1
|
Liu H, Mei M, Lin S, Luo J, Huang S, Zhou J. Wuling San regulates AVPR2-cAMP-PKA-CREB pathway to delay cellular senescence and ameliorate acute kidney injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119679. [PMID: 40216046 DOI: 10.1016/j.jep.2025.119679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cellular senescence in renal resident cells plays a pivotal role in the progression of acute kidney injury (AKI), necessitating the expansion of effective drug targets. Traditional Chinese medicine (TCM) formulations, characterized by their multi-target effects, offer a promising perspective for advancing research on AKI. Wuling San (WLS), a well-established compound used in treating urological disorders, has yet to elucidate its potential pharmacological targets and mechanisms in ameliorating AKI and delaying cellular senescence. AIM OF THE STUDY This study sought to elucidate the mechanisms by which WLS modulates the AVPR2-cAMP-PKA-CREB pathway to mitigate cellular senescence and promote recovery from AKI. METHODS We first prepared WLS-containing serum and performed RT-qPCR experiments to screen for GPCRs that were differentially expressed in response to WLS. Next, we established an in vitro AKI mouse model to assess the renal protective effects of the WLS by measuring renal function, renal pathology, and oxidative stress levels. After this, we performed RNA sequencing (RNA-Seq) profiling to identify differentially expressed genes (DEGs) affected by WLS treatment. We also conducted Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to identify potential signaling pathways involved. We then utilized the Gene Expression Omnibus (GEO) data to screen for cellular senescence related differentially expressed genes (CSRDEGs) in AKI patients and performed enrichment analysis, as well as a joint analysis of specific genes in relation to the RNA-Seq profiling results. We also examined how WLS affects the expression of proteins linked to cellular senescence in the AKI mouse model by targeting the AVPR2-cAMP-PKA-CREB pathway. RESULTS WLS markedly enhanced the expression of Arginine Vasopressin Receptor 2 (AVPR2) and ameliorated renal function indicators, as well as pathological changes and oxidative stress levels in the mouse model of AKI. RNA-Seq profiling revealed significant enrichment of the cAMP signaling pathway following WLS intervention. Bioinformatics analysis indicated that genes associated with cellular senescence in AKI patients were notably enriched in the p53 signaling pathway. Data mining from the GEO database, in conjunction with RNA-Seq profiling, demonstrated a substantial reduction in key genes after WLS treatment. Additionally, WLS elevated both the expression and phosphorylation of pivotal proteins within the AVPR2-cAMP-PKA-CREB pathway, while concurrently decreasing proteins associated with cellular senescence. CONCLUSION The results demonstrated that WLS significantly elevated the expression of AVPR2, which may underlie its nephroprotective effects and facilitate the mitigation of AKI by modulating the AVPR2-cAMP-PKA-CREB pathway, ultimately contributing to a delay in cellular senescence.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Manxue Mei
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Shuyin Lin
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jiahui Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Sirong Huang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Fu J, Su C, Ge Y, Ao Z, Xia L, Chen Y, Yang Y, Chen S, Xu R, Yang X, Huang K, Fu Q. PDE4D inhibition ameliorates cardiac hypertrophy and heart failure by activating mitophagy. Redox Biol 2025; 81:103563. [PMID: 40015131 PMCID: PMC11909752 DOI: 10.1016/j.redox.2025.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Cyclic adenosine monophosphate (cAMP) plays a major role in normal and pathologic signaling in the heart. Phosphodiesterase 4 (PDE4) is a major PDE degrading cAMP in the heart. There are inconsistencies concerning the roles of the PDE4 isoforms 4B and 4D in regulation of cardiac function. Cardiac PDE4B overexpression is beneficial in remodeling and heart failure (HF), however, the effect of PDE4D and PDE4 inhibitor in HF remains unclear. We generated global and conditional cardiac-specific heterozygous PDE4D knockout mice and adeno-associated virus serotype 9-PDE4D overexpression to determine the role of PDE4D in cardiac hypertrophy and HF. PDE4D upregulation was observed in failing hearts from human and isoproterenol injection and TAC mice. In vitro, isoproterenol stimulation increased PDE4D expression via PKA but had no effect on PDE4B expression in cardiomyocytes. PDE4D overexpression per se induced oxidative stress, mitochondrial damage and cardiomyocyte hypertrophy by decreasing PINK1/Parkin-mediated mitophagy through inhibiting cAMP-PKA-CREB-Sirtuin1 (SIRT1) signaling pathway, while PDE4B overexpression did not affect CREB-SIRT1 pathway and mitophagy but exhibited a protective effect on isoproterenol-induced oxidative stress and hypertrophy in cardiomyocytes. PDE4D silencing or inhibition with PDE4 inhibitor roflumilast ameliorated isoproterenol-induced mitochondrial injury and cardiomyocyte hypertrophy. In vivo, ISO injection or TAC inhibited cardiac mitophagy and caused cardiac hypertrophy and HF, which were ameliorated by roflumilast or cardiac-specific PDE4D haploinsufficiency. Conversely, cardiac PDE4D overexpression suppressed cardiac mitophagy and abolished the protective effects of global PDE4D haploinsufficiency on TAC-induced cardiac hypertrophy and HF. In conclusion, these studies elucidate a novel mechanism by which sustained adrenergic stimulation contributes to cardiac hypertrophy and HF by increasing PDE4D via cAMP-PKA signaling, which in turn reduces cAMP-PKA activity, resulting in cardiomyocyte hypertrophy and mitochondrial injury via inhibition of CREB-SIRT1 signaling-mediated mitophagy. PDE4D inhibition may represent a novel therapeutic strategy for HF.
Collapse
Affiliation(s)
- Jing Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Congping Su
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Ge
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Ao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xia
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxiang Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizheng Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiwei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
| |
Collapse
|
4
|
Kamel R, Bourcier A, Margaria JP, Jin V, Varin A, Hivonnait A, Mercier‐Nomé F, Mika D, Ghigo A, Charpentier F, Algalarrondo V, Hirsch E, Fischmeister R, Vandecasteele G, Leroy J. Cardiac Gene Therapy With Phosphodiesterase 2A Limits Remodeling and Arrhythmias in Mouse Models of Heart Failure. J Am Heart Assoc 2025; 14:e037343. [PMID: 39895533 PMCID: PMC12074716 DOI: 10.1161/jaha.124.037343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND PDE2 (phosphodiesterase 2) is upregulated in human heart failure. Cardiac PDE2-transgenic mice are protected against contractile dysfunction and arrhythmias in heart failure but whether an acute elevation of PDE2 could be of therapeutic value remains elusive. This hypothesis was tested using cardiac PDE2 gene transfer in preclinical models of heart failure. METHODS AND RESULTS C57BL/6 male mice were injected with serotype 9 adeno-associated viruses encoding for PDE2A. This led to a ≈10-fold rise of PDE2A protein levels that affected neither cardiac structure nor function in healthy mice. Two weeks after inoculation with serotype 9 adeno-associated viruses, mice were implanted with minipumps delivering either NaCl, isoproterenol (60 mg/kg per day), or isoproterenol and phenylephrine (30 mg/kg per day each) for 2 weeks. In mice injected with serotype 9 adeno-associated viruses encoding for LUC (luciferase), isoproterenol or isoproterenol+phenylephrine infusion induced left ventricular hypertrophy, decreased ejection fraction unveiled by echocardiography, and promoted fibrosis and apoptosis assessed by Masson's trichrome and Tunel, respectively. Furthermore, inotropic responses to isoproterenol of ventricular cardiomyocytes isolated from isoproterenol+phenylephrine-LUC mice loaded with 1 μmol/L Fura-2AM and stimulated at 1 Hz to record calcium transients and sarcomere shortening were dampened. Spontaneous calcium waves at the cellular level were promoted as well as ventricular arrhythmias evoked in vivo by catheter-mediated ventricular pacing after isoproterenol (1.5 mg/kg) and atropine (1 mg/kg) injection. However, increased PDE2A blunted these adverse outcomes evoked by sympathomimetic amines. CONCLUSIONS Cardiac gene therapy with PDE2A limits left ventricle remodeling, dysfunction, and arrhythmias evoked by catecholamines, providing evidence that increasing PDE2A activity acutely could prevent progression toward heart failure.
Collapse
MESH Headings
- Animals
- Heart Failure/therapy
- Heart Failure/physiopathology
- Heart Failure/genetics
- Heart Failure/enzymology
- Genetic Therapy/methods
- Disease Models, Animal
- Mice, Inbred C57BL
- Male
- Ventricular Remodeling
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/enzymology
- Arrhythmias, Cardiac/prevention & control
- Arrhythmias, Cardiac/therapy
- Cyclic Nucleotide Phosphodiesterases, Type 2/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 2/biosynthesis
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Dependovirus/genetics
- Mice
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/enzymology
- Isoproterenol
- Apoptosis
- Ventricular Function, Left
- Fibrosis
Collapse
Affiliation(s)
- Rima Kamel
- Université Paris‐Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR‐S 1180OrsayFrance
| | - Aurélia Bourcier
- Université Paris‐Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR‐S 1180OrsayFrance
| | - Jean Piero Margaria
- Université Paris‐Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR‐S 1180OrsayFrance
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoItaly
- Cystic Kidney Disorders Unit, Division of Genetics and Cell BiologyUniversità Vita‐Salute San RaffaeleMilanItaly
| | - Valentin Jin
- Université Paris‐Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR‐S 1180OrsayFrance
| | - Audrey Varin
- Université Paris‐Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR‐S 1180OrsayFrance
| | - Agnès Hivonnait
- Nantes Université, CNRS, INSERM, l’institut du thoraxNantesFrance
| | | | - Delphine Mika
- Université Paris‐Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR‐S 1180OrsayFrance
| | - Alessandra Ghigo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoItaly
| | | | - Vincent Algalarrondo
- Université Paris‐Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR‐S 1180OrsayFrance
| | - Emilio Hirsch
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoItaly
| | - Rodolphe Fischmeister
- Université Paris‐Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR‐S 1180OrsayFrance
| | - Grégoire Vandecasteele
- Université Paris‐Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR‐S 1180OrsayFrance
| | - Jérôme Leroy
- Université Paris‐Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR‐S 1180OrsayFrance
| |
Collapse
|
5
|
Li S, Zhang J, Fu W, Cao J, Li Z, Tian X, Yang M, Zhao J, Wang C, Liu Y, Liu M, Zhao X, Li X, Dong J, Qi Y. Mitochondrial transplantation rescues Ca 2+ homeostasis imbalance and myocardial hypertrophy in SLC25A3-related hypertrophic cardiomyopathy. Cell Rep 2024; 43:115065. [PMID: 39671292 DOI: 10.1016/j.celrep.2024.115065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/15/2024] Open
Abstract
SLC25A3 encodes mitochondrial phosphate carrier (PiC), which is involved in inorganic phosphate transport. Clinical reports have found that most patients with homozygous or complex heterozygous mutations in SLC25A3 exhibit lactic acidosis, cardiac hypertrophy, and premature death. However, the potential molecular mechanisms underlying these associations remain unclear. Using CRISPR-Cas9 technology, we generated human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying SLC25A3-knockout (KO) or missense mutations (c.C544T, c.A547G, c.C349T) to elucidate the pathogenic mechanisms of SLC25A3-related hypertrophic cardiomyopathy (HCM) and evaluate potential therapeutic interventions. These SLC25A3-KO or missense mutation hiPSC-CMs recapitulated the disease phenotype associated with myocardial hypertrophy, including diastolic dysfunction, Ca2+ homeostasis imbalance, and mitochondrial energy metabolism dysfunction. Further studies suggested the potential link between the accumulation of glycolytic byproducts and Ca2+ homeostasis imbalance in SLC25A3-KO hiPSC-CMs. Finally, we explored the prospective therapeutic implications of mitochondrial transplantation in rescuing SLC25A3-related HCM.
Collapse
Affiliation(s)
- Shuang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Jianchao Zhang
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wanrong Fu
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinhua Cao
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhonggen Li
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoxu Tian
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Meng Yang
- Department of Cardiology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Jing Zhao
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chuchu Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yangyang Liu
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengduan Liu
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoyan Zhao
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaowei Li
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jianzeng Dong
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, No. 2 Beijing Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Wang W, Xue Y, Li D, Shao C, Wu K, Sun N, Chen Q. Forskolin is an effective therapeutic small molecule for the treatment of hypertrophic cardiomyopathy through ADCY6/cAMP/PKA pathway. Eur J Pharmacol 2024; 978:176770. [PMID: 38925286 DOI: 10.1016/j.ejphar.2024.176770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) arises from a pathogenic variant in the gene responsible for encoding the myocardium-associated protein. Forskolin (FSK), a labdane diterpene isolated from Sphingomonas capillaris, exhibits diverse pharmacological effects, including bronchospasm relief, intraocular pressure reduction, and glaucoma treatment. However, whether FSK could regulate HCM and its associated mechanism remains unclear. Here, we discovered that FSK could mitigate cardiac hypertrophy in two HCM mouse models (Myh6R404Q and Tnnt2R109Q) in vivo. Additionally, FSK could prevent norepinephrine (NE)-induced cardiomyocyte hypertrophy in vitro. It reversed cardiac dysfunction, reduced enlarged cell size, and downregulated the expression of hypertrophy-related genes. We further demonstrated that FSK's mechanism in alleviating HCM relied on the activation of ADCY6. In conclusion, our findings demonstrate that FSK alleviates hypertrophic cardiomyopathy by modulating the ADCY6/cAMP/PKA pathway, suggesting that FSK holds promise as a therapeutic agent for HCM.
Collapse
Affiliation(s)
- Wenyan Wang
- Wuxi School of Medicine, Jiangnan University, JiangSu, China
| | - Yingying Xue
- Wuxi School of Medicine, Jiangnan University, JiangSu, China
| | - Dujuan Li
- Wuxi School of Medicine, Jiangnan University, JiangSu, China
| | - Chenwen Shao
- Wuxi School of Medicine, Jiangnan University, JiangSu, China
| | - Kejia Wu
- Wuxi School of Medicine, Jiangnan University, JiangSu, China
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, JiangSu, China
| | - Qi Chen
- Wuxi School of Medicine, Jiangnan University, JiangSu, China.
| |
Collapse
|
7
|
Liu YB, Wang Q, Song YL, Song XM, Fan YC, Kong L, Zhang JS, Li S, Lv YJ, Li ZY, Dai JY, Qiu ZK. Abnormal phosphorylation / dephosphorylation and Ca 2+ dysfunction in heart failure. Heart Fail Rev 2024; 29:751-768. [PMID: 38498262 DOI: 10.1007/s10741-024-10395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Heart failure (HF) can be caused by a variety of causes characterized by abnormal myocardial systole and diastole. Ca2+ current through the L-type calcium channel (LTCC) on the membrane is the initial trigger signal for a cardiac cycle. Declined systole and diastole in HF are associated with dysfunction of myocardial Ca2+ function. This disorder can be correlated with unbalanced levels of phosphorylation / dephosphorylation of LTCC, endoplasmic reticulum (ER), and myofilament. Kinase and phosphatase activity changes along with HF progress, resulting in phased changes in the degree of phosphorylation / dephosphorylation. It is important to realize the phosphorylation / dephosphorylation differences between a normal and a failing heart. This review focuses on phosphorylation / dephosphorylation changes in the progression of HF and summarizes the effects of phosphorylation / dephosphorylation of LTCC, ER function, and myofilament function in normal conditions and HF based on previous experiments and clinical research. Also, we summarize current therapeutic methods based on abnormal phosphorylation / dephosphorylation and clarify potential therapeutic directions.
Collapse
Affiliation(s)
- Yan-Bing Liu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
- Medical College, Qingdao University, Qingdao, China
| | - Qian Wang
- Medical College, Qingdao University, Qingdao, China
| | - Yu-Ling Song
- Department of Pediatrics, Huantai County Hospital of Traditional Chinese Medicine, Zibo, China
| | | | - Yu-Chen Fan
- Medical College, Qingdao University, Qingdao, China
| | - Lin Kong
- Medical College, Qingdao University, Qingdao, China
| | | | - Sheng Li
- Medical College, Qingdao University, Qingdao, China
| | - Yi-Ju Lv
- Medical College, Qingdao University, Qingdao, China
| | - Ze-Yang Li
- Medical College, Qingdao University, Qingdao, China
| | - Jing-Yu Dai
- Department of Oncology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| | - Zhen-Kang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
8
|
Barthou A, Kamel R, Leroy J, Vandecasteele G, Fischmeister R. [Cyclic nucleotide phosphodiesterases: therapeutic targets in cardiac hypertrophy and failure]. Med Sci (Paris) 2024; 40:534-543. [PMID: 38986098 DOI: 10.1051/medsci/2024083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) modulate neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple isoforms of PDEs with different enzymatic properties and subcellular locally regulate cyclic nucleotide levels and associated cellular functions. This organisation is severely disrupted during hypertrophy and heart failure (HF), which may contribute to disease progression. Clinically, PDE inhibition has been seen as a promising approach to compensate for the catecholamine desensitisation that accompanies heart failure. Although PDE3 inhibitors such as milrinone or enoximone can be used clinically to improve systolic function and relieve the symptoms of acute CHF, their chronic use has proved detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as potential new targets for the treatment of HF, each with a unique role in local cyclic nucleotide signalling pathways. In this review, we describe cAMP and cGMP signalling in cardiomyocytes and present the different families of PDEs expressed in the heart and their modifications in pathological cardiac hypertrophy and HF. We also review results from preclinical models and clinical data indicating the use of specific PDE inhibitors or activators that may have therapeutic potential in CI.
Collapse
Affiliation(s)
| | - Rima Kamel
- Université Paris-Saclay, Inserm UMR-S 1180, Orsay, France
| | - Jérôme Leroy
- Université Paris-Saclay, Inserm UMR-S 1180, Orsay, France
| | | | | |
Collapse
|
9
|
Xie L, Huang B, Zhao X, Zhu N. Exploring the mechanisms underlying effects of bisphenol a on cardiovascular disease by network toxicology and molecular docking. Heliyon 2024; 10:e31473. [PMID: 38813174 PMCID: PMC11133888 DOI: 10.1016/j.heliyon.2024.e31473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Background Globally, cardiovascular disease (CVD) has emerged as a leading cause of mortality. Bisphenol A (BPA), recognized as one of the most prevalent and widely distributed endocrine-disrupting chemicals (EDCs), has been consistently linked to the progression of CVD. This research centers on unraveling the molecular mechanisms responsible for the toxic effects of BPA exposure on CVD. Key targets and pathways involved in action of BPA on CVD were investigated by network toxicology. Binding abilities of BPA to core targets were evaluated by molecular docking. Methods and results Based on information retrieved from ChEMBL, DrugBank, and OMIM databases, a total of 27 potential targets were found to be associated with the influence of BPA on CVD. Furthermore, the STRING and Cytoscape software were employed to identify three central genes-ESR1, PPARG, and PTGS2-and to construct both the protein-protein interaction network and an interaction diagram of potential targets. Gene ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes, KEGG) pathway enrichment analyses via WebGestalt revealed key biological processes (BP), cellular components (CC), molecular functions (MF), and pathways, such as the calcium signaling pathway, inflammatory mediator regulation of TRP channels, gap junction, adrenergic signaling in cardiomyocytes, cGMP-PKG signaling pathway, and cAMP signaling pathway, predominantly involved in BPA-induced CVD toxicity. By using molecular docking investigations, it proved that BPA binds to ESR1, PPARG, and PTGS2 steadily and strongly. Conclusion This study not only establishes a theoretical framework for understanding the molecular toxicity mechanism of BPA in cardiovascular disease (CVD) but also introduces an innovative network toxicology approach to methodically investigate the influence of environmental contaminants on CVD. This methodology sets the stage for drug discovery efforts targeting CVD linked to exposure to endocrine-disrupting chemicals (EDCs).
Collapse
Affiliation(s)
- Lina Xie
- Department of Neurosurgery, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, China
| | - Bingwu Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China
| | - Xuyong Zhao
- Department of Cardiology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, China
| | - Ning Zhu
- Department of Cardiology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, China
| |
Collapse
|
10
|
Qasim H, Rajaei M, Xu Y, Reyes-Alcaraz A, Abdelnasser HY, Stewart MD, Lahiri SK, Wehrens XHT, McConnell BK. AKAP12 Upregulation Associates With PDE8A to Accelerate Cardiac Dysfunction. Circ Res 2024; 134:1006-1022. [PMID: 38506047 DOI: 10.1161/circresaha.123.323655] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND In heart failure, signaling downstream the β2-adrenergic receptor is critical. Sympathetic stimulation of β2-adrenergic receptor alters cAMP (cyclic adenosine 3',5'-monophosphate) and triggers PKA (protein kinase A)-dependent phosphorylation of proteins that regulate cardiac function. cAMP levels are regulated in part by PDEs (phosphodiesterases). Several AKAPs (A kinase anchoring proteins) regulate cardiac function and are proposed as targets for precise pharmacology. AKAP12 is expressed in the heart and has been reported to directly bind β2-adrenergic receptor, PKA, and PDE4D. However, its roles in cardiac function are unclear. METHODS cAMP accumulation in real time downstream of the β2-adrenergic receptor was detected for 60 minutes in live cells using the luciferase-based biosensor (GloSensor) in AC16 human-derived cardiomyocyte cell lines overexpressing AKAP12 versus controls. Cardiomyocyte intracellular calcium and contractility were studied in adult primary cardiomyocytes from male and female mice overexpressing cardiac AKAP12 (AKAP12OX) and wild-type littermates post acute treatment with 100-nM isoproterenol (ISO). Systolic cardiac function was assessed in mice after 14 days of subcutaneous ISO administration (60 mg/kg per day). AKAP12 gene and protein expression levels were evaluated in left ventricular samples from patients with end-stage heart failure. RESULTS AKAP12 upregulation significantly reduced total intracellular cAMP levels in AC16 cells through PDE8. Adult primary cardiomyocytes from AKAP12OX mice had significantly reduced contractility and impaired calcium handling in response to ISO, which was reversed in the presence of the selective PDE8 inhibitor (PF-04957325). AKAP12OX mice had deteriorated systolic cardiac function and enlarged left ventricles. Patients with end-stage heart failure had upregulated gene and protein levels of AKAP12. CONCLUSIONS AKAP12 upregulation in cardiac tissue is associated with accelerated cardiac dysfunction through the AKAP12-PDE8 axis.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Mehrdad Rajaei
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Ying Xu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Hala Y Abdelnasser
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - M David Stewart
- Department of Biology and Biochemistry (M.D.S.), University of Houston, TX
| | - Satadru K Lahiri
- Cardiovascular Research Institute, Departments of Integrative Physiology, Medicine, Neuroscience, Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, TX (S.K.L., X.H.T.W.)
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Integrative Physiology, Medicine, Neuroscience, Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, TX (S.K.L., X.H.T.W.)
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| |
Collapse
|
11
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
12
|
Cardarelli S, Biglietto M, Orsini T, Fustaino V, Monaco L, de Oliveira do Rêgo AG, Liccardo F, Masciarelli S, Fazi F, Naro F, De Angelis L, Pellegrini M. Modulation of cAMP/cGMP signaling as prevention of congenital heart defects in Pde2A deficient embryos: a matter of oxidative stress. Cell Death Dis 2024; 15:169. [PMID: 38395995 PMCID: PMC10891154 DOI: 10.1038/s41419-024-06549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Phosphodiesterase 2A (Pde2A) is a dual-specific PDE that breaks down both cAMP and cGMP cyclic nucleotides. We recently highlighted a direct relationship between Pde2A impairment, a consequent increase of cAMP, and the appearance of mouse congenital heart defects (CHDs). Here we aimed to characterize the pathways involved in the development of CHDs and in their prevention by pharmacological approaches targeting cAMP and cGMP signaling. Transcriptome analysis revealed a modulation of more than 500 genes affecting biological processes involved in the immune system, cardiomyocyte development and contractility, angiogenesis, transcription, and oxidative stress in hearts from Pde2A-/- embryos. Metoprolol and H89 pharmacological administration prevented heart dilatation and hypertabeculation in Pde2A-/- embryos. Metoprolol was also able to partially impede heart septum defect and oxidative stress at tissue and molecular levels. Amelioration of cardiac defects was also observed by using the antioxidant NAC, indicating oxidative stress as one of the molecular mechanisms underpinning the CHDs. In addition, Sildenafil treatment recovered cardiac defects suggesting the requirement of cAMP/cGMP nucleotides balance for the correct heart development.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Martina Biglietto
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Valentina Fustaino
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy
| | | | - Francesca Liccardo
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Luciana De Angelis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
13
|
Bai Y, Zhang X, Li Y, Qi F, Liu C, Ai X, Tang M, Szeto C, Gao E, Hua X, Xie M, Wang X, Tian Y, Chen Y, Huang G, Zhang J, Xiao W, Zhang L, Liu X, Yang Q, Houser SR, Chen X. Protein Kinase A Is a Master Regulator of Physiological and Pathological Cardiac Hypertrophy. Circ Res 2024; 134:393-410. [PMID: 38275112 PMCID: PMC10923071 DOI: 10.1161/circresaha.123.322729] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND The sympathoadrenergic system and its major effector PKA (protein kinase A) are activated to maintain cardiac output coping with physiological or pathological stressors. If and how PKA plays a role in physiological cardiac hypertrophy (PhCH) and pathological CH (PaCH) are not clear. METHODS Transgenic mouse models expressing the PKA inhibition domain (PKAi) of PKA inhibition peptide alpha (PKIalpha)-green fluorescence protein (GFP) fusion protein (PKAi-GFP) in a cardiac-specific and inducible manner (cPKAi) were used to determine the roles of PKA in physiological CH during postnatal growth or induced by swimming, and in PaCH induced by transaortic constriction (TAC) or augmented Ca2+ influx. Kinase profiling was used to determine cPKAi specificity. Echocardiography was used to determine cardiac morphology and function. Western blotting and immunostaining were used to measure protein abundance and phosphorylation. Protein synthesis was assessed by puromycin incorporation and protein degradation by measuring protein ubiquitination and proteasome activity. Neonatal rat cardiomyocytes (NRCMs) infected with AdGFP (GFP adenovirus) or AdPKAi-GFP (PKAi-GFP adenovirus) were used to determine the effects and mechanisms of cPKAi on myocyte hypertrophy. rAAV9.PKAi-GFP was used to treat TAC mice. RESULTS (1) cPKAi delayed postnatal cardiac growth and blunted exercise-induced PhCH; (2) PKA was activated in hearts after TAC due to activated sympathoadrenergic system, the loss of endogenous PKIα (PKA inhibition peptide α), and the stimulation by noncanonical PKA activators; (3) cPKAi ameliorated PaCH induced by TAC and increased Ca2+ influxes and blunted neonatal rat cardiomyocyte hypertrophy by isoproterenol and phenylephrine; (4) cPKAi prevented TAC-induced protein synthesis by inhibiting mTOR (mammalian target of rapamycin) signaling through reducing Akt (protein kinase B) activity, but enhancing inhibitory GSK-3α (glycogen synthase kinase-3α) and GSK-3β signals; (5) cPKAi reduced protein degradation by the ubiquitin-proteasome system via decreasing RPN6 phosphorylation; (6) cPKAi increased the expression of antihypertrophic atrial natriuretic peptide (ANP); (7) cPKAi ameliorated established PaCH and improved animal survival. CONCLUSIONS Cardiomyocyte PKA is a master regulator of PhCH and PaCH through regulating protein synthesis and degradation. cPKAi can be a novel approach to treat PaCH.
Collapse
Affiliation(s)
- Yingyu Bai
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Heping District, Tianjin, China
| | - Xiaoying Zhang
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Li
- The Second Artillery General Hospital, Beijing, China
| | - Fei Qi
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Heping District, Tianjin, China
| | - Chong Liu
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiaojie Ai
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Mingxin Tang
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Christopher Szeto
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiang Hua
- Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xuejun Wang
- Division of Basic Biomedical Science, University of S Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Ying Tian
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yongjie Chen
- Department of Epidemiology and Statistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Guowei Huang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Junping Zhang
- Herman B Wells Center for Pediatric Research, Indiana University IUSM, Indianapolis, IN 46202, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University IUSM, Indianapolis, IN 46202, USA
| | - Lili Zhang
- Research Vector Core, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xueyuan Liu
- Research Vector Core, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Qing Yang
- Department of Cardiology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Steven R. Houser
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiongwen Chen
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Heping District, Tianjin, China
- Department of Physiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Cardiology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| |
Collapse
|
14
|
Dorey TW, Liu Y, Jansen HJ, Bohne LJ, Mackasey M, Atkinson L, Prasai S, Belke DD, Fatehi-Hassanabad A, Fedak PWM, Rose RA. Natriuretic Peptide Receptor B Protects Against Atrial Fibrillation by Controlling Atrial cAMP Via Phosphodiesterase 2. Circ Arrhythm Electrophysiol 2023; 16:e012199. [PMID: 37933567 DOI: 10.1161/circep.123.012199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND β-AR (β-adrenergic receptor) stimulation regulates atrial electrophysiology and Ca2+ homeostasis via cAMP-dependent mechanisms; however, enhanced β-AR signaling can promote atrial fibrillation (AF). CNP (C-type natriuretic peptide) can also regulate atrial electrophysiology through the activation of NPR-B (natriuretic peptide receptor B) and cGMP-dependent signaling. Nevertheless, the role of NPR-B in regulating atrial electrophysiology, Ca2+ homeostasis, and atrial arrhythmogenesis is incompletely understood. METHODS Studies were performed using atrial samples from human patients with AF or sinus rhythm and in wild-type and NPR-B-deficient (NPR-B+/-) mice. Studies were conducted in anesthetized mice by intracardiac electrophysiology, in isolated mouse atrial preparations using high-resolution optical mapping, in isolated mouse and human atrial myocytes using patch-clamping and Ca2+ imaging, and in mouse and human atrial tissues using molecular biology. RESULTS Atrial NPR-B protein levels were reduced in patients with AF, and NPR-B+/- mice were more susceptible to AF. Atrial cGMP levels and PDE2 (phosphodiesterase 2) activity were reduced in NPR-B+/- mice leading to larger increases in atrial cAMP in the presence of the β-AR agonist isoproterenol. NPR-B+/- mice displayed larger increases in action potential duration and L-type Ca2+ current in the presence of isoproterenol. This resulted in the occurrence of spontaneous sarcoplasmic reticulum Ca2+ release events and delayed afterdepolarizations in NPR-B+/- atrial myocytes. Phosphorylation of the RyR2 (ryanodine receptor) and phospholamban was increased in NPR-B+/- atria in the presence of isoproterenol compared with the wildtypes. C-type natriuretic peptide inhibited isoproterenol-stimulated L-type Ca2+ current through PDE2 in mouse and human atrial myocytes. CONCLUSIONS NPR-B protects against AF by preventing enhanced atrial responses to β-adrenergic receptor agonists.
Collapse
Affiliation(s)
- Tristan W Dorey
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Yingjie Liu
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Hailey J Jansen
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Loryn J Bohne
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Martin Mackasey
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Logan Atkinson
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada (L.A.)
| | - Shuvam Prasai
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Darrell D Belke
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Ali Fatehi-Hassanabad
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Robert A Rose
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| |
Collapse
|
15
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
16
|
Yang L, Parajuli N, Wu P, Liu J, Wang X. S14-Phosphorylated RPN6 Mediates Proteasome Activation by PKA and Alleviates Proteinopathy. Circ Res 2023; 133:572-587. [PMID: 37641975 PMCID: PMC10502926 DOI: 10.1161/circresaha.123.322887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND A better understanding of the regulation of proteasome activities can facilitate the search for new therapeutic strategies. A cell culture study shows that PKA (cAMP-dependent protein kinase or protein kinase A) activates the 26S proteasome by pS14-Rpn6 (serine14-phosphorylated Rpn6), but this discovery and its physiological significance remain to be established in vivo. METHODS Male and female mice with Ser14 of Rpn6 (regulatory particle non-ATPase 6) mutated to Ala (S14A [Rpn6/Psmd11S14A]) or Asp (S14D) to respectively block or mimic pS14-Rpn6 were created and used along with cells derived from them. cAMP/PKA were manipulated pharmacologically. Ubiquitin-proteasome system functioning was evaluated with the GFPdgn (green fluorescence protein with carboxyl fusion of the CL1 degron) reporter mouse and proteasomal activity assays. Impact of S14A and S14D on proteotoxicity was tested in mice and cardiomyocytes overexpressing the misfolded protein R120G-CryAB (R120G [arginine120 to glycine missense mutant alpha B-crystallin]). RESULTS PKA activation increased pS14-Rpn6 and 26S proteasome activities in wild-type but not S14A embryonic fibroblasts (mouse embryonic fibroblasts), adult cardiomyocytes, and mouse hearts. Basal 26S proteasome activities were significantly greater in S14D myocardium and adult mouse cardiomyocytes than in wild-type counterparts. S14D::GFPdgn mice displayed significantly lower myocardial GFPdgn protein but not mRNA levels than GFPdgn mice. In R120G mice, a classic model of cardiac proteotoxicity, basal myocardial pS14-Rpn6 was significantly lower compared with nontransgenic littermates, which was not always associated with reduction of other phosphorylated PKA substrates. Cultured S14D neonatal cardiomyocytes displayed significantly faster proteasomal degradation of R120G than wild-type neonatal cardiomyocytes. Compared with R120G mice, S14D/S14D::R120G mice showed significantly greater myocardial proteasome activities, lower levels of total and K48-linked ubiquitin conjugates, and of aberrant CryAB (alpha B-crystallin) protein aggregates, less fetal gene reactivation, and cardiac hypertrophy, and delays in cardiac malfunction. CONCLUSIONS This study establishes in animals that pS14-Rpn6 mediates the activation of 26S proteasomes by PKA and that the reduced pS14-Rpn6 is a key pathogenic factor in cardiac proteinopathy, thereby identifying a new therapeutic target to reduce cardiac proteotoxicity.
Collapse
Affiliation(s)
- Liuqing Yang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Nirmal Parajuli
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Penglong Wu
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| |
Collapse
|
17
|
Lymperopoulos A. Clinical pharmacology of cardiac cyclic AMP in human heart failure: too much or too little? Expert Rev Clin Pharmacol 2023; 16:623-630. [PMID: 37403791 PMCID: PMC10529896 DOI: 10.1080/17512433.2023.2233891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Cyclic 3', 5'-adenosine monophosphate (cAMP) is a major signaling hub in cardiac physiology. Although cAMP signaling has been extensively studied in cardiac cells and animal models of heart failure (HF), not much is known about its actual amount present inside human failing or non-failing cardiomyocytes. Since many drugs used in HF work via cAMP, it is crucial to determine the status of its intracellular levels in failing vs. normal human hearts. AREAS COVERED Only studies performed on explanted/excised cardiac tissues from patients were examined. Studies that contained no data from human hearts or no data on cAMP levels per se were excluded from this perspective's analysis. EXPERT OPINION Currently, there is no consensus on the status of cAMP levels in human failing vs. non-failing hearts. Several studies on animal models may suggest maladaptive (e.g. pro-apoptotic) effects of cAMP on HF, advocating for cAMP lowering for therapy, but human studies almost universally indicate that myocardial cAMP levels are deficient in human failing hearts. It is the expert opinion of this perspective that intracellular cAMP levels are too low in human failing hearts, contributing to the disease. Strategies to increase (restore), not decrease, these levels should be pursued in human HF.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL, USA
| |
Collapse
|
18
|
Skryabin EB, De Jong KA, Subramanian H, Bork NI, Froese A, Skryabin BV, Nikolaev VO. CRISPR/Cas9 Knock-Out in Primary Neonatal and Adult Cardiomyocytes Reveals Distinct cAMP Dynamics Regulation by Various PDE2A and PDE3A Isoforms. Cells 2023; 12:1543. [PMID: 37296663 PMCID: PMC10253201 DOI: 10.3390/cells12111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Cyclic nucleotide phosphodiesterases 2A (PDE2A) and PDE3A play an important role in the regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)-to-cAMP crosstalk. Each of these PDEs has up to three distinct isoforms. However, their specific contributions to cAMP dynamics are difficult to explore because it has been challenging to generate isoform-specific knock-out mice or cells using conventional methods. Here, we studied whether the CRISPR/Cas9 approach for precise genome editing can be used to knock out Pde2a and Pde3a genes and their distinct isoforms using adenoviral gene transfer in neonatal and adult rat cardiomyocytes. Cas9 and several specific gRNA constructs were cloned and introduced into adenoviral vectors. Primary adult and neonatal rat ventricular cardiomyocytes were transduced with different amounts of Cas9 adenovirus in combination with PDE2A or PDE3A gRNA constructs and cultured for up to 6 (adult) or 14 (neonatal) days to analyze PDE expression and live cell cAMP dynamics. A decline in mRNA expression for PDE2A (~80%) and PDE3A (~45%) was detected as soon as 3 days post transduction, with both PDEs being reduced at the protein level by >50-60% in neonatal cardiomyocytes (after 14 days) and >95% in adult cardiomyocytes (after 6 days). This correlated with the abrogated effects of selective PDE inhibitors in the live cell imaging experiments based on using cAMP biosensor measurements. Reverse transcription PCR analysis revealed that only the PDE2A2 isoform was expressed in neonatal myocytes, while adult cardiomyocytes expressed all three PDE2A isoforms (A1, A2, and A3) which contributed to the regulation of cAMP dynamics as detected by live cell imaging. In conclusion, CRISPR/Cas9 is an effective tool for the in vitro knock-out of PDEs and their specific isoforms in primary somatic cells. This novel approach suggests distinct regulation of live cell cAMP dynamics by various PDE2A and PDE3A isoforms in neonatal vs. adult cardiomyocytes.
Collapse
Affiliation(s)
- Egor B. Skryabin
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (E.B.S.); (K.A.D.J.); (H.S.); (N.I.B.); (A.F.)
| | - Kirstie A. De Jong
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (E.B.S.); (K.A.D.J.); (H.S.); (N.I.B.); (A.F.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (E.B.S.); (K.A.D.J.); (H.S.); (N.I.B.); (A.F.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Nadja I. Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (E.B.S.); (K.A.D.J.); (H.S.); (N.I.B.); (A.F.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Alexander Froese
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (E.B.S.); (K.A.D.J.); (H.S.); (N.I.B.); (A.F.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Boris V. Skryabin
- Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, 48149 Münster, Germany;
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (E.B.S.); (K.A.D.J.); (H.S.); (N.I.B.); (A.F.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
19
|
Yang L, Parajuli N, Wu P, Liu J, Wang X. Ser14-RPN6 Phosphorylation Mediates the Activation of 26S Proteasomes by cAMP and Protects against Cardiac Proteotoxic Stress in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535705. [PMID: 37066344 PMCID: PMC10104033 DOI: 10.1101/2023.04.05.535705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background A better understanding of the regulation of proteasome activities can facilitate the search for new therapeutic strategies. A cell culture study shows that cAMP-dependent protein kinase (PKA) activates the 26S proteasome by phosphorylating Ser14 of RPN6 (pS14-RPN6), but this discovery and its physiological significance remain to be established in vivo . Methods Male and female mice with Ser14 of Rpn6 mutated to Ala (S14A) or Asp (S14D) to respectively block or mimic pS14-Rpn6 were created and used along with cells derived from them. cAMP/PKA were manipulated pharmacologically. Ubiquitin-proteasome system (UPS) functioning was evaluated with the GFPdgn reporter mouse and proteasomal activity assays. Impact of S14A and S14D on proteotoxicity was tested in mice and cardiomyocytes overexpressing the misfolded protein R120G-CryAB (R120G). Results PKA activation increased pS14-Rpn6 and 26S proteasome activities in wild-type (WT) but not S14A embryonic fibroblasts (MEFs), adult cardiomyocytes (AMCMs), and mouse hearts. Basal 26S proteasome activities were significantly greater in S14D myocardium and AMCMs than in WT counterparts. S14D::GFPdgn mice displayed significantly lower myocardial GFPdgn protein but not mRNA levels than GFPdgn mice. In R120G mice, a classic model of cardiac proteotoxicity, basal myocardial pS14-Rpn6 was significantly lower compared with non- transgenic littermates, which was not always associated with reduction of other phosphorylated PKA substrates. Cultured S14D neonatal cardiomyocytes displayed significantly faster proteasomal degradation of R120G than WT neonatal cardiomyocytes. Compared with R120G mice, S14D/S14D::R120G mice showed significantly greater myocardial proteasome activities, lower levels of total and K48-linked ubiquitin conjugates and of aberrant CryAB protein aggregates, less reactivation of fetal genes and cardiac hypertrophy, and delays in cardiac malfunction. Conclusions This study establishes in animals that pS14-Rpn6 mediates the activation of 26S proteasomes by PKA and that the reduced pS14-Rpn6 is a key pathogenic factor in cardiac proteinopathy, thereby identifies a new therapeutic target to reduce cardiac proteotoxicity.
Collapse
|
20
|
Wang L, Hubert F, Idres S, Belacel-Ouari M, Domergue V, Domenichini S, Lefebvre F, Mika D, Fischmeister R, Leblais V, Manoury B. Phosphodiesterases type 2, 3 and 4 promote vascular tone in mesenteric arteries from rats with heart failure. Eur J Pharmacol 2023; 944:175562. [PMID: 36736940 DOI: 10.1016/j.ejphar.2023.175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Phosphodiesterases (PDE) type 3 and 4 promote vasoconstriction by hydrolysing cAMP. In experimental heart failure (HF), PDE3 makes PDE4 redundant in aorta, but it is not known if this occurs in resistance vessels, such as mesenteric artery. As PDE2 is increased in the failing myocardium, its possible role in the vasculature also needs to be addressed. Here, the function of PDE2, PDE3 and PDE4 in rat mesenteric arteries was characterized in experimental HF. Mesenteric arteries were isolated from rats sacrificed 22 weeks after surgical stenosis of the ascending aorta (HF), or Sham surgery. PDE inhibitors were used to probe isoenzyme contributions in enzymatic and isometric tension assays. PDE2 and PDE4 activities, but not PDE3 activity, facilitate contraction produced by the thromboxane analogue U46619 in Sham arteries, while in HF all three isoenzymes contribute to this response. NO synthase inhibition by L-NAME abolished the action of the PDE2 inhibitor. L-NAME eliminated the contribution of PDE4 in HF, but unmasked a contribution for PDE3 in Sham. PDE3 and PDE4 activities attenuated relaxant response to β-adrenergic stimulation in Sham and HF. PDE2 did not participate in cAMP or cGMP-mediated relaxant responses. PDE3 and PDE4 cAMP-hydrolysing activities were smaller in HF mesenteric arteries, while PDE2 activity was scarce in both groups. Endothelial cells and arterial myocytes displayed PDE2 immunolabelling. We highlight that, by contrast with previous observations in aorta, PDE4 participates equally as PDE3 in contracting mesenteric artery in HF. PDE2 activity emerges as a promoter of contractile response that is preserved in HF.
Collapse
Affiliation(s)
- Liting Wang
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France
| | - Fabien Hubert
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France
| | - Sarah Idres
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France
| | | | - Valérie Domergue
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Orsay, France
| | - Séverine Domenichini
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Orsay, France
| | | | - Delphine Mika
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France
| | | | | | - Boris Manoury
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France.
| |
Collapse
|
21
|
Subramaniam G, Schleicher K, Kovanich D, Zerio A, Folkmanaite M, Chao YC, Surdo NC, Koschinski A, Hu J, Scholten A, Heck AJ, Ercu M, Sholokh A, Park KC, Klussmann E, Meraviglia V, Bellin M, Zanivan S, Hester S, Mohammed S, Zaccolo M. Integrated Proteomics Unveils Nuclear PDE3A2 as a Regulator of Cardiac Myocyte Hypertrophy. Circ Res 2023; 132:828-848. [PMID: 36883446 PMCID: PMC10045983 DOI: 10.1161/circresaha.122.321448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Signaling by cAMP is organized in multiple distinct subcellular nanodomains regulated by cAMP-hydrolyzing PDEs (phosphodiesterases). Cardiac β-adrenergic signaling has served as the prototypical system to elucidate cAMP compartmentalization. Although studies in cardiac myocytes have provided an understanding of the location and properties of a handful of cAMP subcellular compartments, an overall view of the cellular landscape of cAMP nanodomains is missing. METHODS Here, we combined an integrated phosphoproteomics approach that takes advantage of the unique role that individual PDEs play in the control of local cAMP, with network analysis to identify previously unrecognized cAMP nanodomains associated with β-adrenergic stimulation. We then validated the composition and function of one of these nanodomains using biochemical, pharmacological, and genetic approaches and cardiac myocytes from both rodents and humans. RESULTS We demonstrate the validity of the integrated phosphoproteomic strategy to pinpoint the location and provide critical cues to determine the function of previously unknown cAMP nanodomains. We characterize in detail one such compartment and demonstrate that the PDE3A2 isoform operates in a nuclear nanodomain that involves SMAD4 (SMAD family member 4) and HDAC-1 (histone deacetylase 1). Inhibition of PDE3 results in increased HDAC-1 phosphorylation, leading to inhibition of its deacetylase activity, derepression of gene transcription, and cardiac myocyte hypertrophic growth. CONCLUSIONS We developed a strategy for detailed mapping of subcellular PDE-specific cAMP nanodomains. Our findings reveal a mechanism that explains the negative long-term clinical outcome observed in patients with heart failure treated with PDE3 inhibitors.
Collapse
Affiliation(s)
- Gunasekaran Subramaniam
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Katharina Schleicher
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Duangnapa Kovanich
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands (D.K., A.S., A.J.R.H.)
- Centre for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Thailand (D.K.)
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Milda Folkmanaite
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Ying-Chi Chao
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Nicoletta C. Surdo
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
- Now with Neuroscience Institute, National Research Council of Italy (CNR), Padova (N.C.S.)
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Jianshu Hu
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands (D.K., A.S., A.J.R.H.)
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands (D.K., A.S., A.J.R.H.)
| | - Maria Ercu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and German Centre for Cardiovascular Research, Partner Site Berlin (M.E., A.S., E.K.)
| | - Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and German Centre for Cardiovascular Research, Partner Site Berlin (M.E., A.S., E.K.)
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and German Centre for Cardiovascular Research, Partner Site Berlin (M.E., A.S., E.K.)
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, the Netherlands (V.M., M.B.)
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, the Netherlands (V.M., M.B.)
- Department of Biology, University of Padua, Italy (M.B.)
- Veneto Institute of Molecular Medicine, Padua, Italy (M.B.)
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom (S.Z.)
- Institute of Cancer Sciences, University of Glasgow, United Kingdom (S.Z.)
| | - Svenja Hester
- Department of Biochemistry (S.H., S.M.), University of Oxford, United Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry (S.H., S.M.), University of Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre (M.Z.)
| |
Collapse
|
22
|
Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 2023; 20:90-108. [PMID: 36050457 DOI: 10.1038/s41569-022-00756-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) modulate the neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple PDE isozymes with different enzymatic properties and subcellular localization regulate local pools of cyclic nucleotides and specific functions. This organization is heavily perturbed during cardiac hypertrophy and heart failure (HF), which can contribute to disease progression. Clinically, PDE inhibition has been considered a promising approach to compensate for the catecholamine desensitization that accompanies HF. Although PDE3 inhibitors, such as milrinone or enoximone, have been used clinically to improve systolic function and alleviate the symptoms of acute HF, their chronic use has proved to be detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as new potential targets to treat HF, each having a unique role in local cyclic nucleotide signalling pathways. In this Review, we describe cAMP and cGMP signalling in cardiomyocytes and present the various PDE families expressed in the heart as well as their modifications in pathological cardiac hypertrophy and HF. We also appraise the evidence from preclinical models as well as clinical data pointing to the use of inhibitors or activators of specific PDEs that could have therapeutic potential in HF.
Collapse
|
23
|
Lunde IG, Aronsen JM, Melleby AO, Strand ME, Skogestad J, Bendiksen BA, Ahmed MS, Sjaastad I, Attramadal H, Carlson CR, Christensen G. Cardiomyocyte-specific overexpression of syndecan-4 in mice results in activation of calcineurin-NFAT signalling and exacerbated cardiac hypertrophy. Mol Biol Rep 2022; 49:11795-11809. [PMID: 36205855 PMCID: PMC9712407 DOI: 10.1007/s11033-022-07985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cardiomyocyte hypertrophy is a hallmark of cardiac dysfunction in patients with aortic stenosis (AS), and can be triggered by left ventricular (LV) pressure overload in mice by aortic banding (AB). Syndecan-4 is a transmembrane heparan sulphate proteoglycan which is found increased in the myocardium of AS patients and AB mice. The role of syndecan-4 in cardiomyocyte hypertrophy is not well understood. PURPOSE OF THE STUDY We developed mice with cardiomyocyte-specific overexpression of syndecan-4 (Sdc4-Tg) and subjected these to AB to examine the role of syndecan-4 in hypertrophy and activation of the pro-hypertrophic calcineurin-NFAT signalling pathway. METHODS AND RESULTS Sdc4-Tg mice showed exacerbated cardiac remodelling upon AB compared to wild type (WT). At 2-6 weeks post-AB, Sdc4-Tg and WT mice showed similar hypertrophic growth, while at 20 weeks post-AB, exacerbated hypertrophy and dysfunction were evident in Sdc4-Tg mice. After cross-breeding of Sdc4-Tg mice with NFAT-luciferase reporter mice, we found increased NFAT activation in Sdc4-Tg hearts after AB. Immunoprecipitation showed that calcineurin bound to syndecan-4 in Sdc4-Tg hearts. Isolated cardiomyocytes from Sdc4-Tg mice showed alterations in Ca2+ fluxes, suggesting that syndecan-4 regulated Ca2+ levels, and thereby, activating the syndecan-4-calcineurin complex resulting in NFAT activation and hypertrophic growth. Similarly, primary cardiomyocyte cultures from neonatal rats showed increased calcineurin-NFAT-dependent hypertrophic growth upon viral Sdc4 overexpression. CONCLUSION Our study of mice with cardiomyocyte-specific overexpression of Sdc4 have revealed that syndecan-4 is important for activation of the Ca2+-dependent calcineurin-NFAT signalling pathway, hypertrophic remodelling and dysfunction in cardiomyocytes in response to pressure overload.
Collapse
Affiliation(s)
- Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.
- Division of Diagnostics and Technology, Akershus University Hospital, Lørenskog, Norway.
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital Ullevaal, Building 7, 4th floor, Kirkeveien 166, 0407, Oslo, Norway.
| | - J Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute for Medical Biosciences, University of Oslo, Oslo, Norway
| | - A Olav Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute for Medical Biosciences, University of Oslo, Oslo, Norway
| | - Mari E Strand
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jonas Skogestad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute for Medical Biosciences, University of Oslo, Oslo, Norway
| | - Bård A Bendiksen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - M Shakil Ahmed
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Cathrine R Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Wilson AD, Richards MA, Curtis MK, Gunadasa-Rohling M, Monterisi S, Loonat AA, Miller JJ, Ball V, Lewis A, Tyler DJ, Moshnikova A, Andreev OA, Reshetnyak YK, Carr C, Swietach P. Acidic environments trigger intracellular H+-sensing FAK proteins to re-balance sarcolemmal acid-base transporters and auto-regulate cardiomyocyte pH. Cardiovasc Res 2022; 118:2946-2959. [PMID: 34897412 PMCID: PMC9648823 DOI: 10.1093/cvr/cvab364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely tuned sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge, and return pHi to normal. METHODS AND RESULTS Following left ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl-/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinization when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate (to improve systemic buffering) had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) up-regulation and Slc4a2 (AE2) down-regulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had lower chloride, a solution manoeuvre that reduces the extent of pHi-decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterized as pH-sensors, ablated this pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities.
Collapse
Affiliation(s)
- Abigail D Wilson
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mark A Richards
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Stefania Monterisi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Jack J Miller
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Vicky Ball
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Andrew Lewis
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Carolyn Carr
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
25
|
Faleeva M, Diakonov I, Srivastava P, Ramuz M, Calamera G, Andressen KW, Bork N, Tsansizi L, Cosson MV, Bernardo AS, Nikolaev V, Gorelik J. Compartmentation of cGMP Signaling in Induced Pluripotent Stem Cell Derived Cardiomyocytes during Prolonged Culture. Cells 2022; 11:3257. [PMID: 36291124 PMCID: PMC9600086 DOI: 10.3390/cells11203257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
The therapeutic benefit of stimulating the cGMP pathway as a form of treatment to combat heart failure, as well as other fibrotic pathologies, has become well established. However, the development and signal compartmentation of this crucial pathway has so far been overlooked. We studied how the three main cGMP pathways, namely, nitric oxide (NO)-cGMP, natriuretic peptide (NP)-cGMP, and β3-adrenoreceptor (AR)-cGMP, mature over time in culture during cardiomyocyte differentiation from human pluripotent stem cells (hPSC-CMs). After introducing a cGMP sensor for Förster Resonance Energy Transfer (FRET) microscopy, we used selective phosphodiesterase (PDE) inhibition to reveal cGMP signal compartmentation in hPSC-CMs at various times of culture. Methyl-β-cyclodextrin was employed to remove cholesterol and thus to destroy caveolae in these cells, where physical cGMP signaling compartmentalization is known to occur in adult cardiomyocytes. We identified PDE3 as regulator of both the NO-cGMP and NP-cGMP pathway in the early stages of culture. At the late stage, the role of the NO-cGMP pathway diminished, and it was predominantly regulated by PDE1, PDE2, and PDE5. The NP-cGMP pathway shows unrestricted locally and unregulated cGMP signaling. Lastly, we observed that maturation of the β3-AR-cGMP pathway in prolonged cultures of hPSC-CMs depends on the accumulation of caveolae. Overall, this study highlighted the importance of structural development for the necessary compartmentation of the cGMP pathway in maturing hPSC-CMs.
Collapse
Affiliation(s)
- Maria Faleeva
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Ivan Diakonov
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Prashant Srivastava
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Masoud Ramuz
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Gaia Calamera
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Kjetil Wessel Andressen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Nadja Bork
- German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf and Institute of Experimental Cardiovascular Research, Martinistrasse 52, 20251 Hamburg, Germany
| | | | | | - Andreia Sofia Bernardo
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Viacheslav Nikolaev
- German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf and Institute of Experimental Cardiovascular Research, Martinistrasse 52, 20251 Hamburg, Germany
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
26
|
Chen Y, Iyer SR, Nikolaev VO, Naro F, Pellegrini M, Cardarelli S, Ma X, Lee HC, Burnett JC. MANP Activation Of The cGMP Inhibits Aldosterone Via PDE2 And CYP11B2 In H295R Cells And In Mice. Hypertension 2022; 79:1702-1712. [PMID: 35674049 PMCID: PMC9309987 DOI: 10.1161/hypertensionaha.121.18906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aldosterone is a critical pathological driver for cardiac and renal diseases. We recently discovered that mutant atrial natriuretic peptide (MANP), a novel atrial natriuretic peptide (ANP) analog, possessed more potent aldosterone inhibitory action than ANP in vivo. MANP and natriuretic peptide (NP)-augmenting therapy sacubitril/valsartan are under investigations for human hypertension treatment. Understanding the elusive mechanism of aldosterone inhibition by NPs remains to be a priority. Conflicting results were reported on the roles of the pGC-A (particulate guanylyl cyclase A receptor) and NP clearance receptor in aldosterone inhibition. Furthermore, the function of PKG (protein kinase G) and PDEs (phosphodiesterases) on aldosterone regulation are not clear. METHODS In the present study, we investigated the molecular mechanism of aldosterone regulation in a human adrenocortical cell line H295R and in mice. RESULTS We first provided evidence to show that pGC-A, not NP clearance receptor, mediates aldosterone inhibition. Next, we confirmed that MANP inhibits aldosterone via PDE2 (phosphodiesterase 2) not PKG, with specific agonists, antagonists, siRNA silencing, and fluorescence resonance energy transfer experiments. Further, the inhibitory effect is mediated by a reduction of intracellular Ca2+ levels. We then illustrated that MANP directly reduces aldosterone synthase CYP11B2 (cytochrome p450 family 11 subfamily b member 2) expression via PDE2. Last, in PDE2 knockout mice, consistent with in vitro findings, embryonic adrenal CYP11B2 is markedly increased. CONCLUSIONS Our results innovatively explore and expand the NP/pGC-A/3',5', cyclic guanosine monophosphate (cGMP)/PDE2 pathway for aldosterone inhibition by MANP in vitro and in vivo. In addition, our data also support the development of MANP as a novel ANP analog drug for aldosterone excess treatment.
Collapse
Affiliation(s)
- Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine (Y.C., S.R.I., X.M., J.C.B.), Mayo Clinic, Rochester MN.,The Institute for Diabetes' Obesity' and Metabolism, University of Pennsylvania, Philadelphia (Y.C.)
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine (Y.C., S.R.I., X.M., J.C.B.), Mayo Clinic, Rochester MN
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.)
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Italy (F.N.' S.C.)
| | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo, Rome, Italy (M.P.)
| | - Silvia Cardarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Italy (F.N.' S.C.)
| | - Xiao Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine (Y.C., S.R.I., X.M., J.C.B.), Mayo Clinic, Rochester MN
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine (H.-C.L.), Mayo Clinic, Rochester MN
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine (Y.C., S.R.I., X.M., J.C.B.), Mayo Clinic, Rochester MN
| |
Collapse
|
27
|
Grange RMH, Preedy MEJ, Renukanthan A, Dignam JP, Lowe VJ, Moyes AJ, Pérez-Ternero C, Aubdool AA, Baliga RS, Hobbs AJ. Multidrug resistance proteins preferentially regulate natriuretic peptide-driven cGMP signalling in the heart and vasculature. Br J Pharmacol 2022; 179:2443-2459. [PMID: 34131904 DOI: 10.1111/bph.15593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE cGMP underpins the bioactivity of NO and natriuretic peptides and is key to cardiovascular homeostasis. cGMP-driven responses are terminated primarily by PDEs, but cellular efflux via multidrug resistance proteins (MRPs) might contribute. Herein, the effect of pharmacological blockade of MRPs on cGMP signalling in the heart and vasculature was investigated in vitro and in vivo. EXPERIMENTAL APPROACH Proliferation of human coronary artery smooth muscle cells (hCASMCs), vasorelaxation of murine aorta and reductions in mean arterial BP (MABP) in response to NO donors or natriuretic peptides were determined in the absence and presence of the MRP inhibitor MK571. The ability of MRP inhibition to reverse morphological and contractile deficits in a murine model of pressure overload-induced heart failure was also explored. KEY RESULTS MK571 attenuated hCASMC growth and enhanced the anti-proliferative effects of NO and atrial natriuretic peptide (ANP). MRP blockade caused concentration-dependent relaxations of murine aorta and augmented responses to ANP (and to a lesser extent NO). MK571 did not decrease MABP per se but enhanced the hypotensive actions of ANP and improved structural and functional indices of disease severity in experimental heart failure. These beneficial actions of MRP inhibition were associated with a greater intracellular:extracellular cGMP ratio in vitro and in vivo. CONCLUSIONS AND IMPLICATIONS MRP blockade promotes the cardiovascular functions of natriuretic peptides in vitro and in vivo, with more modest effects on NO. MRP inhibition may have therapeutic utility in cardiovascular diseases triggered by dysfunctional cGMP signalling, particularly those associated with altered natriuretic peptide bioactivity. LINKED ARTICLES This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.
Collapse
Affiliation(s)
- Robert M H Grange
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael E J Preedy
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aniruthan Renukanthan
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Joshua P Dignam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Vanessa J Lowe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cristina Pérez-Ternero
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aisah A Aubdool
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Reshma S Baliga
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
28
|
Numata G, Takimoto E. Cyclic GMP and PKG Signaling in Heart Failure. Front Pharmacol 2022; 13:792798. [PMID: 35479330 PMCID: PMC9036358 DOI: 10.3389/fphar.2022.792798] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic guanosine monophosphate (cGMP), produced by guanylate cyclase (GC), activates protein kinase G (PKG) and regulates cardiac remodeling. cGMP/PKG signal is activated by two intrinsic pathways: nitric oxide (NO)-soluble GC and natriuretic peptide (NP)-particulate GC (pGC) pathways. Activation of these pathways has emerged as a potent therapeutic strategy to treat patients with heart failure, given cGMP-PKG signaling is impaired in heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF). Large scale clinical trials in patients with HFrEF have shown positive results with agents that activate cGMP-PKG pathways. In patients with HFpEF, however, benefits were observed only in a subgroup of patients. Further investigation for cGMP-PKG pathway is needed to develop better targeting strategies for HFpEF. This review outlines cGMP-PKG pathway and its modulation in heart failure.
Collapse
Affiliation(s)
- Genri Numata
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
- Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, The University of Tokyo Hospital, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|
29
|
Hulikova A, Park KC, Loonat AA, Gunadasa-Rohling M, Curtis MK, Chung YJ, Wilson A, Carr CA, Trafford AW, Fournier M, Moshnikova A, Andreev OA, Reshetnyak YK, Riley PR, Smart N, Milne TA, Crump NT, Swietach P. Alkaline nucleoplasm facilitates contractile gene expression in the mammalian heart. Basic Res Cardiol 2022; 117:17. [PMID: 35357563 PMCID: PMC8971196 DOI: 10.1007/s00395-022-00924-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 01/31/2023]
Abstract
Cardiac contractile strength is recognised as being highly pH-sensitive, but less is known about the influence of pH on cardiac gene expression, which may become relevant in response to changes in myocardial metabolism or vascularization during development or disease. We sought evidence for pH-responsive cardiac genes, and a physiological context for this form of transcriptional regulation. pHLIP, a peptide-based reporter of acidity, revealed a non-uniform pH landscape in early-postnatal myocardium, dissipating in later life. pH-responsive differentially expressed genes (pH-DEGs) were identified by transcriptomics of neonatal cardiomyocytes cultured over a range of pH. Enrichment analysis indicated "striated muscle contraction" as a pH-responsive biological process. Label-free proteomics verified fifty-four pH-responsive gene-products, including contractile elements and the adaptor protein CRIP2. Using transcriptional assays, acidity was found to reduce p300/CBP acetylase activity and, its a functional readout, inhibit myocardin, a co-activator of cardiac gene expression. In cultured myocytes, acid-inhibition of p300/CBP reduced H3K27 acetylation, as demonstrated by chromatin immunoprecipitation. H3K27ac levels were more strongly reduced at promoters of acid-downregulated DEGs, implicating an epigenetic mechanism of pH-sensitive gene expression. By tandem cytoplasmic/nuclear pH imaging, the cardiac nucleus was found to exercise a degree of control over its pH through Na+/H+ exchangers at the nuclear envelope. Thus, we describe how extracellular pH signals gain access to the nucleus and regulate the expression of a subset of cardiac genes, notably those coding for contractile proteins and CRIP2. Acting as a proxy of a well-perfused myocardium, alkaline conditions are permissive for expressing genes related to the contractile apparatus.
Collapse
Affiliation(s)
- Alzbeta Hulikova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Yu Jin Chung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Abigail Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Marjorie Fournier
- Department of Biochemistry, Advanced Proteomics Facility, University of Oxford, Oxford, UK
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
30
|
Argunhan F, Brain SD. The Vascular-Dependent and -Independent Actions of Calcitonin Gene-Related Peptide in Cardiovascular Disease. Front Physiol 2022; 13:833645. [PMID: 35283798 PMCID: PMC8914086 DOI: 10.3389/fphys.2022.833645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/21/2022] [Indexed: 12/21/2022] Open
Abstract
The treatment of hypertension and heart failure remains a major challenge to healthcare providers. Despite therapeutic advances, heart failure affects more than 26 million people worldwide and is increasing in prevalence due to an ageing population. Similarly, despite an improvement in blood pressure management, largely due to pharmacological interventions, hypertension remains a silent killer. This is in part due to its ability to contribute to heart failure. Development of novel therapies will likely be at the forefront of future cardiovascular studies to address these unmet needs. Calcitonin gene-related peptide (CGRP) is a 37 amino acid potent vasodilator with positive-ionotropic and -chronotropic effects. It has been reported to have beneficial effects in hypertensive and heart failure patients. Interestingly, changes in plasma CGRP concentration in patients after myocardial infarction, heart failure, and in some forms of hypertension, also support a role for CGRP on hemodynamic functions. Rodent studies have played an important role thus far in delineating mechanisms involved in CGRP-induced cardioprotection. However, due to the short plasma half-life of CGRP, these well documented beneficial effects have often proven to be acute and transient. Recent development of longer lasting CGRP agonists may therefore offer a practical solution to investigating CGRP further in cardiovascular disease in vivo. Furthermore, pre-clinical murine studies have hinted at the prospect of cardioprotective mechanisms of CGRP which is independent of its hypotensive effect. Here, we discuss past and present evidence of vascular-dependent and -independent processes by which CGRP could protect the vasculature and myocardium against cardiovascular dysfunction.
Collapse
|
31
|
Calamera G, Moltzau LR, Levy FO, Andressen KW. Phosphodiesterases and Compartmentation of cAMP and cGMP Signaling in Regulation of Cardiac Contractility in Normal and Failing Hearts. Int J Mol Sci 2022; 23:2145. [PMID: 35216259 PMCID: PMC8880502 DOI: 10.3390/ijms23042145] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac contractility is regulated by several neural, hormonal, paracrine, and autocrine factors. Amongst these, signaling through β-adrenergic and serotonin receptors generates the second messenger cyclic AMP (cAMP), whereas activation of natriuretic peptide receptors and soluble guanylyl cyclases generates cyclic GMP (cGMP). Both cyclic nucleotides regulate cardiac contractility through several mechanisms. Phosphodiesterases (PDEs) are enzymes that degrade cAMP and cGMP and therefore determine the dynamics of their downstream effects. In addition, the intracellular localization of the different PDEs may contribute to regulation of compartmented signaling of cAMP and cGMP. In this review, we will focus on the role of PDEs in regulating contractility and evaluate changes in heart failure.
Collapse
Affiliation(s)
| | | | | | - Kjetil Wessel Andressen
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, P.O. Box 1057 Blindern, 0316 Oslo, Norway; (G.C.); (L.R.M.); (F.O.L.)
| |
Collapse
|
32
|
Agarwal SR, Sherpa RT, Moshal KS, Harvey RD. Compartmentalized cAMP signaling in cardiac ventricular myocytes. Cell Signal 2022; 89:110172. [PMID: 34687901 PMCID: PMC8602782 DOI: 10.1016/j.cellsig.2021.110172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023]
Abstract
Activation of different receptors that act by generating the common second messenger cyclic adenosine monophosphate (cAMP) can elicit distinct functional responses in cardiac myocytes. Selectively sequestering cAMP activity to discrete intracellular microdomains is considered essential for generating receptor-specific responses. The processes that control this aspect of compartmentalized cAMP signaling, however, are not completely clear. Over the years, technological innovations have provided critical breakthroughs in advancing our understanding of the mechanisms underlying cAMP compartmentation. Some of the factors identified include localized production of cAMP by differential distribution of receptors, localized breakdown of this second messenger by targeted distribution of phosphodiesterase enzymes, and limited diffusion of cAMP by protein kinase A (PKA)-dependent buffering or physically restricted barriers. The aim of this review is to provide a discussion of our current knowledge and highlight some of the gaps that still exist in the field of cAMP compartmentation in cardiac myocytes.
Collapse
|
33
|
Adzika GK, Hou H, Adekunle AO, Rizvi R, Adzraku SY, Li K, Deng QM, Mprah R, Ndzie Noah ML, Adu-Amankwaah J, Machuki JO, Shang W, Ma T, Koda S, Ma X, Sun H. Amlexanox and Forskolin Prevents Isoproterenol-Induced Cardiomyopathy by Subduing Cardiomyocyte Hypertrophy and Maladaptive Inflammatory Responses. Front Cell Dev Biol 2021; 9:719351. [PMID: 34631707 PMCID: PMC8497899 DOI: 10.3389/fcell.2021.719351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic catecholamine stress (CCS) induces the occurrence of cardiomyopathy-pathological cardiac hypertrophy (PCH), which is characterized by left ventricular systolic dysfunction (LVSD). Recently, mounting evidence has implicated myocardial inflammation in the exacerbation of pathological cardiac remodeling. However, there are currently no well-defined treatment interventions or regimes targeted at both the attenuation of maladaptive myocardial hypertrophy and inflammation during CCS to prevent PCH. G protein-coupled receptor kinase 5 (GRK5) and adenylyl cyclases (ACs)-cAMP mediates both cardiac and inflammatory responses. Also, GRK5 and ACs are implicated in stress-induced LVSD. Herein, we aimed at preventing PCH during CCS via modulating adaptive cardiac and inflammatory responses by inhibiting GRK5 and/or stimulating ACs. Isoproterenol-induced cardiomyopathy (ICM) was modeled using 0.5 mg/100 g/day isoproterenol injections for 40 days. Alterations in cardiac and inflammatory responses were assessed from the myocardia. Similarities in the immunogenicity of cardiac troponin I (cTnI) and lipopolysaccharide under CCS were assessed, and Amlexanox (35 μM/ml) and/or Forskolin (10 μM/ml) were then employed in vitro to modulate adaptive inflammatory responses by inhibiting GRK5 or activating ACs-cAMP, respectively. Subsequently, Amlexanox (2.5 mg/100 g/day) and/or Forskolin (0.5 mg/100 g/day) were then translated into in vivo during CCS to modulate adaptive cardiac and inflammatory responses. The effects of Amlexanox and Forskolin on regulating myocardial systolic functions and inflammatory responses during CCS were ascertained afterward. PCH mice had excessive myocardial hypertrophy, fibrosis, and aggravated LVSD, which were accompanied by massive CD68+ inflammatory cell infiltrations. In vitro, Forskolin-AC/cAMP was effective than Amlexanox-GRK5 at downregulating proinflammatory responses during stress; nonetheless, Amlexanox and Forskolin combination demonstrated the most efficacy in modulating adaptive inflammatory responses. Individually, the translated Amlexanox and Forskolin treatment interventions were ineffective at subduing the pathological remodeling and sustaining cardiac function during CCS. However, their combination was potent at preventing LVSD during CCS by attenuating maladaptive myocardial hypertrophy, fibrosis, and inflammatory responses. The treatment intervention attained its potency mainly via Forskolin-ACs/cAMP-mediated modulation of cardiac and inflammatory responses, coupled with Amlexanox inhibition of GRK5 mediated maladaptive cascades. Taken together, our findings highlight the Amlexanox and Forskolin combination as a potential therapeutic intervention for preventing the occurrence of pathological cardiac hypertrophy during chronic stress.
Collapse
Affiliation(s)
| | - Hongjian Hou
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,The College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | | | | | - Seyram Yao Adzraku
- Key Laboratory of Bone Marrow Stem Cell, Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kexue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Qi-Ming Deng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Department of Cardiology, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | | | - Wenkang Shang
- Faculty of Biology, Institute of Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Tongtong Ma
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Stephane Koda
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xianluo Ma
- Internal Medicine-Cardiovascular Department, People's Hospital of Jiawang District, Xuzhou, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
34
|
Harvey RD, Clancy CE. Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding. J Physiol 2021; 599:4527-4544. [PMID: 34510451 DOI: 10.1113/jp280801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
The small diffusible second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is found in virtually every cell in our bodies, where it mediates responses to a variety of different G protein coupled receptors (GPCRs). In the heart, cAMP plays a critical role in regulating many different aspects of cardiac myocyte function, including gene transcription, cell metabolism, and excitation-contraction coupling. Yet, not all GPCRs that stimulate cAMP production elicit the same responses. Subcellular compartmentation of cAMP is essential to explain how different receptors can utilize the same diffusible second messenger to elicit unique functional responses. However, the mechanisms contributing to this behaviour and its significance in producing physiological and pathological responses are incompletely understood. Mathematical modelling has played an essential role in gaining insight into these questions. This review discusses what we currently know about cAMP compartmentation in cardiac myocytes and questions that are yet to be answered.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, NV, 89557, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
35
|
Cellular Mechanisms of the Anti-Arrhythmic Effect of Cardiac PDE2 Overexpression. Int J Mol Sci 2021; 22:ijms22094816. [PMID: 34062838 PMCID: PMC8125727 DOI: 10.3390/ijms22094816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Phosphodiesterases (PDE) critically regulate myocardial cAMP and cGMP levels. PDE2 is stimulated by cGMP to hydrolyze cAMP, mediating a negative crosstalk between both pathways. PDE2 upregulation in heart failure contributes to desensitization to β-adrenergic overstimulation. After isoprenaline (ISO) injections, PDE2 overexpressing mice (PDE2 OE) were protected against ventricular arrhythmia. Here, we investigate the mechanisms underlying the effects of PDE2 OE on susceptibility to arrhythmias. Methods: Cellular arrhythmia, ion currents, and Ca2+-sparks were assessed in ventricular cardiomyocytes from PDE2 OE and WT littermates. Results: Under basal conditions, action potential (AP) morphology were similar in PDE2 OE and WT. ISO stimulation significantly increased the incidence of afterdepolarizations and spontaneous APs in WT, which was markedly reduced in PDE2 OE. The ISO-induced increase in ICaL seen in WT was prevented in PDE2 OE. Moreover, the ISO-induced, Epac- and CaMKII-dependent increase in INaL and Ca2+-spark frequency was blunted in PDE2 OE, while the effect of direct Epac activation was similar in both groups. Finally, PDE2 inhibition facilitated arrhythmic events in ex vivo perfused WT hearts after reperfusion injury. Conclusion: Higher PDE2 abundance protects against ISO-induced cardiac arrhythmia by preventing the Epac- and CaMKII-mediated increases of cellular triggers. Thus, activating myocardial PDE2 may represent a novel intracellular anti-arrhythmic therapeutic strategy in HF.
Collapse
|
36
|
Schleicher K, Zaccolo M. Axelrod Symposium 2019: Phosphoproteomic Analysis of G-Protein-Coupled Pathways. Mol Pharmacol 2021; 99:383-391. [PMID: 32111700 DOI: 10.1124/mol.119.118869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
By limiting unrestricted activation of intracellular effectors, compartmentalized signaling of cyclic nucleotides confers specificity to extracellular stimuli and is critical for the development and health of cells and organisms. Dissecting the molecular mechanisms that allow local control of cyclic nucleotide signaling is essential for our understanding of physiology and pathophysiology, but mapping the dynamics and regulation of compartmentalized signaling is a challenge. In this minireview we summarize advanced imaging and proteomics techniques that have been successfully used to probe compartmentalized cAMP signaling in eukaryotic cells. Subcellularly targeted fluorescence resonance energy transfer sensors can precisely locate and measure compartmentalized cAMP, and this allows us to estimate the range of effector activation. Because cAMP effector proteins often cluster together with their targets and cAMP regulatory proteins to form discrete cAMP signalosomes, proteomics and phosphoproteomics analysis have more recently been used to identify additional players in the cAMP-signaling cascade. We propose that the synergistic use of the techniques discussed could prove fruitful in generating a detailed map of cAMP signalosomes and reveal new details of compartmentalized signaling. Compiling a dynamic map of cAMP nanodomains in defined cell types would establish a blueprint for better understanding the alteration of signaling compartments associated with disease and would provide a molecular basis for targeted therapeutic strategies. SIGNIFICANCE STATEMENT: cAMP signaling is compartmentalized. Some functionally important cellular signaling compartments operate on a nanometer scale, and their integrity is essential to maintain cellular function and appropriate responses to extracellular stimuli. Compartmentalized signaling provides an opportunity for precision medicine interventions. Our detailed understanding of the composition, function, and regulation of cAMP-signaling nanodomains in health and disease is essential and will benefit from harnessing the right combination of advanced biochemical and imaging techniques.
Collapse
Affiliation(s)
- Katharina Schleicher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Wang YW, Gao QW, Xiao YJ, Zhu XJ, Gao L, Zhang WH, Wang RR, Chen KS, Liu FM, Huang HL, Chen L. Bay 60-7550, a PDE2 inhibitor, exerts positive inotropic effect of rat heart by increasing PKA-mediated phosphorylation of phospholamban. Eur J Pharmacol 2021; 901:174077. [PMID: 33798601 DOI: 10.1016/j.ejphar.2021.174077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
This study investigated the hemodynamic effect of Bay 60-7550, a phosphodiesterase type 2 (PDE2) inhibitor, in healthy rat hearts both in vivo and ex vivo and its underlying mechanisms. In vivo rat left ventricular pressure-volume loop, Langendorff isolated rat heart, Ca2+ transient of left ventricular myocyte and Western blot experiments were used in this study. The results demonstrated that Bay 60-7550 (1.5 mg/kg, i. p.) increased the in vivo rat heart contractility by enhancing stroke work, cardiac output, stroke volume, end-diastolic volume, heart rate, and ejection fraction. The simultaneous aortic pressure recording indicated that the systolic blood pressure was increased and diastolic blood pressure was decreased by Bay 60-7550. Also, the arterial elastance which is proportional to the peripheral vessel resistance was significantly decreased. Bay 60-7550 (0.001, 0.01, 0.1, 1 μmol/l) also enhanced the left ventricular development pressure in non-paced and paced modes with a decrease of heart rate in non-paced model. Bay 60-7550 (1 μmol/l) increased SERCA2a activity and SR Ca2+ content and reduced SR Ca2+ leak rate. Furthermore, Bay 60-7550 (0.1 μmol/l) increased the phosphorylation of phospholamban at 16-serine without significantly changing the phosphorylation levels of phospholamban at 17-threonine and RyR2. Bay 60-7550 increased the rat heart contractility and reduced peripheral arterial resistance may be mediated by increasing the phosphorylation of phospholamban and dilating peripheral vessels. PDE2 inhibitors which result in a positive inotropic effect and a decrease in peripheral resistance might serve as a target for developing agents for the treatment of heart failure in clinical settings.
Collapse
Affiliation(s)
- Yu-Wei Wang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qian-Wen Gao
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Jie Xiao
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Jia Zhu
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Gao
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen-Hui Zhang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rong-Rong Wang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ke-Su Chen
- School of Medicine, Nanjing University, Nanjing 210093, China
| | - Fu-Ming Liu
- First Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Hui-Li Huang
- Department of Clinical Pharmacy, No. 900 Hospital of the Chinese PLA Joint Support Forces, Fuzhou 350000, China
| | - Long Chen
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Institute of Chinese Medicine of Taizhou China Medical City, Double Tower, China Medical City, Taizhou 225300, China.
| |
Collapse
|
38
|
McCabe KJ, Rangamani P. Computational modeling approaches to cAMP/PKA signaling in cardiomyocytes. J Mol Cell Cardiol 2021; 154:32-40. [PMID: 33548239 DOI: 10.1016/j.yjmcc.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
The cAMP/PKA pathway is a fundamental regulator of excitation-contraction coupling in cardiomyocytes. Activation of cAMP has a variety of downstream effects on cardiac function including enhanced contraction, accelerated relaxation, adaptive stress response, mitochondrial regulation, and gene transcription. Experimental advances have shed light on the compartmentation of cAMP and PKA, which allow for control over the varied targets of these second messengers and is disrupted in heart failure conditions. Computational modeling is an important tool for understanding the spatial and temporal complexities of this system. In this review article, we outline the advances in computational modeling that have allowed for deeper understanding of cAMP/PKA dynamics in the cardiomyocyte in health and disease, and explore new modeling frameworks that may bring us closer to a more complete understanding of this system. We outline various compartmental and spatial signaling models that have been used to understand how β-adrenergic signaling pathways function in a variety of simulation conditions. We also discuss newer subcellular models of cardiovascular function that may be used as templates for the next phase of computational study of cAMP and PKA in the heart, and outline open challenges which are important to consider in future models.
Collapse
Affiliation(s)
- Kimberly J McCabe
- Simula Research Laboratory, Department of Computational Physiology, PO Box 134, 1325 Lysaker, Norway.
| | - Padmini Rangamani
- University of California San Diego, Department of Mechanical and Aerospace Engineering, 9500 Gilman Drive MC 0411, La Jolla, CA 92093, United States of America
| |
Collapse
|
39
|
Chen S, Yan C. An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases. Expert Opin Drug Discov 2021; 16:183-196. [PMID: 32957823 PMCID: PMC7854486 DOI: 10.1080/17460441.2020.1821643] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cyclic nucleotides, cAMP, and cGMP, are important second messengers of intracellular signaling and play crucial roles in cardiovascular biology and diseases. Cyclic nucleotide phosphodiesterases (PDEs) control the duration, magnitude, and compartmentalization of cyclic nucleotide signaling by catalyzing the hydrolysis of cyclic nucleotides. Individual PDEs modulate distinct signaling pathways and biological functions in the cell, making it a potential therapeutic target for the treatment of different cardiovascular disorders. The clinical success of several PDE inhibitors has ignited continued interest in PDE inhibitors and in PDE-target therapeutic strategies. AREAS COVERED This review concentrates on recent research advances of different PDE isoforms with regard to their expression patterns and biological functions in the heart. The limitations of current research and future directions are then discussed. The current and future development of PDE inhibitors is also covered. EXPERT OPINION Despite the therapeutic success of several marketed PDE inhibitors, the use of PDE inhibitors can be limited by their side effects, lack of efficacy, and lack of isoform selectivity. Advances in our understanding of the mechanisms by which cellular functions are changed through PDEs may enable the development of new approaches to achieve effective and specific PDE inhibition for various cardiac therapies.
Collapse
Affiliation(s)
- Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
40
|
Liu Y, Chen J, Fontes SK, Bautista EN, Cheng Z. Physiological And Pathological Roles Of Protein Kinase A In The Heart. Cardiovasc Res 2021; 118:386-398. [PMID: 33483740 DOI: 10.1093/cvr/cvab008] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022] Open
Abstract
Protein kinase A (PKA) is a central regulator of cardiac performance and morphology. Myocardial PKA activation is induced by a variety of hormones, neurotransmitters and stress signals, most notably catecholamines secreted by the sympathetic nervous system. Catecholamines bind β-adrenergic receptors to stimulate cAMP-dependent PKA activation in cardiomyocytes. Elevated PKA activity enhances Ca2+ cycling and increases cardiac muscle contractility. Dynamic control of PKA is essential for cardiac homeostasis, as dysregulation of PKA signaling is associated with a broad range of heart diseases. Specifically, abnormal PKA activation or inactivation contributes to the pathogenesis of myocardial ischemia, hypertrophy, heart failure, as well as diabetic, takotsubo, or anthracycline cardiomyopathies. PKA may also determine sex-dependent differences in contractile function and heart disease predisposition. Here, we describe the recent advances regarding the roles of PKA in cardiac physiology and pathology, highlighting previous study limitations and future research directions. Moreover, we discuss the therapeutic strategies and molecular mechanisms associated with cardiac PKA biology. In summary, PKA could serve as a promising drug target for cardioprotection. Depending on disease types and mechanisms, therapeutic intervention may require either inhibition or activation of PKA. Therefore, specific PKA inhibitors or activators may represent valuable drug candidates for the treatment of heart diseases.
Collapse
Affiliation(s)
- Yuening Liu
- Department of Pharmaceutical Sciences, Washington State University, PBS 423, 412 E. Spokane Falls Blvd, ., Spokane, WA, 99202-2131, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, PBS 423, 412 E. Spokane Falls Blvd, ., Spokane, WA, 99202-2131, USA
| | - Shayne K Fontes
- Department of Pharmaceutical Sciences, Washington State University, PBS 423, 412 E. Spokane Falls Blvd, ., Spokane, WA, 99202-2131, USA
| | - Erika N Bautista
- Department of Pharmaceutical Sciences, Washington State University, PBS 423, 412 E. Spokane Falls Blvd, ., Spokane, WA, 99202-2131, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, PBS 423, 412 E. Spokane Falls Blvd, ., Spokane, WA, 99202-2131, USA
| |
Collapse
|
41
|
Abstract
Cyclic nucleotide phosphodiesterases comprise an 11-member superfamily yielding near 100 isoform variants that hydrolyze cAMP or cGMP to their respective 5'-monophosphate form. Each plays a role in compartmentalized cyclic nucleotide signaling, with varying selectivity for each substrate, and conveying cell and intracellular-specific localized control. This review focuses on the 5 phosphodiesterases (PDEs) expressed in the cardiac myocyte capable of hydrolyzing cGMP and that have been shown to play a role in cardiac physiological and pathological processes. PDE1, PDE2, and PDE3 catabolize cAMP as well, whereas PDE5 and PDE9 are cGMP selective. PDE3 and PDE5 are already in clinical use, the former for heart failure, and PDE1, PDE9, and PDE5 are all being actively studied for this indication in patients. Research in just the past few years has revealed many novel cardiac influences of each isoform, expanding the therapeutic potential from their selective pharmacological blockade or in some instances, activation. PDE1C inhibition was found to confer cell survival protection and enhance cardiac contractility, whereas PDE2 inhibition or activation induces beneficial effects in hypertrophied or failing hearts, respectively. PDE3 inhibition is already clinically used to treat acute decompensated heart failure, although toxicity has precluded its long-term use. However, newer approaches including isoform-specific allosteric modulation may change this. Finally, inhibition of PDE5A and PDE9A counter pathological remodeling of the heart and are both being pursued in clinical trials. Here, we discuss recent research advances in each of these PDEs, their impact on the myocardium, and cardiac therapeutic potential.
Collapse
|
42
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP) is a ubiquitous second messenger, which critically regulates cardiac pump function and protects from the development of cardiac hypertrophy by acting in various subcellular microdomains. Although clinical studies testing the potential of cGMP elevating drugs in patients suffering from cardiac disease showed promising results, deeper insight into the local actions of these drugs at the subcellular level are indispensable to inspire novel therapeutic strategies. Detailed information on the spatio-temporal dynamics of cGMP production and degradation can be provided by the use of fluorescent biosensors that are capable of monitoring this second messenger at different locations inside the cell with high temporal and spatial resolution. In this review, we will summarize how these emerging new tools have improved our understanding of cardiac cGMP signaling in health and disease, and attempt to anticipate future challenges in the field.
Collapse
|
44
|
Abstract
Heart failure (HF) is a common consequence of several cardiovascular diseases and is understood as a vicious cycle of cardiac and hemodynamic decline. The current inventory of treatments either alleviates the pathophysiological features (eg, cardiac dysfunction, neurohumoral activation, and ventricular remodeling) and/or targets any underlying pathologies (eg, hypertension and myocardial infarction). Yet, since these do not provide a cure, the morbidity and mortality associated with HF remains high. Therefore, the disease constitutes an unmet medical need, and novel therapies are desperately needed. Cyclic guanosine-3',5'-monophosphate (cGMP), synthesized by nitric oxide (NO)- and natriuretic peptide (NP)-responsive guanylyl cyclase (GC) enzymes, exerts numerous protective effects on cardiac contractility, hypertrophy, fibrosis, and apoptosis. Impaired cGMP signaling, which can occur after GC deactivation and the upregulation of cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs), promotes cardiac dysfunction. In this study, we review the role that NO/cGMP and NP/cGMP signaling plays in HF. After considering disease etiology, the physiological effects of cGMP in the heart are discussed. We then assess the evidence from preclinical models and patients that compromised cGMP signaling contributes to the HF phenotype. Finally, the potential of pharmacologically harnessing cardioprotective cGMP to rectify the present paucity of effective HF treatments is examined.
Collapse
|
45
|
Lobo MJ, Reverte-Salisa L, Chao YC, Koschinski A, Gesellchen F, Subramaniam G, Jiang H, Pace S, Larcom N, Paolocci E, Pfeifer A, Zanivan S, Zaccolo M. Phosphodiesterase 2A2 regulates mitochondria clearance through Parkin-dependent mitophagy. Commun Biol 2020; 3:596. [PMID: 33087821 PMCID: PMC7578833 DOI: 10.1038/s42003-020-01311-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Programmed degradation of mitochondria by mitophagy, an essential process to maintain mitochondrial homeostasis, is not completely understood. Here we uncover a regulatory process that controls mitophagy and involves the cAMP-degrading enzyme phosphodiesterase 2A2 (PDE2A2). We find that PDE2A2 is part of a mitochondrial signalosome at the mitochondrial inner membrane where it interacts with the mitochondrial contact site and organizing system (MICOS). As part of this compartmentalised signalling system PDE2A2 regulates PKA-mediated phosphorylation of the MICOS component MIC60, resulting in modulation of Parkin recruitment to the mitochondria and mitophagy. Inhibition of PDE2A2 is sufficient to regulate mitophagy in the absence of other triggers, highlighting the physiological relevance of PDE2A2 in this process. Pharmacological inhibition of PDE2 promotes a 'fat-burning' phenotype to retain thermogenic beige adipocytes, indicating that PDE2A2 may serve as a novel target with potential for developing therapies for metabolic disorders.
Collapse
Affiliation(s)
- Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Ying-Chi Chao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Frank Gesellchen
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | | | - He Jiang
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Samuel Pace
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Natasha Larcom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ester Paolocci
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology University of Bonn, Bonn, Germany
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, University of Glasgow, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Sadek MS, Cachorro E, El-Armouche A, Kämmerer S. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E7462. [PMID: 33050419 PMCID: PMC7590001 DOI: 10.3390/ijms21207462] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphodiesterases (PDEs) are the principal superfamily of enzymes responsible for degrading the secondary messengers 3',5'-cyclic nucleotides cAMP and cGMP. Their refined subcellular localization and substrate specificity contribute to finely regulate cAMP/cGMP gradients in various cellular microdomains. Redistribution of multiple signal compartmentalization components is often perceived under pathological conditions. Thereby PDEs have long been pursued as therapeutic targets in diverse disease conditions including neurological, metabolic, cancer and autoimmune disorders in addition to numerous cardiovascular diseases (CVDs). PDE2 is a unique member of the broad family of PDEs. In addition to its capability to hydrolyze both cAMP and cGMP, PDE2 is the sole isoform that may be allosterically activated by cGMP increasing its cAMP hydrolyzing activity. Within the cardiovascular system, PDE2 serves as an integral regulator for the crosstalk between cAMP/cGMP pathways and thereby may couple chronically adverse augmented cAMP signaling with cardioprotective cGMP signaling. This review provides a comprehensive overview of PDE2 regulatory functions in multiple cellular components within the cardiovascular system and also within various subcellular microdomains. Implications for PDE2- mediated crosstalk mechanisms in diverse cardiovascular pathologies are discussed highlighting the prospective use of PDE2 as a potential therapeutic target in cardiovascular disorders.
Collapse
Affiliation(s)
| | | | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| | - Susanne Kämmerer
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| |
Collapse
|
47
|
Abstract
The cyclic nucleotides cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic guanosine-3′,5′-monophosphate (cGMP) maintain physiological cardiac contractility and integrity. Cyclic nucleotide–hydrolysing phosphodiesterases (PDEs) are the prime regulators of cAMP and cGMP signalling in the heart. During heart failure (HF), the expression and activity of multiple PDEs are altered, which disrupt cyclic nucleotide levels and promote cardiac dysfunction. Given that the morbidity and mortality associated with HF are extremely high, novel therapies are urgently needed. Herein, the role of PDEs in HF pathophysiology and their therapeutic potential is reviewed. Attention is given to PDEs 1–5, and other PDEs are briefly considered. After assessing the role of each PDE in cardiac physiology, the evidence from pre-clinical models and patients that altered PDE signalling contributes to the HF phenotype is examined. The potential of pharmacologically harnessing PDEs for therapeutic gain is considered.
Collapse
|
48
|
The cAMP pathway promotes sirtuin-1 expression in human granulosa-lutein cells. Reprod Biol 2020; 20:273-281. [PMID: 32741720 DOI: 10.1016/j.repbio.2020.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/13/2023]
Abstract
Sirtuin-1 (SIRT1), a NAD+-dependent deacetylase, is present in the ovarian granulosa cells (GCs) of various species. This study examined the regulation of SIRT1 expression in human granulosa-lutein cells (hGLCs). Two different, structurally unrelated SIRT1 activators, SRT2104 and resveratrol, dose- and time-dependently enhanced SIRT1 (∼2- and 1.5-fold increase at 50 μmol/L for mRNA and protein levels, respectively), whereas EX-527, an inhibitor of SIRT1 deacetylase activity, significantly suppressed SIRT1 protein induced by these activators. Transfecting cells with SIRT1 siRNA molecules efficiently silenced SIRT1 (∼70 % decrease in 48 h post-transfection). Furthermore, the stimulatory effects of SRT2104 on SIRT1 expression observed in non-transfected or in scrambled siRNA-transfected cells were diminished with SIRT1 silencing. The findings described above imply that SIRT1 autoregulates its own expression. Interestingly, SRT2104 elevated cAMP accumulation (1.4-fold) in the culture media of hGLCs which was further augmented in the presence of hCG (2.2-fold); these effects were evident after 12 h of incubation. This additive effect of hCG and SRT2104 on cAMP accumulation may explain the incremental outcome observed on SIRT1 expression (∼3-fold increase from basal level and ∼1.6-fold stimulation for each compound alone) with these two compounds. SIRT1 knockdown diminished SIRT1 induced by forskolin, providing additional evidence that cAMP promotes SIRT1. These findings imply that by activating adenylyl cyclase (hCG or forskolin) and inhibiting phosphodiesterases (SIRT1 activators), these two signals converge to produce an incremental, positive feedback loop on SIRT1 expression. Such a mechanism highlights the importance of maintaining high SIRT1 levels in human luteinized GCs.
Collapse
|
49
|
Bardsley EN, Paterson DJ. Neurocardiac regulation: from cardiac mechanisms to novel therapeutic approaches. J Physiol 2020; 598:2957-2976. [PMID: 30307615 PMCID: PMC7496613 DOI: 10.1113/jp276962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiac sympathetic overactivity is a well-established contributor to the progression of neurogenic hypertension and heart failure, yet the underlying pathophysiology remains unclear. Recent studies have highlighted the importance of acutely regulated cyclic nucleotides and their effectors in the control of intracellular calcium and exocytosis. Emerging evidence now suggests that a significant component of sympathetic overactivity and enhanced transmission may arise from impaired cyclic nucleotide signalling, resulting from compromised phosphodiesterase activity, as well as alterations in receptor-coupled G-protein activation. In this review, we address some of the key cellular and molecular pathways that contribute to sympathetic overactivity in hypertension and discuss their potential for therapeutic targeting.
Collapse
Affiliation(s)
- E. N. Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| | - D. J. Paterson
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| |
Collapse
|
50
|
Synthesis and Modeling Studies of Furoxan Coupled Spiro-Isoquinolino Piperidine Derivatives as NO Releasing PDE 5 Inhibitors. Biomedicines 2020; 8:biomedicines8050121. [PMID: 32423159 PMCID: PMC7277557 DOI: 10.3390/biomedicines8050121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is considered to be one of the most important intracellular messengers that play an active role as neurotransmitter in regulation of various cardiovascular physiological and pathological processes. Nitric oxide (NO) is a major factor in penile erectile function. NO exerts a relaxing action on corpus cavernosum and penile arteries by activating smooth muscle soluble guanylate cyclase and increasing the intracellular concentration of cyclic guanosine monophosphate (cGMP). Phophodiesterase (PDE) inhibitors have potential therapeutic applications. NO hybridization has been found to improve and extend the pharmacological properties of the parental compound. The present study describes the synthesis of novel furoxan coupled spiro-isoquinolino-piperidine derivatives and their smooth muscle relaxant activity. The study reveals that, particularly 10d (1.50 ± 0.6) and 10g (1.65 ± 0.7) are moderate PDE 5 inhibitors as compared to Sidenafil (1.43 ± 0.5). The observed effect was explained by molecular modelling studies on phosphodiesterase.
Collapse
|