte disorganization and fat and interstitial fibrosis accumulation. By contrast, 6-diazo-5-oxo-L-norleucine, an inhibitor of glucosamine fructose-6-phosphate aminotransferase isomerizing 1, acted as an O-GlcNAc antagonist and reduced the level of O-GlcNAc modification, which maintained autophagic flux and improved cardiac diastolic function. In vitro, high glucose (25 mM) was used to stimulate primary neonatal rat cardiomyocytes (NRCMs). Consistent with the myocardium of diabetic rats, it was also shown in the NRCMs that O-GlcNAc modification of SNAP29 negatively regulated autophagic flux. The application of the short hairpin RNA interference lysosome-associated membrane protein (LAMP2) and the autophagy inhibitor 3-methyladenine demonstrated that high glucose inhibited autophagy-mediated degradation rather than affected the initial stage of autophagy. Finally, co-immunoprecipitation was used to determine the role of the O-GlcNAc-modified substrate protein SNAP29, which acted as an SNAP29-syntaxin-17 (STX17)-vesicle-associated membrane protein 8 (VAMP8) complex during disease progression. The present study is the first, to the best of our knowledge, to demonstrate that SNAP29 is an O-GlcNAc substrate and that an increase in O-GlcNAc-modified SNAP29 inhibits SNAP29-STX17-VAMP8 complex formation, thereby inhibiting the degradation of autophagy and exacerbating myocardial injury in type I diabetic rats.
Collapse
Affiliation(s)
- Lin Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Yuan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Peng Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiling Kong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zixuan Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xia Yan
- The Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Shen
- The Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Juesheng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rong Wan
- The Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanhua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinzhu Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
46
|
Protein N-Glycosylation in Cardiovascular Diseases and Related Risk Factors. CURRENT CARDIOVASCULAR RISK REPORTS 2018. [DOI: 10.1007/s12170-018-0579-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Bi X, Zhang G, Wang X, Nguyen C, May HI, Li X, Al-Hashimi AA, Austin RC, Gillette TG, Fu G, Wang ZV, Hill JA. Endoplasmic Reticulum Chaperone GRP78 Protects Heart From Ischemia/Reperfusion Injury Through Akt Activation. Circ Res 2018; 122:1545-1554. [PMID: 29669712 DOI: 10.1161/circresaha.117.312641] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022]
Abstract
RATIONALE Restoration of coronary artery blood flow is the most effective means of ameliorating myocardial damage triggered by ischemic heart disease. However, coronary reperfusion elicits an increment of additional injury to the myocardium. Accumulating evidence indicates that the unfolded protein response (UPR) in cardiomyocytes is activated by ischemia/reperfusion (I/R) injury. Xbp1s (spliced X-box binding protein 1), the most highly conserved branch of the unfolded protein response, is protective in response to cardiac I/R injury. GRP78 (78 kDa glucose-regulated protein), a master regulator of the UPR and an Xbp1s target, is upregulated after I/R. However, its role in the protective response of Xbp1s during I/R remains largely undefined. OBJECTIVE To elucidate the role of GRP78 in the cardiomyocyte response to I/R using both in vitro and in vivo approaches. METHODS AND RESULTS Simulated I/R injury to cultured neonatal rat ventricular myocytes induced apoptotic cell death and strong activation of the UPR and GRP78. Overexpression of GRP78 in neonatal rat ventricular myocytes significantly protected myocytes from I/R-induced cell death. Furthermore, cardiomyocyte-specific overexpression of GRP78 ameliorated I/R damage to the heart in vivo. Exploration of underlying mechanisms revealed that GRP78 mitigates cellular damage by suppressing the accumulation of reactive oxygen species. We go on to show that the GRP78-mediated cytoprotective response involves plasma membrane translocation of GRP78 and interaction with PI3 kinase, culminating in stimulation of Akt. This response is required as inhibition of the Akt pathway significantly blunted the antioxidant activity and cardioprotective effects of GRP78. CONCLUSIONS I/R induction of GRP78 in cardiomyocytes stimulates Akt signaling and protects against oxidative stress, which together protect cells from I/R damage.
Collapse
Affiliation(s)
- Xukun Bi
- From the Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B., X.L., G.F.).,Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.).,University of Texas Southwestern Medical Center, Dallas; Department of Cardiology, Zhongnan Hospital of Wuhan University, Hubei, China (G.Z.)
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.).,Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, China (X.W.)
| | - Chau Nguyen
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Herman I May
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Xiaoting Li
- From the Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B., X.L., G.F.)
| | - Ali A Al-Hashimi
- Department of Medicine, Hamilton Center for Kidney Research, McMaster University and the Research Institute of St. Joseph's Healthcare Hamilton, ON, Canada (A.A.A.-H., R.C.A.)
| | - Richard C Austin
- Department of Medicine, Hamilton Center for Kidney Research, McMaster University and the Research Institute of St. Joseph's Healthcare Hamilton, ON, Canada (A.A.A.-H., R.C.A.)
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Guosheng Fu
- From the Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B., X.L., G.F.)
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.).,Department of Molecular Biology (J.A.H.)
| |
Collapse
|
48
|
Heldin P, Lin CY, Kolliopoulos C, Chen YH, Skandalis SS. Regulation of hyaluronan biosynthesis and clinical impact of excessive hyaluronan production. Matrix Biol 2018; 78-79:100-117. [PMID: 29374576 DOI: 10.1016/j.matbio.2018.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 10/25/2022]
Abstract
The tightly regulated biosynthesis and catabolism of the glycosaminoglycan hyaluronan, as well as its role in organizing tissues and cell signaling, is crucial for the homeostasis of tissues. Overexpression of hyaluronan plays pivotal roles in inflammation and cancer, and markedly high serum and tissue levels of hyaluronan are noted under such pathological conditions. This review focuses on the complexity of the regulation at transcriptional and posttranslational level of hyaluronan synthetic enzymes, and the outcome of their aberrant expression and accumulation of hyaluronan in clinical conditions, such as systemic B-cell cancers, aggressive breast carcinomas, metabolic diseases and virus infection.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Department Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| | - Chun-Yu Lin
- Department Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Constantinos Kolliopoulos
- Department Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| |
Collapse
|
49
|
O-Linked β- N-acetylglucosamine (O-GlcNAc) modification: a new pathway to decode pathogenesis of diabetic retinopathy. Clin Sci (Lond) 2018; 132:185-198. [PMID: 29352075 DOI: 10.1042/cs20171454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
Abstract
The incidence of diabetes continues to rise among all ages and ethnic groups worldwide. Diabetic retinopathy (DR) is a complication of diabetes that affects the retinal neurovasculature causing serious vision problems, including blindness. Its pathogenesis and severity is directly linked to the chronic exposure to high glucose conditions. No treatments are currently available to stop the development and progression of DR. To develop new and effective therapeutic approaches, it is critical to better understand how hyperglycemia contributes to the pathogenesis of DR at the cellular and molecular levels. We propose alterations in O-GlcNAc modification of target proteins during diabetes contribute to the development and progression of DR. The O-GlcNAc modification is regulated through hexosamine biosynthetic pathway. We showed this pathway is differentially activated in various retinal vascular cells under high glucose conditions perhaps due to their selective metabolic activity. O-GlcNAc modification can alter protein stability, activity, interactions, and localization. By targeting the same amino acid residues (serine and threonine) as phosphorylation, O-GlcNAc modification can either compete or cooperate with phosphorylation. Here we will summarize the effects of hyperglycemia-induced O-GlcNAc modification on the retinal neurovasculature in a cell-specific manner, providing new insight into the role of O-GlcNAc modification in early loss of retinal pericytes and the pathogenesis of DR.
Collapse
|
50
|
Nabeebaccus AA, Zoccarato A, Hafstad AD, Santos CX, Aasum E, Brewer AC, Zhang M, Beretta M, Yin X, West JA, Schröder K, Griffin JL, Eykyn TR, Abel ED, Mayr M, Shah AM. Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation. JCI Insight 2017; 2:96184. [PMID: 29263294 PMCID: PMC5752273 DOI: 10.1172/jci.insight.96184] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophic remodeling during chronic hemodynamic stress is associated with a switch in preferred energy substrate from fatty acids to glucose, usually considered to be energetically favorable. The mechanistic interrelationship between altered energy metabolism, remodeling, and function remains unclear. The ROS-generating NADPH oxidase-4 (Nox4) is upregulated in the overloaded heart, where it ameliorates adverse remodeling. Here, we show that Nox4 redirects glucose metabolism away from oxidation but increases fatty acid oxidation, thereby maintaining cardiac energetics during acute or chronic stresses. The changes in glucose and fatty acid metabolism are interlinked via a Nox4-ATF4–dependent increase in the hexosamine biosynthetic pathway, which mediates the attachment of O-linked N-acetylglucosamine (O-GlcNAcylation) to the fatty acid transporter CD36 and enhances fatty acid utilization. These data uncover a potentially novel redox pathway that regulates protein O-GlcNAcylation and reprograms cardiac substrate metabolism to favorably modify adaptation to chronic stress. Our results also suggest that increased fatty acid oxidation in the chronically stressed heart may be beneficial. Nox4 reprograms intermediary metabolism in the heart through an ATF4-mediated enhancement of protein O-GlcNAcylation, and the resulting switch to increased fatty acid oxidation protects the overloaded heart.
Collapse
Affiliation(s)
- Adam A Nabeebaccus
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Anna Zoccarato
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Anne D Hafstad
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom.,Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Celio Xc Santos
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alison C Brewer
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Min Zhang
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Matteo Beretta
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Xiaoke Yin
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - James A West
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt am Main, Germany
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Thomas R Eykyn
- Division of Imaging Sciences & Biomedical Engineering, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - E Dale Abel
- Department of Medicine and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Manuel Mayr
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Ajay M Shah
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| |
Collapse
|