1
|
Zhou T, Li H, Zhang Q, Cheng S, Zhang Q, Yao Y, Dong K, Xu Z, Shu W, Zhang J, Wang H. Integrating Bioinformatics and Experimental Validation to Identify Mitochondrial Permeability Transition-Driven Necrosis-Related lncRNAs that can Serve as Prognostic Biomarkers and Therapeutic Targets in Endometrial Carcinoma. Reprod Sci 2025; 32:876-894. [PMID: 39352634 PMCID: PMC11870901 DOI: 10.1007/s43032-024-01693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/06/2024] [Indexed: 03/03/2025]
Abstract
Endometrial carcinoma (EC) is a common malignant tumor in women with high mortality and relapse rates. Mitochondrial permeability transition (MPT)-driven necrosis is a novel form of programmed cell death. The MPT-driven necrosis related lncRNAs (MRLs) involved in EC development remain unclear. We aimed to predict the outcomes of patients with EC by constructing a novel prognostic model based on MRLs and explore potential molecular functions. A risk prognostic model was developed utilizing multi-Cox regression in conjunction with the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm, which was based on MRLs. The predictive efficacy of the model was evaluated through receiver operating characteristic (ROC) curve analysis, as well as nomogram and concordance index (C-index) assessments. Patients were categorized into high- and low-risk groups based on their median risk scores. Notably, the high-risk group exhibited significantly poorer overall survival (OS) outcomes. Gene ontology (GO) and Gene set enrichment analysis (GSEA) demonstrated that Hedgehog and cell cycle pathways were enriched in the high-risk group. Tumor Immune Dysfunction and Exclusion (TIDE) displayed that patients in the high-risk group showed a high likelihood of immune evasion and less effective immunotherapy. A significant disparity in immune function was also observed between two groups. Based on the nine-MRLs, drug sensitivity analysis identified several anticancer drugs with potential efficacy in prognosis. Meanwhile, the results demonstrated that OGFRP1 plays a carcinogenic role by affecting mitochondrial membrane permeability in EC. Therefore, the risk model constructed by nine MRLs could be used to predict the clinical outcomes and therapeutic responses in patients with EC effectively.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Haojia Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yuwei Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zheng Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Clinical Research Center of Cancer Immunotherapy, Wuhan, 430022, Hubei, China.
| |
Collapse
|
2
|
Engelbrecht-Roberts M, Miles X, Vandevoorde C, de Kock M. An Evaluation of the Potential Radiosensitization Effect of Spherical Gold Nanoparticles to Induce Cellular Damage Using Different Radiation Qualities. Molecules 2025; 30:1038. [PMID: 40076263 PMCID: PMC11902069 DOI: 10.3390/molecules30051038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
Global disparities in cancer prevention, detection, and treatment demand a unified international effort to reduce the disease's burden and improve outcomes. Despite advances in chemotherapy and radiotherapy, many tumors remain resistant to these treatments. Gold nanoparticles (AuNPs) have shown promise as radiosensitizers, enhancing the effectiveness of low-energy X-rays by emitting Auger electrons that cause localized cellular damage. In this study, spherical AuNPs of 5 nm and 10 nm were characterized and tested on various cell lines, including malignant breast cells (MCF-7), non-malignant cells (CHO-K1 and MCF-10A), and human lymphocytes. Cells were treated with AuNPs and irradiated with attenuated 6 megavoltage (MV) X-rays or p(66)/Be neutron radiation to assess DNA double-strand break (DSB) damage, cell viability, and cell cycle progression. The combination of AuNPs and neutron radiation induced higher levels of γ-H2AX foci and micronucleus formation compared to treatments with AuNPs or X-ray radiation alone. AuNPs alone reduced cellular kinetics and increased the accumulation of cells in the G2/M phase, suggesting a block of cell cycle progression. For cell proliferation, significant effects were only observed at the concentration of 50 μg/mL of AuNPs, while lower concentrations had no inhibitory effect. Further research is needed to quantify internalized AuNPs and correlate their concentration with the observed cellular effects to unravel the biological mechanisms of their radioenhancement.
Collapse
Affiliation(s)
- Monique Engelbrecht-Roberts
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, iThemba LABS (NRF), Cape Town 7100, South Africa
| | - Xanthene Miles
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, iThemba LABS (NRF), Cape Town 7100, South Africa
| | - Charlot Vandevoorde
- Space Radiation Biology, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - Maryna de Kock
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
3
|
Kritskaya KA, Stelmashchuk OA, Abramov AY. Point of No Return-What Is the Threshold of Mitochondria With Permeability Transition in Cells to Trigger Cell Death. J Cell Physiol 2025; 240:e31521. [PMID: 39760157 DOI: 10.1002/jcp.31521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/21/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Programmed cell death (apoptosis) is essential part of the process of tissue regeneration that also plays role in the mechanism of pathology. The phenomenon of fast and transient permeability of mitochondrial membranes by various triggers, known as permeability transition pore (mPTP) leads to the release of proapoptotic proteins and acts as an initial step in initiation of apoptosis. However, a role for mPTP was also suggested for physiology and it is unclear if there is a threshold in number of mitochondria with mPTP which induces cell death and how this mechanism is regulated in different tissues. Using simultaneous measurements of mitochondrial membrane potential and a fluorescent marker for caspase-3 activation we studied the number of mitochondria with calcium-induced mPTP opening necessary for induction of apoptosis in rat primary cortical neurons, astrocytes, fibroblasts, and cancer (BT-474) cells. The induction of apoptosis was correlated with 80%-90% mitochondrial signal loss in neural cells but only 35% in fibroblasts, and in BT-474 cancer cells over 90% of mitochondria opens mPTP before apoptosis becomes obvious. The number of mitochondria with mPTP which induce cell death did not correlate with total expression levels of proapoptotic proteins but was consistent with the Bax/Bcl-2 ratio in these cells. Calcium-induced mPTP opening increased levels of necrosis which was higher in fibroblasts compared to neurons, astrocytes and BT-474 cells. Thus, different tissues require specific numbers of mitochondria with PTP opening to induce apoptosis and it correlates to the proapoptotic/antiapoptotic proteins expression ratio in them.
Collapse
Affiliation(s)
- Kristina A Kritskaya
- Institute of Cell Biophysics of the Russian Academy of Sciences, Puschino, Russia
| | | | - Andrey Y Abramov
- Orel State University named after I.S. Turgenev, Orel, Russia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
4
|
Sword J, Fomitcheva IV, Kirov SA. Spreading depolarization causes reversible neuronal mitochondria fragmentation and swelling in healthy, normally perfused neocortex. J Cereb Blood Flow Metab 2024:271678X241257887. [PMID: 39053498 PMCID: PMC11574936 DOI: 10.1177/0271678x241257887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/28/2024] [Accepted: 05/12/2024] [Indexed: 07/27/2024]
Abstract
Mitochondrial function is tightly linked to morphology, and fragmentation of dendritic mitochondria during noxious conditions suggests loss of function. In the normoxic cortex, spreading depolarization (SD) is a phenomenon underlying migraine aura. It is unknown whether mitochondria structure is affected by normoxic SD. In vivo two-photon imaging followed by quantitative serial section electron microscopy (ssEM) was used to monitor dendritic mitochondria in the normoxic cortex of urethane-anesthetized mature male and female mice during and after SD initiated by focal KCl microinjection. Structural dynamics of dendrites and their mitochondria were visualized by transfecting excitatory, glutamatergic neurons of the somatosensory cortex with bicistronic AAV, which induced tdTomoto labeling in neuronal cytoplasm and mitochondria labeling with roGFP. Normoxic SD triggered rapidly reversible fragmentation of dendritic mitochondria alongside dendritic beading; however, mitochondria took significantly longer to recover. Several rounds of SD resulted in transient mitochondrial fragmentation and dendritic beading without accumulating injury, as both recovered. SsEM corroborated normoxic SD-elicited dendritic and mitochondrial swelling and transformation of the filamentous mitochondrial network into shorter, swollen tubular, and globular structures. Our results revealed normoxic SD-induced disruption of the dendritic mitochondrial structure that might impact mitochondrial bioenergetics during migraine with aura.
Collapse
Affiliation(s)
- Jeremy Sword
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ioulia V Fomitcheva
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Sergei A Kirov
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
5
|
Dikalova A, Fehrenbach D, Mayorov V, Panov A, Ao M, Lantier L, Amarnath V, Lopez MG, Billings FT, Sack MN, Dikalov S. Mitochondrial CypD Acetylation Promotes Endothelial Dysfunction and Hypertension. Circ Res 2024; 134:1451-1464. [PMID: 38639088 PMCID: PMC11116043 DOI: 10.1161/circresaha.123.323596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Nearly half of adults have hypertension, a major risk factor for cardiovascular disease. Mitochondrial hyperacetylation is linked to hypertension, but the role of acetylation of specific proteins is not clear. We hypothesized that acetylation of mitochondrial CypD (cyclophilin D) at K166 contributes to endothelial dysfunction and hypertension. METHODS To test this hypothesis, we studied CypD acetylation in patients with essential hypertension, defined a pathogenic role of CypD acetylation in deacetylation mimetic CypD-K166R mutant mice and endothelial-specific GCN5L1 (general control of amino acid synthesis 5 like 1)-deficient mice using an Ang II (angiotensin II) model of hypertension. RESULTS Arterioles from hypertensive patients had 280% higher CypD acetylation coupled with reduced Sirt3 (sirtuin 3) and increased GCN5L1 levels. GCN5L1 regulates mitochondrial protein acetylation and promotes CypD acetylation, which is counteracted by mitochondrial deacetylase Sirt3. In human aortic endothelial cells, GCN5L1 depletion prevents superoxide overproduction. Deacetylation mimetic CypD-K166R mice were protected from vascular oxidative stress, endothelial dysfunction, and Ang II-induced hypertension. Ang II-induced hypertension increased mitochondrial GCN5L1 and reduced Sirt3 levels resulting in a 250% increase in GCN5L1/Sirt3 ratio promoting CypD acetylation. Treatment with mitochondria-targeted scavenger of cytotoxic isolevuglandins (mito2HOBA) normalized GCN5L1/Sirt3 ratio, reduced CypD acetylation, and attenuated hypertension. The role of mitochondrial acetyltransferase GCN5L1 in the endothelial function was tested in endothelial-specific GCN5L1 knockout mice. Depletion of endothelial GCN5L1 prevented Ang II-induced mitochondrial oxidative stress, reduced the maladaptive switch of vascular metabolism to glycolysis, prevented inactivation of endothelial nitric oxide, preserved endothelial-dependent relaxation, and attenuated hypertension. CONCLUSIONS These data support the pathogenic role of CypD acetylation in endothelial dysfunction and hypertension. We suggest that targeting cytotoxic mitochondrial isolevuglandins and GCN5L1 reduces CypD acetylation, which may be beneficial in cardiovascular disease.
Collapse
Affiliation(s)
- Anna Dikalova
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | - Mingfang Ao
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | - Sergey Dikalov
- Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
6
|
Sasaki H, Nakagawa I, Furuta T, Yokoyama S, Morisaki Y, Saito Y, Nakase H. Mitochondrial Calcium Uniporter (MCU) is Involved in an Ischemic Postconditioning Effect Against Ischemic Reperfusion Brain Injury in Mice. Cell Mol Neurobiol 2024; 44:32. [PMID: 38568450 PMCID: PMC10991049 DOI: 10.1007/s10571-024-01464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
The phenomenon of ischemic postconditioning (PostC) is known to be neuroprotective against ischemic reperfusion (I/R) injury. One of the key processes in PostC is the opening of the mitochondrial ATP-dependent potassium (mito-KATP) channel and depolarization of the mitochondrial membrane, triggering the release of calcium ions from mitochondria through low-conductance opening of the mitochondrial permeability transition pore. Mitochondrial calcium uniporter (MCU) is known as a highly sensitive transporter for the uptake of Ca2+ present on the inner mitochondrial membrane. The MCU has attracted attention as a new target for treatment in diseases, such as neurodegenerative diseases, cancer, and ischemic stroke. We considered that the MCU may be involved in PostC and trigger its mechanisms. This research used the whole-cell patch-clamp technique on hippocampal CA1 pyramidal cells from C57BL mice and measured changes in spontaneous excitatory post-synaptic currents (sEPSCs), intracellular Ca2+ concentration, mitochondrial membrane potential, and N-methyl-D-aspartate receptor (NMDAR) currents under inhibition of MCU by ruthenium red 265 (Ru265) in PostC. Inhibition of MCU increased the occurrence of sEPSCs (p = 0.014), NMDAR currents (p < 0.001), intracellular Ca2+ concentration (p < 0.001), and dead cells (p < 0.001) significantly after reperfusion, reflecting removal of the neuroprotective effects in PostC. Moreover, mitochondrial depolarization in PostC with Ru265 was weakened, compared to PostC (p = 0.004). These results suggest that MCU affects mitochondrial depolarization in PostC to suppress NMDAR over-activation and prevent elevation of intracellular Ca2+ concentrations against I/R injury.
Collapse
Affiliation(s)
- Hiromitsu Sasaki
- Department of Neurosurgery, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan.
| | - Takanori Furuta
- Department of Neurosurgery, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan
| | - Shohei Yokoyama
- Department of Neurosurgery, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan
| | - Yudai Morisaki
- Department of Neurosurgery, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan
| |
Collapse
|
7
|
Sword J, Fomitcheva IV, Kirov SA. Spreading depolarization causes reversible neuronal mitochondria fragmentation and swelling in healthy, normally perfused neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576364. [PMID: 38328069 PMCID: PMC10849532 DOI: 10.1101/2024.01.22.576364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mitochondrial function is tightly linked to their morphology, and fragmentation of dendritic mitochondria during noxious conditions suggests loss of function. In the normoxic cortex, spreading depolarization (SD) is a phenomenon underlying migraine aura. It is unknown whether mitochondria structure is affected by normoxic SD. In vivo two-photon imaging followed by quantitative serial section electron microscopy (ssEM) was used to monitor dendritic mitochondria in the normoxic cortex of urethane-anesthetized mature male and female mice during and after SD initiated by focal KCl microinjection. Structural dynamics of dendrites and their mitochondria were visualized by transfecting excitatory, glutamatergic neurons of the somatosensory cortex with bicistronic AAV, which induced tdTomoto labeling in neuronal cytoplasm and mitochondria labeling with roGFP. Normoxic SD triggered a rapid fragmentation of dendritic mitochondria alongside dendritic beading, both reversible; however, mitochondria took significantly longer to recover. Several rounds of SD resulted in transient mitochondrial fragmentation and dendritic beading without accumulating injury, as both recovered. SsEM corroborated normoxic SD-elicited dendritic and mitochondrial swelling and transformation of the filamentous mitochondrial network into shorter, swollen tubular and globular structures. Our results revealed normoxic SD-induced disruption of the dendritic mitochondrial structure that might impact mitochondrial bioenergetics during migraine with aura.
Collapse
|
8
|
Guo H, Yang H, Di C, Xu F, Sun H, Xu Y, Liu H, Wu L, Ding K, Zhang T, Xie L, Wang G, Liang Y. Identification and Validation of Active Ingredient in Cerebrotein Hydrolysate-I Based on Pharmacokinetic and Pharmacodynamic Studies. Drug Metab Dispos 2023; 51:1615-1627. [PMID: 37758480 DOI: 10.1124/dmd.123.001443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
Cerebrotein hydrolysate-1 (CH-1), a mixture of small peptides, polypeptides, and various amino acids derived from porcine brain, has been widely used in the treatment of cerebral injury. However, the bioactive composition and pharmacokinetics of CH-1 are still unexplored because of their complicated composition and relatively tiny amounts in vivo. Herein, NanoLC Orbitrap Fusion Lumos Tribrid Mass Spectrometer was firstly used to qualitatively analyze the components of CH-1. A total of 1347 peptides were identified, of which 43 peptides were characterized by high mass spectrometry (MS) intensity and identification accuracy. We then innovatively synthesized four main peptides for activity verification, and the results suggested that Pep72 (NYEPPTVVPGGDL) had the strongest neuroprotective effect on both in vivo and in vitro models. Next, a quantitative method for Pep72 was established based on liquid chromatography tandem mass spectrometry (LC-MS/MS) with the aid of Skyline software and then used in its pharmacokinetic studies. The results revealed that Pep72 had a high elimination rate and low exposure in rats. In addition, a hCMEC/D3-based in vitro model was built and firstly used to investigate the transport of Pep72. We found that Pep72 had extremely low blood-brain barrier permeability and was not a substrate of efflux transporters. The biotransformation of Pep72 in rat fresh plasma and tissues was investigated to explore the contradiction between pharmacokinetics and efficacy. A total of 11 main metabolites were structurally identified, with PGGDL and EPPTVPGGDL being the main metabolites of Pep72. Notably, metalloproteinase and cysteine protease were confirmed to be the main enzymes mediating Pep72 metabolism in rat tissues. SIGNIFICANCE STATEMENT: The NanoLC Orbitrap Fusion Lumos Tribrid Mass Spectrometer was firstly applied to discover the components of CH-1, and one main peptide Pep72 (NYEPPTVVPGGDL) was innovatively synthesized and firstly found to have the strongest neuroprotective effect among 1347 peptides identified from CH-1. Our study is the first time to identify and verify the active ingredient of CH-1 from the perspective of pharmacokinetics and pharmacodynamics, and provides a systematic technical platforms and strategies for the active substance research of other protein hydrolysates.
Collapse
Affiliation(s)
- Huimin Guo
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Huizhu Yang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Chanjuan Di
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Feng Xu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Hong Sun
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Yexin Xu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Huafang Liu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Linlin Wu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Ke Ding
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Tingting Zhang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Lin Xie
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Guangji Wang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Yan Liang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| |
Collapse
|
9
|
Li Z, Dai R, Chen M, Huang L, Zhu K, Li M, Zhu W, Li Y, Xie N, Li J, Wang L, Lan F, Cao CM. p55γ degrades RIP3 via MG53 to suppress ischaemia-induced myocardial necroptosis and mediates cardioprotection of preconditioning. Cardiovasc Res 2023; 119:2421-2440. [PMID: 37527538 DOI: 10.1093/cvr/cvad123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 08/03/2023] Open
Abstract
AIMS Regulated necrosis (necroptosis) and apoptosis are important biological features of myocardial infarction, ischaemia-reperfusion (I/R) injury, and heart failure. However, the molecular mechanisms underlying myocardial necroptosis remain elusive. Ischaemic preconditioning (IPC) is the most powerful intrinsic cardioprotection against myocardial I/R injury. In this study, we aimed to determine whether IPC suppresses I/R-induced necroptosis and the underlying molecular mechanisms. METHODS AND RESULTS We generated p55γ transgenic and knockout mice and used ligation of left anterior descending coronary artery to produce an in vivo I/R model. The effects of p55γ and its downstream molecules were subsequently identified using mass spectroscopy and co-immunoprecipitation and pulldown assays. We found that p55γ expression was down-regulated in failing human myocardium caused by coronary heart disease as well as in I/R mouse hearts. Cardiac-specific p55γ overexpression ameliorated the I/R-induced necroptosis. In striking contrast, p55γ deficiency (p55γ-/-) and cardiac-specific deletion of p55γ (p55γc-KO) worsened I/R-induced injury. IPC up-regulated p55γ expression in vitro and in vivo. Using reporter and chromatin immunoprecipitation assays, we found that Hif1α transcriptionally regulated p55γ expression and mediated the cardioprotection of IPC. IPC-mediated suppression of necroptosis was attenuated in p55γ-/- and p55γc-KO hearts. Mechanistically, p55γ overexpression decreased the protein levels of RIP3 rather than the mRNA levels, while p55γ deficiency increased the protein abundance of RIP3. IPC attenuated the I/R-induced up-regulation of RIP3, which was abolished in p55γ-deficient mice. Up-regulation of RIP3 attenuated the p55γ- or IPC-induced inhibition of necroptosis in vivo. Importantly, p55γ directly bound and degraded RIP3 in a ubiquitin-dependent manner. We identified MG53 as the E3 ligase that mediated the p55γ-induced degradation of RIP3. In addition, we also found that p55γ activated the RISK pathway during IPC. CONCLUSIONS Our findings reveal that activation of the MG53-RIP3 signal pathway by p55γ protects the heart against I/R-induced necroptosis and underlies IPC-induced cardioprotection.
Collapse
Affiliation(s)
- Zhenyan Li
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
- Department of Physiology, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 Dongdansantiao, Dongcheng District, Beijing 100730, China
| | - Rilei Dai
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Min Chen
- Department of Physiology, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Lixuan Huang
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Kun Zhu
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Mingyang Li
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Wenting Zhu
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Yang Li
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Ning Xie
- Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Jingchen Li
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| | - Feng Lan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| | - Chun-Mei Cao
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
- Department of Physiology, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 Dongdansantiao, Dongcheng District, Beijing 100730, China
| |
Collapse
|
10
|
Aihara S, Yamada S, Matsueda S, Nagashima A, Torisu K, Kitazono T, Nakano T. Magnesium inhibits peritoneal calcification as a late-stage characteristic of encapsulating peritoneal sclerosis. Sci Rep 2023; 13:16340. [PMID: 37770630 PMCID: PMC10539370 DOI: 10.1038/s41598-023-43657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023] Open
Abstract
Peritoneal calcification is a prominent feature of the later stage of encapsulating peritoneal sclerosis (EPS) in patients undergoing long-term peritoneal dialysis (PD). However, the pathogenesis and preventive strategy for peritoneal calcification remain unclear. Peritoneum samples from EPS patients were examined histologically. Peritoneal calcification was induced in mice by feeding with an adenine-containing diet combined with intraperitoneal administration of lipopolysaccharide and a calcifying solution containing high calcium and phosphate. Excised mouse peritoneum, human mesothelial cells (MeT5A), and mouse embryonic fibroblasts (MEFs) were cultured in calcifying medium. Immunohistochemistry confirmed the appearance of osteoblastic differentiation-marker-positive cells in the visceral peritoneum from EPS patients. Intraperitoneal administration of magnesium suppressed peritoneal fibrosis and calcification in mice. Calcifying medium increased the calcification of cultured mouse peritoneum, which was prevented by magnesium. Calcification of the extracellular matrix was accelerated in Met5A cells and MEFs treated with calcification medium. Calcifying medium also upregulated osteoblastic differentiation markers in MeT5A cells and induced apoptosis in MEFs. Conversely, magnesium supplementation mitigated extracellular matrix calcification and phenotypic transdifferentiation and apoptosis caused by calcifying conditions in cultured MeT5A cells and MEFs. Phosphate loading contributes to the progression of EPS through peritoneal calcification and fibrosis, which can be prevented by magnesium supplementation.
Collapse
Affiliation(s)
- Seishi Aihara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Shumei Matsueda
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | | | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 8128582, Japan.
| |
Collapse
|
11
|
Liu J, Zhang M, Sun Q, Qin X, Gao T, Xu Y, Han S, Zhang Y, Guo Z. Construction of a novel MPT-driven necrosis-related lncRNAs signature for prognosis prediction in laryngeal squamous cell carcinoma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-26996-1. [PMID: 37249774 DOI: 10.1007/s11356-023-26996-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/09/2023] [Indexed: 05/31/2023]
Abstract
Mitochondrial permeability transition (MPT)-driven necrosis, a type of programmed cell death, has recently gained much attention in a variety of tumor types. Few studies have been performed to explore the role of MPT-driven necrosis-related lncRNAs (MPTDNRlncRNAs) in laryngeal squamous cell carcinoma (LSCC). The purpose of our study is to screen MPTDNRlncRNAs with prognostic value and to explore their potential roles in LSCC. The RNA-sequencing data and the corresponding clinical data of LSCC patients were obtained from the TCGA database, and those MPT-driven necrosis-related genes were extracted from the Gene Set Enrichment Analysis (GSEA) database. We identified MPTDNRlncRNAs differentially expressed in LSCC. Also, we gained MPT-driven necrosis-related prognostic lncRNAs by univariate cox regression analysis. A novel MPTDNRlncRNAs signature was constructed by LASSO-COX. The accuracy and utility of the MPTDNRlncRNAs signature were evaluated via a variety of statistical methods. Multiple bioinformatics tools were used to explore the underlying difference in biological functions and signaling pathways between the different risk groups. The expressions levels of MPTDNRlncRNAs were analyzed using RT-qPCR in LSCC cell line. Finally, we identified A 5 MPTDNRlncRNAs signature in LSCC. Our prognostic model demonstrated an efficient ability to predict outcomes. The proportion difference of immune cells in the subgroups were significant, such as M0 macrophage and T follicular helper cells. The in vitro experiments suggested that our MPTDNRlncRNAs were significantly different. This 5 MPTDNRlncRNAs signature is a prognostic biomarker for LSCC. More importantly, the novel biologic prognostic model can be utilized for personalized immunotherapy in LSCC patients.
Collapse
Affiliation(s)
- Jian Liu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Min Zhang
- Xiangya Hospital, Central South University, Changsha, Hunan, 41000, People's Republic of China
| | - Qing Sun
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Xuemei Qin
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Tianle Gao
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Yinwei Xu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Shuhui Han
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Yujie Zhang
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Zhiqiang Guo
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China.
| |
Collapse
|
12
|
Angelovski M, Hadzi-Petrushev N, Mitrokhin V, Kamkin A, Mladenov M. Myocardial infarction and oxidative damage in animal models: objective and expectations from the application of cysteine derivatives. Toxicol Mech Methods 2023; 33:1-17. [PMID: 35450505 DOI: 10.1080/15376516.2022.2069530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) and associated oxidative stress are the main contributors to pathophysiological changes following myocardial infarction (MI), which is the principal cause of death from cardiovascular disease. The glutathione (GSH)/glutathione peroxidase (GPx) system appears to be the main and most active cardiac antioxidant mechanism. Hence, enhancement of the myocardial GSH system might have protective effects in the setting of MI. It follows that by increasing antioxidant capacity, the heart will be able to reduce the damage associated with MI and even prevent/weaken the occurrence of oxidative stress, which is highly ranked among the factors responsible for the occurrence of acute MI. For these reasons, the primary goal of future investigations should be to address the effects of different antioxidative compounds and especially cysteine derivatives like N-acetyl cysteine (NAC) and L-2-oxothiazolidine-4-carboxylic acid (OTC) as precursors responsible for the enhancement of the GSH-related antioxidant system's capacity. It is assumed that this will lay down the basis for elucidation of the mechanisms throughout which applicable doses of OTC will manifest a potentially positive impact in the reduction of adverse effects of acute MI. The inclusion of OTC in the models for prediction of the distribution of oxygen in infarcted animal hearts can help to upgrade existing computational models. Such a model would be based on computational geometries of the heart, but the inclusion of biochemical redox features in addition to angiogenic therapy, despite improvement of the post-infarcted oxygenated outcome could enhance the accuracy of the predictive values of oxygenation.
Collapse
Affiliation(s)
- Marija Angelovski
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia.,Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
13
|
Morisaki Y, Nakagawa I, Ogawa Y, Yokoyama S, Furuta T, Saito Y, Nakase H. Ischemic Postconditioning Reduces NMDA Receptor Currents Through the Opening of the Mitochondrial Permeability Transition Pore and K ATP Channel in Mouse Neurons. Cell Mol Neurobiol 2022; 42:1079-1089. [PMID: 33159622 PMCID: PMC11441301 DOI: 10.1007/s10571-020-00996-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022]
Abstract
Ischemic postconditioning (PostC) is known to reduce cerebral ischemia/reperfusion (I/R) injury; however, whether the opening of mitochondrial ATP-dependent potassium (mito-KATP) channels and mitochondrial permeability transition pore (mPTP) cause the depolarization of the mitochondrial membrane that remains unknown. We examined the involvement of the mito-KATP channel and the mPTP in the PostC mechanism. Ischemic PostC consisted of three cycles of 15 s reperfusion and 15 s re-ischemia, and was started 30 s after the 7.5 min ischemic load. We recorded N-methyl-D-aspartate receptors (NMDAR)-mediated currents and measured cytosolic Ca2+ concentrations, and mitochondrial membrane potentials in mouse hippocampal pyramidal neurons. Both ischemic PostC and the application of a mito-KATP channel opener, diazoxide, reduced NMDAR-mediated currents, and suppressed cytosolic Ca2+ elevations during the early reperfusion period. An mPTP blocker, cyclosporine A, abolished the reducing effect of PostC on NMDAR currents. Furthermore, both ischemic PostC and the application of diazoxide potentiated the depolarization of the mitochondrial membrane potential. These results indicate that ischemic PostC suppresses Ca2+ influx into the cytoplasm by reducing NMDAR-mediated currents through mPTP opening. The present study suggests that depolarization of the mitochondrial membrane potential by opening of the mito-KATP channel is essential to the mechanism of PostC in neuroprotection against anoxic injury.
Collapse
Affiliation(s)
- Yudai Morisaki
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan.
| | - Yoichi Ogawa
- Department of Neurophysiology, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Shohei Yokoyama
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Takanori Furuta
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| |
Collapse
|
14
|
Melatonin-Induced Postconditioning Suppresses NMDA Receptor through Opening of the Mitochondrial Permeability Transition Pore via Melatonin Receptor in Mouse Neurons. Int J Mol Sci 2022; 23:ijms23073822. [PMID: 35409182 PMCID: PMC8998233 DOI: 10.3390/ijms23073822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial membrane potential regulation through the mitochondrial permeability transition pore (mPTP) is reportedly involved in the ischemic postconditioning (PostC) phenomenon. Melatonin is an endogenous hormone that regulates circadian rhythms. Its neuroprotective effects via mitochondrial melatonin receptors (MTs) have recently attracted attention. However, details of the neuroprotective mechanisms associated with PostC have not been clarified. Using hippocampal CA1 pyramidal cells from C57BL mice, we studied the involvement of MTs and the mPTP in melatonin-induced PostC mechanisms similar to those of ischemic PostC. We measured changes in spontaneous excitatory postsynaptic currents (sEPSCs), intracellular calcium concentration, mitochondrial membrane potential, and N-methyl-D-aspartate receptor (NMDAR) currents after ischemic challenge, using the whole-cell patch-clamp technique. Melatonin significantly suppressed increases in sEPSCs and intracellular calcium concentrations. The NMDAR currents were significantly suppressed by melatonin and the MT agonist, ramelteon. However, this suppressive effect was abolished by the mPTP inhibitor, cyclosporine A, and the MT antagonist, luzindole. Furthermore, both melatonin and ramelteon potentiated depolarization of mitochondrial membrane potentials, and luzindole suppressed depolarization of mitochondrial membrane potentials. This study suggests that melatonin-induced PostC via MTs suppressed the NMDAR that was induced by partial depolarization of mitochondrial membrane potential by opening the mPTP, reducing excessive release of glutamate and inducing neuroprotection against ischemia-reperfusion injury.
Collapse
|
15
|
Gierhardt M, Pak O, Sydykov A, Kraut S, Schäffer J, Garcia C, Veith C, Zeidan EM, Brosien M, Quanz K, Esfandiary A, Saraji A, Hadzic S, Kojonazarov B, Wilhelm J, Ghofrani HA, Schermuly RT, Seeger W, Grimminger F, Herden C, Schulz R, Weissmann N, Heger J, Sommer N. Genetic deletion of p66shc and/or cyclophilin D results in decreased pulmonary vascular tone. Cardiovasc Res 2022; 118:305-315. [PMID: 33119054 PMCID: PMC8752355 DOI: 10.1093/cvr/cvaa310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS The pulmonary vascular tone and hypoxia-induced alterations of the pulmonary vasculature may be regulated by the mitochondrial membrane permeability transition pore (mPTP) that controls mitochondrial calcium load and apoptosis. We thus investigated, if the mitochondrial proteins p66shc and cyclophilin D (CypD) that regulate mPTP opening affect the pulmonary vascular tone. METHODS AND RESULTS Mice deficient for p66shc (p66shc-/-), CypD (CypD-/-), or both proteins (p66shc/CypD-/-) exhibited decreased pulmonary vascular resistance (PVR) compared to wild-type mice determined in isolated lungs and in vivo. In contrast, systemic arterial pressure was only lower in CypD-/- mice. As cardiac function and pulmonary vascular remodelling did not differ between genotypes, we determined alterations of vascular contractility in isolated lungs and calcium handling in pulmonary arterial smooth muscle cells (PASMC) as underlying reason for decreased PVR. Potassium chloride (KCl)-induced pulmonary vasoconstriction and KCl-induced cytosolic calcium increase determined by Fura-2 were attenuated in all gene-deficient mice. In contrast, KCl-induced mitochondrial calcium increase determined by the genetically encoded Mito-Car-GECO and calcium retention capacity were increased only in CypD-/- and p66shc/CypD-/- mitochondria indicating that decreased mPTP opening affected KCl-induced intracellular calcium peaks in these cells. All mouse strains showed a similar pulmonary vascular response to chronic hypoxia, while acute hypoxic pulmonary vasoconstriction was decreased in gene-deficient mice indicating that CypD and p66shc regulate vascular contractility but not remodelling. CONCLUSIONS We conclude that p66shc specifically regulates the pulmonary vascular tone, while CypD also affects systemic pressure. However, only CypD acts via regulation of mPTP opening and mitochondrial calcium regulation.
Collapse
MESH Headings
- Animals
- Arterial Pressure
- Calcium/metabolism
- Calcium Signaling
- Cell Proliferation
- Cells, Cultured
- Peptidyl-Prolyl Isomerase F/deficiency
- Peptidyl-Prolyl Isomerase F/genetics
- Disease Models, Animal
- Gene Deletion
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/enzymology
- Mitochondria/genetics
- Mitochondrial Permeability Transition Pore/metabolism
- Pulmonary Artery/enzymology
- Pulmonary Artery/physiopathology
- Src Homology 2 Domain-Containing, Transforming Protein 1/deficiency
- Src Homology 2 Domain-Containing, Transforming Protein 1/genetics
- Vascular Remodeling
- Vascular Resistance
- Vasoconstriction
- Mice
Collapse
Affiliation(s)
- Mareike Gierhardt
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Oleg Pak
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Simone Kraut
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Julia Schäffer
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Claudia Garcia
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Christine Veith
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Esraa M Zeidan
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Monika Brosien
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Karin Quanz
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Azadeh Esfandiary
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Alireza Saraji
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Stefan Hadzic
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Baktybek Kojonazarov
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
- Department of Medicine, Imperial College London, Du Cane Road, Hammersmith Campus, London, W12 0NN, UK
| | - Ralph T Schermuly
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Friedrich Grimminger
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig University, Giessen, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Jacqueline Heger
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| |
Collapse
|
16
|
Scicchitano M, Carresi C, Nucera S, Ruga S, Maiuolo J, Macrì R, Scarano F, Bosco F, Mollace R, Cardamone A, Coppoletta AR, Guarnieri L, Zito MC, Bava I, Cariati L, Greco M, Foti DP, Palma E, Gliozzi M, Musolino V, Mollace V. Icariin Protects H9c2 Rat Cardiomyoblasts from Doxorubicin-Induced Cardiotoxicity: Role of Caveolin-1 Upregulation and Enhanced Autophagic Response. Nutrients 2021; 13:nu13114070. [PMID: 34836326 PMCID: PMC8623794 DOI: 10.3390/nu13114070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
Doxorubicin (Doxo) is a widely used antineoplastic drug which often induces cardiomyopathy, leading to congestive heart failure through the intramyocardial production of reactive oxygen species (ROS). Icariin (Ica) is a flavonoid isolated from Epimedii Herba (Berberidaceae). Some reports on the pharmacological activity of Ica explained its antioxidant and cardioprotective effects. The aim of our study was to assess the protective activities of Ica against Doxo-detrimental effects on rat heart-tissue derived embryonic cardiac myoblasts (H9c2 cells) and to identify, at least in part, the molecular mechanisms involved. Our results showed that pretreatment of H9c2 cells with 1 μM and 5 μM of Ica, prior to Doxo exposure, resulted in an improvement in cell viability, a reduction in ROS generation, the prevention of mitochondrial dysfunction and mPTP opening. Furthermore, for the first time, we identified one feasible molecular mechanism through which Ica could exerts its cardioprotective effects. Indeed, our data showed a significant reduction in Caveolin-1(Cav-1) expression levels and a specific inhibitory effect on phosphodiesterase 5 (PDE5a) activity, improving mitochondrial function compared to Doxo-treated cells. Besides, Ica significantly prevented apoptotic cell death and downregulated the main pro-autophagic marker Beclin-1 and LC3 lipidation rate, restoring physiological levels of activation of the protective autophagic process. These results suggest that Ica might have beneficial cardioprotective effects in attenuating cardiotoxicity in patients requiring anthracycline chemotherapy through the inhibition of oxidative stress and, in particular, through the modulation of Cav-1 expression levels and the involvement of PDE5a activity, thereby leading to cardiac cell survival.
Collapse
Affiliation(s)
- Miriam Scicchitano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Cristina Carresi
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
- Correspondence:
| | - Saverio Nucera
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Stefano Ruga
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Roberta Macrì
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Federica Scarano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Francesca Bosco
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Rocco Mollace
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Antonio Cardamone
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Irene Bava
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Luca Cariati
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Marta Greco
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Daniela Patrizia Foti
- Department of Experimental, Clinical Medicine University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Ernesto Palma
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
- IRCCS San Raffaele Pisana, 88163 Roma, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
| | - Vincenzo Mollace
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.N.); (S.R.); (J.M.); (R.M.); (F.S.); (F.B.); (R.M.); (A.C.); (A.R.C.); (L.G.); (M.C.Z.); (I.B.); (L.C.); (E.P.); (M.G.); (V.M.); (V.M.)
- IRCCS San Raffaele Pisana, 88163 Roma, Italy
| |
Collapse
|
17
|
Melatonin Enhances the Mitochondrial Functionality of Brown Adipose Tissue in Obese-Diabetic Rats. Antioxidants (Basel) 2021; 10:antiox10091482. [PMID: 34573114 PMCID: PMC8466890 DOI: 10.3390/antiox10091482] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Developing novel drugs/targets remains a major effort toward controlling obesity-related type 2 diabetes (diabesity). Melatonin controls obesity and improves glucose homeostasis in rodents, mainly via the thermogenic effects of increasing the amount of brown adipose tissue (BAT) and increases in mitochondrial mass, amount of UCP1 protein, and thermogenic capacity. Importantly, mitochondria are widely known as a therapeutic target of melatonin; however, direct evidence of melatonin on the function of mitochondria from BAT and the mechanistic pathways underlying these effects remains lacking. This study investigated the effects of melatonin on mitochondrial functions in BAT of Zücker diabetic fatty (ZDF) rats, which are considered a model of obesity-related type 2 diabetes mellitus (T2DM). At five weeks of age, Zücker lean (ZL) and ZDF rats were subdivided into two groups, consisting of control and treated with oral melatonin for six weeks. Mitochondria were isolated from BAT of animals from both groups, using subcellular fractionation techniques, followed by measurement of several mitochondrial parameters, including respiratory control ratio (RCR), phosphorylation coefficient (ADP/O ratio), ATP production, level of mitochondrial nitrites, superoxide dismutase activity, and alteration in the mitochondrial permeability transition pore (mPTP). Interestingly, melatonin increased RCR in mitochondria from brown fat of both ZL and ZDF rats through the reduction of the proton leak component of respiration (state 4). In addition, melatonin improved the ADP/O ratio in obese rats and augmented ATP production in lean rats. Further, melatonin reduced mitochondrial nitrosative and oxidative status by decreasing nitrite levels and increasing superoxide dismutase activity in both groups, as well as inhibited mPTP in mitochondria isolated from brown fat. Taken together, the present data revealed that chronic oral administration of melatonin improved mitochondrial respiration in brown adipocytes, while decreasing oxidative and nitrosative stress and susceptibility of adipocytes to apoptosis in ZDF rats, suggesting a beneficial use in the treatment of diabesity. Further research regarding the molecular mechanisms underlying the effects of melatonin on diabesity is warranted.
Collapse
|
18
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
19
|
Xiang L, Shao Y, Chen Y. Mitochondrial dysfunction and mitochondrion-targeted therapeutics in liver diseases. J Drug Target 2021; 29:1080-1093. [PMID: 33788656 DOI: 10.1080/1061186x.2021.1909051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is a vital metabolic and detoxifying organ and suffers diverse endogenous or exogenous damage. Hepatocyte mitochondria experience various structural and functional defects from liver injury, bearing oxidative stress, metabolic dysregulation, and the disturbance of mitochondrial quality control (MQC) mechanisms. Mitochondrial malfunction initiates the mitochondria-mediated apoptotic pathways and the release of damage signals, aggravating liver damage and disease progression via inflammation and reparative fibrogenesis. Removal of mitochondrial impairment or the improvement of MQC mechanisms restore mitochondrial homeostasis and benefit liver health. This review discusses the association of mitochondrial disorders with hepatic pathophysiological processes and the resultant potential of mitochondrion-targeting therapeutics for hepatic disorders. The recent advances in the MQC mechanisms and the mitochondrial-derived damage-associated molecular patterns (DAMPs) in the pathology and treatment of liver disease are particularly focussed.
Collapse
Affiliation(s)
- Li Xiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Yaru Shao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China.,Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China.,Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, China
| |
Collapse
|
20
|
Ramezani-Aliakbari F, Badavi M, Dianat M, Mard SA, Ahangarpour A. Trimetazidine Increases Plasma MicroRNA-24 and MicroRNA-126 Levels and Improves Dyslipidemia, Inflammation and Hypotension in Diabetic Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:248-257. [PMID: 33680027 PMCID: PMC7757984 DOI: 10.22037/ijpr.2020.1101144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Trimetazidine (TMZ) improves endothelial dysfunction. However, its beneficial effect on endothelial miRNAs is unexplored in diabetes. The aim of the present study was to evaluate the effects of TMZ on plasma miRNA-24 and miRNA-126, dyslipidemia, inflammation, and blood pressure in the diabetic rats. Adult male Sprague-Dawley rats were randomly assigned into four groups (250 ± 20 g, n = 8): a control (C), an untreated diabetic (D), a diabetic group administrated with TMZ at 10 mg/kg (T10), and a diabetic group administrated with TMZ at 30 mg/kg (T30) for eight weeks. Diabetes was induced by injection of alloxan (120 mg/kg). The plasma levels of miR-24, miR-126, lipid profile, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), blood glucose, body weight and systolic blood pressure were measured. The diabetic rats showed decreased plasma miR-24, HDL-c (P < 0.05), miR-126 (P < 0.01), body weight changes percent, body weight, and systolic blood pressure (P < 0.001) and increased triglycerides (TG), VLDL-c (P < 0.05), TNF-α, total cholesterol (TC) (P < 0.01) glucose, MDA and IL-6 (P < 0.001). Interestingly, all these changes were significantly improved by TMZ treatment. Our findings propose that TMZ has protective effects on decreased plasma miR-24 and miR-126 levels, inflammation, dyslipidemia and hypotension, and it may participate in endothelial dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Persian Gulf Physiology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Persian Gulf Physiology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Persian Gulf Physiology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Persian Gulf Physiology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Abstract
Platelets are the major cellular contributor to arterial thrombosis. However, activated platelets form two distinct subpopulations during thrombosis. Pro-aggregatory platelets aggregate to form the main body of the thrombus. In contrast, procoagulant platelets expose phosphatidylserine on their outer surface and promote thrombin generation. This apparently all-or-nothing segregation into subpopulations indicates that, during activation, platelets commit to becoming procoagulant or pro-aggregatory. Although the signaling pathways that control this commitment are not understood, distinct cytosolic and mitochondrial Ca2+ signals in different subpopulations are likely to be central. In this review, we discuss how these Ca2+ signals control procoagulant platelet formation and whether this process can be targeted pharmacologically to prevent arterial thrombosis.
Collapse
Affiliation(s)
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge Cambridge, UK
| |
Collapse
|
22
|
Filadi R, Greotti E. The yin and yang of mitochondrial Ca 2+ signaling in cell physiology and pathology. Cell Calcium 2020; 93:102321. [PMID: 33310302 DOI: 10.1016/j.ceca.2020.102321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria are autonomous and dynamic cellular organelles orchestrating a diverse range of cellular activities. Numerous cell-signaling pathways target these organelles and Ca2+ is one of the most significant. Mitochondria are able to rapidly and transiently take up Ca2+, thanks to the mitochondrial Ca2+ uniporter complex, as well as to extrude it through the Na+/Ca2+ and H+/Ca2+ exchangers. The transient accumulation of Ca2+ in the mitochondrial matrix impacts on mitochondrial functions and cell pathophysiology. Here we summarize the role of mitochondrial Ca2+ signaling in both physiological (yang) and pathological (yin) processes and the methods that can be used to investigate mitochondrial Ca2+ homeostasis. As an example of the pivotal role of mitochondria in pathology, we described the state of the art of mitochondrial Ca2+ alterations in different pathological conditions, with a special focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Riccardo Filadi
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy.
| | - Elisa Greotti
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy.
| |
Collapse
|
23
|
Zampese E, Surmeier DJ. Calcium, Bioenergetics, and Parkinson's Disease. Cells 2020; 9:cells9092045. [PMID: 32911641 PMCID: PMC7564460 DOI: 10.3390/cells9092045] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Degeneration of substantia nigra (SN) dopaminergic (DAergic) neurons is responsible for the core motor deficits of Parkinson’s disease (PD). These neurons are autonomous pacemakers that have large cytosolic Ca2+ oscillations that have been linked to basal mitochondrial oxidant stress and turnover. This review explores the origin of Ca2+ oscillations and their role in the control of mitochondrial respiration, bioenergetics, and mitochondrial oxidant stress.
Collapse
|
24
|
Kirov SA, Fomitcheva IV, Sword J. Rapid Neuronal Ultrastructure Disruption and Recovery during Spreading Depolarization-Induced Cytotoxic Edema. Cereb Cortex 2020; 30:5517-5531. [PMID: 32483593 PMCID: PMC7566686 DOI: 10.1093/cercor/bhaa134] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 01/29/2023] Open
Abstract
Two major pathogenic events that cause acute brain damage during neurologic emergencies of stroke, head trauma, and cardiac arrest are spreading depolarizing waves and the associated brain edema that course across the cortex injuring brain cells. Virtually nothing is known about how spreading depolarization (SD)-induced cytotoxic edema evolves at the ultrastructural level immediately after insult and during recovery. In vivo 2-photon imaging followed by quantitative serial section electron microscopy was used to assess synaptic circuit integrity in the neocortex of urethane-anesthetized male and female mice during and after SD evoked by transient bilateral common carotid artery occlusion. SD triggered a rapid fragmentation of dendritic mitochondria. A large increase in the density of synapses on swollen dendritic shafts implies that some dendritic spines were overwhelmed by swelling or merely retracted. The overall synaptic density was unchanged. The postsynaptic dendritic membranes remained attached to axonal boutons, providing a structural basis for the recovery of synaptic circuits. Upon immediate reperfusion, cytotoxic edema mainly subsides as affirmed by a recovery of dendritic ultrastructure. Dendritic recuperation from swelling and reversibility of mitochondrial fragmentation suggests that neurointensive care to improve tissue perfusion should be paralleled by treatments targeting mitochondrial recovery and minimizing the occurrence of SDs.
Collapse
Affiliation(s)
- Sergei A Kirov
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ioulia V Fomitcheva
- Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Jeremy Sword
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
25
|
Fang Y, Zhao C, Xiang H, Jia G, Zhong R. Melatonin improves cryopreservation of ram sperm by inhibiting mitochondrial permeability transition pore opening. Reprod Domest Anim 2020; 55:1240-1249. [DOI: 10.1111/rda.13771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming Northeast Institute of Geography and Agoecology Chinese Academy of Sciences Changchun, Jilin China
| | - Chengzhen Zhao
- Jilin Provincial Key Laboratory of Grassland Farming Northeast Institute of Geography and Agoecology Chinese Academy of Sciences Changchun, Jilin China
| | - Hai Xiang
- Jilin Provincial Key Laboratory of Grassland Farming Northeast Institute of Geography and Agoecology Chinese Academy of Sciences Changchun, Jilin China
| | - GongXue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming Northeast Institute of Geography and Agoecology Chinese Academy of Sciences Changchun, Jilin China
| |
Collapse
|
26
|
Antimicrobial peptide CGA-N12 decreases the Candida tropicalis mitochondrial membrane potential via mitochondrial permeability transition pore. Biosci Rep 2020; 40:223802. [PMID: 32368781 PMCID: PMC7225414 DOI: 10.1042/bsr20201007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Amino acid sequence from 65th to 76th residue of the N-terminus of Chromogranin A (CGA-N12) is an antimicrobial peptide (AMP). Our previous studies showed that CGA-N12 reduces Candida tropicalis mitochondrial membrane potential. Here, we explored the mechanism that CGA-N12 collapsed the mitochondrial membrane potential by investigations of its action on the mitochondrial permeability transition pore (mPTP) complex of C. tropicalis. The results showed that CGA-N12 induced cytochrome c (Cyt c) leakage, mitochondria swelling and led to polyethylene glycol (PEG) of molecular weight 1000 Da penetrate mitochondria. mPTP opening inhibitors bongkrekic acid (BA) could contract the mitochondrial swelling induced by CGA-N12, but cyclosporin A (CsA) could not. Therefore, we speculated that CGA-N12 could induce C. tropicolis mPTP opening by preventing the matrix-facing (m) conformation of adenine nucleotide transporter (ANT), thereby increasing the permeability of the mitochondrial membrane and resulted in the mitochondrial potential dissipation.
Collapse
|
27
|
Li Y, Sun J, Wu R, Bai J, Hou Y, Zeng Y, Zhang Y, Wang X, Wang Z, Meng X. Mitochondrial MPTP: A Novel Target of Ethnomedicine for Stroke Treatment by Apoptosis Inhibition. Front Pharmacol 2020; 11:352. [PMID: 32269527 PMCID: PMC7109312 DOI: 10.3389/fphar.2020.00352] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
Mammalian mitochondrial permeability transition pore (MPTP), across the inner and outer membranes of mitochondria, is a nonspecific channel for signal transduction or material transfer between mitochondrial matrix and cytoplasm such as maintenance of Ca2+ homeostasis, regulation of oxidative stress signals, and protein translocation evoked by some of stimuli. Continuous MPTP opening has been proved to stimulate neuronal apoptosis in ischemic stroke. Meanwhile, inhibition of MPTP overopening-induced apoptosis has shown excellent efficacy in the treatment of ischemic stroke. Among of which, the potential molecular mechanisms of drug therapy for stroke has also been gradually revealed by researchers. The characteristics of multi-components or multi-targets for ethnic drugs also provide the possibility to treat stroke from the perspective of mitochondrial MPTP. The advantages mentioned above make it necessary for us to explore and clarify the new perspective of ethnic medicine in treating stroke and to determine the specific molecular mechanisms through advanced technologies as much as possible. In this review, we attempt to uncover the relationship between abnormal MPTP opening and neuronal apoptosis in ischemic stroke. We further summarized currently authorized drugs, ethnic medicine prescriptions, herbs, and identified monomer compounds for inhibition of MPTP overopening-induced ischemic neuron apoptosis. Finally, we strive to provide a new perspective and enlightenment for ethnic medicine in the prevention and treatment of stroke by inhibition of MPTP overopening-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Yangxin Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruixia Wu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Hou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Zeng
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Wacquier B, Combettes L, Dupont G. Dual dynamics of mitochondrial permeability transition pore opening. Sci Rep 2020; 10:3924. [PMID: 32127570 PMCID: PMC7054270 DOI: 10.1038/s41598-020-60177-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/06/2020] [Indexed: 11/09/2022] Open
Abstract
Mitochondria play an essential role in bioenergetics and cellular Ca\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{2+}$$\end{document}2+ handling. The mitochondrial permeability transition pore (mPTP) is a non-specific channel located in the inner mitochondrial membrane. Long-lasting openings of the pore allow the rapid passage of ions and large molecules, which can result in cell death. The mPTP also exhibits transient, low conductance openings that contribute to Ca\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{2+}$$\end{document}2+ homeostasis. Although many regulators of the pore have been identified, none of them uniquely governs the passage between the two operating modes, which thus probably relies on a still unidentified network of interactions. By developing a core computational model for mPTP opening under the control of mitochondrial voltage and Ca\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{2+}$$\end{document}2+, we uncovered the existence of a positive feedback loop leading to bistability. The characteristics of the two stable steady-states correspond to those of the two opening states. When inserted in a full model of Ca\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{2+}$$\end{document}2+ handling by mitochondria, our description of the pore reproduces observations in mitochondrial suspensions. Moreover, the model predicted the occurrence of hysteresis in the switching between the two modes, upon addition and removal of free Ca\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{2+}$$\end{document}2+ in the extra-mitochondrial medium. Stochastic simulations then confirmed that the pore can undergo transient openings resembling those observed in intact cells.
Collapse
Affiliation(s)
- Benjamin Wacquier
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) CP231, B1050, Brussels, Belgium
| | | | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) CP231, B1050, Brussels, Belgium.
| |
Collapse
|
29
|
Andrabi SS, Parvez S, Tabassum H. Ischemic stroke and mitochondria: mechanisms and targets. PROTOPLASMA 2020; 257:335-343. [PMID: 31612315 DOI: 10.1007/s00709-019-01439-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/30/2019] [Indexed: 05/05/2023]
Abstract
Stroke is one of the main causes of mortality and disability in most countries of the world. The only way of managing patients with ischemic stroke is the use of intravenous tissue plasminogen activator and endovascular thrombectomy. However, very few patients receive these treatments as the therapeutic time window is narrow after an ischemic stroke. The paucity of stroke management approaches can only be addressed by identifying new possible therapeutic targets. Mitochondria have been a rare target in the clinical management of stroke. Previous studies have only investigated the bioenergetics and apoptotic roles of this organelle; however, the mitochondrion is now considered as a key organelle that participates in many cellular and molecular functions. This review discusses the mitochondrial mechanisms in cerebral ischemia such as its role in reactive oxygen species (ROS) generation, apoptosis, and electron transport chain dysfunction. Understanding the mechanisms of mitochondria in neural cell death during ischemic stroke might help to design new therapeutic targets for ischemic stroke as well as other neurological diseases.
Collapse
Affiliation(s)
- Syed Suhail Andrabi
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Heena Tabassum
- Division of Biomedical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswamy Bhawan, P.O. Box No. 4911, New Delhi, 110029, India
| |
Collapse
|
30
|
Fujimura R, Yamamoto T, Takabatake Y, Takahashi A, Namba-Hamano T, Minami S, Sakai S, Matsuda J, Hesaka A, Yonishi H, Nakamura J, Matsui I, Matsusaka T, Niimura F, Yanagita M, Isaka Y. Autophagy protects kidney from phosphate-induced mitochondrial injury. Biochem Biophys Res Commun 2020; 524:636-642. [PMID: 32029271 DOI: 10.1016/j.bbrc.2020.01.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
Hyperphosphatemia is a common complication in patients with advanced chronic kidney disease (CKD) as well as an increased risk of cardiovascular mortality; however, the molecular mechanisms of phosphate-mediated kidney injury are largely unknown. Autophagy is a lysosomal degradation system, which plays protective roles against kidney diseases. Here, we studied the role of autophagy in kidney proximal tubular cells (PTECs) during phosphate overload. Temporal cessation of autophagy in drug-induced PTEC-specific autophagy-deficient mice that were fed high phosphate diet induced mild cytosolic swelling and an accumulation of SQSTM1/p62-and ubiquitin-positive protein aggregates in PTECs, indicating that phosphate overload requires enhanced autophagic activity for the degradation of increasing substrate. Morphological and biochemical analysis demonstrated that high phosphate activates mitophagy in PTECs in response to oxidative stress. PTEC-specific autophagy-deficient mice receiving heminephrectomy and autophagy-deficient cultured PTECs exhibited mitochondrial dysfunction, increased reactive oxygen species production, and reduced ATP production in response to phosphate overload, suggesting that high phosphate-induced autophagy counteracts mitochondrial injury and maintains cellular bioenergetics in PTECs. Thus, potentiating autophagic activity could be a therapeutic option for suppressing CKD progression during phosphate overload.
Collapse
Affiliation(s)
- Ryuta Fujimura
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Hesaka
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Taiji Matsusaka
- Institute of Medical Sciences and Department of Basic Medicine, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Fumio Niimura
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
31
|
Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate α-synuclein cytotoxicity in disease-modifying therapy for Parkinson's disease. J Neural Transm (Vienna) 2020; 127:131-147. [PMID: 31993732 DOI: 10.1007/s00702-020-02150-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease has been considered as a motor neuron disease with dopamine (DA) deficit caused by neuronal loss in the substantia nigra, but now proposed as a multi-system disorder associated with α-synuclein accumulation in neuronal and non-neuronal systems. Neuroprotection in Parkinson's disease has intended to halt or reverse cell death of nigro-striatal DA neurons and prevent the disease progression, but clinical studies have not presented enough beneficial results, except the trial of rasagiline by delayed start design at low dose of 1 mg/day only. Now strategy of disease-modifying therapy should be reconsidered taking consideration of accumulation and toxicity of α-synuclein preceding the manifest of motor symptoms. Hitherto neuroprotective therapy has been aimed to mitigate non-specific risk factors; oxidative stress, mitochondrial dysfunction, apoptosis, deficits of neurotrophic factors (NTFs), inflammation and accumulation of pathogenic protein. Future disease-modify therapy should target more specified pathogenic factors, including deregulated mitochondrial homeostasis, deficit of NTFs and α-synuclein toxicity. Selegiline and rasagiline, inhibitors of type B monoamine oxidase, have been proved to exhibit potent neuroprotective function: regulation of mitochondrial apoptosis system, maintenance of mitochondrial function, increased expression of genes coding antioxidant enzymes, anti-apoptotic Bcl-2 and pro-survival NTFs, and suppression of oligomerization and aggregation of α-synuclein and the toxicity in cellular and animal experiments. However, the present available pharmacological therapy starts too late to reverse disease progression, and future disease-modifying therapy should include also non-pharmacological complementary therapy during the prodromal stage.
Collapse
|
32
|
Pervaiz S, Bellot GL, Lemoine A, Brenner C. Redox signaling in the pathogenesis of human disease and the regulatory role of autophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:189-214. [DOI: 10.1016/bs.ircmb.2020.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Artyukhova MA, Tyurina YY, Chu CT, Zharikova TM, Bayır H, Kagan VE, Timashev PS. Interrogating Parkinson's disease associated redox targets: Potential application of CRISPR editing. Free Radic Biol Med 2019; 144:279-292. [PMID: 31201850 PMCID: PMC6832799 DOI: 10.1016/j.freeradbiomed.2019.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Loss of dopaminergic neurons in the substantia nigra is one of the pathogenic hallmarks of Parkinson's disease, yet the underlying molecular mechanisms remain enigmatic. While aberrant redox metabolism strongly associated with iron dysregulation and accumulation of dysfunctional mitochondria is considered as one of the major contributors to neurodegeneration and death of dopaminergic cells, the specific anomalies in the molecular machinery and pathways leading to the PD development and progression have not been identified. The high efficiency and relative simplicity of a new genome editing tool, CRISPR/Cas9, make its applications attractive for deciphering molecular changes driving PD-related impairments of redox metabolism and lipid peroxidation in relation to mishandling of iron, aggregation and oligomerization of alpha-synuclein and mitochondrial injury as well as in mechanisms of mitophagy and programs of regulated cell death (apoptosis and ferroptosis). These insights into the mechanisms of PD pathology may be used for the identification of new targets for therapeutic interventions and innovative approaches to genome editing, including CRISPR/Cas9.
Collapse
Affiliation(s)
- M A Artyukhova
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation
| | - Y Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA
| | - C T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - T M Zharikova
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation; Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Russian Federation
| | - H Bayır
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA; Department of Critical Care Medicine, University of Pittsburgh, USA
| | - V E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA; Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, I.M. Sechenov Moscow State Medical University, Russian Federation; Department of Chemistry, University of Pittsburgh, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Department of Radiation Oncology, University of Pittsburgh, USA.
| | - P S Timashev
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation; Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, Russian Federation; Institute of Photonic Technologies, Research Center "Crystallography and Photonics", Russian Academy of Sciences, Russian Federation
| |
Collapse
|
34
|
Nguyen BY, Ruiz‐Velasco A, Bui T, Collins L, Wang X, Liu W. Mitochondrial function in the heart: the insight into mechanisms and therapeutic potentials. Br J Pharmacol 2019; 176:4302-4318. [PMID: 29968316 PMCID: PMC6887906 DOI: 10.1111/bph.14431] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction is considered as a crucial contributory factor in cardiac pathology. This has highlighted the therapeutic potential of targeting mitochondria to prevent or treat cardiac disease. Mitochondrial dysfunction is associated with aberrant electron transport chain activity, reduced ATP production, an abnormal shift in metabolic substrates, ROS overproduction and impaired mitochondrial dynamics. This review will cover the mitochondrial functions and how they are altered in various disease conditions. Furthermore, the mechanisms that lead to mitochondrial defects and the protective mechanisms that prevent mitochondrial damage will be discussed. Finally, potential mitochondrial targets for novel therapeutic intervention will be explored. We will highlight the development of small molecules that target mitochondria from different perspectives and their current progress in clinical trials. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Binh Yen Nguyen
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Andrea Ruiz‐Velasco
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Thuy Bui
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Lucy Collins
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Xin Wang
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Wei Liu
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| |
Collapse
|
35
|
Makarov VI, Khmelinskii I, Khuchua Z, Javadov S. In silico simulation of reversible and irreversible swelling of mitochondria: The role of membrane rigidity. Mitochondrion 2019; 50:71-81. [PMID: 31669621 DOI: 10.1016/j.mito.2019.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/07/2019] [Accepted: 09/23/2019] [Indexed: 01/24/2023]
Abstract
Mitochondria have been widely accepted as the main source of ATP in the cell. The inner mitochondrial membrane (IMM) is important for the maintenance of ATP production and other functions of mitochondria. The electron transport chain (ETC) generates an electrochemical gradient of protons known as the proton-motive force across the IMM and thus produces the mitochondrial membrane potential that is critical to ATP synthesis. One of the main factors regulating the structural and functional integrity of the IMM is the changes in the matrix volume. Mild (reversible) swelling regulates mitochondrial metabolism and function; however, excessive (irreversible) swelling causes mitochondrial dysfunction and cell death. The central mechanism of mitochondrial swelling includes the opening of non-selective channels known as permeability transition pores (PTPs) in the IMM by high mitochondrial Ca2+ and reactive oxygen species (ROS). The mechanisms of reversible and irreversible mitochondrial swelling and transition between these two states are still unknown. The present study elucidates an upgraded biophysical model of reversible and irreversible mitochondrial swelling dynamics. The model provides a description of the PTP regulation dynamics using an additional differential equation. The rigidity tensor was used in numerical simulations of the mitochondrial parameter dynamics with different initial conditions defined by Ca2+ concentration in the sarco/endoplasmic reticulum. We were able to estimate the values of the IMM rigidity tensor components by fitting the model to the previously reported experimental data. Overall, the model provides a better description of the reversible and irreversible mitochondrial swelling dynamics.
Collapse
Affiliation(s)
- Vladimir I Makarov
- Department of Physics, University of Puerto Rico Rio Piedras Campus, San Juan, USA
| | - Igor Khmelinskii
- Faculty of Science and Technology, Department of Chemistry and Pharmacy, and Center of Electronics, Optoelectronics and Telecommunications, University of Algarve, Portugal
| | - Zaza Khuchua
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Biochemistry, Sechenov Moscow State Medical University, Moscow, Russia
| | - Sabzali Javadov
- Department of Physiology and Biophysics, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA.
| |
Collapse
|
36
|
Hao Y, Xu W, Gao J, Zhang Y, Yang Y, Tao L. Roundup-Induced AMPK/mTOR-Mediated Autophagy in Human A549 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11364-11372. [PMID: 31542934 DOI: 10.1021/acs.jafc.9b04679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The extensive use of pesticide caused an amount of pressure on the environment and increased the potential human health risk. Glyphosate-based herbicide (GBH) is one of the most widely used pesticides based on a 5-enolpyruvylshikimate-3-phosphate synthase target, which does not exist in vertebrates. Here, we study autophagic effects of the most famous commercial GBH Roundup (RDP) on human A549 cells in vitro. Intracellular biochemical assay indicated opening of mitochondrial permeability transition pore, LC3-II conversion, up-regulation of beclin-1, down-regulation of p62, and the changes in the phosphorylation of AMPK and mTOR induced by RDP in A549 cells. Further experimental results indicated that all the effects induced by RDP were related to its adjuvant polyethoxylated tallow amine, not its herbicidal active ingredient glyphosate isopropylamine salt. All these results showed that RDP has the ability to induce AMPK/mTOR-mediated cell autophagy in human A549 cells. This study would provide a theoretical basis for understanding RDP's autophagic effects on human A549 cells and attract attention on the potential human health risks induced by the adjuvant.
Collapse
Affiliation(s)
- Youwu Hao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Jufang Gao
- College of Life Sciences , Shanghai Normal University , Shanghai 200234 , China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
37
|
Wacquier B, Combettes L, Dupont G. Cytoplasmic and Mitochondrial Calcium Signaling: A Two-Way Relationship. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035139. [PMID: 31110132 DOI: 10.1101/cshperspect.a035139] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intracellular Ca2+ signals are well organized in all cell types, and trigger a variety of vital physiological processes. The temporal and spatial characteristics of cytosolic Ca2+ increases are mainly governed by the fluxes of this ion across the membrane of the endoplasmic/sarcoplasmic reticulum and the plasma membrane. However, various Ca2+ transporters also allow for Ca2+ exchanges between the cytoplasm and mitochondria. Increases in mitochondrial Ca2+ stimulate the production of ATP, which allows the cells to cope with the increased energy demand created by the stimulus. Less widely appreciated is the fact that Ca2+ handling by mitochondria also shapes cytosolic Ca2+ signals. Indeed, the frequency, amplitude, and duration of cytosolic Ca2+ increases can be altered by modifying the rates of Ca2+ transport into, or from, mitochondria. In this review, we focus on the interplay between mitochondria and Ca2+ signaling, highlighting not only the consequences of cytosolic Ca2+ changes on mitochondrial Ca2+, but also how cytosolic Ca2+ dynamics is controlled by modifications of the Ca2+-handling properties and the metabolism of mitochondria.
Collapse
Affiliation(s)
- Benjamin Wacquier
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) CP231, B1050 Brussels, Belgium
| | | | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) CP231, B1050 Brussels, Belgium
| |
Collapse
|
38
|
Wacquier B, Voorsluijs V, Combettes L, Dupont G. Coding and decoding of oscillatory Ca 2+ signals. Semin Cell Dev Biol 2019; 94:11-19. [PMID: 30659886 DOI: 10.1016/j.semcdb.2019.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
Abstract
About 30 years after their first observation, Ca2+ oscillations are now recognised as a universal mechanism of signal transduction. These oscillations are driven by periodic cycles of release and uptake of Ca2+ between the cytoplasm and the endoplasmic reticulum. Their frequency often increases with the level of stimulation, which can be decoded by some molecules. However, it is becoming increasingly evident that the widespread core oscillatory mechanism is modulated in many ways, depending on the cell type and on the physiological conditions. Interplay with inositol 1,4,5-trisphosphate metabolism and with other Ca2+ stores as the extracellular medium or mitochondria can much affect the properties of these oscillations. In many cases, these finely tuned characteristics of Ca2+ oscillations impact the physiological response that is triggered by the signal. Moreover, oscillations are intrinsically irregular. This randomness can also be exploited by the cell. In this review, we discuss evidences of these additional manifestations of the versatility of Ca2+ signalling.
Collapse
Affiliation(s)
- Benjamin Wacquier
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valérie Voorsluijs
- Nonlinear Physical Chemistry Unit & Center for Nonlinear Phenomena and Complex Systems (CENOLI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
39
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
40
|
Zhang X, Zhang Z, Yang Y, Suo Y, Liu R, Qiu J, Zhao Y, Jiang N, Liu C, Tse G, Li G, Liu T. Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits. Cardiovasc Diabetol 2018; 17:160. [PMID: 30591063 PMCID: PMC6307280 DOI: 10.1186/s12933-018-0803-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/15/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND There are increasing evidence that left ventricle diastolic dysfunction is the initial functional alteration in the diabetic myocardium. In this study, we hypothesized that alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function and structure in diabetic rabbits. METHODS A total of 30 rabbits were randomized into control group (CON, n = 10), alloxan-induced diabetic group (DM, n = 10) and alogliptin-treated (12.5 mg/kd/day for 12 weeks) diabetic group (DM-A, n = 10). Echocardiographic and hemodynamic studies were performed in vivo. Mitochondrial morphology, respiratory function, membrane potential and reactive oxygen species (ROS) generation rate of left ventricular tissue were assessed. The serum concentrations of glucagon-like peptide-1, insulin, inflammatory and oxidative stress markers were measured. Protein expression of TGF-β1, NF-κB p65 and mitochondrial biogenesis related proteins were determined by Western blotting. RESULTS DM rabbits exhibited left ventricular hypertrophy, left atrial dilation, increased E/e' ratio and normal left ventricular ejection fraction. Elevated left ventricular end diastolic pressure combined with decreased maximal decreasing rate of left intraventricular pressure (- dp/dtmax) were observed. Alogliptin alleviated ventricular hypertrophy, interstitial fibrosis and diastolic dysfunction in diabetic rabbits. These changes were associated with decreased mitochondrial ROS production rate, prevented mitochondrial membrane depolarization and improved mitochondrial swelling. It also improved mitochondrial biogenesis by PGC-1α/NRF1/Tfam signaling pathway. CONCLUSIONS The DPP-4 inhibitor alogliptin prevents cardiac diastolic dysfunction by inhibiting ventricular remodeling, explicable by improved mitochondrial function and increased mitochondrial biogenesis.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/prevention & control
- Diastole/drug effects
- Dipeptidyl-Peptidase IV Inhibitors/pharmacology
- Fibrosis
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Nuclear Respiratory Factor 1/metabolism
- Oxidative Stress/drug effects
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Piperidines/pharmacology
- Rabbits
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- Stroke Volume/drug effects
- Transcription Factors/metabolism
- Uracil/analogs & derivatives
- Uracil/pharmacology
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left/drug effects
- Ventricular Pressure/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Xiaowei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | - Yajuan Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | - Ya Suo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | - Ruimeng Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | - Jiuchun Qiu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health & Exercise Science, Tianjin University of Sport, Tianjin, 300381 People’s Republic of China
| | - Ning Jiang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health & Exercise Science, Tianjin University of Sport, Tianjin, 300381 People’s Republic of China
| | - Changle Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211 People’s Republic of China
| |
Collapse
|
41
|
Porter GA, Beutner G. Cyclophilin D, Somehow a Master Regulator of Mitochondrial Function. Biomolecules 2018; 8:E176. [PMID: 30558250 PMCID: PMC6316178 DOI: 10.3390/biom8040176] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cyclophilin D (CyPD) is an important mitochondrial chaperone protein whose mechanism of action remains a mystery. It is well known for regulating mitochondrial function and coupling of the electron transport chain and ATP synthesis by controlling the mitochondrial permeability transition pore (PTP), but more recent evidence suggests that it may regulate electron transport chain activity. Given its identification as a peptidyl-prolyl, cis-trans isomerase (PPIase), CyPD, is thought to be involved in mitochondrial protein folding, but very few reports demonstrate the presence of this activity. By contrast, CyPD may also perform a scaffolding function, as it binds to a number of important proteins in the mitochondrial matrix and inner mitochondrial membrane. From a clinical perspective, inhibiting CyPD to inhibit PTP opening protects against ischemia⁻reperfusion injury, making modulation of CyPD activity a potentially important therapeutic goal, but the lack of knowledge about the mechanisms of CyPD's actions remains problematic for such therapies. Thus, the important yet enigmatic nature of CyPD somehow makes it a master regulator, yet a troublemaker, for mitochondrial function.
Collapse
Affiliation(s)
- George A Porter
- Department of Pediatrics, Division of Cardiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Gisela Beutner
- Department of Pediatrics, Division of Cardiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| |
Collapse
|
42
|
Torrezan-Nitao E, Figueiredo RCBQ, Marques-Santos LF. Mitochondrial permeability transition pore in sea urchin female gametes. Mech Dev 2018; 154:208-218. [DOI: 10.1016/j.mod.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
|
43
|
Xiao Y, Karam C, Yi J, Zhang L, Li X, Yoon D, Wang H, Dhakal K, Ramlow P, Yu T, Mo Z, Ma J, Zhou J. ROS-related mitochondrial dysfunction in skeletal muscle of an ALS mouse model during the disease progression. Pharmacol Res 2018; 138:25-36. [PMID: 30236524 PMCID: PMC6263743 DOI: 10.1016/j.phrs.2018.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
In amyotrophic lateral sclerosis (ALS), mitochondrial dysfunction and oxidative stress form a vicious cycle that promotes neurodegeneration and muscle wasting. To quantify the disease-stage-dependent changes of mitochondrial function and their relationship to the generation of reactive oxygen species (ROS), we generated double transgenic mice (G93A/cpYFP) that carry human ALS mutation SOD1G93A and mt-cpYFP transgenes, in which mt-cpYFP detects dynamic changes of ROS-related mitoflash events at individual mitochondria level. Compared with wild type mice, mitoflash activity in the SOD1G93A (G93A) mouse muscle showed an increased flashing frequency prior to the onset of ALS symptom (at the age of 2 months), whereas the onset of ALS symptoms (at the age of 4 months) is associated with drastic changes in the kinetics property of mitoflash signal with prolonged full duration at half maximum (FDHM). Elevated levels of cytosolic ROS in skeletal muscle derived from the SOD1G93A mice were confirmed with fluorescent probes, MitoSOX™ Red and ROS Brite™570. Immunoblotting analysis of subcellular mitochondrial fractionation of G93A muscle revealed an increased expression level of cyclophilin D (CypD), a regulatory component of the mitochondrial permeability transition pore (mPTP), at the age of 4 months but not at the age of 2 months. Transient overexpressing of SOD1G93A in skeletal muscle of wild type mice directly promoted mitochondrial ROS production with an enhanced mitoflash activity in the absence of motor neuron axonal withdrawal. Remarkably, the SOD1G93A-induced mitoflash activity was attenuated by the application of cyclosporine A (CsA), an inhibitor of CypD. Similar to the observation with the SOD1G93A transgenic mice, an increased expression level of CypD was also detected in skeletal muscle following transient overexpression of SOD1G93A. Overall, this study reveals a disease-stage-dependent change in mitochondrial function that is associated with CypD-dependent mPTP opening; and the ALS mutation SOD1G93A directly contributes to mitochondrial dysfunction in the absence of motor neuron axonal withdrawal.
Collapse
Affiliation(s)
- Yajuan Xiao
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Rush University School of Medicine, Chicago, IL, USA
| | - Chehade Karam
- Rush University School of Medicine, Chicago, IL, USA
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Rush University School of Medicine, Chicago, IL, USA
| | - Lin Zhang
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Zunyi Medical College, Zunyi, China
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Dosuk Yoon
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Huan Wang
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Kamal Dhakal
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Paul Ramlow
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Tian Yu
- Zunyi Medical College, Zunyi, China
| | - Zhaohui Mo
- 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jianjie Ma
- Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Rush University School of Medicine, Chicago, IL, USA.
| |
Collapse
|
44
|
Parodi-Rullán RM, Soto-Prado J, Vega-Lugo J, Chapa-Dubocq X, Díaz-Cordero SI, Javadov S. Divergent Effects of Cyclophilin-D Inhibition on the Female Rat Heart: Acute Versus Chronic Post-Myocardial Infarction. Cell Physiol Biochem 2018; 50:288-303. [PMID: 30282073 PMCID: PMC6247791 DOI: 10.1159/000494006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS The mitochondrial permeability transition pore opening plays a critical role in the pathogenesis of myocardial infarction. Inhibition of cyclophilin-D (CyP-D), a key regulator of the mitochondrial permeability transition pore, has been shown to exert cardioprotective effects against ischemia-reperfusion injury on various animal models, mostly in males. However, failure of recent clinical trials requires a detailed elucidation of the cardioprotective efficacy of CyP-D inhibition. The aim of this study was to examine whether cardioprotective effects of sanglifehrin A, a potent inhibitor of CyP-D, on post-infarcted hearts depends on reperfusion. METHODS Acute or chronic myocardial infarction was induced by coronary artery ligation with/without subsequent reperfusion for 2 and 28 days in female Sprague-Dawley rats. Cardiac function was estimated by echocardiography. Oxygen consumption rates, ROS production, permeability transition pore opening, protein carbonylation and respiratory supercomplexes were analyzed in isolated cardiac mitochondria. RESULTS Sanglifehrin A significantly improved cardiac function of reperfused hearts at 2 days but failed to protect after 28 days. No protection was observed in non-reperfused post-infarcted hearts. The respiratory control index of mitochondria was significantly reduced in reperfused infarcted hearts at 2-days with no effect at 28-days post-infarction on reperfused and non-reperfused hearts. Likewise, only a minor increase in reactive oxygen species production was observed at 2-days in non-reperfused post-infarcted hearts. CONCLUSION This study demonstrates that CyP-D inhibition exerts cardioprotective effects in reperfused but not in non-reperfused infarcted hearts of female rats, and the effects are observed only during acute post-infarction injury.
Collapse
|
45
|
Yang Y, Gao J, Zhang Y, Xu W, Hao Y, Xu Z, Tao L. Natural pyrethrins induce autophagy of HepG2 cells through the activation of AMPK/mTOR pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1091-1097. [PMID: 30029317 DOI: 10.1016/j.envpol.2018.06.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
Natural pyrethrins, one kind of insects' neural toxin, have been used worldwide for the control of pests of crops, livestock, and human beings. However, their specific mechanisms of action are incompletely understood and hence further investigation is required. Here we used a series of experiments including colony formation, fluorescent staining, western blotting, enzyme activity detection, immunofluorescence analysis, and real-time quantitative PCR (QPCR) to investigate whether natural pyrethrins (0-40 μg/mL) are able to modulate autophagy process through AMPK/mTOR signaling pathway, in order to reveal their cytotoxic mechanisms. The results showed that natural pyrethrins markedly inhibited the proliferation of HepG2 cells in both concentration- and time-dependent manners. Particularly, natural pyrethrins could induce the resulting autophagosome, and the intensification of LC3-II formation and translocation, the accumulation of Beclin-1 and the reduction of p62 and thus autophagy. We clarified that natural pyrethrins induced the abnormal level of oxidation reduction metabolism, leading to mitochondrial permeability transition pore (mPTP) opening, ATP depletion and mitochondria eliminating by autophagy. Moreover, the phosphorylation levels of AMPK were significantly enhanced, and the mTOR and p70s6k phosphorylation were drastically decreased. These results showed that natural pyrethrins induced autophagy of HepG2 cells and activation of the AMPK/mTOR signaling pathway might have potential risk to human health.
Collapse
Affiliation(s)
- Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Youwu Hao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
46
|
Parviz Y, Waleed M, Vijayan S, Adlam D, Lavi S, Al Nooryani A, Iqbal J, Stone GW. Cellular and molecular approaches to enhance myocardial recovery after myocardial infarction. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2018; 20:351-364. [PMID: 29958820 DOI: 10.1016/j.carrev.2018.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
Reperfusion therapy has resulted in significant improvement in post-myocardial infarction morbidity and mortality in over the last 4 decades. Nonetheless, it is well recognized that simply restoring patency of the epicardial artery may not stop or reverse damage at microvascular level, and myocardial salvage is often suboptimal. Numerous efforts have been undertaken to elucidate the mechanisms underlying extensive myonecrosis to facilitate the discovery of therapies to provide additional and incremental benefits over current therapeutic pathways. To date, conclusively effective strategies to promote myocardial recovery have not yet been established. Novel approaches are investigating the foundational cellular and molecular bases of myocardial ischemia and irreversible injury. Herein, we review the emerging concepts and proposed therapies that may improve myocardial protection and reduce infarct size. We examine the preclinical and clinical evidence for reduced infarct size with these strategies, including anti-inflammatory agents, intracellular ion channel modulators, agents affecting the reperfusion injury salvage kinase (RISK) and nitric oxide signaling pathways, modulators of mitochondrial function, anti-apoptotic agents, and stem cell and gene therapy. We review the potential reasons of failures to date and the potential for new strategies to further promote myocardial recovery and improve prognosis.
Collapse
Affiliation(s)
- Yasir Parviz
- New York Presbyterian Hospital, Columbia University Medical Centre and the Cardiovascular Research Foundation, New York, NY, USA.
| | | | | | - David Adlam
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, UK
| | - Shahar Lavi
- Division of Cardiology, London Health Sciences Centre, Western University, London, Ontario, Canada
| | | | - Javaid Iqbal
- South Yorkshire Cardiothoracic Centre, Northern General Hospital, Sheffield, UK
| | - Gregg W Stone
- New York Presbyterian Hospital, Columbia University Medical Centre and the Cardiovascular Research Foundation, New York, NY, USA
| |
Collapse
|
47
|
Baines CP, Gutiérrez-Aguilar M. The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore. Cell Calcium 2018; 73:121-130. [PMID: 29793100 PMCID: PMC5993635 DOI: 10.1016/j.ceca.2018.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
Abstract
Mitochondria from different organisms can undergo a sudden process of inner membrane unselective leakiness to molecules known as the mitochondrial permeability transition (MPT). This process has been studied for nearly four decades and several proteins have been claimed to constitute, or at least regulate the usually inactive pore responsible for this transition. However, no protein candidate proposed as the actual pore-forming unit has passed rigorous gain- or loss-of-function genetic tests. Here we review evidence for -and against- putative channel-forming components of the MPT pore. We conclude that the structure of the MPT pore still remains largely undefined and suggest that future studies should follow established technical considerations to unambiguously consolidate the channel forming constituent(s) of the MPT pore.
Collapse
Affiliation(s)
- Christopher P Baines
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA; Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | - Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico.
| |
Collapse
|
48
|
α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease. Nat Commun 2018; 9:2293. [PMID: 29895861 PMCID: PMC5997668 DOI: 10.1038/s41467-018-04422-2] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 04/20/2018] [Indexed: 12/18/2022] Open
Abstract
Protein aggregation causes α-synuclein to switch from its physiological role to a pathological toxic gain of function. Under physiological conditions, monomeric α-synuclein improves ATP synthase efficiency. Here, we report that aggregation of monomers generates beta sheet-rich oligomers that localise to the mitochondria in close proximity to several mitochondrial proteins including ATP synthase. Oligomeric α-synuclein impairs complex I-dependent respiration. Oligomers induce selective oxidation of the ATP synthase beta subunit and mitochondrial lipid peroxidation. These oxidation events increase the probability of permeability transition pore (PTP) opening, triggering mitochondrial swelling, and ultimately cell death. Notably, inhibition of oligomer-induced oxidation prevents the pathological induction of PTP. Inducible pluripotent stem cells (iPSC)-derived neurons bearing SNCA triplication, generate α-synuclein aggregates that interact with the ATP synthase and induce PTP opening, leading to neuronal death. This study shows how the transition of α-synuclein from its monomeric to oligomeric structure alters its functional consequences in Parkinson's disease.
Collapse
|
49
|
Berry BJ, Trewin AJ, Amitrano AM, Kim M, Wojtovich AP. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species. J Mol Biol 2018; 430:3873-3891. [PMID: 29626541 DOI: 10.1016/j.jmb.2018.03.025] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial respiration results in an electrochemical proton gradient, or protonmotive force (pmf), across the mitochondrial inner membrane. The pmf is a form of potential energy consisting of charge (∆ψm) and chemical (∆pH) components, that together drive ATP production. In a process called uncoupling, proton leak into the mitochondrial matrix independent of ATP production dissipates the pmf and energy is lost as heat. Other events can directly dissipate the pmf independent of ATP production as well, such as chemical exposure or mechanisms involving regulated mitochondrial membrane electrolyte transport. Uncoupling has defined roles in metabolic plasticity and can be linked through signal transduction to physiologic events. In the latter case, the pmf impacts mitochondrial reactive oxygen species (ROS) production. Although capable of molecular damage, ROS also have signaling properties that depend on the timing, location, and quantity of their production. In this review, we provide a general overview of mitochondrial ROS production, mechanisms of uncoupling, and how these work in tandem to affect physiology and pathologies, including obesity, cardiovascular disease, and immunity. Overall, we highlight that isolated bioenergetic models-mitochondria and cells-only partially recapitulate the complex link between the pmf and ROS signaling that occurs in vivo.
Collapse
Affiliation(s)
- Brandon J Berry
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| | - Adam J Trewin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| | - Andrea M Amitrano
- Department of Pathology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | - Minsoo Kim
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA; Department of Pathology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | - Andrew P Wojtovich
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| |
Collapse
|
50
|
Makarov VI, Khmelinskii I, Javadov S. Computational Modeling of In Vitro Swelling of Mitochondria: A Biophysical Approach. Molecules 2018; 23:molecules23040783. [PMID: 29597314 PMCID: PMC5901922 DOI: 10.3390/molecules23040783] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022] Open
Abstract
Swelling of mitochondria plays an important role in the pathogenesis of human diseases by stimulating mitochondria-mediated cell death through apoptosis, necrosis, and autophagy. Changes in the permeability of the inner mitochondrial membrane (IMM) of ions and other substances induce an increase in the colloid osmotic pressure, leading to matrix swelling. Modeling of mitochondrial swelling is important for simulation and prediction of in vivo events in the cell during oxidative and energy stress. In the present study, we developed a computational model that describes the mechanism of mitochondrial swelling based on osmosis, the rigidity of the IMM, and dynamics of ionic/neutral species. The model describes a new biophysical approach to swelling dynamics, where osmotic pressure created in the matrix is compensated for by the rigidity of the IMM, i.e., osmotic pressure induces membrane deformation, which compensates for the osmotic pressure effect. Thus, the effect is linear and reversible at small membrane deformations, allowing the membrane to restore its normal form. On the other hand, the membrane rigidity drops to zero at large deformations, and the swelling becomes irreversible. As a result, an increased number of dysfunctional mitochondria can activate mitophagy and initiate cell death. Numerical modeling analysis produced results that reasonably describe the experimental data reported earlier.
Collapse
Affiliation(s)
- Vladimir I Makarov
- Department of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931-3343, USA.
| | - Igor Khmelinskii
- Faculty of Sciences and Technology, Department of Chemistry and Pharmacy, and Interdisciplinary Centre of Chemistry of Algarve, University of Algarve, 8005-139 Faro, Portugal.
| | - Sabzali Javadov
- Department of Physiology and Biophysics, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA.
| |
Collapse
|