1
|
Zaccolo M, Kovanich D. Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions. Physiol Rev 2025; 105:541-591. [PMID: 39115424 PMCID: PMC7617275 DOI: 10.1152/physrev.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
The 3',5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signaling pathway with a specific focus on adenylyl cyclases, A-kinase anchoring proteins, and phosphodiesterases. We discuss how they are organized inside the intracellular space and how they achieve exquisite regulation of signaling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalized cAMP signaling, and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Mondéjar-Parreño G, Moreno-Manuel AI, Ruiz-Robles JM, Jalife J. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome. Cell Discov 2025; 11:3. [PMID: 39788950 PMCID: PMC11717978 DOI: 10.1038/s41421-024-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of "interactome mapping" and illustrate by example the multiple protein-protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Gao Y, Luo Y, Ji G, Wu T. Functional and pathological roles of adenylyl cyclases in various diseases. Int J Biol Macromol 2024; 281:136198. [PMID: 39366614 DOI: 10.1016/j.ijbiomac.2024.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Adenylyl cyclases (ADCYs) produce the second messengers cAMP, which is crucial for a number of cellular activities. There are ten isoforms in the mammalian ADCY family including nine transmembrane adenylyl cyclases (tmAC) and one soluble adenylyl cyclase (sAC/ADCY10). There have been numerous studies demonstrating the importance of ADCYs in the development of a wide range of diseases, including cardiovascular disease, neurological disease, liver disease, and tumors. The classification, structure and regulation of ADCYs are discussed in this overview, which is followed by an analysis of how ADCYs are involved in various disorders and how they are used as a therapeutic tool. Our objective is to get a more thorough understanding of ADCYs to aid future study and provide novel ideas for the treatment of particular diseases.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Maghsoudi S, Shuaib R, Van Bastelaere B, Dakshinamurti S. Adenylyl cyclase isoforms 5 and 6 in the cardiovascular system: complex regulation and divergent roles. Front Pharmacol 2024; 15:1370506. [PMID: 38633617 PMCID: PMC11021717 DOI: 10.3389/fphar.2024.1370506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Adenylyl cyclases (ACs) are crucial effector enzymes that transduce divergent signals from upstream receptor pathways and are responsible for catalyzing the conversion of ATP to cAMP. The ten AC isoforms are categorized into four main groups; the class III or calcium-inhibited family of ACs comprises AC5 and AC6. These enzymes are very closely related in structure and have a paucity of selective activators or inhibitors, making it difficult to distinguish them experimentally. AC5 and AC6 are highly expressed in the heart and vasculature, as well as the spinal cord and brain; AC6 is also abundant in the lungs, kidney, and liver. However, while AC5 and AC6 have similar expression patterns with some redundant functions, they have distinct physiological roles due to differing regulation and cAMP signaling compartmentation. AC5 is critical in cardiac and vascular function; AC6 is a key effector of vasodilatory pathways in vascular myocytes and is enriched in fetal/neonatal tissues. Expression of both AC5 and AC6 decreases in heart failure; however, AC5 disruption is cardio-protective, while overexpression of AC6 rescues cardiac function in cardiac injury. This is a comprehensive review of the complex regulation of AC5 and AC6 in the cardiovascular system, highlighting overexpression and knockout studies as well as transgenic models illuminating each enzyme and focusing on post-translational modifications that regulate their cellular localization and biological functions. We also describe pharmacological challenges in the design of isoform-selective activators or inhibitors for AC5 and AC6, which may be relevant to developing new therapeutic approaches for several cardiovascular diseases.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Rabia Shuaib
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Ben Van Bastelaere
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Section of Neonatology, Department of Pediatrics, Health Sciences Centre, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
6
|
Garland H. Subcellular Compartmentalization of Cyclic Adenosine Monophosphate in Heart Failure and Inotropic Pharmacology. J Cardiothorac Vasc Anesth 2023; 37:480-482. [PMID: 36610855 DOI: 10.1053/j.jvca.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is a second messenger downstream of many G-protein coupled receptors, including the β1-adrenoceptor, which is the target of many clinically used inotropic agents. When the Gαs subunit of a heterotrimeric G-protein is activated, it causes a localized elevation of cAMP. The significance of the spatial distribution of the elevation in cAMP is increasingly recognized, as is the disturbance of these microdomains in diseased states. Herein, the spatial compartmentalization of inotropic signaling is explored, including from internalized receptors.
Collapse
Affiliation(s)
- Huw Garland
- St. James's University Hospital, Leeds, United Kingdom.
| |
Collapse
|
7
|
Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 2023; 20:90-108. [PMID: 36050457 DOI: 10.1038/s41569-022-00756-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) modulate the neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple PDE isozymes with different enzymatic properties and subcellular localization regulate local pools of cyclic nucleotides and specific functions. This organization is heavily perturbed during cardiac hypertrophy and heart failure (HF), which can contribute to disease progression. Clinically, PDE inhibition has been considered a promising approach to compensate for the catecholamine desensitization that accompanies HF. Although PDE3 inhibitors, such as milrinone or enoximone, have been used clinically to improve systolic function and alleviate the symptoms of acute HF, their chronic use has proved to be detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as new potential targets to treat HF, each having a unique role in local cyclic nucleotide signalling pathways. In this Review, we describe cAMP and cGMP signalling in cardiomyocytes and present the various PDE families expressed in the heart as well as their modifications in pathological cardiac hypertrophy and HF. We also appraise the evidence from preclinical models as well as clinical data pointing to the use of inhibitors or activators of specific PDEs that could have therapeutic potential in HF.
Collapse
|
8
|
Ren L, Thai PN, Gopireddy RR, Timofeyev V, Ledford HA, Woltz RL, Park S, Puglisi JL, Moreno CM, Santana LF, Conti AC, Kotlikoff MI, Xiang YK, Yarov-Yarovoy V, Zaccolo M, Zhang XD, Yamoah EN, Navedo MF, Chiamvimonvat N. Adenylyl cyclase isoform 1 contributes to sinoatrial node automaticity via functional microdomains. JCI Insight 2022; 7:e162602. [PMID: 36509290 PMCID: PMC9746826 DOI: 10.1172/jci.insight.162602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Sinoatrial node (SAN) cells are the heart's primary pacemaker. Their activity is tightly regulated by β-adrenergic receptor (β-AR) signaling. Adenylyl cyclase (AC) is a key enzyme in the β-AR pathway that catalyzes the production of cAMP. There are current gaps in our knowledge regarding the dominant AC isoforms and the specific roles of Ca2+-activated ACs in the SAN. The current study tests the hypothesis that distinct AC isoforms are preferentially expressed in the SAN and compartmentalize within microdomains to orchestrate heart rate regulation during β-AR signaling. In contrast to atrial and ventricular myocytes, SAN cells express a diverse repertoire of ACs, with ACI as the predominant Ca2+-activated isoform. Although ACI-KO (ACI-/-) mice exhibit normal cardiac systolic or diastolic function, they experience SAN dysfunction. Similarly, SAN-specific CRISPR/Cas9-mediated gene silencing of ACI results in sinus node dysfunction. Mechanistically, hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) channels form functional microdomains almost exclusively with ACI, while ryanodine receptor and L-type Ca2+ channels likely compartmentalize with ACI and other AC isoforms. In contrast, there were no significant differences in T-type Ca2+ and Na+ currents at baseline or after β-AR stimulation between WT and ACI-/- SAN cells. Due to its central characteristic feature as a Ca2+-activated isoform, ACI plays a unique role in sustaining the rise of local cAMP and heart rates during β-AR stimulation. The findings provide insights into the critical roles of the Ca2+-activated isoform of AC in sustaining SAN automaticity that is distinct from contractile cardiomyocytes.
Collapse
Affiliation(s)
- Lu Ren
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Phung N. Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
| | | | - Valeriy Timofeyev
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
| | - Hannah A. Ledford
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
| | - Ryan L. Woltz
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, Nevada, USA
- Prestige Biopharma Korea, Myongjigukje 7-ro, Gangseo-gu, Busan, South Korea
| | - Jose L. Puglisi
- College of Medicine. California North State University, Sacramento, California, USA
| | - Claudia M. Moreno
- Department of Physiology and Membrane Biology, UCD, Davis, California, USA
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Alana C. Conti
- Research & Development Service, John D. Dingell VA Medical Center, and
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - Yang Kevin Xiang
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
- Department of Pharmacology, UCD, Davis, California, USA
| | | | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Xiao-Dong Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, Nevada, USA
| | | | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
- Department of Veteran Affairs, Northern California Health Care System, Sacramento, California, USA
- Department of Pharmacology, UCD, Davis, California, USA
| |
Collapse
|
9
|
Preferential Expression of Ca2+-Stimulable Adenylyl Cyclase III in the Supraventricular Area, Including Arrhythmogenic Pulmonary Vein of the Rat Heart. Biomolecules 2022; 12:biom12050724. [PMID: 35625651 PMCID: PMC9138642 DOI: 10.3390/biom12050724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Ectopic excitability in pulmonary veins (PVs) is the major cause of atrial fibrillation. We previously reported that the inositol trisphosphate receptor in rat PV cardiomyocytes cooperates with the Na+-Ca2+ exchanger to provoke ectopic automaticity in response to norepinephrine. Here, we focused on adenylyl cyclase (AC) as another effector of norepinephrine stimulation. RT-PCR, immunohistochemistry, and Western blotting revealed that the abundant expression of Ca2+-stimulable AC3 was restricted to the supraventricular area, including the PVs. All the other AC isotypes hardly displayed any region-specific expressions. Immunostaining of isolated cardiomyocytes showed an enriched expression of AC3 along the t-tubules in PV myocytes. The cAMP-dependent response of L-type Ca2+ currents in the PV and LA cells is strengthened by the 0.1 mM intracellular Ca2+ condition, unlike in the ventricular cells. The norepinephrine-induced automaticity of PV cardiomyocytes was reversibly suppressed by 100 µM SQ22536, an adenine-like AC inhibitor. These findings suggest that the specific expression of AC3 along t-tubules may contribute to arrhythmogenic automaticity in rat PV cardiomyocytes.
Collapse
|
10
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
11
|
Brandenburg S, Pawlowitz J, Steckmeister V, Subramanian H, Uhlenkamp D, Scardigli M, Mushtaq M, Amlaz SI, Kohl T, Wegener JW, Arvanitis DA, Sanoudou D, Sacconi L, Hasenfuss G, Voigt N, Nikolaev VO, Lehnart SE. A junctional cAMP compartment regulates rapid Ca 2+ signaling in atrial myocytes. J Mol Cell Cardiol 2022; 165:141-157. [PMID: 35033544 DOI: 10.1016/j.yjmcc.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
Axial tubule junctions with the sarcoplasmic reticulum control the rapid intracellular Ca2+-induced Ca2+ release that initiates atrial contraction. In atrial myocytes we previously identified a constitutively increased ryanodine receptor (RyR2) phosphorylation at junctional Ca2+ release sites, whereas non-junctional RyR2 clusters were phosphorylated acutely following β-adrenergic stimulation. Here, we hypothesized that the baseline synthesis of 3',5'-cyclic adenosine monophosphate (cAMP) is constitutively augmented in the axial tubule junctional compartments of atrial myocytes. Confocal immunofluorescence imaging of atrial myocytes revealed that junctin, binding to RyR2 in the sarcoplasmic reticulum, was densely clustered at axial tubule junctions. Interestingly, a new transgenic junctin-targeted FRET cAMP biosensor was exclusively co-clustered in the junctional compartment, and hence allowed to monitor cAMP selectively in the vicinity of junctional RyR2 channels. To dissect local cAMP levels at axial tubule junctions versus subsurface Ca2+ release sites, we developed a confocal FRET imaging technique for living atrial myocytes. A constitutively high adenylyl cyclase activity sustained increased local cAMP levels at axial tubule junctions, whereas β-adrenergic stimulation overcame this cAMP compartmentation resulting in additional phosphorylation of non-junctional RyR2 clusters. Adenylyl cyclase inhibition, however, abolished the junctional RyR2 phosphorylation and decreased L-type Ca2+ channel currents, while FRET imaging showed a rapid cAMP decrease. In conclusion, FRET biosensor imaging identified compartmentalized, constitutively augmented cAMP levels in junctional dyads, driving both the locally increased phosphorylation of RyR2 clusters and larger L-type Ca2+ current density in atrial myocytes. This cell-specific cAMP nanodomain is maintained by a constitutively increased adenylyl cyclase activity, contributing to the rapid junctional Ca2+-induced Ca2+ release, whereas β-adrenergic stimulation overcomes the junctional cAMP compartmentation through cell-wide activation of non-junctional RyR2 clusters.
Collapse
Affiliation(s)
- Sören Brandenburg
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.
| | - Jan Pawlowitz
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa Steckmeister
- Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Dennis Uhlenkamp
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Marina Scardigli
- Department of Physics and Astronomy, University of Florence, Florence, Italy; European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy
| | - Mufassra Mushtaq
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Saskia I Amlaz
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Tobias Kohl
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Jörg W Wegener
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Demetrios A Arvanitis
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy; Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Gerd Hasenfuss
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Niels Voigt
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; BioMET, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Dehghani T, Thai PN, Sodhi H, Ren L, Sirish P, Nader CE, Timofeyev V, Overton JL, Li X, Lam KS, Chiamvimonvat N, Panitch A. Selectin-targeting glycosaminoglycan-peptide conjugate limits neutrophil-mediated cardiac reperfusion injury. Cardiovasc Res 2022; 118:267-281. [PMID: 33125066 PMCID: PMC8932156 DOI: 10.1093/cvr/cvaa312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 01/13/2023] Open
Abstract
AIMS One of the hallmarks of myocardial infarction (MI) is excessive inflammation. During an inflammatory insult, damaged endothelial cells shed their glycocalyx, a carbohydrate-rich layer on the cell surface which provides a regulatory interface to immune cell adhesion. Selectin-mediated neutrophilia occurs as a result of endothelial injury and inflammation. We recently designed a novel selectin-targeting glycocalyx mimetic (termed DS-IkL) capable of binding inflamed endothelial cells. This study examines the capacity of DS-IkL to limit neutrophil binding and platelet activation on inflamed endothelial cells, as well as the cardioprotective effects of DS-IkL after acute myocardial infarction. METHODS AND RESULTS In vitro, DS-IkL diminished neutrophil interactions with both recombinant selectin and inflamed endothelial cells, and limited platelet activation on inflamed endothelial cells. Our data demonstrated that DS-IkL localized to regions of vascular inflammation in vivo after 45 min of left anterior descending coronary artery ligation-induced MI. Further, findings from this study show DS-IkL treatment had short- and long-term cardioprotective effects after ischaemia/reperfusion of the left anterior descending coronary artery. Mice treated with DS-IkL immediately after ischaemia/reperfusion and 24 h later exhibited reduced neutrophil extravasation, macrophage accumulation, fibroblast and endothelial cell proliferation, and fibrosis compared to saline controls. CONCLUSIONS Our findings suggest that DS-IkL has great therapeutic potential after MI by limiting reperfusion injury induced by the immune response.
Collapse
Affiliation(s)
- Tima Dehghani
- Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, GBSF 2303, Davis, CA 95616, USA
| | - Phung N Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, USA
| | - Harkanwalpreet Sodhi
- Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, GBSF 2303, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, USA
| | - Padmini Sirish
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, USA
| | - Carol E Nader
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, USA
| | - James L Overton
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, GBSF 2303, Davis, CA 95616, USA
- Department of Surgery, University of California, Davis, CA, USA
| |
Collapse
|
13
|
Vinogradova TM, Lakatta EG. Dual Activation of Phosphodiesterase 3 and 4 Regulates Basal Cardiac Pacemaker Function and Beyond. Int J Mol Sci 2021. [PMID: 34445119 DOI: 10.3390/ijms22168414.pmid:34445119;pmcid:pmc8395138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).
Collapse
Affiliation(s)
- Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
14
|
Dual Activation of Phosphodiesterase 3 and 4 Regulates Basal Cardiac Pacemaker Function and Beyond. Int J Mol Sci 2021; 22:ijms22168414. [PMID: 34445119 PMCID: PMC8395138 DOI: 10.3390/ijms22168414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).
Collapse
|
15
|
Yan Q, Tang J, Zhang X, Wu L, Xu Y, Wang L. Does Transient Receptor Potential Vanilloid Type 1 Alleviate or Aggravate Pathological Myocardial Hypertrophy? Front Pharmacol 2021; 12:681286. [PMID: 34040539 PMCID: PMC8143375 DOI: 10.3389/fphar.2021.681286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel, which is involved in the endogenous stress adaptation mechanism for protection of the heart as well as the occurrence and development of some heart diseases. Although the effect of activation of the TRPV1 channel on different types of non-neural cells in the heart remains unclear, most data show that stimulation of sensory nerves expressing TRPV1 or stimulation/overexpression of the TRPV1 channel has a beneficial role in heart disease. Some studies have proven that TRPV1 has an important relationship with pathological myocardial hypertrophy, but the specific mechanism and effect are not clear. In order to help researchers better understand the relationship between TRPV1 and pathological myocardial hypertrophy, this paper aims to summarize the effect of TRPV1 and the related mechanism in the occurrence and development of pathological myocardial hypertrophy from the following three points of view: 1) role of TRPV1 in alleviation of pathological myocardial hypertrophy; 2) role of TRPV1 in aggravation of pathological myocardial hypertrophy; and 3) the point of view of our team of researchers. It is expected that new therapies can provide potential targets for pathological myocardial hypertrophy.
Collapse
Affiliation(s)
- Qiqi Yan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jun Tang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Liuyang Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yunyi Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
16
|
Colombe AS, Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells 2021; 10:cells10040922. [PMID: 33923648 PMCID: PMC8073060 DOI: 10.3390/cells10040922] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Under physiological conditions, cAMP signaling plays a key role in the regulation of cardiac function. Activation of this intracellular signaling pathway mirrors cardiomyocyte adaptation to various extracellular stimuli. Extracellular ligand binding to seven-transmembrane receptors (also known as GPCRs) with G proteins and adenylyl cyclases (ACs) modulate the intracellular cAMP content. Subsequently, this second messenger triggers activation of specific intracellular downstream effectors that ensure a proper cellular response. Therefore, it is essential for the cell to keep the cAMP signaling highly regulated in space and time. The temporal regulation depends on the activity of ACs and phosphodiesterases. By scaffolding key components of the cAMP signaling machinery, A-kinase anchoring proteins (AKAPs) coordinate both the spatial and temporal regulation. Myocardial infarction is one of the major causes of death in industrialized countries and is characterized by a prolonged cardiac ischemia. This leads to irreversible cardiomyocyte death and impairs cardiac function. Regardless of its causes, a chronic activation of cardiac cAMP signaling is established to compensate this loss. While this adaptation is primarily beneficial for contractile function, it turns out, in the long run, to be deleterious. This review compiles current knowledge about cardiac cAMP compartmentalization under physiological conditions and post-myocardial infarction when it appears to be profoundly impaired.
Collapse
|
17
|
Bondar A, Jang W, Sviridova E, Lambert NA. Components of the G s signaling cascade exhibit distinct changes in mobility and membrane domain localization upon β 2 -adrenergic receptor activation. Traffic 2021; 21:324-332. [PMID: 32096320 DOI: 10.1111/tra.12724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
The G protein signaling cascade is a key player in cell signaling. Cascade activation leads to a redistribution of its members in various cellular compartments. These changes are likely related to the "second wave" of signaling from endosomes. Here, we set out to determine whether Gs signaling cascade members expressed at very low levels exhibit altered mobility and localize in clathrin-coated structures (CCSs) or caveolae upon activation by β2 -adrenergic receptors (β2 AR). Activated β2 AR showed decreased mobility and sustained accumulation in CCSs but not in caveolae. Arrestin 3 translocated to the plasma membrane after β2 AR activation and showed very low mobility and pronounced accumulation in CCSs. In contrast, Gαs and Gγ2 exhibited a modest reduction in mobility but no detectable accumulation in or exclusion from CCSs or caveolae. The effector adenylyl cyclase 5 (AC5) showed a slight mobility increase upon β2 AR stimulation, no redistribution to CCSs, and weak activation-independent accumulation in caveolae. Our findings show an overall decrease in the mobility of most activated Gs signaling cascade members and confirm that β2 AR and arrestin 3 accumulate in CCSs, while Gαs , Gγ2 and AC5 can transiently enter CCSs and caveolae but do not accumulate in and are not excluded from these domains.
Collapse
Affiliation(s)
- Alexey Bondar
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA.,Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Prague, Czech Republic.,University of South Bohemia, Czech Republic
| | - Wonjo Jang
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA
| | - Ekaterina Sviridova
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Czech Republic
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
18
|
McCabe KJ, Rangamani P. Computational modeling approaches to cAMP/PKA signaling in cardiomyocytes. J Mol Cell Cardiol 2021; 154:32-40. [PMID: 33548239 DOI: 10.1016/j.yjmcc.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
The cAMP/PKA pathway is a fundamental regulator of excitation-contraction coupling in cardiomyocytes. Activation of cAMP has a variety of downstream effects on cardiac function including enhanced contraction, accelerated relaxation, adaptive stress response, mitochondrial regulation, and gene transcription. Experimental advances have shed light on the compartmentation of cAMP and PKA, which allow for control over the varied targets of these second messengers and is disrupted in heart failure conditions. Computational modeling is an important tool for understanding the spatial and temporal complexities of this system. In this review article, we outline the advances in computational modeling that have allowed for deeper understanding of cAMP/PKA dynamics in the cardiomyocyte in health and disease, and explore new modeling frameworks that may bring us closer to a more complete understanding of this system. We outline various compartmental and spatial signaling models that have been used to understand how β-adrenergic signaling pathways function in a variety of simulation conditions. We also discuss newer subcellular models of cardiovascular function that may be used as templates for the next phase of computational study of cAMP and PKA in the heart, and outline open challenges which are important to consider in future models.
Collapse
Affiliation(s)
- Kimberly J McCabe
- Simula Research Laboratory, Department of Computational Physiology, PO Box 134, 1325 Lysaker, Norway.
| | - Padmini Rangamani
- University of California San Diego, Department of Mechanical and Aerospace Engineering, 9500 Gilman Drive MC 0411, La Jolla, CA 92093, United States of America
| |
Collapse
|
19
|
De Jong KA, Nikolaev VO. Multifaceted remodelling of cAMP microdomains driven by different aetiologies of heart failure. FEBS J 2021; 288:6603-6622. [DOI: 10.1111/febs.15706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Kirstie A. De Jong
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| |
Collapse
|
20
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Abi-Gerges A, Castro L, Leroy J, Domergue V, Fischmeister R, Vandecasteele G. Selective changes in cytosolic β-adrenergic cAMP signals and L-type Calcium Channel regulation by Phosphodiesterases during cardiac hypertrophy. J Mol Cell Cardiol 2021; 150:109-121. [PMID: 33184031 DOI: 10.1016/j.yjmcc.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023]
Abstract
Background In cardiomyocytes, phosphodiesterases (PDEs) type 3 and 4 are the predominant enzymes that degrade cAMP generated by β-adrenergic receptors (β-ARs), impacting notably the regulation of the L-type Ca2+ current (ICa,L). Cardiac hypertrophy (CH) is accompanied by a reduction in PDE3 and PDE4, however, whether this affects the dynamic regulation of cytosolic cAMP and ICa,L is not known. Methods and Results CH was induced in rats by thoracic aortic banding over a time period of five weeks and was confirmed by anatomical measurements. Left ventricular myocytes (LVMs) were isolated from CH and sham-operated (SHAM) rats and transduced with an adenovirus encoding a Förster resonance energy transfer (FRET)-based cAMP biosensor or subjected to the whole-cell configuration of the patch-clamp technique to measure ICa,L. Aortic stenosis resulted in a 46% increase in heart weight to body weight ratio in CH compared to SHAM. In SHAM and CH LVMs, a short isoprenaline stimulation (Iso, 100 nM, 15 s) elicited a similar transient increase in cAMP with a half decay time (t1/2off) of ~50 s. In both groups, PDE4 inhibition with Ro 20-1724 (10 μM) markedly potentiated the amplitude and slowed the decline of the cAMP transient, this latter effect being more pronounced in SHAM (t1/2off ~ 250 s) than in CH (t1/2off ~ 150 s, P < 0.01). In contrast, PDE3 inhibition with cilostamide (1 μM) had no effect on the amplitude of the cAMP transient and a minimal effect on its recovery in SHAM, whereas it potentiated the amplitude and slowed the decay in CH (t1/2off ~ 80 s). Iso pulse stimulation also elicited a similar transient increase in ICa,L in SHAM and CH, although the duration of the rising phase was delayed in CH. Inhibition of PDE3 or PDE4 potentiated ICa,L amplitude in SHAM but not in CH. Besides, while only PDE4 inhibition slowed down the decline of ICa,L in SHAM, both PDE3 and PDE4 contributed in CH. Conclusion These results identify selective alterations in cytosolic cAMP and ICa,L regulation by PDE3 and PDE4 in CH, and show that the balance between PDE3 and PDE4 for the regulation of β-AR responses is shifted toward PDE3 during CH.
Collapse
Affiliation(s)
- Aniella Abi-Gerges
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Liliana Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, 75005, Paris, France
| | - Jérôme Leroy
- Signaling and Cardiovascular Pathophysiology, INSERM, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Valérie Domergue
- UMS-IPSIT, INSERM, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Rodolphe Fischmeister
- Signaling and Cardiovascular Pathophysiology, INSERM, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Grégoire Vandecasteele
- Signaling and Cardiovascular Pathophysiology, INSERM, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
22
|
Yang HQ, Zhou P, Wang LP, Zhao YT, Ren YJ, Guo YB, Xu M, Wang SQ. Compartmentalized β1-adrenergic signalling synchronizes excitation-contraction coupling without modulating individual Ca2+ sparks in healthy and hypertrophied cardiomyocytes. Cardiovasc Res 2020; 116:2069-2080. [PMID: 32031586 DOI: 10.1093/cvr/cvaa013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
AIMS β-adrenergic receptors (βARs) play pivotal roles in regulating cardiac excitation-contraction (E-C) coupling. Global signalling of β1ARs up-regulates both the influx of Ca2+ through sarcolemmal L-type Ca2+ channels (LCCs) and the release of Ca2+ from the sarcoplasmic reticulum (SR) through the ryanodine receptors (RyRs). However, we recently found that β2AR stimulation meditates 'offside compartmentalization', confining β1AR signalling into subsarcolemmal nanodomains without reaching SR proteins. In the present study, we aim to investigate the new question, whether and how compartmentalized β1AR signalling regulates cardiac E-C coupling. METHODS AND RESULTS By combining confocal Ca2+ imaging and patch-clamp techniques, we investigated the effects of compartmentalized βAR signalling on E-C coupling at both cellular and molecular levels. We found that simultaneous activation of β2 and β1ARs, in contrast to global signalling of β1ARs, modulated neither the amplitude and spatiotemporal properties of Ca2+ sparks nor the kinetics of the RyR response to LCC Ca2+ sparklets. Nevertheless, by up-regulating LCC current, compartmentalized β1AR signalling synchronized RyR Ca2+ release and increased the functional reserve (stability margin) of E-C coupling. In circumstances of briefer excitation durations or lower RyR responsivity, compartmentalized βAR signalling, by increasing the intensity of Ca2+ triggers, helped stabilize the performance of E-C coupling and enhanced the Ca2+ transient amplitude in failing heart cells. CONCLUSION Given that compartmentalized βAR signalling can be induced by stress-associated levels of catecholamines, our results revealed an important, yet unappreciated, heart regulation mechanism that is autoadaptive to varied stress conditions.
Collapse
Affiliation(s)
- Hua-Qian Yang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Rd, Beijing 100871, China
| | - Peng Zhou
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Rd, Beijing 100871, China
| | - Li-Peng Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Rd, Beijing 100871, China
| | - Yan-Ting Zhao
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Rd, Beijing 100871, China
| | - Yu-Jie Ren
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Rd, Beijing 100871, China
| | - Yun-Bo Guo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Rd, Beijing 100871, China
| | - Ming Xu
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Rd, Beijing 100871, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 5 Yiheyuan Rd, Beijing 100871, China
| |
Collapse
|
23
|
Prada MP, Syed AU, Reddy GR, Martín-Aragón Baudel M, Flores-Tamez VA, Sasse KC, Ward SM, Sirish P, Chiamvimonvat N, Bartels P, Dickson EJ, Hell JW, Scott JD, Santana LF, Xiang YK, Navedo MF, Nieves-Cintrón M. AKAP5 complex facilitates purinergic modulation of vascular L-type Ca 2+ channel Ca V1.2. Nat Commun 2020; 11:5303. [PMID: 33082339 PMCID: PMC7575592 DOI: 10.1038/s41467-020-18947-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
The L-type Ca2+ channel CaV1.2 is essential for arterial myocyte excitability, gene expression and contraction. Elevations in extracellular glucose (hyperglycemia) potentiate vascular L-type Ca2+ channel via PKA, but the underlying mechanisms are unclear. Here, we find that cAMP synthesis in response to elevated glucose and the selective P2Y11 agonist NF546 is blocked by disruption of A-kinase anchoring protein 5 (AKAP5) function in arterial myocytes. Glucose and NF546-induced potentiation of L-type Ca2+ channels, vasoconstriction and decreased blood flow are prevented in AKAP5 null arterial myocytes/arteries. These responses are nucleated via the AKAP5-dependent clustering of P2Y11/ P2Y11-like receptors, AC5, PKA and CaV1.2 into nanocomplexes at the plasma membrane of human and mouse arterial myocytes. Hence, data reveal an AKAP5 signaling module that regulates L-type Ca2+ channel activity and vascular reactivity upon elevated glucose. This AKAP5-anchored nanocomplex may contribute to vascular complications during diabetic hyperglycemia.
Collapse
Affiliation(s)
- Maria Paz Prada
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
| | - Arsalan U Syed
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
| | | | | | | | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, NV, 89557, USA
| | - Padmini Sirish
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
- VA Northern California Healthcare System, Mather, CA, 95655, USA
| | - Peter Bartels
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, 95616, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
| | - John D Scott
- Department of Pharmacology, University of Washington Seattle, Seattle, WA, 98195, USA
| | - Luis F Santana
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, 95616, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA
- VA Northern California Healthcare System, Mather, CA, 95655, USA
| | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA.
| | | |
Collapse
|
24
|
Mougenot N, Mika D, Czibik G, Marcos E, Abid S, Houssaini A, Vallin B, Guellich A, Mehel H, Sawaki D, Vandecasteele G, Fischmeister R, Hajjar RJ, Dubois-Randé JL, Limon I, Adnot S, Derumeaux G, Lipskaia L. Cardiac adenylyl cyclase overexpression precipitates and aggravates age-related myocardial dysfunction. Cardiovasc Res 2020; 115:1778-1790. [PMID: 30605506 DOI: 10.1093/cvr/cvy306] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
AIMS Increase of cardiac cAMP bioavailability and PKA activity through adenylyl-cyclase 8 (AC8) overexpression enhances contractile function in young transgenic mice (AC8TG). Ageing is associated with decline of cardiac contraction partly by the desensitization of β-adrenergic/cAMP signalling. Our objective was to evaluate cardiac cAMP signalling as age increases between 2 months and 12 months and to explore whether increasing the bioavailability of cAMP by overexpression of AC8 could prevent cardiac dysfunction related to age. METHODS AND RESULTS Cardiac cAMP pathway and contractile function were evaluated in AC8TG and their non-transgenic littermates (NTG) at 2- and 12 months old. AC8TG demonstrated increased AC8, PDE1, 3B and 4D expression at both ages, resulting in increased phosphodiesterase and PKA activity, and increased phosphorylation of several PKA targets including sarco(endo)plasmic-reticulum-calcium-ATPase (SERCA2a) cofactor phospholamban (PLN) and GSK3α/β a main regulator of hypertrophic growth and ageing. Confocal immunofluorescence revealed that the major phospho-PKA substrates were co-localized with Z-line in 2-month-old NTG but with Z-line interspace in AC8TG, confirming the increase of PKA activity in the compartment of PLN/SERCA2a. In both 12-month-old NTG and AC8TG, PLN and GSK3α/β phosphorylation was increased together with main localization of phospho-PKA substrates in Z-line interspaces. Haemodynamics demonstrated an increased contractile function in 2- and 12-month-old AC8TG, but not in NTG. In contrast, echocardiography and tissue Doppler imaging (TDI) performed in conscious mice unmasked myocardial dysfunction with a decrease of systolic strain rate in both old AC8TG and NTG. In AC8TG TDI showed a reduced strain rate even in 2-month-old animals. Development of age-related cardiac dysfunction was accelerated in AC8TG, leading to heart failure (HF) and premature death. Histological analysis confirmed early cardiomyocyte hypertrophy and interstitial fibrosis in AC8TG when compared with NTG. CONCLUSION Our data demonstrated an early and accelerated cardiac remodelling in AC8TG mice, leading to the development of HF and reduced lifespan. Age-related reorganization of cAMP/PKA signalling can accelerate cardiac ageing, partly through GSK3α/β phosphorylation.
Collapse
Affiliation(s)
| | - Delphine Mika
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Gabor Czibik
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Elizabeth Marcos
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Shariq Abid
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Amal Houssaini
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Benjamin Vallin
- Sorbonne Université Institute of Biology Paris-Seine, B2A, UMR8256, Paris, France
| | - Aziz Guellich
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Hind Mehel
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Daigo Sawaki
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France
| | | | - Rodolphe Fischmeister
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Luc Dubois-Randé
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Isabelle Limon
- Sorbonne Université Institute of Biology Paris-Seine, B2A, UMR8256, Paris, France
| | - Serge Adnot
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Geneviève Derumeaux
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Larissa Lipskaia
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France.,Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Tonelli Gombalová Z, Košuth J, Alexovič Matiašová A, Zrubáková J, Žežula I, Giallongo T, Di Giulio AM, Carelli S, Tomašková L, Daxnerová Z, Ševc J. Majority of cerebrospinal fluid‐contacting neurons in the spinal cord of
C57Bl/6N
mice is present in ectopic position unlike in other studied experimental mice strains and mammalian species. J Comp Neurol 2020; 528:2523-2550. [DOI: 10.1002/cne.24909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Zuzana Tonelli Gombalová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Ján Košuth
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Anna Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Jarmila Zrubáková
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Ivan Žežula
- Institute of Mathematics, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Toniella Giallongo
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Anna Maria Di Giulio
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Stephana Carelli
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Lenka Tomašková
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Zuzana Daxnerová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Juraj Ševc
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| |
Collapse
|
26
|
Dang S, Zhang ZY, Li KL, Zheng J, Qian LL, Liu XY, Wu Y, Zhang CY, Zhao XX, Yu ZM, Wang RX, Jiang T. Blockade of β-adrenergic signaling suppresses inflammasome and alleviates cardiac fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:127. [PMID: 32175420 DOI: 10.21037/atm.2020.02.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Heart failure (HF) is an end-stage syndrome of all structural heart diseases which accompanies the loss of myocardium and cardiac fibrosis. Although the role of inflammasome in cardiac fibrosis has recently been a point of focus, the mechanism of inflammasome activation in HF has not yet been elucidated. Methods In this study, we investigated the expression of inflammasome proteins in a rat thoracic aorta constriction (TAC) model and cultured cardiac fibroblasts with stimulation of norepinephrine (NE). Results Our results showed that levels of inflammasome proteins in the myocardial of TAC rats were elevated. By blocking β-adrenergic signaling in the rats, inflammasome activation was suppressed and heart function was improved. The stimulation of cultured cardiac fibroblasts with NE activated inflammasome in vitro, which was abrogated by the inhibition of the calcium channels and reactive oxygen species (ROS). The activation of inflammasome by NE promoted cardiac fibrosis, whereas the inhibition of the calcium channels, ROS, and inflammasome reduced this effect. Conclusions The present study indicated that activation of inflammasome by β-adrenergic signaling promotes cardiac fibrosis. Therefore, modulation of inflammasome during HF might provide a novel strategy to treat this disease.
Collapse
Affiliation(s)
- Shipeng Dang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China.,Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China
| | - Zhen-Ye Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China
| | - Ku-Lin Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China
| | - Jie Zheng
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China
| | - Ling-Ling Qian
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China
| | - Xiao-Yu Liu
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China
| | - Ying Wu
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China
| | - Chang-Ying Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China
| | - Xiao-Xi Zhao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China
| | - Zhi-Ming Yu
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| |
Collapse
|
27
|
Bedioune I, Lefebvre F, Lechêne P, Varin A, Domergue V, Kapiloff MS, Fischmeister R, Vandecasteele G. PDE4 and mAKAPβ are nodal organizers of β2-ARs nuclear PKA signalling in cardiac myocytes. Cardiovasc Res 2019; 114:1499-1511. [PMID: 29733383 DOI: 10.1093/cvr/cvy110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 04/27/2018] [Indexed: 01/04/2023] Open
Abstract
Aims β1- and β2-adrenergic receptors (β-ARs) produce different acute contractile effects on the heart partly because they impact on different cytosolic pools of cAMP-dependent protein kinase (PKA). They also exert different effects on gene expression but the underlying mechanisms remain unknown. The aim of this study was to understand the mechanisms by which β1- and β2-ARs regulate nuclear PKA activity in cardiomyocytes. Methods and results We used cytoplasmic and nuclear targeted biosensors to examine cAMP signals and PKA activity in adult rat ventricular myocytes upon selective β1- or β2-ARs stimulation. Both β1- and β2-AR stimulation increased cAMP and activated PKA in the cytoplasm. Although the two receptors also increased cAMP in the nucleus, only β1-ARs increased nuclear PKA activity and up-regulated the PKA target gene and pro-apoptotic factor, inducible cAMP early repressor (ICER). Inhibition of phosphodiesterase (PDE)4, but not Gi, PDE3, GRK2 nor caveolae disruption disclosed nuclear PKA activation and ICER induction by β2-ARs. Both nuclear and cytoplasmic PKI prevented nuclear PKA activation and ICER induction by β1-ARs, indicating that PKA activation outside the nucleus is required for subsequent nuclear PKA activation and ICER mRNA expression. Cytoplasmic PKI also blocked ICER induction by β2-AR stimulation (with concomitant PDE4 inhibition). However, in this case nuclear PKI decreased ICER up-regulation by only 30%, indicating that other mechanisms are involved. Down-regulation of mAKAPβ partially inhibited nuclear PKA activation upon β1-AR stimulation, and drastically decreased nuclear PKA activation upon β2-AR stimulation in the presence of PDE4 inhibition. Conclusions β1- and β2-ARs differentially regulate nuclear PKA activity and ICER expression in cardiomyocytes. PDE4 insulates a mAKAPβ-targeted PKA pool at the nuclear envelope that prevents nuclear PKA activation upon β2-AR stimulation.
Collapse
Affiliation(s)
- Ibrahim Bedioune
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM
| | - Florence Lefebvre
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM
| | - Patrick Lechêne
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM
| | - Audrey Varin
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM
| | - Valérie Domergue
- Institut Paris Saclay d'Innovation Thérapeutique, UMS IPSIT, Univ. Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry Cedex, France
| | - Michael S Kapiloff
- Cardiac Signal Transduction and Cellular Biology Laboratory, Departments of Pediatrics and Medicine, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, USA
| | - Rodolphe Fischmeister
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM.,Institut Paris Saclay d'Innovation Thérapeutique, UMS IPSIT, Univ. Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry Cedex, France
| | | |
Collapse
|
28
|
Abstract
The aim of this chapter is to discuss evidence concerning the many roles of calcium ions, Ca2+, in cell signaling pathways that control heart function. Before considering details of these signaling pathways, the control of contraction in ventricular muscle by Ca2+ transients accompanying cardiac action potentials is first summarized, together with a discussion of how myocytes from the atrial and pacemaker regions of the heart diverge from this basic scheme. Cell signaling pathways regulate the size and timing of the Ca2+ transients in the different heart regions to influence function. The simplest Ca2+ signaling elements involve enzymes that are regulated by cytosolic Ca2+. Particularly important examples to be discussed are those that are stimulated by Ca2+, including Ca2+-calmodulin-dependent kinase (CaMKII), Ca2+ stimulated adenylyl cyclases, Ca2+ stimulated phosphatase and NO synthases. Another major aspect of Ca2+ signaling in the heart concerns actions of the Ca2+ mobilizing agents, inositol trisphosphate (IP3), cADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate, (NAADP). Evidence concerning roles of these Ca2+ mobilizing agents in different regions of the heart is discussed in detail. The focus of the review will be on short term regulation of Ca2+ transients and contractile function, although it is recognized that Ca2+ regulation of gene expression has important long term functional consequences which will also be briefly discussed.
Collapse
|
29
|
Bull Melsom C, Cosson MV, Ørstavik Ø, Lai NC, Hammond HK, Osnes JB, Skomedal T, Nikolaev V, Levy FO, Krobert KA. Constitutive inhibitory G protein activity upon adenylyl cyclase-dependent cardiac contractility is limited to adenylyl cyclase type 6. PLoS One 2019; 14:e0218110. [PMID: 31173603 PMCID: PMC6556981 DOI: 10.1371/journal.pone.0218110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE We previously reported that inhibitory G protein (Gi) exerts intrinsic receptor-independent inhibitory activity upon adenylyl cyclase (AC) that regulates contractile force in rat ventricle. The two major subtypes of AC in the heart are AC5 and AC6. The aim of this study was to determine if this intrinsic Gi inhibition regulating contractile force is AC subtype selective. METHODS Wild-type (WT), AC5 knockout (AC5KO) and AC6 knockout (AC6KO) mice were injected with pertussis toxin (PTX) to inactivate Gi or saline (control).Three days after injection, we evaluated the effect of simultaneous inhibition of phosphodiesterases (PDE) 3 and 4 with cilostamide and rolipram respectively upon in vivo and ex vivo left ventricular (LV) contractile function. Also, changes in the level of cAMP were measured in left ventricular homogenates and at the membrane surface in cardiomyocytes obtained from the same mouse strains expressing the cAMP sensor pmEPAC1 using fluorescence resonance energy transfer (FRET). RESULTS Simultaneous PDE3 and PDE4 inhibition increased in vivo and ex vivo rate of LV contractility only in PTX-treated WT and AC5KO mice but not in saline-treated controls. Likewise, Simultaneous PDE3 and PDE4 inhibition elevated total cAMP levels in PTX-treated WT and AC5KO mice compared to saline-treated controls. In contrast, simultaneous PDE3 and PDE4 inhibition did not increase in vivo or ex vivo rate of LV contractility or cAMP levels in PTX-treated AC6KO mice compared to saline-treated controls. Using FRET analysis, an increase of cAMP level was detected at the membrane of cardiomyocytes after simultaneous PDE3 and PDE4 inhibition in WT and AC5KO but not AC6KO. These FRET data are consistent with the functional data indicating that AC6 activity and PTX inhibition of Gi is necessary for simultaneous inhibition of PDE3 and PDE4 to elicit an increase in contractility. CONCLUSIONS Together, these data suggest that AC6 is tightly regulated by intrinsic receptor-independent Gi activity, thus providing a mechanism for maintaining low basal cAMP levels in the functional compartment that regulates contractility.
Collapse
Affiliation(s)
- Caroline Bull Melsom
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| | - Marie-Victoire Cosson
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| | - Øivind Ørstavik
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| | - Ngai Chin Lai
- Department of Veterans Affairs, San Diego Healthcare System, San Diego,
California, United States of America
- Department of Medicine, University of California, San Diego, California,
United States of America
| | - H. Kirk Hammond
- Department of Veterans Affairs, San Diego Healthcare System, San Diego,
California, United States of America
- Department of Medicine, University of California, San Diego, California,
United States of America
| | - Jan-Bjørn Osnes
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| | - Tor Skomedal
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| | | | - Finn Olav Levy
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| | - Kurt Allen Krobert
- Department of Pharmacology and Center for Heart Failure Research, Faculty
of Medicine, University of Oslo and Oslo University Hospital, Oslo,
Norway
| |
Collapse
|
30
|
Bourcier A, Barthe M, Bedioune I, Lechêne P, Miled HB, Vandecasteele G, Fischmeister R, Leroy J. Imipramine as an alternative to formamide to detubulate rat ventricular cardiomyocytes. Exp Physiol 2019; 104:1237-1249. [PMID: 31116459 DOI: 10.1113/ep087760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can imipramine, an antidepressant agent that is a cationic amphiphilic drug that interferes with the phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) interactions with proteins maintaining the tubular system, be validated as a new detubulating tool? What is the main finding and its importance? Imipramine was validated as a more efficient and less toxic detubulating agent of cardiomyocytes than formamide. New insights are provided on how PI(4,5)P2 is crucial to maintaining T-tubule attachment to the cell surface and on the cardiotoxic effects of imipramine overdoses. ABSTRACT Cardiac T-tubules are membrane invaginations essential for excitation-contraction coupling (ECC). Imipramine, like other cationic amphiphilic drugs, interferes with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) interactions with proteins maintaining the tubular system connected to the cell surface. Our main purpose was to validate imipramine as a new detubulating agent in cardiomyocytes. Staining adult rat ventricular myocytes (ARVMs) with di-4-ANEPPS, we showed that unlike formamide, imipramine induces a complete detubulation with no impact on cell viability. Using the patch-clamp technique, we observed a ∼40% decrease in cell capacitance after imipramine pretreatment and a reduction of ICa,L amplitude by ∼72%. These parameters were not affected in atrial cells, excluding direct side effects of imipramine. β-Adrenergic receptor (β-AR) stimulation of the remaining ICa,L with isoproterenol (Iso) was still effective. ECC was investigated in ARVMs loaded with Fura-2 and paced at 1 Hz, allowing simultaneous measurement of the Ca2+ transient (CaT) and sarcomere shortening (SS). Amplitude of both CaT and SS was decreased by imipramine and partially restored by Iso. Furthermore, detubulated cells exhibited Ca2+ homeostasis perturbations. Real-time cAMP variations induced by Iso using a Förster resonance energy transfer biosensor revealed ∼27% decreased cAMP elevation upon β-AR stimulation. To conclude, we validated a new cardiomyocyte detubulation method using imipramine, which is more efficient and less toxic than formamide. This antidepressant agent induces the hallmark effects of detubulation on ECC and its β-AR stimulation. Besides, we provide new insights on how an imipramine overdose may affect cardiac function and suggest that PI(4,5)P2 is crucial for maintaining T-tubule structure.
Collapse
Affiliation(s)
- Aurelia Bourcier
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Marion Barthe
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Ibrahim Bedioune
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Patrick Lechêne
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Hela Ben Miled
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Grégoire Vandecasteele
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Rodolphe Fischmeister
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Jérôme Leroy
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| |
Collapse
|
31
|
Syed AU, Reddy GR, Ghosh D, Prada MP, Nystoriak MA, Morotti S, Grandi E, Sirish P, Chiamvimonvat N, Hell JW, Santana LF, Xiang YK, Nieves-Cintrón M, Navedo MF. Adenylyl cyclase 5-generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia. J Clin Invest 2019; 129:3140-3152. [PMID: 31162142 PMCID: PMC6668679 DOI: 10.1172/jci124705] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Elevated blood glucose (hyperglycemia) is a hallmark metabolic abnormality in diabetes. Hyperglycemia is associated with protein kinase A (PKA)-mediated stimulation of L-type Ca2+ channels in arterial myocytes resulting in increased vasoconstriction. However, the mechanisms by which glucose activates PKA remain unclear. Here, we showed that elevating extracellular glucose stimulates cAMP production in arterial myocytes, and that this was specifically dependent on adenylyl cyclase 5 (AC5) activity. Super-resolution imaging suggested nanometer proximity between subpopulations of AC5 and the L-type Ca2+ channel pore-forming subunit CaV1.2. In vitro, in silico, ex vivo and in vivo experiments revealed that this close association is critical for stimulation of L-type Ca2+ channels in arterial myocytes and increased myogenic tone upon acute hyperglycemia. This pathway supported the increase in L-type Ca2+ channel activity and myogenic tone in two animal models of diabetes. Our collective findings demonstrate a unique role for AC5 in PKA-dependent modulation of L-type Ca2+ channel activity and vascular reactivity during acute hyperglycemia and diabetes.
Collapse
MESH Headings
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Calcium Channels, L-Type/biosynthesis
- Calcium Channels, L-Type/genetics
- Cerebral Arteries/enzymology
- Cerebral Arteries/pathology
- Cyclic AMP/genetics
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Hyperglycemia/enzymology
- Hyperglycemia/genetics
- Hyperglycemia/pathology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Arsalan U. Syed
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Gopireddy R. Reddy
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Debapriya Ghosh
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Maria Paz Prada
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Matthew A. Nystoriak
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Padmini Sirish
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Luis F. Santana
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, California, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | | | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| |
Collapse
|
32
|
Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model. J Mol Cell Cardiol 2019; 133:57-66. [PMID: 31158360 DOI: 10.1016/j.yjmcc.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 11/23/2022]
Abstract
AIMS Cyclic AMP phosphodiesterases (PDEs) are important modulators of the cardiac response to β-adrenergic receptor (β-AR) stimulation. PDE3 is classically considered as the major cardiac PDE in large mammals and human, while PDE4 is preponderant in rodents. However, it remains unclear whether PDE4 also plays a functional role in large mammals. Our purpose was to understand the role of PDE4 in cAMP hydrolysis and excitation-contraction coupling (ECC) in the pig heart, a relevant pre-clinical model. METHODS AND RESULTS Real-time cAMP variations were measured in isolated adult pig right ventricular myocytes (APVMs) using a Förster resonance energy transfer (FRET) biosensor. ECC was investigated in APVMs loaded with Fura-2 and paced at 1 Hz allowing simultaneous measurement of intracellular Ca2+ and sarcomere shortening. The expression of the different PDE4 subfamilies was assessed by Western blot in pig right ventricles and APVMs. Similarly to PDE3 inhibition with cilostamide (Cil), PDE4 inhibition with Ro 20-1724 (Ro) increased cAMP levels and inotropy under basal conditions. PDE4 inhibition enhanced the effects of the non-selective β-AR agonist isoprenaline (Iso) and the effects of Cil, and increased spontaneous diastolic Ca2+ waves (SCWs) in these conditions. PDE3A, PDE4A, PDE4B and PDE4D subfamilies are expressed in pig ventricles. In APVMs isolated from a porcine model of repaired tetralogy of Fallot which leads to right ventricular failure, PDE4 inhibition also exerts inotropic and pro-arrhythmic effects. CONCLUSIONS Our results show that PDE4 controls ECC in APVMs and suggest that PDE4 inhibitors exert inotropic and pro-arrhythmic effects upon PDE3 inhibition or β-AR stimulation in our pre-clinical model. Thus, PDE4 inhibitors should be used with caution in clinics as they may lead to arrhythmogenic events upon stress.
Collapse
|
33
|
Kong CHT, Bryant SM, Watson JJ, Gadeberg HC, Roth DM, Patel HH, Cannell MB, Orchard CH, James AF. The Effects of Aging on the Regulation of T-Tubular ICa by Caveolin in Mouse Ventricular Myocytes. J Gerontol A Biol Sci Med Sci 2019; 73:711-719. [PMID: 29236992 PMCID: PMC5946816 DOI: 10.1093/gerona/glx242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/07/2017] [Indexed: 11/25/2022] Open
Abstract
Aging is associated with diminished cardiac function in males. Cardiac excitation-contraction coupling in ventricular myocytes involves Ca influx via the Ca current (ICa) and Ca release from the sarcoplasmic reticulum, which occur predominantly at t-tubules. Caveolin-3 regulates t-tubular ICa, partly through protein kinase A (PKA), and both ICa and caveolin-3 decrease with age. We therefore investigated ICa and t-tubule structure and function in cardiomyocytes from male wild-type (WT) and caveolin-3-overexpressing (Cav-3OE) mice at 3 and 24 months of age. In WT cardiomyocytes, t-tubular ICa-density was reduced by ~50% with age while surface ICa density was unchanged. Although regulation by PKA was unaffected by age, inhibition of caveolin-3-binding reduced t-tubular ICa at 3 months, but not at 24 months. While Cav-3OE increased cardiac caveolin-3 protein expression ~2.5-fold at both ages, the age-dependent reduction in caveolin-3 (WT ~35%) was preserved in transgenic mice. Overexpression of caveolin-3 reduced t-tubular ICa density at 3 months but prevented further ICa loss with age. Measurement of Ca release at the t-tubules revealed that the triggering of local Ca release by t-tubular ICa was unaffected by age. In conclusion, the data suggest that the reduction in ICa density with age is associated with the loss of a caveolin-3-dependent mechanism that augments t-tubular ICa density.
Collapse
Affiliation(s)
- Cherrie H T Kong
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Simon M Bryant
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Judy J Watson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Hanne C Gadeberg
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - David M Roth
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego
| | - Mark B Cannell
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Clive H Orchard
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Andrew F James
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| |
Collapse
|
34
|
Pathological cardiac hypertrophy: the synergy of adenylyl cyclases inhibition in cardiac and immune cells during chronic catecholamine stress. J Mol Med (Berl) 2019; 97:897-907. [PMID: 31062036 DOI: 10.1007/s00109-019-01790-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022]
Abstract
Response to stressors in our environment and daily lives is an adaptation conserved through evolution as it is beneficial in enhancing the survival and continuity of humans. Although stressors have evolved, the drastic physiological response they elicit still remains unchanged. The chronic secretion and circulation of catecholamines to produce physical responses when they are not required may result in pathological consequences which affect cardiac function drastically. This review seeks to point out the probable implication of chronic stress in inducing an inflammation disorder in the heart. We discussed the likely synergy of a G protein-independent stimuli signaling via β2-adrenergic receptors in both cardiomyocytes and immune cells during chronic catecholamine stress. To explain this synergy, we hypothesized the possibility of adenylyl cyclases having a regulatory effect on G protein-coupled receptor kinases. This was based on the negative correlations they exhibit during normal cardiac function and heart failures. As such, the downregulation of adenylyl cyclases in cardiomyocytes and immune cells during chronic catecholamine stress enhances the expressions of G protein-coupled receptor kinases. In addition, we explain the maladaptive roles played by G protein-coupled receptor kinase and extracellular signal-regulated kinase in the synergistic cascade that pathologically remodels the heart. Finally, we highlighted the therapeutic potentials of an adenylyl cyclases stimulator to attenuate pathological cardiac hypertrophy (PCH) and improve cardiac function in patients developing cardiac disorders due to chronic catecholamine stress.
Collapse
|
35
|
Yang HQ, Wang LP, Gong YY, Fan XX, Zhu SY, Wang XT, Wang YP, Li LL, Xing X, Liu XX, Ji GS, Hou T, Zhang Y, Xiao RP, Wang SQ. β
2
-Adrenergic Stimulation Compartmentalizes β
1
Signaling Into Nanoscale Local Domains by Targeting the C-Terminus of β
1
-Adrenoceptors. Circ Res 2019; 124:1350-1359. [DOI: 10.1161/circresaha.118.314322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hua-Qian Yang
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Li-Peng Wang
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Yun-Yun Gong
- Beijing Advanced Innovation Center for Biomedical Engineering, and School of Biological Science and Medical Engineering, Beihang University, Beijing, China (Y.-Y.G)
| | - Xue-Xin Fan
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Si-Yu Zhu
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Xiao-Ting Wang
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Yu-Pu Wang
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Lin-Lin Li
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Xin Xing
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Xiao-Xiao Liu
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Guang-Shen Ji
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - TingTing Hou
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Yan Zhang
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Rui-Ping Xiao
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| | - Shi-Qiang Wang
- From the State Key Lab of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China (H.-Q.Y., L.-P.W., X.-X.F., S.-Y.Z., X.-T.W., Y.-P.W., L.-L.L., X.X., X.-X.L., G.-S.J., T.T.H., Y.Z., R.-P.X., S.-Q.W.)
| |
Collapse
|
36
|
cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors. J Mol Cell Cardiol 2019; 131:112-121. [PMID: 31028775 DOI: 10.1016/j.yjmcc.2019.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/29/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger produced in response to the stimulation of G protein-coupled receptors (GPCRs). It regulates a plethora of pathophysiological processes in different organs, including the cardiovascular system. It is now clear that cAMP is not uniformly distributed within cardiac myocytes but confined in specific subcellular compartments where it modulates key players of the excitation-contraction coupling as well as other processes including gene transcription, mitochondrial homeostasis and cell death. This review will cover the major cAMP microdomains in cardiac myocytes. We will describe recent work using pioneering tools developed for investigating the organization and the function of the major cAMP microdomains in cardiomyocytes, including the plasma membrane, the sarcoplasmic reticulum, the myofilaments, the nucleus and the mitochondria.
Collapse
|
37
|
Cosson MV, Hiis HG, Moltzau LR, Levy FO, Krobert KA. Knockout of adenylyl cyclase isoform 5 or 6 differentially modifies the β 1-adrenoceptor-mediated inotropic response. J Mol Cell Cardiol 2019; 131:132-145. [PMID: 31009605 DOI: 10.1016/j.yjmcc.2019.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
Although only β2-adrenergic receptors (βAR) dually couple with stimulatory G protein (Gs) and inhibitory G protein (Gi), inactivation of Gi enhances both β1AR and β2AR responsiveness. We hypothesize that Gi restrains spontaneous adenylyl cyclase (AC) activity independent of receptor activation. Subcellular localization of the AC5/6 subtypes varies contributing to the compartmentation of βAR signaling. The primary objectives were to determine: (1) if β1AR-mediated inotropic responses were dependent upon either AC5 or AC6; (2) if intrinsic Gi inhibition is AC subtype selective and (3) the role of phosphodiesterases (PDE) 3/4 to regulate β1AR responsiveness. β1AR-mediated increases in contractile force and cAMP accumulation in cardiomyocytes were measured from wild type, AC5 and AC6 knockout (KO) mice, with or without pertussis toxin (PTX) pretreatment to inactivate Gi and/or after selective inhibition of PDEs 3/4. Noradrenaline potency at β1ARs was increased in AC6 KO. PDE4 inhibition increased noradrenaline potency in wild type and AC5 KO, but not AC6 KO. PTX increased noradrenaline potency only in wild type but increased the maximal β1AR response in all mouse strains. PDE3 inhibition increased noradrenaline potency only in AC5 KO that was treated prior with PTX. β1AR-evoked cAMP accumulation was increased more by PDE4 inhibition than PDE3 inhibition in wild type and AC5 KO that was amplified by Gi inhibition. These data indicate that β1AR-mediated inotropic responses are not dependent upon either AC5 or AC6 alone. Inactivation of Gi enhanced β1AR-mediated inotropic responses despite not coupling to Gi, consistent with Gi exerting a tonic receptor independent inhibition upon AC5/6. PDE4 seems the primary regulator of β1AR signaling through AC6 in wild type. AC6 KO results in a reorganization of β1AR compartmentation characterized by signaling through AC5 regulated by Gi, PDE3 and PDE4 that maintains normal contractile function.
Collapse
Affiliation(s)
- Marie-Victoire Cosson
- Department of Pharmacology and Center for Heart Failure Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Halvard Gautefall Hiis
- Department of Pharmacology and Center for Heart Failure Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lise Román Moltzau
- Department of Pharmacology and Center for Heart Failure Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Finn Olav Levy
- Department of Pharmacology and Center for Heart Failure Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Kurt Allen Krobert
- Department of Pharmacology and Center for Heart Failure Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
38
|
Loucks AD, O'Hara T, Trayanova NA. Degradation of T-Tubular Microdomains and Altered cAMP Compartmentation Lead to Emergence of Arrhythmogenic Triggers in Heart Failure Myocytes: An in silico Study. Front Physiol 2018; 9:1737. [PMID: 30564142 PMCID: PMC6288429 DOI: 10.3389/fphys.2018.01737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/16/2018] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) is one of the most common causes of morbidity and mortality worldwide. Although many patients suffering from HF die from sudden cardiac death caused by arrhythmias, the mechanism linking HF remodeling to an increased arrhythmogenic propensity remains incomplete. HF is typically characterized by a progressive loss of transverse tubule (T-tubule) domains, which leads to an altered distribution of L-type calcium channels (LTCCs). Microdomain degradation also causes the disruption of the β2 adrenergic receptor (β2AR) and phosphodiesterase (PDE) signaling localization, normally confined to the dyadic space. The goal of this study was to analyze how these subcellular changes affect the function of LTCCs and lead to the emergence of ventricular cell-level triggers of arrhythmias. To accomplish this, we developed a novel computational model of a human ventricular HF myocyte in which LTCCs were divided into six different populations, based on their location and signaling environment they experience. To do so, we included T-tubular microdomain remodeling which led to a subset of LTCCs to be redistributed from the T-tubular to the surface membrane and allowed for different levels of phosphorylation of LTCCs by PKA, based on the presence of β2ARs and PDEs. The model was used to study the behavior of the LTCC current (ICaL) under basal and sympathetic stimulation and its effect on cellular action potential. Our results showed that channels redistributed from the T-tubular membrane to the bulk of the sarcolemma displayed an altered function in their new, non-native signaling domain. Incomplete calcium dependent inactivation, which resulted in a longer-lasting and larger-in-magnitude LTCC current, was observed when we decoupled LTCCs from ryanodine receptors and removed them from the dyadic space. The magnitude of the LTCC current, especially in the surface sarcolemma, was also increased via phosphorylation by the redistributed β2ARs and PDEs. These changes in LTCC current led to the development of early afterdepolarizations. Thus, our study shows that altered LTCC function is a potential cause for the emergence of cell-level triggers of arrhythmia, and that β2ARs and PDEs present useful therapeutic targets for treatment of HF and prevention of sudden cardiac death.
Collapse
Affiliation(s)
- Alexandra D Loucks
- Institute for Computational Medicine and Department of Biomedical Engineering at Johns Hopkins University, Baltimore, MD, United States
| | - Thomas O'Hara
- Institute for Computational Medicine and Department of Biomedical Engineering at Johns Hopkins University, Baltimore, MD, United States
| | - Natalia A Trayanova
- Institute for Computational Medicine and Department of Biomedical Engineering at Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
39
|
Bhogal NK, Hasan A, Gorelik J. The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains. J Cardiovasc Dev Dis 2018; 5:jcdd5020025. [PMID: 29751502 PMCID: PMC6023514 DOI: 10.3390/jcdd5020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/28/2018] [Indexed: 12/26/2022] Open
Abstract
3′-5′-cyclic adenosine monophosphate (cAMP) is a signaling messenger produced in response to the stimulation of cellular receptors, and has a myriad of functional applications depending on the cell type. In the heart, cAMP is responsible for regulating the contraction rate and force; however, cAMP is also involved in multiple other functions. Compartmentation of cAMP production may explain the specificity of signaling following a stimulus. In particular, transverse tubules (T-tubules) and caveolae have been found to be critical structural components for the spatial confinement of cAMP in cardiomyocytes, as exemplified by beta-adrenergic receptor (β-ARs) signaling. Pathological alterations in cardiomyocyte microdomain architecture led to a disruption in compartmentation of the cAMP signal. In this review, we discuss the difference between atrial and ventricular cardiomyocytes in respect to microdomain organization, and the pathological changes of atrial and ventricular cAMP signaling in response to myocyte dedifferentiation. In addition, we review the role of localized phosphodiesterase (PDE) activity in constraining the cAMP signal. Finally, we discuss microdomain biogenesis and maturation of cAMP signaling with the help of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Understanding these mechanisms may help to overcome the detrimental effects of pathological structural remodeling.
Collapse
Affiliation(s)
- Navneet K Bhogal
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Alveera Hasan
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
40
|
Johnstone TB, Agarwal SR, Harvey RD, Ostrom RS. cAMP Signaling Compartmentation: Adenylyl Cyclases as Anchors of Dynamic Signaling Complexes. Mol Pharmacol 2018; 93:270-276. [PMID: 29217670 PMCID: PMC5820540 DOI: 10.1124/mol.117.110825] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 11/22/2022] Open
Abstract
It is widely accepted that cAMP signaling is compartmentalized within cells. However, our knowledge of how receptors, cAMP signaling enzymes, effectors, and other key proteins form specific signaling complexes to regulate specific cell responses is limited. The multicomponent nature of these systems and the spatiotemporal dynamics involved as proteins interact and move within a cell make cAMP responses highly complex. Adenylyl cyclases, the enzymatic source of cAMP production, are key starting points for understanding cAMP compartments and defining the functional signaling complexes. Three basic elements are required to form a signaling compartment. First, a localized signal is generated by a G protein-coupled receptor paired to one or more of the nine different transmembrane adenylyl cyclase isoforms that generate the cAMP signal in the cytosol. The diffusion of cAMP is subsequently limited by several factors, including expression of any number of phosphodiesterases (of which there are 24 genes plus spice variants). Finally, signal response elements are differentially localized to respond to cAMP produced within each locale. A-kinase-anchoring proteins, of which there are 43 different isoforms, facilitate this by targeting protein kinase A to specific substrates. Thousands of potential combinations of these three elements are possible in any given cell type, making the characterization of cAMP signaling compartments daunting. This review will focus on what is known about how cells organize cAMP signaling components as well as identify the unknowns. We make an argument for adenylyl cyclases being central to the formation and maintenance of these signaling complexes.
Collapse
Affiliation(s)
- Timothy B Johnstone
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| | - Shailesh R Agarwal
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| | - Robert D Harvey
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| |
Collapse
|
41
|
Schilling JM, Head BP, Patel HH. Caveolins as Regulators of Stress Adaptation. Mol Pharmacol 2018; 93:277-285. [PMID: 29358220 PMCID: PMC5820539 DOI: 10.1124/mol.117.111237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Abstract
Caveolins have been recognized over the past few decades as key regulators of cell physiology. They are ubiquitously expressed and regulate a number of processes that ultimately impact efficiency of cellular processes. Though not critical to life, they are central to stress adaptation in a number of organs. The following review will focus specifically on the role of caveolin in stress adaptation in the heart, brain, and eye, three organs that are susceptible to acute and chronic stress and that show as well declining function with age. In addition, we consider some novel molecular mechanisms that may account for this stress adaptation and also offer potential to drive the future of caveolin research.
Collapse
Affiliation(s)
- Jan M Schilling
- Veterans Administration San Diego Healthcare System and Department of Anesthesiology, UCSD School of Medicine, San Diego, California
| | - Brian P Head
- Veterans Administration San Diego Healthcare System and Department of Anesthesiology, UCSD School of Medicine, San Diego, California
| | - Hemal H Patel
- Veterans Administration San Diego Healthcare System and Department of Anesthesiology, UCSD School of Medicine, San Diego, California
| |
Collapse
|
42
|
Leroy J, Vandecasteele G, Fischmeister R. Cyclic AMP signaling in cardiac myocytes. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Machuki J, Zhang H, Harding S, Sun H. Molecular pathways of oestrogen receptors and β-adrenergic receptors in cardiac cells: Recognition of their similarities, interactions and therapeutic value. Acta Physiol (Oxf) 2018; 222. [PMID: 28994249 PMCID: PMC5813217 DOI: 10.1111/apha.12978] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/07/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Oestrogen receptors (ERs) and β-adrenergic receptors (βARs) play important roles in the cardiovascular system. Moreover, these receptors are expressed in cardiac myocytes and vascular tissues. Numerous experimental observations support the hypothesis that similarities and interactions exist between the signalling pathways of ERs (ERα, ERβ and GPR30) and βARs (β1 AR, β2 AR and β3 AR). The recently discovered oestrogen receptor GPR30 shares structural features with the βARs, and this forms the basis for the interactions and functional overlap. GPR30 possesses protein kinase A (PKA) phosphorylation sites and PDZ binding motifs and interacts with A-kinase anchoring protein 5 (AKAP5), all of which enable its interaction with the βAR pathways. The interactions between ERs and βARs occur downstream of the G-protein-coupled receptor, through the Gαs and Gαi proteins. This review presents an up-to-date description of ERs and βARs and demonstrates functional synergism and interactions among these receptors in cardiac cells. We explore their signalling cascades and the mechanisms that orchestrate their interactions and propose new perspectives on the signalling patterns for the GPR30 based on its structural resemblance to the βARs. In addition, we explore the relevance of these interactions to cell physiology, drugs (especially β-blockers and calcium channel blockers) and cardioprotection. Furthermore, a receptor-independent mechanism for oestrogen and its influence on the expression of βARs and calcium-handling proteins are discussed. Finally, we highlight promising therapeutic avenues that can be derived from the shared pathways, especially the phosphatidylinositol-3-OH kinase (PI3K/Akt) pathway.
Collapse
Affiliation(s)
- J.O. Machuki
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - H.Y. Zhang
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - S.E. Harding
- National Heart and Lung Institute; Imperial College; London UK
| | - H. Sun
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| |
Collapse
|
44
|
Pavlaki N, Nikolaev VO. Imaging of PDE2- and PDE3-Mediated cGMP-to-cAMP Cross-Talk in Cardiomyocytes. J Cardiovasc Dev Dis 2018; 5:jcdd5010004. [PMID: 29367582 PMCID: PMC5872352 DOI: 10.3390/jcdd5010004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are important second messengers that regulate cardiovascular function and disease by acting in discrete subcellular microdomains. Signaling compartmentation at these locations is often regulated by phosphodiesterases (PDEs). Some PDEs are also involved in the cross-talk between the two second messengers. The purpose of this review is to summarize and highlight recent findings about the role of PDE2 and PDE3 in cardiomyocyte cyclic nucleotide compartmentation and visualization of this process using live cell imaging techniques.
Collapse
Affiliation(s)
- Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
45
|
Function of Adenylyl Cyclase in Heart: the AKAP Connection. J Cardiovasc Dev Dis 2018; 5:jcdd5010002. [PMID: 29367580 PMCID: PMC5872350 DOI: 10.3390/jcdd5010002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP), synthesized by adenylyl cyclase (AC), is a universal second messenger that regulates various aspects of cardiac physiology from contraction rate to the initiation of cardioprotective stress response pathways. Local pools of cAMP are maintained by macromolecular complexes formed by A-kinase anchoring proteins (AKAPs). AKAPs facilitate control by bringing together regulators of the cAMP pathway including G-protein-coupled receptors, ACs, and downstream effectors of cAMP to finely tune signaling. This review will summarize the distinct roles of AC isoforms in cardiac function and how interactions with AKAPs facilitate AC function, highlighting newly appreciated roles for lesser abundant AC isoforms.
Collapse
|
46
|
Muallem S, Chung WY, Jha A, Ahuja M. Lipids at membrane contact sites: cell signaling and ion transport. EMBO Rep 2017; 18:1893-1904. [PMID: 29030479 DOI: 10.15252/embr.201744331] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/10/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022] Open
Abstract
Communication between organelles is essential to coordinate cellular functions and the cell's response to physiological and pathological stimuli. Organellar communication occurs at membrane contact sites (MCSs), where the endoplasmic reticulum (ER) membrane is tethered to cellular organelle membranes by specific tether proteins and where lipid transfer proteins and cell signaling proteins are located. MCSs have many cellular functions and are the sites of lipid and ion transfer between organelles and generation of second messengers. This review discusses several aspects of MCSs in the context of lipid transfer, formation of lipid domains, generation of Ca2+ and cAMP second messengers, and regulation of ion transporters by lipids.
Collapse
Affiliation(s)
- Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Woo Young Chung
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Archana Jha
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| |
Collapse
|
47
|
Wu YS, Chen CC, Chien CL, Lai HL, Jiang ST, Chen YC, Lai LP, Hsiao WF, Chen WP, Chern Y. The type VI adenylyl cyclase protects cardiomyocytes from β-adrenergic stress by a PKA/STAT3-dependent pathway. J Biomed Sci 2017; 24:68. [PMID: 28870220 PMCID: PMC5584049 DOI: 10.1186/s12929-017-0367-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/11/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The type VI adenylyl cyclase (AC6) is a main contributor of cAMP production in the heart. The amino acid (aa) sequence of AC6 is highly homologous to that of another major cardiac adenylyl cyclase, AC5, except for its N-terminus (AC6-N, aa 1-86). Activation of AC6, rather than AC5, produces cardioprotective effects against heart failure, while the underlying mechanism remains to be unveiled. Using an AC6-null (AC6-/-) mouse and a knockin mouse with AC6-N deletion (AC6 ΔN/ΔN), we aimed to investigate the cardioprotective mechanism of AC6 in the heart. METHODS Western blot analysis and immunofluorescence staining were performed to determine the intracellular distribution of AC6, AC6-ΔN (a truncated AC6 lacking the first 86 amino acids), and STAT3 activation. Activities of AC6 and AC6-ΔN in the heart were assessed by cAMP assay. Apoptosis of cardiomyocytes were evaluated by the TUNEL assay and a propidium iodine-based survival assay. Fibrosis was examined by collagen staining. RESULTS Immunofluorescence staining revealed that cardiac AC6 was mainly anchored on the sarcolemmal membranes, while AC6-ΔN was redistributed to the sarcoplasmic reticulum. AC6ΔN/ΔN and AC6-/- mice had more apoptotic myocytes and cardiac remodeling than WT mice in experimental models of isoproterenol (ISO)-induced myocardial injury. Adult cardiomyocytes isolated from AC6ΔN/ΔN or AC6-/- mice survived poorly after exposure to ISO, which produced no effect on WT cardiomyocytes under the condition tested. Importantly, ISO treatment induced cardiac STAT3 phosphorylation/activation in WT mice, but not in AC6ΔN/ΔN and AC6-/- mice. Pharmacological blockage of PKA-, Src-, or STAT3- pathway markedly reduced the survival of WT myocytes in the presence of ISO, but did not affect those of AC6ΔN/ΔN and AC6-/- myocytes, suggesting an important role of AC6 in mediating cardioprotective action through the activation of PKA-Src-STAT3-signaling. CONCLUSIONS Collectively, AC6-N controls the anchorage of cardiac AC6 on the sarcolemmal membrane, which enables the coupling of AC6 with the pro-survival PKA-STAT3 pathway. Our findings may facilitate the development of novel therapies for heart failure.
Collapse
Affiliation(s)
- Yu-Shuo Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Chien-Chang Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Chen-Li Chien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Hsing-Lin Lai
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Si-Tse Jiang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Yong-Cyuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Lin-Ping Lai
- Institute of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Fan Hsiao
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Pin Chen
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yijuang Chern
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
48
|
Parks RJ, Bogachev O, Mackasey M, Ray G, Rose RA, Howlett SE. The impact of ovariectomy on cardiac excitation-contraction coupling is mediated through cAMP/PKA-dependent mechanisms. J Mol Cell Cardiol 2017; 111:51-60. [PMID: 28778766 DOI: 10.1016/j.yjmcc.2017.07.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 12/18/2022]
Abstract
Ovariectomy (OVX) promotes sarcoplasmic reticulum (SR) Ca2+ overload in ventricular myocytes. We hypothesized that the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway contributes to this Ca2+ dysregulation. Myocytes were isolated from adult female C57BL/6 mice following either OVX or sham surgery (surgery at ≈1mos). Contractions, Ca2+ concentrations (fura-2) and ionic currents were measured simultaneously (37°C, 2Hz) in voltage-clamped myocytes. Intracellular cAMP levels were determined with an enzyme immunoassay; phosphodiesterase (PDE) and adenylyl cyclase (AC) isoform expression was examined with qPCR. Ca2+ currents were similar in myocytes from sham and OVX mice but Ca2+ transients, excitation-contraction (EC)-coupling gain, SR content and contractions were larger in OVX than sham cells. To determine if the cAMP/PKA pathway mediated OVX-induced alterations in EC-coupling, cardiomyocytes were incubated with the PKA inhibitor H-89 (2μM), which abolished baseline differences. While basal intracellular cAMP did not differ, levels were higher in OVX than sham in the presence of a non-selective PDE inhibitor (300μM IBMX), or an AC activator (10μM forskolin). This suggests the production of cAMP by AC and its breakdown by PDE were enhanced by OVX. Consistent with this, mRNA levels for both AC5 and PDE4A were higher in OVX in comparison to sham. Differences in Ca2+ homeostasis and contractions were abolished when sham and OVX cells were dialyzed with patch pipettes containing the same concentration of 8-bromoadenosine-cAMP (50μM). Interestingly, selective inhibition of PDE4 increased Ca2+ current only in OVX cells. Together, these findings suggest that estrogen suppresses SR Ca2+ release and that this is regulated, at least in part, by the cAMP/PKA pathway. These changes in the cAMP/PKA pathway may promote Ca2+ dysregulation and cardiovascular disease when ovarian estrogen levels fall. These results advance our understanding of female-specific cardiomyocyte mechanisms that may affect responses to therapeutic interventions in older women.
Collapse
Affiliation(s)
- Randi J Parks
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Oleg Bogachev
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Martin Mackasey
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Gibanananda Ray
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Robert A Rose
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada; Department of Medicine (Geriatric Medicine), Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| |
Collapse
|
49
|
Loss of type 9 adenylyl cyclase triggers reduced phosphorylation of Hsp20 and diastolic dysfunction. Sci Rep 2017; 7:5522. [PMID: 28717248 PMCID: PMC5514062 DOI: 10.1038/s41598-017-05816-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/05/2017] [Indexed: 01/16/2023] Open
Abstract
Adenylyl cyclase type 9 (AC9) is found tightly associated with the scaffolding protein Yotiao and the IKs ion channel in heart. But apart from potential IKs regulation, physiological roles for AC9 are unknown. We show that loss of AC9 in mice reduces less than 3% of total AC activity in heart but eliminates Yotiao-associated AC activity. AC9−/− mice exhibit no structural abnormalities but show a significant bradycardia, consistent with AC9 expression in sinoatrial node. Global changes in PKA phosphorylation patterns are not altered in AC9−/− heart, however, basal phosphorylation of heat shock protein 20 (Hsp20) is significantly decreased. Hsp20 binds AC9 in a Yotiao-independent manner and deletion of AC9 decreases Hsp20-associated AC activity in heart. In addition, expression of catalytically inactive AC9 in neonatal cardiomyocytes decreases isoproterenol-stimulated Hsp20 phosphorylation, consistent with an AC9-Hsp20 complex. Phosphorylation of Hsp20 occurs largely in ventricles and is vital for the cardioprotective effects of Hsp20. Decreased Hsp20 phosphorylation suggests a potential baseline ventricular defect for AC9−/−. Doppler echocardiography of AC9−/− displays a decrease in the early ventricular filling velocity and ventricular filling ratio (E/A), indicative of grade 1 diastolic dysfunction and emphasizing the importance of local cAMP production in the context of macromolecular complexes.
Collapse
|
50
|
Rozier K, Bondarenko VE. Distinct physiological effects of β1- and β2-adrenoceptors in mouse ventricular myocytes: insights from a compartmentalized mathematical model. Am J Physiol Cell Physiol 2017; 312:C595-C623. [DOI: 10.1152/ajpcell.00273.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/03/2017] [Accepted: 01/18/2017] [Indexed: 01/08/2023]
Abstract
The β1- and β2-adrenergic signaling systems play different roles in the functioning of cardiac cells. Experimental data show that the activation of the β1-adrenergic signaling system produces significant inotropic, lusitropic, and chronotropic effects in the heart, whereas the effects of the β2-adrenergic signaling system is less apparent. In this paper, a comprehensive compartmentalized experimentally based mathematical model of the combined β1- and β2-adrenergic signaling systems in mouse ventricular myocytes is developed to simulate the experimental findings and make testable predictions of the behavior of the cardiac cells under different physiological conditions. Simulations describe the dynamics of major signaling molecules in different subcellular compartments; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca2+ handling proteins; modifications of action potential shape and duration; and [Ca2+]i and [Na+]i dynamics upon stimulation of β1- and β2-adrenergic receptors (β1- and β2-ARs). The model reveals physiological conditions when β2-ARs do not produce significant physiological effects and when their effects can be measured experimentally. Simulations demonstrated that stimulation of β2-ARs with isoproterenol caused a marked increase in the magnitude of the L-type Ca2+ current, [Ca2+]i transient, and phosphorylation of phospholamban only upon additional application of pertussis toxin or inhibition of phosphodiesterases of type 3 and 4. The model also made testable predictions of the changes in magnitudes of [Ca2+]i and [Na+]i fluxes, the rate of decay of [Na+]i concentration upon both combined and separate stimulation of β1- and β2-ARs, and the contribution of phosphorylation of PKA targets to the changes in the action potential and [Ca2+]i transient.
Collapse
Affiliation(s)
- Kelvin Rozier
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia; and
| | - Vladimir E. Bondarenko
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia; and
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|