1
|
Liu Y, Su Y, Chen L, Li A, Ma Z. Exploring the roles and therapeutic implications of melatonin-mediated KLF6 in the development of intracranial aneurysm. Ann Med 2024; 56:2397568. [PMID: 39215680 PMCID: PMC11370671 DOI: 10.1080/07853890.2024.2397568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Intracranial aneurysm (IA) is a cerebrovascular disease with a high mortality rate due to ruptured subarachnoid hemorrhage. While Krüppel-like factor 6 (KLF6) dysregulation has been implicated in cancer and cardiovascular diseases, its role in IA remains unclear. MATERIALS AND METHODS The GSE122897 and GSE15629 datasets were downloaded from the Gene Expression Omnibus database. Immune cell infiltration and hypoxia analysis were performed to explore the effects of KLF6 on IA. Weighted gene co-expression network analysis was used to identify hub genes related to KLF6 expression for subsequent analyses. Hypoxia-related genes were identified. Drug prediction was performed for IA. Samples from healthy individuals and patients with IA were collected to detect the expression of endothelin-1 (ET-1), vascular hematoma factor (vWF), and KLF6. A model of H2O2-induced human brain vascular smooth muscle cells (HBVSMC) injury was constructed to explore the effects of KLF6 and melatonin to treat IA. RESULTS T cells CD4 memory resting and monocytes were significantly different in the KLF6 high and low expression groups. Four hypoxia-related gene sets were significantly enriched in the KLF6 high-expression group. Six hypoxia-related hub genes were obtained, which were significantly associated with KLF6. Drug prediction showed that melatonin may be a potential drug for IA. The levels of ET-1, vWF, and KLF6 were significantly upregulated in patients with IA. KLF6 exacerbates H2O2-induced injury in HBVSMC, ameliorated by melatonin. CONCLUSION KLF6 may be a potential target for IA treatment, with melatonin-mediated KLF6 effects playing a crucial role in the development of IA.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, P.R. China
| | - Yongxing Su
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, P.R. China
| | - Le Chen
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, P.R. China
| | - Anzhi Li
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, P.R. China
| | - Zhengfei Ma
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, P.R. China
| |
Collapse
|
2
|
Anzell AR, Kunz AB, Donovan JP, Tran TG, Lu X, Young S, Roman BL. Blood flow regulates acvrl1 transcription via ligand-dependent Alk1 activity. Angiogenesis 2024; 27:501-522. [PMID: 38727966 DOI: 10.1007/s10456-024-09924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors ACVRL1/ALK1, a signaling receptor, or endoglin (ENG), an accessory receptor. Because overexpression of Acvrl1 prevents AVM development in both Acvrl1 and Eng null mice, enhancing ACVRL1 expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of ACVRL1 regulation. We previously demonstrated in zebrafish embryos that acvrl1 is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that acvrl1 expression is rapidly restored after reinitiation of flow. Furthermore, we find that acvrl1 expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that, in the absence of flow, intravascular injection of BMP10 or the related ligand, BMP9, restores acvrl1 expression in an Alk1-dependent manner. Using a transgenic acvrl1:egfp reporter line, we find that flow and Bmp10 regulate acvrl1 at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in ACVRL1 in human endothelial cells subjected to shear stress. These data suggest that ligand-dependent Alk1 activity acts downstream of blood flow to maintain or enhance acvrl1 expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and ACVRL1 expression.
Collapse
Affiliation(s)
- Anthony R Anzell
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy B Kunz
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Allegheny Health Network, Pittsburgh, PA, USA
| | - James P Donovan
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thanhlong G Tran
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xinyan Lu
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Sarah Young
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Carnegie Mellon University, University Libraries, Pittsburgh, PA, USA
| | - Beth L Roman
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Bernabéu-Herrero ME, Patel D, Bielowka A, Zhu J, Jain K, Mackay IS, Chaves Guerrero P, Emanuelli G, Jovine L, Noseda M, Marciniak SJ, Aldred MA, Shovlin CL. Mutations causing premature termination codons discriminate and generate cellular and clinical variability in HHT. Blood 2024; 143:2314-2331. [PMID: 38457357 PMCID: PMC11181359 DOI: 10.1182/blood.2023021777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT For monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability. In blood outgrowth endothelial cells (BOECs) derived from patients with ACVRL1+/PTC, ENG+/PTC, and SMAD4+/PTC genotypes, PTC-containing RNA transcripts persisted at low levels (8%-23% expected, varying between replicate cultures); genes differentially expressed to Bonferroni P < .05 in HHT+/PTC BOECs clustered significantly only to generic protein terms (isopeptide-bond/ubiquitin-like conjugation) and pulse-chase experiments detected subtle protein maturation differences but no evidence for PTC-truncated protein. BOECs displaying highest PTC persistence were discriminated in unsupervised hierarchical clustering of near-invariant housekeeper genes, with patterns compatible with higher cellular stress in BOECs with >11% PTC persistence. To test directionality, we used a HeLa reporter system to detect induction of activating transcription factor 4 (ATF4), which controls expression of stress-adaptive genes, and showed that ENG Q436X but not ENG R93X directly induced ATF4. AlphaFold accurately modeled relevant ENG domains, with AlphaMissense suggesting that readthrough substitutions would be benign for ENG R93X and other less rare ENG nonsense variants but more damaging for Q436X. We conclude that PTCs should be distinguished from other loss-of-function variants, PTC transcript levels increase in stressed cells, and readthrough proteins and mechanisms provide promising research avenues.
Collapse
Affiliation(s)
- Maria E. Bernabéu-Herrero
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Dilipkumar Patel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Adrianna Bielowka
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - JiaYi Zhu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kinshuk Jain
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Ian S. Mackay
- Ear, Nose and Throat Surgery, Charing Cross and Royal Brompton Hospitals, London, United Kingdom
| | | | - Giulia Emanuelli
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Micheala A. Aldred
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Claire L. Shovlin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
- Specialist Medicine, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
4
|
Chen J, Zhang Z, Feng L, Liu W, Wang X, Chen H, Zou H. Lrg1 silencing attenuates ischemia-reperfusion renal injury by regulating autophagy and apoptosis through the TGFβ1- Smad1/5 signaling pathway. Arch Biochem Biophys 2024; 753:109892. [PMID: 38246328 DOI: 10.1016/j.abb.2024.109892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Dysfunction in the processes of autophagy and apoptosis within renal tubular epithelial cells (RTEc) contributes to renal ischemia-reperfusion injury (IRI). However, the factors influencing this dysfunction remain unclear. Leucine-rich alpha-2-glycoprotein 1 (Lrg1) plays a role in the progression of diabetic nephropathy and kidney fibrosis by modulating the activin receptor-like kinase 1 (ALK1)-Smad1/5/8 and TGF-β1/Smad3 pathways, respectively. Therefore, we aimed to investigate whether Lrg1 is involved in the pathological mechanisms of renal IRI and whether its effects are related to the dysregulation of autophagy and apoptosis in RTEc. METHODS We conducted in vitro and in vivo experiments using CoCl2-induced hypoxic human kidney-2 (HK-2) cells and mice with renal IRI, respectively. Lrg1 was silenced using siRNA and lentiviral vectors in HK-2 cells and mouse kidneys. Rapamycin (Rapa) and methyladenine were applied to regulate autophagy in renal IRI models. RESULTS Increased Lrg1 expression was observed in hypoxic HK-2 cells and in the kidneys of mice with renal IRI. Silencing of Lrg1 through siRNA and lentiviral approaches restored autophagy and suppressed apoptosis in CoCl2-induced hypoxic HK-2 cells and renal IRI models. Additionally, reduced Lrg1 expression alleviated kidney damage caused by renal IRI. The downregulation of Lrg1 expression restrained the TGFβ-Smad1/5 signaling pathway in hypoxic-induced HK-2 cells and renal IRI by reducing ALK1 expression. Lastly, the enhancement of autophagy, achieved through Rapa treatment, provided protection against renal IRI in mice. CONCLUSIONS Our findings suggest that Lrg1 silencing can be applied as a potential therapeutic target to inhibit the TGFβ1-Smad1/5 pathway, thereby enhancing autophagy and decreasing apoptosis in patients with acute kidney injury.
Collapse
Affiliation(s)
- Jianhui Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Zuoman Zhang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ling Feng
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Weihua Liu
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Xin Wang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Haishan Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
5
|
Anzell AR, Kunz AB, Donovan JP, Tran TG, Lu X, Young S, Roman BL. Blood flow regulates acvrl1 transcription via ligand-dependent Alk1 activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.576046. [PMID: 38328175 PMCID: PMC10849739 DOI: 10.1101/2024.01.25.576046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors ACVRL1/ALK1, a signaling receptor, or endoglin (ENG), an accessory receptor. Because overexpression of Acvrl1 prevents AVM development in both Acvrl1 and Eng null mice, enhancing ACVRL1 expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of ACVRL1 regulation. We previously demonstrated in zebrafish embryos that acvrl1 is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that acvrl1 expression is rapidly restored after reinitiation of flow. Furthermore, we find that acvrl1 expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that BMP10 microinjection into the vasculature in the absence of flow enhances acvrl1 expression in an Alk1-dependent manner. Using a transgenic acvrl1:egfp reporter line, we find that flow and Bmp10 regulate acvrl1 at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in ACVRL1 in human endothelial cells subjected to shear stress. These data suggest that Bmp10 acts downstream of blood flow to maintain or enhance acvrl1 expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and ACVRL1 expression.
Collapse
Affiliation(s)
- Anthony R. Anzell
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy Biery Kunz
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Current affiliation: Allegheny Health Network, Pittsburgh, PA, USA
| | - James P. Donovan
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thanhlong G. Tran
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Current affiliation: National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xinyan Lu
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Sarah Young
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Current affiliation: Carnegie Mellon University, University Libraries, Pittsburgh, PA, USA
| | - Beth L. Roman
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Zhang B, Gu J, Wang Y, Guo L, Xie J, Yang M. TNF-α stimulated exosome derived from fibroblast-like synoviocytes isolated from rheumatoid arthritis patients promotes HUVEC migration, invasion and angiogenesis by targeting the miR-200a-3p/KLF6/VEGFA axis. Autoimmunity 2023; 56:2282939. [PMID: 37975481 DOI: 10.1080/08916934.2023.2282939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The pathogenesis of rheumatoid arthritis (RA) is heavily impacted by the inflammation and activation of fibroblast-like synoviocytes (FLS). The objective of this investigation is to clarify the involvement of exosomes derived from FLS stimulated by tumour necrosis factor α (TNF-α) in angiogenesis and the underlying mechanisms. FLS cells were obtained from synovial fluid of RA patients and exosomes were obtained from FLS cell supernatant with TNF-α stimulation by ultracentrifugation. Exosomes were subsequently analysed using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. The functional effects of exosomes with TNF-α stimulation on human umbilical vein endothelial cells (HUVEC) migration, invasion, and angiogenesis was evaluated using wound scratch healing test, transwell invasion assay, and tube formation assay. DNA nanoball-seq (DNBSEQ) sequencing platform was utilised to analysis different expression miRNA from exosomes, miRNA and mRNA from HUVEC. The expression level of miR-200a-3p was determined through quantitative real-time polymerase chain reaction (qRT-PCR). The quantification of KLF6 and VEGFA expression levels were performed by qRT-PCR and western blot analysis. The validation of the association between miR-200a-3p and KLF6 was established through a fluorescence enzyme reporting assay. In comparison to exosome induced by PBS, exosome induced by TNF-α exhibited a substantial exacerbation of invasion, migration, and angiogenesis in HUVEC. 4 miRNAs in exosomes and HUVEC cells, namely miR-1246, miR-200a-3p, miR-30a-3p, and miR-99b-3p was obtained. MiR-200a-3p maintained high consistency with the sequencing results. We obtained 5 gene symbols, and KLF6 was chose for further investigation. The expression of miR-200a-3p in exosomes induced by TNF-α and in HUVEC treated with these exosomes demonstrated a significantly increase. Additionally, HUVEC cells displayed a notable decrease in KLF6 expression and a significant elevation in VEGFA expression. This was further confirmed by the fluorescence enzyme report assay, which provided evidence of the direct targeting of KLF6 by miR-200a-3p. Exosomes induced by TNF-α have the ability to enhance the migration, invasion, and angiogenesis of HUVEC cells via the miR-200a-3p/KLF6/VEGFA axis.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Juanfang Gu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Yiwen Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Linfeng Guo
- Zhejiang Chinese Medicine University and Jiaxing university Master degree cultivation base, Jiaxing, Zhejiang, China
| | | | - Mingfeng Yang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| |
Collapse
|
7
|
Wang Q, Chang Y, Yang X, Han Z. Deep sequencing of circulating miRNAs and target mRNAs level in deep venous thrombosis patients. IET Syst Biol 2023; 17:212-227. [PMID: 37466160 PMCID: PMC10439493 DOI: 10.1049/syb2.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Deep venous thrombosis is one of the most common peripheral vascular diseases that lead to major morbidity and mortality. The authors aimed to identify potential differentially expressed miRNAs and target mRNAs, which were helpful in understanding the potential molecule mechanism of deep venous thrombosis. The plasma samples of patients with deep venous thrombosis were obtained for the RNA sequencing. Differentially expressed miRNAs were identified, followed by miRNA-mRNA target analysis. Enrichment analysis was used to analyze the potential biological function of target mRNAs. GSE19151 and GSE173461 datasets were used for expression validation of mRNAs and miRNAs. 131 target mRNAs of 21 differentially expressed miRNAs were identified. Among which, 8 differentially expressed miRNAs including hsa-miR-150-5p, hsa-miR-326, hsa-miR-144-3p, hsa-miR-199a-5p, hsa-miR-199b-5p, hsa-miR-125a-5p, hsa-let-7e-5p and hsa-miR-381-3p and their target mRNAs (PRKCA, SP1, TP53, SLC27A4, PDE1B, EPHB3, IRS1, HIF1A, MTUS1 and ZNF652) were found associated with deep venous thrombosis for the first time. Interestingly, PDE1B and IRS1 had a potential diagnostic value for patients. Additionally, 3 important signaling pathways including p53, PI3K-Akt and MAPK were identified in the enrichment analysis of target mRNAs (TP53, PRKCA and IRS1). Identified circulating miRNAs and target mRNAs and related signaling pathways may be involved in the process of deep venous thrombosis.
Collapse
Affiliation(s)
- Qingxian Wang
- Department of Orthopedic Trauma, Orthopedic Research Institution of Hebei ProvinceKey Labratory of Biomechanics of Hebei ProvinceThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yunhe Chang
- Department of Orthopedic Trauma, Orthopedic Research Institution of Hebei ProvinceKey Labratory of Biomechanics of Hebei ProvinceThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xuqing Yang
- Department of Orthopedic Trauma, Orthopedic Research Institution of Hebei ProvinceKey Labratory of Biomechanics of Hebei ProvinceThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ziwang Han
- Department of Orthopedic Trauma, Orthopedic Research Institution of Hebei ProvinceKey Labratory of Biomechanics of Hebei ProvinceThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
8
|
Hachana S, Larrivée B. TGF-β Superfamily Signaling in the Eye: Implications for Ocular Pathologies. Cells 2022; 11:2336. [PMID: 35954181 PMCID: PMC9367584 DOI: 10.3390/cells11152336] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The TGF-β signaling pathway plays a crucial role in several key aspects of development and tissue homeostasis. TGF-β ligands and their mediators have been shown to be important regulators of ocular physiology and their dysregulation has been described in several eye pathologies. TGF-β signaling participates in regulating several key developmental processes in the eye, including angiogenesis and neurogenesis. Inadequate TGF-β signaling has been associated with defective angiogenesis, vascular barrier function, unfavorable inflammatory responses, and tissue fibrosis. In addition, experimental models of corneal neovascularization, diabetic retinopathy, proliferative vitreoretinopathy, glaucoma, or corneal injury suggest that aberrant TGF-β signaling may contribute to the pathological features of these conditions, showing the potential of modulating TGF-β signaling to treat eye diseases. This review highlights the key roles of TGF-β family members in ocular physiology and in eye diseases, and reviews approaches targeting the TGF-β signaling as potential treatment options.
Collapse
Affiliation(s)
- Soumaya Hachana
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
9
|
Zhang L, Gu J, Wang S, He F, Gong K. Identification of key differential genes in intimal hyperplasia induced by left carotid artery ligation. PeerJ 2022; 10:e13436. [PMID: 35586138 PMCID: PMC9109685 DOI: 10.7717/peerj.13436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/22/2022] [Indexed: 01/14/2023] Open
Abstract
Background Intimal hyperplasia is a common pathological process of restenosis following angioplasty, atherosclerosis, pulmonary hypertension, vein graft stenosis, and other proliferative diseases. This study aims to screen for potential novel gene targets and mechanisms related to vascular intimal hyperplasia through an integrated microarray analysis of the Gene Expression Omnibus Database (GEO) database. Material and Methods The gene expression profile of the GSE56143 dataset was downloaded from the Gene Expression Omnibus database. Functional enrichment analysis, protein-protein interaction (PPI) network analysis, and the transcription factor (TF)-target gene regulatory network were used to reveal the biological functions of differential genes (DEGs). Furthermore, the expression levels of the top 10 key DEGs were verified at the mRNA and protein level in the carotid artery 7 days after ligation. Results A total of 373 DEGs (199 upregulated DEGs and 174 downregulated DEGs) were screened. These DEGs were significantly enriched in biological processes, including immune system process, cell adhesion, and several pathways, which were mainly associated with cell adhesion molecules and the regulation of the actin cytoskeleton. The top 10 key DEGs (Ptprc, Fn1, Tyrobp, Emr1, Itgb2, Itgax, CD44, Ctss, Ly86, and Aif1) acted as key genes in the PPI network. The verification of these key DEGs at the mRNA and protein levels was consistent with the results of the above-mentioned bioinformatics analysis. Conclusion The present study identified key genes and pathways involved in intimal hyperplasia induced by carotid artery ligation. These results improved our understanding of the mechanisms underlying the development of intimal hyperplasia and provided candidate targets.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianjun Gu
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sichuan Wang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fuming He
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaizheng Gong
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Miranda AL, Kourdova LT, Racca AC, Cruz Del Puerto M, Rojas ML, Marques ALX, Silva ECO, Fonseca EJS, Gazzoni Y, Gruppi A, Borbely AU, Genti‐Raimondi S, Panzetta‐Dutari GM. Krüppel‐like factor 6 participates in extravillous trophoblast cell differentiation and its expression is reduced in abnormally invasive placenta. FEBS Lett 2022; 596:1700-1719. [DOI: 10.1002/1873-3468.14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea L. Miranda
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Lucille T. Kourdova
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Ana C. Racca
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Mariano Cruz Del Puerto
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Maria L. Rojas
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Aldilane L. X. Marques
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Elaine C. O. Silva
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Eduardo J. S. Fonseca
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Yamila Gazzoni
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Adriana Gruppi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Alexandre U. Borbely
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Susana Genti‐Raimondi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Graciela M. Panzetta‐Dutari
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| |
Collapse
|
11
|
Cheng X, Liu Z, Zhang H, Lian Y. Inhibition of LOXL1-AS1 alleviates oxidative low-density lipoprotein induced angiogenesis via downregulation of miR-590-5p mediated KLF6/VEGF signaling pathway. Cell Cycle 2021; 20:1663-1680. [PMID: 34334119 PMCID: PMC8489901 DOI: 10.1080/15384101.2021.1958484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022] Open
Abstract
Increasing evidences have confirmed that long non-coding RNA LOXL1-AS1 functions in multiple human diseases. Here, we aim to explore the function and mechanism of LOXL1-AS1 in modulating oxidized low-density lipoprotein (ox-LDL)-induced angiogenesis of endothelial cells (ECs). Presently, we found that LOXL1-AS1 and KLF6 were upregulated in ECs treated by Ox-LDL in a dose- and time-dependent manner while miR-590-5p was downregulated. Overexpression of LOXL1-AS1 aggravated Ox-LDL mediated ECs proliferation and migration, and promoted angiogenesis both in vitro and in vivo. On the contrary, enhancing miR-590-5p or inhibiting LOXL1-AS1 level led to suppressive effects on the proliferation, migration and angiogenesis of ECs. Moreover, LOXL1-AS1 upregulation promoted the expression of vascular endothelial growth factor (VEGF), MMPs (including MMP2, MMP9 and MMP14) and also activated VEGF/VEGFR2/PI3K/Akt/eNOS pathway. Mechanistically, LOXL1-AS1 works as a competitive endogenous RNA (ceRNA) by sponging miR-590-5p, which targeted at the 3'-untranslated region (3'UTR) of KLF6. Additionally, the proliferation, migration and angiogenesis of ECs were elevated following KLF6 upregulation. By detecting the expression of LOXL1-AS1 and miR-590-5p in the serum of healthy donors and atherosclerosis patients, it was found that LOXL1-AS1 was upregulated in atherosclerosis patients (compared with healthy donors) and had a negative relationship with miR-590-5p. Taken together, LOXL1-AS1 promoted Ox-LDL induced angiogenesis via regulating miR-590-5p-modulated KLF6/VEGF signaling pathway. The LOXL1-AS1-miR-590-5p axis exerts a novel role in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xuan Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Zhiwei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| |
Collapse
|
12
|
Cheng X, Liu Z, Zhang H, Lian Y. Inhibition of LOXL1-AS1 alleviates oxidative low-density lipoprotein induced angiogenesis via downregulation of miR-590-5p mediated KLF6/VEGF signaling pathway. Cell Cycle 2021; 20:1-18. [PMID: 34382896 DOI: 10.1080/15384101.2021.1958501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022] Open
Abstract
Increasing evidences have confirmed that long non-coding RNA LOXL1-AS1 functions in multiple human diseases. Here, we aim to explore the function and mechanism of LOXL1-AS1 in modulating oxidized low-density lipoprotein (ox-LDL)-induced angiogenesis of endothelial cells (ECs). Presently, we found that LOXL1-AS1 and KLF6 were upregulated in ECs treated by Ox-LDL in a dose- and time-dependent manner while miR-590-5p was downregulated. Overexpression of LOXL1-AS1 aggravated Ox-LDL mediated ECs proliferation and migration, and promoted angiogenesis both in vitro and in vivo. On the contrary, enhancing miR-590-5p or inhibiting LOXL1-AS1 level led to suppressive effects on the proliferation, migration and angiogenesis of ECs. Moreover, LOXL1-AS1 upregulation promoted the expression of vascular endothelial growth factor (VEGF), MMPs (including MMP2, MMP9, and MMP14) and also activated VEGF/VEGFR2/PI3K/Akt/eNOS pathway. Mechanistically, LOXL1-AS1 works as a competitive endogenous RNA (ceRNA) by sponging miR-590-5p, which targeted at the 3'-untranslated region (3'UTR) of KLF6. Additionally, the proliferation, migration, and angiogenesis of ECs were elevated following KLF6 upregulation. By detecting the expression of LOXL1-AS1 and miR-590-5p in the serum of healthy donors and atherosclerosis patients, it was found that LOXL1-AS1 was upregulated in atherosclerosis patients (compared with healthy donors) and had a negative relationship with miR-590-5p. Taken together, LOXL1-AS1 promoted Ox-LDL induced angiogenesis via regulating miR-590-5p-modulated KLF6/VEGF signaling pathway. The LOXL1-AS1-miR-590-5p axis exerts a novel role in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xuan Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Zhiwei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| |
Collapse
|
13
|
Wei G, Zhu D, Sun Y, Zhang L, Liu X, Li M, Gu J. The protective effects of azilsartan against oscillatory shear stress-induced endothelial dysfunction and inflammation are mediated by KLF6. J Biochem Mol Toxicol 2021; 35:1-8. [PMID: 33793019 DOI: 10.1002/jbt.22766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is a common cardiovascular disease with high morbidity and mortality. It is reported to be related to oscillatory shear stress (OSS)-induced endothelial dysfunction and excessive production of inflammatory factors. Azilsartan, a specific antagonist of the angiotensin II receptor, has been approved for the management of hypertensive subjects with diabetes mellitus type II (DMII). The present study will investigate the effects of azilsartan against OSS-induced endothelial dysfunction and inflammation, as well as the underlying mechanism. MATERIALS AND METHODS Cell viability was detected using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay were used to determine the expression levels of IL-6, TNF-α, IL-1β, VCAM-1, and ICAM-1 in human aortic endothelial cells (HAECs). Generation of reactive oxygen species (ROS) was measured using 2'-7'dichlorofluorescin diacetate (DCFH-DA) staining, and the level of reduced glutathione (GSH) was evaluated using a commercial kit. The adhesion of THP-1 monocytes to HAECs was evaluated using calcein-AM staining. The expression level of KLF6 was determined using qRT-PCR and Western blot analysis. RESULTS According to the result of the MTT assay, 5 and 10 μM azilsartan were considered as the optimized concentrations applied in the present study. The elevated production of IL-6, TNF-α, and IL-1β, increased levels of ROS, decreased levels of reduced GSH, upregulated VCAM-1, ICAM-1, and E-selectin, and the aggravated adhesion of THP-1 cells to HAECs induced by OSS were all reversed by the introduction of azilsartan. The downregulation of KLF6 induced by OSS was significantly reversed by azilsartan. By knocking down the expression of KLF6, the suppressed adhesion of THP-1 cells to the HAECs, and the downregulation of VCAM-1 and ICAM-1 induced by azilsartan in OSS-stimulated HAECs were greatly reversed. CONCLUSION The protective effects of azilsartan against OSS-induced endothelial dysfunction and inflammation might be mediated by KLF6.
Collapse
Affiliation(s)
- Guoqian Wei
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dayong Zhu
- Department of General Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang Province, China
| | - Yongtao Sun
- Department of Imaging, Heilongjiang Provincial Hospital, Harbin, Heilongjiang Province, China
| | - Lan Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xian Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ming Li
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jinxia Gu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
14
|
McDonald D, Wu Y, Dailamy A, Tat J, Parekh U, Zhao D, Hu M, Tipps A, Zhang K, Mali P. Defining the Teratoma as a Model for Multi-lineage Human Development. Cell 2020; 183:1402-1419.e18. [PMID: 33152263 PMCID: PMC7704916 DOI: 10.1016/j.cell.2020.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 06/06/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
We propose that the teratoma, a recognized standard for validating pluripotency in stem cells, could be a promising platform for studying human developmental processes. Performing single-cell RNA sequencing (RNA-seq) of 179,632 cells across 23 teratomas from 4 cell lines, we found that teratomas reproducibly contain approximately 20 cell types across all 3 germ layers, that inter-teratoma cell type heterogeneity is comparable with organoid systems, and teratoma gut and brain cell types correspond well to similar fetal cell types. Furthermore, cellular barcoding confirmed that injected stem cells robustly engraft and contribute to all lineages. Using pooled CRISPR-Cas9 knockout screens, we showed that teratomas can enable simultaneous assaying of the effects of genetic perturbations across all germ layers. Additionally, we demonstrated that teratomas can be sculpted molecularly via microRNA (miRNA)-regulated suicide gene expression to enrich for specific tissues. Taken together, teratomas are a promising platform for modeling multi-lineage development, pan-tissue functional genetic screening, and tissue engineering.
Collapse
Affiliation(s)
- Daniella McDonald
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA 92093, USA
| | - Yan Wu
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Justin Tat
- Department of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Udit Parekh
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Dongxin Zhao
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Michael Hu
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Ann Tipps
- School of Medicine, University of California, San Diego, San Diego, CA 92103, USA
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA 92093, USA.
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
15
|
Potential Second-Hits in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9113571. [PMID: 33167572 PMCID: PMC7694477 DOI: 10.3390/jcm9113571] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder that presents with telangiectases in skin and mucosae, and arteriovenous malformations (AVMs) in internal organs such as lungs, liver, and brain. Mutations in ENG (endoglin), ACVRL1 (ALK1), and MADH4 (Smad4) genes account for over 95% of HHT. Localized telangiectases and AVMs are present in different organs, with frequencies which differ among affected individuals. By itself, HHT gene heterozygosity does not account for the focal nature and varying presentation of the vascular lesions leading to the hypothesis of a “second-hit” that triggers the lesions. Accumulating research has identified a variety of triggers that may synergize with HHT gene heterozygosity to generate the vascular lesions. Among the postulated second-hits are: mechanical trauma, light, inflammation, vascular injury, angiogenic stimuli, shear stress, modifier genes, and somatic mutations in the wildtype HHT gene allele. The aim of this review is to summarize these triggers, as well as the functional mechanisms involved.
Collapse
|
16
|
Wang H, Yang G, Zhang Q, Liang X, Liu Y, Gao M, Guo Y, Chen L. Apremilast ameliorates ox-LDL-induced endothelial dysfunction mediated by KLF6. Aging (Albany NY) 2020; 12:19012-19021. [PMID: 33052879 PMCID: PMC7732304 DOI: 10.18632/aging.103665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
Abstract
Apremilast is a phosphodiesterase 4 (PDE4) inhibitor used in the treatment of psoriasis and several other inflammatory diseases. Interest has been expressed in seeking out therapies that address both psoriasis and atherosclerosis. In the present study, we explored the effects of apremilast in human aortic endothelial cells (HAECs) exposed to oxidized low-density lipoprotein (ox-LDL) to simulate the atherosclerotic microenvironment in vitro. Our findings indicate that apremilast may reduce the expression of lectin-like oxidized-low-density-lipoprotein receptor-1 (LOX-1), the main ox-LDL scavenging receptor. Apremilast also inhibited the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8), which are deeply involved in the chronic inflammatory response associated with atherosclerosis. Interestingly, we found that apremilast inhibited the attachment of U937 monocytes to HAECs by reducing the expression of the chemokine monocyte chemotactic protein 1 (MCP-1) and the cellular adhesion molecule vascular cell adhesion molecule-1 (VCAM-1). This effect was found to be mediated through the rescue of Krüppel like factor 6 (KLF6) expression, which was reduced in response to ox-LDL via increased phosphorylation of c-Jun N-terminal kinase (JNK). These findings suggest a potential role for apremilast in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Guang Yang
- Department of Nephrology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Zhang
- Department of Endocrinology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China
| | - Xiao Liang
- Department of Cardiology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Liu
- Department of Nephrology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Meng Gao
- Department of Cardiology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yutao Guo
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Li Chen
- Department of General Practice, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
17
|
Seebauer CT, Kuehnel T, Uller W, Bohr C, Andorfer KE. [Diagnostic Criteria and Treatment of Hereditary Hemorrhagic Telangiectasia]. Laryngorhinootologie 2020; 99:682-693. [PMID: 32987413 DOI: 10.1055/a-1220-7045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT; Osler-Weber-Rendu syndrome; Morbus Osler) represents a syndrome affecting capillary vessels, leading to arteriovenous shunting. With an average worldwide prevalence of 1:5.000-8.000 HHT is considered an orphan disease. Arteriovenous shunts involve predominantly the nasal mucosa, the intestine, lung, liver and central nervous system. Epistaxis is the primary and most bothersome complaint of patients with HHT. A multistage therapeutic concept includes nasal ointment, laser therapy under local anesthesia and surgery under general anesthesia, as well as drug therapies. In addition, screening to determine affection of internal organs is carried out. Lesions that require therapy should be treated in an interdisciplinary setting. Treatment of lesions of the skin, oral and gastrointestinal mucosa and liver is carried out in regard to patients' symptoms, whereas vascular malformations of the lung and brain might need treatment without being symptomatic, due to possible life-threatening complications.
Collapse
Affiliation(s)
| | | | - Wibke Uller
- Institut für Röntgendiagnostik, Universitätsklinik Regensburg, Germany
| | | | | |
Collapse
|
18
|
Syafruddin SE, Mohtar MA, Wan Mohamad Nazarie WF, Low TY. Two Sides of the Same Coin: The Roles of KLF6 in Physiology and Pathophysiology. Biomolecules 2020; 10:biom10101378. [PMID: 32998281 PMCID: PMC7601070 DOI: 10.3390/biom10101378] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-like factors (KLFs) family of proteins control several key biological processes that include proliferation, differentiation, metabolism, apoptosis and inflammation. Dysregulation of KLF functions have been shown to disrupt cellular homeostasis and contribute to disease development. KLF6 is a relevant example; a range of functional and expression assays suggested that the dysregulation of KLF6 contributes to the onset of cancer, inflammation-associated diseases as well as cardiovascular diseases. KLF6 expression is either suppressed or elevated depending on the disease, and this is largely due to alternative splicing events producing KLF6 isoforms with specialised functions. Hence, the aim of this review is to discuss the known aspects of KLF6 biology that covers the gene and protein architecture, gene regulation, post-translational modifications and functions of KLF6 in health and diseases. We put special emphasis on the equivocal roles of its full-length and spliced variants. We also deliberate on the therapeutic strategies of KLF6 and its associated signalling pathways. Finally, we provide compelling basic and clinical questions to enhance the knowledge and research on elucidating the roles of KLF6 in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Saiful E. Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
- Correspondence: ; Tel.: +60-3-9145-9040
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
| | - Wan Fahmi Wan Mohamad Nazarie
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
| |
Collapse
|
19
|
Abstract
Revascularization surgeries such as coronary artery bypass grafting (CABG) are sometimes necessary to manage coronary heart disease (CHD). However, more than half of these surgeries fail within 10 years due to the development of intimal hyperplasia (IH) among others. The cytokine transforming growth factor-beta (TGFß) and its signaling components have been found to be upregulated in diseased or injured vessels, and to promote IH after grafting. Interventions that globally inhibit TGFß in CABG have yielded contrasting outcomes in in vitro and in vivo studies including clinical trials. With advances in molecular biology, it becomes clear that TGFß exhibits both protective and damaging roles, and only specific components such as some Smad-dependent TGFß signaling mediate vascular IH. The activin receptor-like kinase (ALK)-mediated Smad-dependent TGFß signaling pathways have been found to be activated in human vascular smooth muscle cells (VSMCs) following injury and in hyperplastic preimplantation vein grafts. It appears that focused targeting of TGFß pathway constitutes a promising therapeutic target to improve the outcome of CABG. This study dissects the role of TGFß pathway in CABG failure, with particular emphasis on the therapeutic potentials of specific targeting of Smad-dependent and ALK-mediated signaling.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- Department of Veterinary Pharmacology and Toxicology, 58989Ahmadu Bello University, Zaria, Nigeria.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
20
|
Singh E, Redgrave RE, Phillips HM, Arthur HM. Arterial endoglin does not protect against arteriovenous malformations. Angiogenesis 2020; 23:559-566. [PMID: 32506200 PMCID: PMC7524831 DOI: 10.1007/s10456-020-09731-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Introduction Endoglin (ENG) forms a receptor complex with ALK1 in endothelial cells (ECs) to promote BMP9/10 signalling. Loss of function mutations in either ENG or ALK1 genes lead to the inherited vascular disorder hereditary haemorrhagic telangiectasia (HHT), characterised by arteriovenous malformations (AVMs). However, the vessel-specific role of ENG and ALK1 proteins in protecting against AVMs is unclear. For example, AVMs have been described to initiate in arterioles, whereas ENG is predominantly expressed in venous ECs. To investigate whether ENG has any arterial involvement in protecting against AVM formation, we specifically depleted the Eng gene in venous and capillary endothelium whilst maintaining arterial expression, and investigated how this affected the incidence and location of AVMs in comparison with pan-endothelial Eng knockdown. Methods Using the mouse neonatal retinal model of angiogenesis, we first established the earliest time point at which Apj-Cre-ERT2 activity was present in venous and capillary ECs but absent from arterial ECs. We then compared the incidence of AVMs following pan-endothelial or venous/capillary-specific ENG knockout. Results Activation of Apj-Cre-ERT2 with tamoxifen from postnatal day (P) 5 ensured preservation of arterial ENG protein expression. Specific loss of ENG expression in ECs of veins and capillaries led to retinal AVMs at a similar frequency to pan-endothelial loss of ENG. AVMs occurred in the proximal as well as the distal part of the retina consistent with a defect in vascular remodelling during maturation of the vasculature. Conclusion Expression of ENG is not required in arterial ECs to protect against AVM formation. Electronic supplementary material The online version of this article (10.1007/s10456-020-09731-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esha Singh
- Centre for Life, Biosciences Institute, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Rachael E Redgrave
- Centre for Life, Biosciences Institute, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Helen M Phillips
- Centre for Life, Biosciences Institute, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Helen M Arthur
- Centre for Life, Biosciences Institute, Newcastle University, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
21
|
Wang Y, Xia Y, Hu K, Zeng M, Zhi C, Lai M, Wu L, Liu S, Zeng S, Huang Z, Ma S, Yuan Z. MKK7 transcription positively or negatively regulated by SP1 and KLF5 depends on HDAC4 activity in glioma. Int J Cancer 2019; 145:2496-2508. [PMID: 30963560 DOI: 10.1002/ijc.32321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
JNK activity has been implicated in the malignant proliferation, invasion and drug-resistance of glioma cells (GCs), but the molecular mechanisms underlying JNK activation are currently unknown. Here, we reported that MKK7, not MKK4, directly activates JNK in GCs and exerts oncogenic effects on tumor formation. Notably, MKK7 expression in glioma tissues was closely correlated with the grade of the glioma and JNK/c-Jun activation. Mechanistically, MKK7 transcription critically depends on the complexes formed by HDAC4 and the transcriptional factors SP1 and Krüppel-like factor-5 (KLF5), wherein HDAC4 directly deacetylates both SP1 and KLF5 and synergistically upregulates MKK7 transcription through two SP1 sites located on its promoter. In contrast, the increases in acetylated-SP1 and acetylated-KLF5 after HDAC4 inhibition switched to transcriptionally suppress MKK7. Selective inhibition of HDAC4 by LMK235, siRNAs or blockage of SP1 and KLF5 by the ectopic dominant-negative SP1 greatly reduced the malignant capacity of GCs. Furthermore, suppression of both MKK7 expression and JNK/c-Jun activities was involved in the tumor-growth inhibitory effects induced by LMK235 in U87-xenograft mice. Interestingly, HDAC4 is highly expressed in glioma tissues, and the rate of HDAC4 nuclear import is closely correlated with glioma grade, as well as with MKK7 expression. Collectively, these findings demonstrated that highly expressed MKK7 contributes to JNK/c-Jun signaling-mediated glioma formation. MKK7 transcription, regulated by SP1 and KLF5, critically depends on HDAC4 activity, and inhibition of HDAC4 presents a potential strategy for suppressing the oncogenic roles of MKK7/JNK/c-Jun signaling in GCs.
Collapse
Affiliation(s)
- Yezhong Wang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Yong Xia
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Kunhua Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Minling Zeng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Cheng Zhi
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaoling Lai
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqiang Wu
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Sisi Liu
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Shulian Zeng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Ziyan Huang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhongmin Yuan
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
22
|
Yang Y, Yu H, Yang C, Zhang Y, Ai X, Wang X, Lu K, Yi B. Krüppel-like factor 6 mediates pulmonary angiogenesis in rat experimental hepatopulmonary syndrome and is aggravated by bone morphogenetic protein 9. Biol Open 2019; 8:bio.040121. [PMID: 31189661 PMCID: PMC6602319 DOI: 10.1242/bio.040121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular disease derived from chronic liver disease, and its key pathogenesis is angiogenesis. Krüppel-like factor 6 (KLF6) mediates physiological repair and remodeling during vascular injury. However, the role of KLF6 in pulmonary microvascular endothelial cells (PMVECs) during angiogenesis of HPS and its underlying mechanism in HPS have not been investigated. Common bile duct ligation (CBDL) in rats can replicate pulmonary vascular abnormalities of human HPS. Here, we found that advanced pulmonary angiogenesis and pulmonary injury score coincided with the increase of KLF6 level in PMVECs of CBDL rat; KLF6 in PMVECs was also induced while cultured with CBDL rat serum in vitro. Inhibition of KLF6 dramatically suppressed PMVEC-mediated proliferation, migration and tube formation in vivo; this may be related to the downregulation of activin receptor-like kinase-1 (ALK1) and endoglin (ENG), which are transacted by KLF6. Bone morphogenetic protein 9 (BMP9) enhanced the expression of KLF6 in PMVECs and was involved in the angiogenesis of HPS. These results suggest that KLF6 triggers PMVEC-mediated angiogenesis of HPS and is aggravated by BMP9, and the inhibition of the BMP9/KLF6 axis may be an effective strategy for HPS treatment. Summary: Krüppel-like factor 6, which is triggered by pulmonary injury and promoted by bone morphogenetic protein 9, mediates pulmonary angiogenesis in rat experimental hepatopulmonary syndrome and then aggravates lung dysfunction.
Collapse
Affiliation(s)
- Yihui Yang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China.,Department of Anesthesia, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000 China
| | - Hongfu Yu
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Congwen Yang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Yunfei Zhang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China.,Department of Anesthesia, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000 China
| | - Xiangfa Ai
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Xiaobo Wang
- Department of LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Kaizhi Lu
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Bin Yi
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| |
Collapse
|
23
|
Abstract
Osler's disease is an autosomal dominant hereditary syndrome which belongs to the group of orphan diseases. Affected patients suffer primarily from severe epistaxis. Diagnosis is based on the Curaçao criteria and molecular genetic tests. Organ manifestations can be found in the form of arteriovenous shunts in the lung, liver, and gastrointestinal tract; more rarely also in the central nervous system (CNS) and other parts of the body. Many patients with gastrointestinal and other organ manifestations are frequently clinically asymptomatic; therefore, organ screening is essential to avoid later complications and should be performed in centers with particular expertise. No curative therapy currently exists. From the otolaryngologist's perspective, nasal mucosa treatments and endonasal laser applications are important and effective therapeutic approaches to epistaxis. Pharmacological interventions are focused on compensation of haploinsufficiency as well as antiangiogenetic approaches. Severe side effects have to be considered.
Collapse
|
24
|
Low EL, Baker AH, Bradshaw AC. TGFβ, smooth muscle cells and coronary artery disease: a review. Cell Signal 2019; 53:90-101. [PMID: 30227237 PMCID: PMC6293316 DOI: 10.1016/j.cellsig.2018.09.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Excessive vascular smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) synthesis are key events in the development of intimal hyperplasia, a pathophysiological response to acute or chronic sources of vascular damage that can lead to occlusive narrowing of the vessel lumen. Atherosclerosis, the primary cause of coronary artery disease, is characterised by chronic vascular inflammation and dyslipidemia, while revascularisation surgeries such as coronary stenting and bypass grafting represent acute forms of vascular injury. Gene knockouts of transforming growth factor-beta (TGFβ), its receptors and downstream signalling proteins have demonstrated the importance of this pleiotropic cytokine during vasculogenesis and in the maintenance of vascular homeostasis. Dysregulated TGFβ signalling is a hallmark of many vascular diseases, and has been associated with the induction of pathological vascular cell phenotypes, fibrosis and ECM remodelling. Here we present an overview of TGFβ signalling in SMCs, highlighting the ways in which this multifaceted cytokine regulates SMC behaviour and phenotype in cardiovascular diseases driven by intimal hyperplasia.
Collapse
Affiliation(s)
- Emma L Low
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew H Baker
- Queen's Medical Research Institute, University of Edinburgh, 47 Little Crescent, Edinburgh EH16 4TJ, UK
| | - Angela C Bradshaw
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
25
|
Chi Y, Xu Y, Luo F, Lin Y, Li Z. Molecular cloning, expression profiles and associations of KLF6 gene with intramuscular fat in Tibetan chicken. Anim Biotechnol 2018; 31:67-75. [PMID: 30501383 DOI: 10.1080/10495398.2018.1540428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to clone KLF6 gene of Tibetan chicken, clarify its temporal-spatial expression characteristics, and build the correlation between the expression level of KLF6 gene and IMF content in different developmental stages. RT-PCR was used to clone Tibetan chicken KLF6 gene, qPCR was used to detect the expression level of KLF6 gene in different tissues and developmental stages. The sequence of KLF6 gene was 919 bp including a complete 852 bp CDS region. The gene was highest expression in lung tissues, which was significantly higher than in other tissues (p < 0.01). In male Tibetan chicken breast muscle the levels of KLF6 mRNA were negatively related to IMF content (r=-0.097, p > 0.05), while in females they were positively correlated (r = 0.077, p > 0.05). At the age of 119-210 days, the expression of KLF6 mRNA in the male chicken leg muscles was highly positively correlated (r = 0.506, p < 0.01), but negatively correlated in the female chicken leg muscles (r=-0.198, p > 0.05). The expression level of KLF6 in breast muscle decreased gradually with the increasing age, while in leg muscle the expression level increased firstly and then descended with the increasing age.
Collapse
Affiliation(s)
- Yongdong Chi
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yaou Xu
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Fan Luo
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Zhixiong Li
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| |
Collapse
|
26
|
The Controversial Role of TGF-β in Neovascular Age-Related Macular Degeneration Pathogenesis. Int J Mol Sci 2018; 19:ijms19113363. [PMID: 30373226 PMCID: PMC6275040 DOI: 10.3390/ijms19113363] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022] Open
Abstract
The multifunctional transforming growth factors-beta (TGF-βs) have been extensively studied regarding their role in the pathogenesis of neovascular age-related macular degeneration (nAMD), a major cause of severe visual loss in the elderly in developed countries. Despite this, their effect remains somewhat controversial. Indeed, both pro- and antiangiogenic activities have been suggested for TGF-β signaling in the development and progression of nAMD, and opposite therapies have been proposed targeting the inhibition or activation of the TGF-β pathway. The present article summarizes the current literature linking TGF-β and nAMD, and reviews experimental data supporting both pro- and antiangiogenic hypotheses, taking into account the limitations of the experimental approaches.
Collapse
|
27
|
Fan Y, Lu H, Liang W, Hu W, Zhang J, Chen YE. Krüppel-like factors and vascular wall homeostasis. J Mol Cell Biol 2018; 9:352-363. [PMID: 28992202 DOI: 10.1093/jmcb/mjx037] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVDs) are major causes of death worldwide. Identification of promising targets for prevention and treatment of CVDs is paramount in the cardiovascular field. Numerous transcription factors regulate cellular function through modulation of specific genes and thereby are involved in the physiological and pathophysiological processes of CVDs. Although Krüppel-like factors (KLFs) have a similar protein structure with a conserved zinc finger domain, they possess distinct tissue and cell distribution patterns as well as biological functions. In the vascular system, KLF activities are regulated at both transcriptional and posttranscriptional levels. Growing in vitro, in vivo, and genetic epidemiology studies suggest that specific KLFs play important roles in vascular wall biology, which further affect vascular diseases. KLFs regulate various functional aspects such as cell growth, differentiation, activation, and development through controlling a whole cluster of functionally related genes and modulating various signaling pathways in response to pathological conditions. Therapeutic targeting of selective KLF family members may be desirable to achieve distinct treatment effects in the context of various vascular diseases. Further elucidation of the association of KLFs with human CVDs, their underlying molecular mechanisms, and precise protein structure studies will be essential to define KLFs as promising targets for therapeutic interventions in CVDs.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenying Liang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Kritharis A, Al-Samkari H, Kuter DJ. Hereditary hemorrhagic telangiectasia: diagnosis and management from the hematologist's perspective. Haematologica 2018; 103:1433-1443. [PMID: 29794143 PMCID: PMC6119150 DOI: 10.3324/haematol.2018.193003] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT), also known as Osler-Weber-Rendu syndrome, is an autosomal dominant disorder that causes abnormal blood vessel formation. The diagnosis of hereditary hemorrhagic telangiectasia is clinical, based on the Curaçao criteria. Genetic mutations that have been identified include ENG, ACVRL1/ALK1, and MADH4/SMAD4, among others. Patients with HHT may have telangiectasias and arteriovenous malformations in various organs and suffer from many complications including bleeding, anemia, iron deficiency, and high-output heart failure. Families with the same mutation exhibit considerable phenotypic variation. Optimal treatment is best delivered via a multidisciplinary approach with appropriate diagnosis, screening and local and/or systemic management of lesions. Anti-angiogenic agents such as bevacizumab have emerged as a promising systemic therapy in reducing bleeding complications but are not curative. Other pharmacological agents include iron supplementation, antifibrinolytics and hormonal treatment. This review discusses the biology of HHT, management issues that face the practising hematologist, and considerations of future directions in HHT treatment.
Collapse
Affiliation(s)
- Athena Kritharis
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Hanny Al-Samkari
- Hematology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Kuter
- Hematology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Sweet DR, Fan L, Hsieh PN, Jain MK. Krüppel-Like Factors in Vascular Inflammation: Mechanistic Insights and Therapeutic Potential. Front Cardiovasc Med 2018; 5:6. [PMID: 29459900 PMCID: PMC5807683 DOI: 10.3389/fcvm.2018.00006] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
The role of inflammation in vascular disease is well recognized, involving dysregulation of both circulating immune cells as well as the cells of the vessel wall itself. Unrestrained vascular inflammation leads to pathological remodeling that eventually contributes to atherothrombotic disease and its associated sequelae (e.g., myocardial/cerebral infarction, embolism, and critical limb ischemia). Signaling events during vascular inflammation orchestrate widespread transcriptional programs that affect the functions of vascular and circulating inflammatory cells. The Krüppel-like factors (KLFs) are a family of transcription factors central in regulating vascular biology in states of homeostasis and disease. Given their abundance and diversity of function in cells associated with vascular inflammation, understanding the transcriptional networks regulated by KLFs will further our understanding of the pathogenesis underlying several pervasive health concerns (e.g., atherosclerosis, stroke, etc.) and consequently inform the treatment of cardiovascular disease. Within this review, we will discuss the role of KLFs in coordinating protective and deleterious responses during vascular inflammation, while addressing the potential targeting of these critical transcription factors in future therapies.
Collapse
Affiliation(s)
- David R Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Paishiun N Hsieh
- Case Cardiovascular Research Institute, Case Western Reserve University, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
30
|
Roman BL, Hinck AP. ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 2017; 74:4539-4560. [PMID: 28871312 PMCID: PMC5687069 DOI: 10.1007/s00018-017-2636-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.
Collapse
Affiliation(s)
- Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA, 15261, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development 2017; 144:737-754. [PMID: 28246209 DOI: 10.1242/dev.145441] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| |
Collapse
|
32
|
Ruiz-Llorente L, Gallardo-Vara E, Rossi E, Smadja DM, Botella LM, Bernabeu C. Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin Ther Targets 2017; 21:933-947. [PMID: 28796572 DOI: 10.1080/14728222.2017.1365839] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hereditary Haemorrhagic Telangiectasia (HHT) is as an autosomal dominant trait characterized by frequent nose bleeds, mucocutaneous telangiectases, arteriovenous malformations (AVMs) of the lung, liver and brain, and gastrointestinal bleedings due to telangiectases. HHT is originated by mutations in genes whose encoded proteins are involved in the transforming growth factor β (TGF-β) family signalling of vascular endothelial cells. In spite of the great advances in the diagnosis as well as in the molecular, cellular and animal models of HHT, the current treatments remain just at the palliative level. Areas covered: Pathogenic mutations in genes coding for the TGF-β receptors endoglin (ENG) (HHT1) or the activin receptor-like kinase-1 (ACVRL1 or ALK1) (HHT2), are responsible for more than 80% of patients with HHT. Therefore, ENG and ALK1 are the main potential therapeutic targets for HHT and the focus of this review. The current status of the preclinical and clinical studies, including the anti-angiogenic strategy, have been addressed. Expert opinion: Endoglin and ALK1 are attractive therapeutic targets in HHT. Because haploinsufficiency is the pathogenic mechanism in HHT, several therapeutic approaches able to enhance protein expression and/or function of endoglin and ALK1 are keys to find novel and efficient treatments for the disease.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Eunate Gallardo-Vara
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Elisa Rossi
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - David M Smadja
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - Luisa M Botella
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Carmelo Bernabeu
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| |
Collapse
|
33
|
Xue Y, Lv J, Zhang C, Wang L, Ma D, Liu F. The Vascular Niche Regulates Hematopoietic Stem and Progenitor Cell Lodgment and Expansion via klf6a-ccl25b. Dev Cell 2017; 42:349-362.e4. [DOI: 10.1016/j.devcel.2017.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/06/2017] [Accepted: 07/14/2017] [Indexed: 01/07/2023]
|
34
|
|
35
|
Varejckova M, Gallardo-Vara E, Vicen M, Vitverova B, Fikrova P, Dolezelova E, Rathouska J, Prasnicka A, Blazickova K, Micuda S, Bernabeu C, Nemeckova I, Nachtigal P. Soluble endoglin modulates the pro-inflammatory mediators NF-κB and IL-6 in cultured human endothelial cells. Life Sci 2017; 175:52-60. [DOI: 10.1016/j.lfs.2017.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 01/01/2023]
|
36
|
Racca AC, Ridano ME, Bandeira CL, Bevilacqua E, Avvad Portari E, Genti-Raimondi S, Graham CH, Panzetta-Dutari GM. Low oxygen tension induces Krüppel-Like Factor 6 expression in trophoblast cells. Placenta 2016; 45:50-7. [PMID: 27577710 DOI: 10.1016/j.placenta.2016.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/06/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
The transcription factor Krüppel-Like Factor 6 (KLF6) has important roles in cell differentiation, angiogenesis, apoptosis, and proliferation. Furthermore, there is evidence that KLF6 is required for proper placental development. While oxygen is a critical mediator of trophoblast differentiation and function, the involvement of oxygen in the regulation of KLF6 expression remains unexplored. In the present study we examined the expression of KLF6 in placental tissue from uncomplicated and preeclamptic pregnancies, the latter often characterized by an inadequately perfused placenta. We also determined the effect of hypoxia and the involvement of Hypoxia-Inducible Factor 1α (HIF-1α) on the expression of KLF6 in cultured trophoblast cells and placental tissues. Results revealed that villous, interstitial and endovascular extravillous cytotrophoblasts from placentas from normal and preeclamptic pregnancies express KLF6. In addition, KLF6 immunoreactivity was higher in the placental bed of preeclamptic pregnancies than in those of uncomplicated pregnancies. We demonstrated that hypoxia induced an early and transient increase in KLF6 protein levels in HTR8/SVneo extravillous cytotrophoblast cells and in placental explants. Reoxygenation returned KLF6 protein to basal levels. Moreover, hypoxia-induced up-regulation of KLF6 expression was dependent on HIF-1α as revealed by siRNA knockdown in HTR8/SVneo cells. These results indicate that KLF6 may mediate some of the effects of hypoxia in placental development. The regulation of KLF6 protein levels by oxygen has significant implications for understanding its putative role in diseases affected by tissue hypoxia.
Collapse
Affiliation(s)
- A C Racca
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M E Ridano
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - C L Bandeira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - E Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - E Avvad Portari
- Department of Pathology at Medical Sciences School, State University of Rio de Janeiro, Brazil
| | - S Genti-Raimondi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - C H Graham
- Departments of Biomedical and Molecular Sciences and Urology, Queen's University, Kingston, Ontario, Canada
| | - G M Panzetta-Dutari
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
37
|
Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury. Angiogenesis 2016; 19:155-71. [PMID: 26850053 PMCID: PMC4819519 DOI: 10.1007/s10456-016-9495-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/23/2016] [Indexed: 12/31/2022]
Abstract
After endothelial injury, the transcription factor Krüppel-like factor 6 (KLF6) translocates into the cell nucleus to regulate a variety of target genes involved in angiogenesis, vascular repair and remodeling, including components of the membrane transforming growth factor beta (TGF-β) receptor complex such as endoglin and activin receptor-like kinase 1. The membrane metalloproteinase 14 (MMP14 or MT1-MMP) targets endoglin to release soluble endoglin and is involved in vascular inflammation and endothelial tubulogenesis. However, little is known about the regulation of MMP14 expression during vascular wounding. In vitro denudation of monolayers of human endothelial cell monolayers leads to an increase in the KLF6 gene transcriptional rate, followed by an upregulation of MMP14 and release of soluble endoglin. Concomitant with this process, MMP14 co-localizes with endoglin in the sprouting endothelial cells surrounding the wound border. MMP14 expression at mRNA and protein levels is increased by ectopic KLF6 and downregulated by KLF6 suppression in cultured endothelial cells. Moreover, after wire-induced endothelial denudation, Klf6+/− mice show lower levels of MMP14 in their vasculature compared with their wild-type siblings. Ectopic cellular expression of KLF6 results in an increased transcription rate of MMP14, and chromatin immunoprecipitation assays show that KLF6 interacts with MMP14 promoter in ECs, this interaction being enhanced during wound healing. Furthermore, KLF6 markedly increases the transcriptional activity of different reporter constructs of MMP14 gene promoter. These results suggest that KLF6 regulates MMP14 transcription and is a critical player of the gene expression network triggered during endothelial repair.
Collapse
|
38
|
Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, McBride M, McClure JD, Grant J, Thomas M, Frid M, Stenmark K, White K, Seto AG, Morrell NW, Bradshaw AC, MacLean MR, Baker AH. MicroRNA-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension. Circ Res 2015; 117:870-883. [PMID: 26311719 PMCID: PMC4620852 DOI: 10.1161/circresaha.115.306806] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/26/2015] [Indexed: 01/22/2023]
Abstract
RATIONALE The pathogenesis of pulmonary arterial hypertension (PAH) remains unclear. The 4 microRNAs representing the miR-143 and miR-145 stem loops are genomically clustered. OBJECTIVE To elucidate the transcriptional regulation of the miR-143/145 cluster and the role of miR-143 in PAH. METHODS AND RESULTS We identified the promoter region that regulates miR-143/145 microRNA expression in pulmonary artery smooth muscle cells (PASMCs). We mapped PAH-related signaling pathways, including estrogen receptor, liver X factor/retinoic X receptor, transforming growth factor-β (Smads), and hypoxia (hypoxia response element), that regulated levels of all pri-miR stem loop transcription and resulting microRNA expression. We observed that miR-143-3p is selectively upregulated compared with miR-143-5p during PASMC migration. Modulation of miR-143 in PASMCs significantly altered cell migration and apoptosis. In addition, we found high abundance of miR-143-3p in PASMC-derived exosomes. Using assays with pulmonary arterial endothelial cells, we demonstrated a paracrine promigratory and proangiogenic effect of miR-143-3p-enriched exosomes from PASMC. Quantitative polymerase chain reaction and in situ hybridization showed elevated expression of miR-143 in calf models of PAH and in samples from PAH patients. Moreover, in contrast to our previous findings that had not supported a therapeutic role in vivo, we now demonstrate a protective role of miR-143 in experimental pulmonary hypertension in vivo in miR-143-/- and anti-miR-143-3p-treated mice exposed to chronic hypoxia in both preventative and reversal settings. CONCLUSIONS MiR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, whereas inhibition of miR-143-3p blocked experimental pulmonary hypertension. Taken together, these findings confirm an important role for the miR-143/145 cluster in PAH pathobiology.
Collapse
MESH Headings
- Animals
- Arterial Pressure
- Binding Sites
- Case-Control Studies
- Cattle
- Cell Communication
- Cell Movement
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Exosomes/metabolism
- Female
- Gene Expression Regulation
- HeLa Cells
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Promoter Regions, Genetic
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Signal Transduction
- Time Factors
- Transcription Factors/metabolism
- Transfection
- Vascular Remodeling
- Ventricular Function, Right
- Ventricular Pressure
Collapse
Affiliation(s)
- Lin Deng
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Francisco J. Blanco
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Hannah Stevens
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Ruifang Lu
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE59NU, United Kingdom
| | - Axelle Caudrillier
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Martin McBride
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - John D McClure
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jenny Grant
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Matthew Thomas
- Novartis Institutes for BioMedical Research, Horsham UK
- AstraZeneca R&D Mölndal, R&D | Respiratory, Inflammation and Autoimmunity (RIA) Innovative Medicines, Building AC461, SE-431 83 Mölndal, Sweden
| | - Maria Frid
- Division of Critical Care Medicine/Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Division of Critical Care Medicine/Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kevin White
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Novartis Institutes for BioMedical Research, Inc.,250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | | | - Nicholas W. Morrell
- Division of Respiratory Medicine, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Angela C Bradshaw
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Margaret R. MacLean
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Andrew H. Baker
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
39
|
González-Núñez M, Riolobos AS, Castellano O, Fuentes-Calvo I, de los Ángeles Sevilla M, Oujo B, Pericacho M, Cruz-Gonzalez I, Pérez-Barriocanal F, ten Dijke P, López-Novoa JM. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure in mice. Dis Model Mech 2015; 8:1427-39. [PMID: 26398936 PMCID: PMC4631783 DOI: 10.1242/dmm.019695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/27/2015] [Indexed: 12/20/2022] Open
Abstract
The activin receptor-like kinase 1 (ALK-1) is a type I cell-surface receptor for the transforming growth factor-β (TGF-β) family of proteins. Hypertension is related to TGF-β1, because increased TGF-β1 expression is correlated with an elevation in arterial pressure (AP) and TGF-β expression is upregulated by the renin-angiotensin-aldosterone system. The purpose of this study was to assess the role of ALK-1 in regulation of AP using Alk1 haploinsufficient mice (Alk1(+/-)). We observed that systolic and diastolic AP were significantly higher in Alk1(+/-) than in Alk1(+/+) mice, and all functional and structural cardiac parameters (echocardiography and electrocardiography) were similar in both groups. Alk1(+/-) mice showed alterations in the circadian rhythm of AP, with higher AP than Alk1(+/+) mice during most of the light period. Higher AP in Alk1(+/-) mice is not a result of a reduction in the NO-dependent vasodilator response or of overactivation of the peripheral renin-angiotensin system. However, intracerebroventricular administration of losartan had a hypotensive effect in Alk1(+/-) and not in Alk1(+/+) mice. Alk1(+/-) mice showed a greater hypotensive response to the β-adrenergic antagonist atenolol and higher concentrations of epinephrine and norepinephrine in plasma than Alk1(+/+) mice. The number of brain cholinergic neurons in the anterior basal forebrain was reduced in Alk1(+/-) mice. Thus, we concluded that the ALK-1 receptor is involved in the control of AP, and the high AP of Alk1(+/-) mice is explained mainly by the sympathetic overactivation shown by these animals, which is probably related to the decreased number of cholinergic neurons.
Collapse
Affiliation(s)
- María González-Núñez
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Unidad de Fisiopatología Renal y Cardiovascular, Instituto 'Reina Sofía' de Investigación Nefrológica, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Adela S Riolobos
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain Instituto de Neurociencias de Castilla y León (INCYL), Salamanca 37008, Spain
| | - Orlando Castellano
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain Instituto de Neurociencias de Castilla y León (INCYL), Salamanca 37008, Spain
| | - Isabel Fuentes-Calvo
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Unidad de Fisiopatología Renal y Cardiovascular, Instituto 'Reina Sofía' de Investigación Nefrológica, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | | | - Bárbara Oujo
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Unidad de Fisiopatología Renal y Cardiovascular, Instituto 'Reina Sofía' de Investigación Nefrológica, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Miguel Pericacho
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Unidad de Fisiopatología Renal y Cardiovascular, Instituto 'Reina Sofía' de Investigación Nefrológica, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Ignacio Cruz-Gonzalez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain Departamento de Cardiología, Hospital Universitario de Salamanca, Salamanca 37007, Spain
| | - Fernando Pérez-Barriocanal
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Unidad de Fisiopatología Renal y Cardiovascular, Instituto 'Reina Sofía' de Investigación Nefrológica, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Peter ten Dijke
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Jose M López-Novoa
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Unidad de Fisiopatología Renal y Cardiovascular, Instituto 'Reina Sofía' de Investigación Nefrológica, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| |
Collapse
|
40
|
Miano JM, Long X. The short and long of noncoding sequences in the control of vascular cell phenotypes. Cell Mol Life Sci 2015; 72:3457-88. [PMID: 26022065 DOI: 10.1007/s00018-015-1936-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022]
Abstract
The two principal cell types of importance for normal vessel wall physiology are smooth muscle cells and endothelial cells. Much progress has been made over the past 20 years in the discovery and function of transcription factors that coordinate proper differentiation of these cells and the maintenance of vascular homeostasis. More recently, the converging fields of bioinformatics, genomics, and next generation sequencing have accelerated discoveries in a number of classes of noncoding sequences, including transcription factor binding sites (TFBS), microRNA genes, and long noncoding RNA genes, each of which mediates vascular cell differentiation through a variety of mechanisms. Alterations in the nucleotide sequence of key TFBS or deviations in transcription of noncoding RNA genes likely have adverse effects on normal vascular cell phenotype and function. Here, the subject of noncoding sequences that influence smooth muscle cell or endothelial cell phenotype will be summarized as will future directions to further advance our understanding of the increasingly complex molecular circuitry governing normal vascular cell differentiation and how such information might be harnessed to combat vascular diseases.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA,
| | | |
Collapse
|
41
|
Genome-wide analysis of the zebrafish Klf family identifies two genes important for erythroid maturation. Dev Biol 2015; 403:115-27. [PMID: 26015096 DOI: 10.1016/j.ydbio.2015.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 01/01/2023]
Abstract
Krüppel-like transcription factors (Klfs), each of which contains a CACCC-box binding domain, have been investigated in a variety of developmental processes, such as angiogenesis, neurogenesis and somatic-cell reprogramming. However, the function and molecular mechanism by which the Klf family acts during developmental hematopoiesis remain elusive. Here, we report identification of 24 Klf family genes in zebrafish using bioinformatics. Gene expression profiling shows that 6 of these genes are expressed in blood and/or vascular endothelial cells during embryogenesis. Loss of function of 2 factors (klf3 or klf6a) leads to a decreased number of mature erythrocytes. Molecular studies indicate that both Klf3 and Klf6a are essential for erythroid cell differentiation and maturation but that these two proteins function in distinct manners. We find that Klf3 inhibits the expression of ferric-chelate reductase 1b (frrs1b), thereby promoting the maturation of erythroid cells, whereas Klf6a controls the erythroid cell cycle by negatively regulating cdkn1a expression to determine the rate of red blood cell proliferation. Taken together, our study provides a global view of the Klf family members that contribute to hematopoiesis in zebrafish and sheds new light on the function and molecular mechanism by which Klf3 and Klf6a act during erythropoiesis in vertebrates.
Collapse
|
42
|
Zitman-Gal T, Green J, Korzets Z, Bernheim J, Benchetrit S. Kruppel-like factors in an endothelial and vascular smooth muscle cell coculture model: impact of a diabetic environment and vitamin D. In Vitro Cell Dev Biol Anim 2015; 51:470-8. [PMID: 25743914 DOI: 10.1007/s11626-014-9858-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/08/2014] [Indexed: 11/25/2022]
Abstract
Endothelial cells (EC) and vascular smooth muscle cells (VSMC) are involved in the development of local and diffuse vasculopathies by participating in inflammatory processes that can lead to uncontrolled vascular complications. Our aim was to study the possible interactions of EC and VSMC in an in vitro coculture model exposed to diabetic-like conditions and the effect of vitamin D on cellular pathways that might lead to an inflammatory response. EC and VSMC were isolated from different umbilical cords and stimulated in an in vitro coculture model in a diabetic-like environment and calcitriol for 24 h. Total RNA and protein were extracted from cells and analyzed for the expression of selected inflammatory-related markers. The EC-VSMC coculture in a diabetic-like environment induced the expression of inflammatory markers such as Kruppel-like factors, thioredoxin-interacting protein (TXNIP), IL-6, and IL-8. Addition of vitamin D to the EC-VSMC coculture induced selective changes in the inflammatory response. This model could lead to a better understanding of the interactions between EC and VSMC in the inflammatory processes involved in diabetes and emphasizes the role of vitamin D in the inflammatory response. The use of different donors strengthens the significance of our findings showing that genetic variations do not affect the impact of vitamin D on the expression of inflammatory-related proteins in our model.
Collapse
Affiliation(s)
- Tali Zitman-Gal
- Renal Physiology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, 44281, Israel,
| | | | | | | | | |
Collapse
|
43
|
Roman BL, Finegold DN. Genetic and Molecular Basis for Hereditary Hemorrhagic Telangiectasia. CURRENT GENETIC MEDICINE REPORTS 2014. [DOI: 10.1007/s40142-014-0061-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
MiR-181a regulates blood-tumor barrier permeability by targeting Krüppel-like factor 6. J Cereb Blood Flow Metab 2014; 34:1826-36. [PMID: 25182666 PMCID: PMC4269760 DOI: 10.1038/jcbfm.2014.152] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/29/2014] [Accepted: 07/28/2014] [Indexed: 12/18/2022]
Abstract
Blood-tumor barrier (BTB) constitutes an efficient organization of tight junctions that impairs the delivery of therapeutic drugs. However, the methods and molecular mechanisms underlying the BTB opening remain elusive. MicroRNAs (miRNAs) have recently emerged as key regulators of various biologic processes and therapeutic targets. In this study, we have identified microRNA-181a (miR-181a) as a critical miRNA in opening BTB. MicroRNA-181a expression was upregulated in glioma endothelial cells (GECs), which were obtained by coculturing endothelial cells (ECs) with glioma cells. Overexpression of miR-181a resulted in an impaired and permeability increased BTB, and meanwhile reduced the expression of zonula occluden (ZO)-1, occludin, and claudin-5. Kruppel-like factor 6 (KLF6), a transcription factor of the zinc-finger family, was downregulated in GECs. Mechanistic investigations defined it as a direct and functional downstream target of miR-181a, which was involved in the regulation of BTB permeability and the expression of ZO-1, occludin, and claudin-5. Furthermore, luciferase assays and chromatin immunoprecipitation assays showed that KLF6 upregulated the promoter activities and interacted with the promoters of ZO-1, occludin, and claudin-5 in GECs. Collectively, we showed the possibility that overexpression of miR-181a contributes to the increased permeability of BTB by targeting KLF6, thereby revealing potential therapeutic targets for the treatment of brain gliomas.
Collapse
|
45
|
Pál G, Lovas G, Dobolyi A. Induction of transforming growth factor beta receptors following focal ischemia in the rat brain. PLoS One 2014; 9:e106544. [PMID: 25192322 PMCID: PMC4156357 DOI: 10.1371/journal.pone.0106544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/07/2014] [Indexed: 01/02/2023] Open
Abstract
Transforming growth factor-βs (TGF-βs) regulate cellular proliferation, differentiation, and survival. TGF-βs bind to type I (TGF-βRI) and II receptors (TGF-βRII), which are transmembrane kinase receptors, and an accessory type III receptor (TGF-βRIII). TGF-β may utilize another type I receptor, activin-like kinase receptor (Alk1). TGF-β is neuroprotective in the middle cerebral artery occlusion (MCAO) model of stroke. Recently, we reported the expression pattern of TGF-β1-3 after MCAO. To establish how TGF-βs exert their actions following MCAO, the present study describes the induction of TGF-βRI, RII, RIII and Alk1 at 24 h, 72 h and 1 mo after transient 1 h MCAO as well as following 24 h permanent MCAO using in situ hybridization histochemistry. In intact brain, only TGF-βRI had significant expression: neurons in cortical layer IV contained TGF-βRI. At 24 h after the occlusion, no TGF-β receptors showed induction. At 72 h following MCAO, all four types of TGF-β receptors were induced in the infarct area, while TGF-βRI and RII also appeared in the penumbra. Most cells with elevated TGF-βRI mRNA levels were microglia. TGF-βRII co-localized with both microglial and endothelial markers while TGF-βRIII and Alk1 were present predominantly in endothels. All four TGF-β receptors were induced within the lesion 1 mo after the occlusion. In particular, TGF-βRIII was further induced as compared to 72 h after MCAO. At this time point, TGF-βRIII signal was predominantly not associated with blood vessels suggesting its microglial location. These data suggest that TGF-β receptors are induced after MCAO in a timely and spatially regulated fashion. TGF-β receptor expression is preceded by increased TGF-β expression. TGF-βRI and RII are likely to be co-expressed in microglial cells while Alk1, TGF-βRII, and RIII in endothels within the infarct where TGF-β1 may be their ligand. At later time points, TGF-βRIII may also appear in glial cells to potentially affect signal transduction via TGF-βRI and RII.
Collapse
Affiliation(s)
- Gabriella Pál
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor Lovas
- Department of Neurology, Semmelweis University, Budapest, Hungary
- Department of Neurology, Jahn Ferenc Teaching Hospital, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
46
|
Liang WC, Wang Y, Xiao LJ, Wang YB, Fu WM, Wang WM, Jiang HQ, Qi W, Wan DCC, Zhang JF, Waye MMY. Identification of miRNAs that specifically target tumor suppressive KLF6-FL rather than oncogenic KLF6-SV1 isoform. RNA Biol 2014; 11:845-54. [PMID: 24921656 DOI: 10.4161/rna.29356] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Krüppel like factor 6 (KLF6) gene encodes multiple protein isoforms derived from alternative mRNA splicing, most of which are intimately involved in hepatocarcinogenesis and tumor progression. Recent bioinformatics analysis shows that alternative mRNA splicing of the KLF6 gene produces around 16 alternatively spliced variants with divergent or even opposing functions. Intriguingly, the full-length KLF6 (KLF6-FL) is a tumor suppressor gene frequently inactivated in liver cancer, whereas KLF6 splice variant 1 (KLF6-SV1) is an oncogenic isoform with antagonistic function against KLF6-FL. Compelling evidence indicates that miRNA, the small endogenous non-coding RNA (ncRNA), acts as a vital player in modulating a variety of cellular biological processes through targeting different mRNA regions of protein-coding genes. To identify the potential miRNAs specifically targeting KLF6-FL, we utilized bioinformatics analysis in combination with the luciferase reporter assays and screened out two miRNAs, namely miR-210 and miR-1301, specifically targeted the tumor suppressive KLF6-FL rather than the oncogenic KLF6-SV1. Our in vitro experiments demonstrated that stable expression of KLF6-FL inhibited cell proliferation, migration and angiogenesis while overexpression of miR-1301 promoted cell migration and angiogenesis. Further experiments demonstrated that miR-1301 was highly expressed in liver cancer cell lines as well as clinical specimens and we also identified the potential methylation and histone acetylation for miR-1301 gene. To sum up, our findings unveiled a novel molecular mechanism that specific miRNAs promoted tumorigenesis by targeting the tumor suppressive isoform KLF6-FL rather than its oncogenic isoform KLF6-SV1.
Collapse
Affiliation(s)
- Wei-Cheng Liang
- Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China; School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Yan Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Li-Jia Xiao
- Department of Clinical Laboratory, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, 518052, P.R. China
| | - Yu-Bing Wang
- Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China; School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Wei-Ming Fu
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, 510000, P.R. China
| | - Wei-Mao Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Hui-Qing Jiang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 230000, P.R. China
| | - Wei Qi
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 230000, P.R. China
| | - David Chi-Cheong Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Jin-Fang Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Mary Miu-Yee Waye
- Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China; School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| |
Collapse
|
47
|
Barillari G, Iovane A, Bacigalupo I, Labbaye C, Chiozzini C, Sernicola L, Quaranta MT, Falchi M, Sgadari C, Ensoli B. The HIV protease inhibitor indinavir down-regulates the expression of the pro-angiogenic MT1-MMP by human endothelial cells. Angiogenesis 2014; 17:831-8. [PMID: 24719186 DOI: 10.1007/s10456-014-9430-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
In addition to contrast human immunodeficiency virus (HIV) replication, the HIV protease inhibitors (HIV-PI) have reduced tumour incidence or clinical progression in infected patients. In this regard, we have previously shown that, independently of its anti-viral activity, the HIV-PI indinavir (IDV) directly blocks matrix metalloproteinase (MMP)-2 proteolytic activation, thus efficiently inhibiting tumour angiogenesis in vitro, in animal models, and in humans. Herein we investigated the molecular mechanism for IDV anti-angiogenic effect. We found that treatment of human primary endothelial cells with therapeutic IDV concentrations decreases the expression of membrane type (MT)1-MMP, which is the major activator of MMP-2. This occurs for both the constitutive expression of MT1-MMP and that up-regulated by angiogenic factors. In either cases, reduction of MT1-MMP levels by IDV is preceded by the inhibition of the binding of the specificity protein (Sp)1 transcription factor to the promoter region of the MT1-MMP gene in endothelial cell nuclei. As MT1-MMP is key for tumour angiogenesis, these results support the use of IDV or its derivatives in anti-cancer therapy. This is recommended by the low toxicity of the drug, and the large body of data on its pharmacokinetic.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University "Tor Vergata", 1 via Montpellier, 00133, Rome, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jain MK, Sangwung P, Hamik A. Regulation of an inflammatory disease: Krüppel-like factors and atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34:499-508. [PMID: 24526695 PMCID: PMC5539879 DOI: 10.1161/atvbaha.113.301925] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/07/2014] [Indexed: 12/13/2022]
Abstract
This invited review summarizes work presented in the Russell Ross lecture delivered at the 2012 proceedings of the American Heart Association. We begin with a brief overview of the structural, cellular, and molecular biology of Krüppel-like factors. We then focus on discoveries during the past decade, implicating Krüppel-like factors as key determinants of vascular cell function in atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Mukesh K. Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Panjamaporn Sangwung
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Anne Hamik
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, Ohio, USA
- Division of Cardiovascular Medicine, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
49
|
Zitman-Gal T, Green J, Pasmanik-Chor M, Golan E, Bernheim J, Benchetrit S. Vitamin D manipulates miR-181c, miR-20b and miR-15a in human umbilical vein endothelial cells exposed to a diabetic-like environment. Cardiovasc Diabetol 2014; 13:8. [PMID: 24397367 PMCID: PMC3893386 DOI: 10.1186/1475-2840-13-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/11/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High blood and tissue concentrations of glucose and advanced glycation end-products are believed to play an important role in the development of vascular complications in patients with diabetes mellitus (DM) and chronic kidney disease. MicroRNAs (miRNA) are non-coding RNAs that regulate gene expression in a sequence specific manner. MiRNA are involved in various biological processes and become novel biomarkers, modulators and therapeutic targets for diseases such as cancer, atherosclerosis, and DM. Calcitriol (the active form of vitamin D) may inhibit endothelial proliferation, blunt angiogenesis, and be a cardioprotective agent. Calcitriol deficiency is a risk factor for DM and hypertension. The aim of this project was to study the miRNA microarray expression changes in human umbilical vein endothelial cells (HUVEC) treated in a diabetic-like environment with the addition of calcitriol. METHODS HUVEC were treated for 24 h with 200 μg/ml human serum albumin (HSA) and 100 mg/dl glucose (control group) or 200 μg/ml AGE-HSA, and 250 mg/dl glucose (diabetic-like environment), and physiological concentrations (10-10 mol/l) of calcitriol. miRNA microarray analysis and real time PCR to validate the miRNA expression profile and mRNA target gene expression were carried out. RESULTS Compared to control, 31 mature human miRNA were differentially expressed in the presence of a diabetic-like environment. Addition of physiological concentrations of calcitriol revealed 39 differentially expressed mature human miRNA. MiR-181c, miR-15a, miR-20b, miR-411, miR-659, miR-126 and miR-510 were selected for further analysis because they are known to be modified in DM and in other biological disorders. The predicted targets of these miRNA (such as KLF6, KLF9, KLF10, TXNIP and IL8) correspond to molecular and biological processes such as immune and defense responses, signal transduction and regulation of RNA. CONCLUSION This study identified novel miRNA in the field of diabetic vasculopathy and might provide new information about the effect of vitamin D on gene regulation induced by a diabetic-like environment. New gene targets that are part of the molecular mechanism and the therapeutic treatment in diabetic vasculopathy are highlighted.
Collapse
Affiliation(s)
- Tali Zitman-Gal
- Renal Physiology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba 44281, Israel.
| | | | | | | | | | | |
Collapse
|
50
|
Hawinkels LJ, Garcia de Vinuesa A, Ten Dijke P. Activin receptor-like kinase 1 as a target for anti-angiogenesis therapy. Expert Opin Investig Drugs 2013; 22:1371-83. [PMID: 24053899 DOI: 10.1517/13543784.2013.837884] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Formation of blood vessels from pre-existing ones, also termed angiogenesis, is of crucial importance for the outgrowth of tumours beyond 1 - 2 mm³. Therefore, anti-angiogenic therapies, mainly focussing on inhibition of vascular endothelial growth factor (VEGF) are used in clinical therapy. However, although initially reducing tumour size, therapy resistance occurs frequently and new targets are needed. A possible target is activin receptor-like kinase (ALK)-1, a transforming growth factor (TGF)-β type-I receptor, which binds bone morphogenetic protein (BMP)-9 and -10 with high affinity and has an important role in regulating angiogenesis. AREAS COVERED Several approaches to interfere with ALK1 signalling have been developed, that is, ALK1 neutralising antibodies and a soluble ALK1 extracellular domain/Fc fusion protein (ALK1-Fc), acting as a ligand trap. In this review, we discuss the involvement of ALK1 in angiogenesis, in a variety of diseases and the current status of the development of ALK1 inhibitors for cancer therapy. EXPERT OPINION Based on current, mainly preclinical studies on inhibition of ALK1 signalling by ligand traps and neutralising antibodies, targeting ALK1 seems very promising. Both ALK1-Fc and neutralising antibodies strongly inhibit angiogenesis in vitro and in vivo. The results from the first Phase I clinical trials are to be reported soon and multiple Phase II studies are ongoing.
Collapse
Affiliation(s)
- Lukas Jac Hawinkels
- Leiden University Medical Centre, Cancer Genomics Centre Netherlands and Centre for BioMedical Genetics, Department of Molecular Cell Biology , Building-2, S1-P, PO box 9600, 2300 RC Leiden , The Netherlands +31 71 526 9272 ; +31 71 526 8270 ;
| | | | | |
Collapse
|