1
|
Ciolac EG, Babjakova J, de Abreu RM, Mao SJ, Qian G, Teixeira do Amaral V, Wrzesinski B, Ferron AJT, Ossowski Z, Francisqueti-Ferron FV, Yeniğün SC, Fernandes B, Rodrigues LM, Gabulova R. Role of sex and training characteristics on exercise effects on cardiovascular aging: protocol for a systematic review with meta-analysis of randomized trials. Syst Rev 2024; 13:234. [PMID: 39277764 PMCID: PMC11401294 DOI: 10.1186/s13643-024-02644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Cardiovascular diseases remain a leading global cause of mortality worldwide especially in older adults. Although it is known that regular exercise reduces cardiovascular diseases incidence, its effects on specific cardiovascular aging parameters considering the influence of sex and different exercise designs are still not fully understood. Therefore, this systematic review and meta-analysis aims to evaluate the effects of different physical exercise protocols on age-related cardiovascular outcomes in older adults. METHODS This systematic review and meta-analysis will be reported in agreement with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Articles will be eligible if they are randomized controlled trials with a primary objective of evaluating the chronic effects of exercise interventions on cardiovascular aging parameters. Search strategy will be performed from the inception to September 30th, 2023, in the following electronic databases: MEDLINE (Ovid), SCOPUS (Elsevier), Embase, Sport Discus (EBSCO), Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science Core Collection (Clarivate Analytics). Data will be extracted and managed through Research Electronic Data Capture (REDCap) software. The Tool for the assEssment of Study qualiTy and reporting in EXercise (TESTEX) will be used to assess the methodological quality of included studies. Additionally, the quality of the findings will be evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) profiler. Meta-analysis based on the random-effects model will be performed (if deemed suitable, considering the methodological and clinical heterogeneity of the studies) to estimate the effects of exercise training on cardiovascular aging variables (i.e., cardiac output; arterial stiffness; stroke volume; endothelial function; and carotid intima-media thickness). Heterogeneity will be assessed with the I2 statistics, while the publication bias will be assessed based on Egger's test. DISCUSSION To the best of our knowledge, this will be the first systematic review and meta-analysis to investigate the impact of sex and training protocols on the cardiovascular aging parameters. Moreover, the findings of this systematic review and meta-analysis will provide evidence for health professionals in the management of elderly patients in order to optimize the exercise prescription to face the cardiovascular alterations related to the aging process, considering the effects of different protocols according to sex. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42023441015 .
Collapse
Affiliation(s)
- Emmanuel Gomes Ciolac
- Exercise and Chronic Disease Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University (Unesp), Av. Eng. Luiz Edmundo Carrijo Coube 14-01, Bauru, Sao Paulo, 17033-360, Brazil.
| | - Jana Babjakova
- Faculty of Medicine, Comenius University in Bratislava, Institute of Hygiene, Bratislava, Slovakia
| | - Raphael Martins de Abreu
- Department of Physiotherapy, LUNEX University, International University of Health, Exercise & Sports S.A, Differdange, Luxembourg
- LUNEX ASBL Luxembourg Health & Sport Sciences Research Institute, Differdange, Luxembourg
| | - Su-Jie Mao
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Guoping Qian
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Vanessa Teixeira do Amaral
- Exercise and Chronic Disease Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University (Unesp), Av. Eng. Luiz Edmundo Carrijo Coube 14-01, Bauru, Sao Paulo, 17033-360, Brazil
| | - Bartlomiej Wrzesinski
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Artur Junio Togneri Ferron
- Exercise and Chronic Disease Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University (Unesp), Av. Eng. Luiz Edmundo Carrijo Coube 14-01, Bauru, Sao Paulo, 17033-360, Brazil
| | - Zbigniew Ossowski
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Fabiane Valentini Francisqueti-Ferron
- Exercise and Chronic Disease Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University (Unesp), Av. Eng. Luiz Edmundo Carrijo Coube 14-01, Bauru, Sao Paulo, 17033-360, Brazil
- Medical School, São Paulo State University (Unesp), Botucatu, Brazil
| | - Seda Cansu Yeniğün
- Faculty of Health Sciences, Akdeniz University, Kumluca , Antalya, Turkey
| | - Bianca Fernandes
- Exercise and Chronic Disease Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University (Unesp), Av. Eng. Luiz Edmundo Carrijo Coube 14-01, Bauru, Sao Paulo, 17033-360, Brazil
| | - Luis Monteiro Rodrigues
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona, Lisbon, Portugal
| | - Rahima Gabulova
- Department of Family Medicine, Azerbaijan Medical University, Baku, Azerbaijan
| |
Collapse
|
2
|
Boshra SA, Nazeam JA, Esmat A. Flaxseed oil fraction reverses cardiac remodeling at a molecular level: improves cardiac function, decreases apoptosis, and suppresses miRNA-29b and miRNA 1 gene expression. BMC Complement Med Ther 2024; 24:6. [PMID: 38167049 PMCID: PMC10759513 DOI: 10.1186/s12906-023-04319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Flaxseed is an ancient commercial oil that historically has been used as a functional food to lower cholesterol levels. However, despite its longstanding treatment, there is currently a lack of scientific evidence to support its role in the management of cardiac remodeling. This study aimed to address this gap in knowledge by examining the molecular mechanism of standardized flaxseed oil in restoring cardiac remodeling in the heart toxicity vivo model. The oil fraction was purified, and the major components were standardized by qualitative and quantitative analysis. In vivo experimental design was conducted using isoproterenol ISO (85 mg/kg) twice subcutaneously within 24 h between each dose. The rats were treated with flaxseed oil fraction (100 mg/kg orally) and the same dose was used for omega 3 supplement as a positive control group. The GC-MS analysis revealed that α-linolenic acid (24.6%), oleic acid (10.5%), glycerol oleate (9.0%) and 2,3-dihydroxypropyl elaidate (7%) are the major components of oil fraction. Physicochemical analysis indicated that the acidity percentage, saponification, peroxide, and iodine values were 0.43, 188.57, 1.22, and 122.34 respectively. As compared with healthy control, ISO group-induced changes in functional cardiac parameters. After 28-day pretreatment with flaxseed oil, the results indicated an improvement in cardiac function, a decrease in apoptosis, and simultaneous prevention of myocardial fibrosis. The plasma levels of BNP, NT-pro-BNP, endothelin-1, Lp-PLA2, and MMP2, and cTnI and cTn were significantly diminished, while a higher plasma level of Topo 2B was observed. Additionally, miRNA - 1 and 29b were significantly downregulated. These findings provide novel insight into the mechanism of flaxseed oil in restoring cardiac remodeling and support its future application as a cardioprotective against heart diseases.
Collapse
Affiliation(s)
- Sylvia A Boshra
- Biochemistry Department, Faculty of Pharmacy, October 6 University, 6 of October City, Giza, 12585, Egypt.
| | - Jilan A Nazeam
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, 6 of October City, Giza, 12585, Egypt.
| | - Ahmed Esmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
3
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Yang X, Li X, Yu N, Yan R, Sun Y, Tang C, Ding W, Ling M, Song Y, Gao H, Gao W, Feng J, Wang S, Zhang Z, Xing Y. Proteomics and β-hydroxybutyrylation Modification Characterization in the Hearts of Naturally Senescent Mice. Mol Cell Proteomics 2023; 22:100659. [PMID: 37805038 PMCID: PMC10685312 DOI: 10.1016/j.mcpro.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Aging is widely accepted as an independent risk factor for cardiovascular disease (CVD), which contributes to increasing morbidity and mortality in the elderly population. Lysine β-hydroxybutyrylation (Kbhb) is a novel post-translational modification (PTM), wherein β-hydroxybutyrate is covalently attached to lysine ε-amino groups. Recent studies have revealed that histone Kbhb contributes to tumor progression, diabetic cardiomyopathy progression, and postnatal heart development. However, no studies have yet reported a global analysis of Kbhb proteins in aging hearts or elucidated the mechanisms underlying this modification in the process. Herein, we conducted quantitative proteomics and Kbhb PTM omics to comprehensively elucidate the alterations of global proteome and Kbhb modification in the hearts of aged mice. The results revealed a decline in grip strength and cardiac diastolic function in 22-month-old aged mice compared to 3-month-old young mice. High-throughput liquid chromatogram-mass spectrometry analysis identified 1710 β-hydroxybutyrylated lysine sites in 641 proteins in the cardiac tissue of young and aged mice. Additionally, 183 Kbhb sites identified in 134 proteins exhibited significant differential modification in aged hearts (fold change (FC) > 1.5 or <1/1.5, p < 0.05). Notably, the Kbhb-modified proteins were primarily detected in energy metabolism pathways, such as fatty acid elongation, glyoxylate and dicarboxylate metabolism, tricarboxylic acid cycle, and oxidative phosphorylation. Furthermore, these Kbhb-modified proteins were predominantly localized in the mitochondria. The present study, for the first time, provides a global proteomic profile and Kbhb modification landscape of cardiomyocytes in aged hearts. These findings put forth novel possibilities for treating cardiac aging and aging-related CVDs by reversing abnormal Kbhb modifications.
Collapse
Affiliation(s)
- Xuechun Yang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuehui Li
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Na Yu
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs of Shandong Xinchuang Biotechnology Co., LTD, Jinan, Shandong, China; College of Clinical Medicine, Shandong University, Jinan, Shandong, China
| | - Rong Yan
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Sun
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Congmin Tang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenjing Ding
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mingying Ling
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yiping Song
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenjuan Gao
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Junchao Feng
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs of Shandong Xinchuang Biotechnology Co., LTD, Jinan, Shandong, China
| | - Shaopeng Wang
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs of Shandong Xinchuang Biotechnology Co., LTD, Jinan, Shandong, China
| | - Zhen Zhang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yanqiu Xing
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Wang Y, Gao T, Wang B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res Ther 2023; 14:260. [PMID: 37726805 PMCID: PMC10510299 DOI: 10.1186/s13287-023-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Senescence is a hot topic nowadays, which shows the accumulation of senescent cells and inflammatory factors, leading to the occurrence of various senescence-related diseases. Although some methods have been identified to partly delay senescence, such as strengthening exercise, restricting diet, and some drugs, these only slow down the process of senescence and cannot fundamentally delay or even reverse senescence. Stem cell-based therapy is expected to be a potential effective way to alleviate or cure senescence-related disorders in the coming future. Mesenchymal stromal cells (MSCs) are the most widely used cell type in treating various diseases due to their potentials of self-replication and multidirectional differentiation, paracrine action, and immunoregulatory effects. Some biological characteristics of MSCs can be well targeted at the pathological features of aging. Therefore, MSC-based therapy is also a promising strategy to combat senescence-related diseases. Here we review the recent progresses of MSC-based therapies in the research of age-related diseases and the challenges in clinical application, proving further insight and reference for broad application prospects of MSCs in effectively combating senesce in the future.
Collapse
Affiliation(s)
- Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Tianyun Gao
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
7
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
8
|
Song Y, Zhang Y, Zhang X, Hu S, Wang J, Deng G, Zhou Z. AMPK/Sirt1-mediated inflammation is positively correlated with myocardial fibrosis during ageing. Acta Cardiol 2022; 77:826-835. [PMID: 36378531 DOI: 10.1080/00015385.2022.2119667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Cardiovascular disease is the leading cause of death in the world, and it increases dramatically with ageing. The objective of this study was to elucidate age-dependent molecular changes of inflammation and its correlation with the progression of myocardial fibrosis. METHODS Methods: Male SD rats aged 3, 6, 9 and 24 months were used in this study. H&E staining was used to assessed histo-morphological changes in different ages. Masson's trichrome staining was used to evaluate myocardial fibrosis. Immunofluorescence as well as western blot was carried out to detect the expression of vimentin. Real-time PCR was used to detect the level of pro-inflammatory chemokines MCP-1, IL1β, TNFα and IL-6. Western blotting was also carried out to detect p-AMPK, Sirt1, AC-NF-κB expression. RESULTS Myocardial pathological changes and fibrosis are positively correlated with age. Ageing rats showed an enhanced expression of inflammatory factors and the activation of cardiac fibroblasts increases. Meanwhile, the expression of p-AMPK, Sirt1 and downstream AC-NF-κB increased significantly during ageing. Furthermore, the 15-24 months of age in rats is the fastest changing stage of increased inflammation and decreased Sirt1 activity. CONCLUSIONS Ageing is an independent risk factor for the occurrence and development of myocardial fibrosis. During ageing, myocardial fibroblasts are activated, accompanied by an increase in extracellular matrix deposition. The inflammation mediated by AMPK/Sirt1/NF-κB signalling pathway is closely positively correlated with the activation of myocardial fibroblasts and the progression of myocardial fibrosis.
Collapse
Affiliation(s)
- Yanan Song
- Department of Pharmacy, Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, China.,Department of Pharmacy, Medical College of China Three Gorges University, Yichang, China
| | - Yaqing Zhang
- Department of Pharmacy, Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, China.,Department of Pharmacy, Medical College of China Three Gorges University, Yichang, China
| | - Xulan Zhang
- Department of Pharmacy, Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, China.,Department of Pharmacy, Medical College of China Three Gorges University, Yichang, China
| | - Shanshan Hu
- Department of Pharmacy, Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, China.,Department of Pharmacy, Medical College of China Three Gorges University, Yichang, China
| | - Jin'er Wang
- Department of Pharmacy, Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, China.,Department of Pharmacy, Medical College of China Three Gorges University, Yichang, China
| | - Gaigai Deng
- Department of Pharmacy, Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, China.,Department of Pharmacy, Medical College of China Three Gorges University, Yichang, China
| | - Zhiyong Zhou
- Department of Pharmacy, Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, China.,Department of Pharmacy, Medical College of China Three Gorges University, Yichang, China
| |
Collapse
|
9
|
Besse S, Nadaud S, Balse E, Pavoine C. Early Protective Role of Inflammation in Cardiac Remodeling and Heart Failure: Focus on TNFα and Resident Macrophages. Cells 2022; 11:1249. [PMID: 35406812 PMCID: PMC8998130 DOI: 10.3390/cells11071249] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/24/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiac hypertrophy, initiated by a variety of physiological or pathological stimuli (hemodynamic or hormonal stimulation or infarction), is a critical early adaptive compensatory response of the heart. The structural basis of the progression from compensated hypertrophy to pathological hypertrophy and heart failure is still largely unknown. In most cases, early activation of an inflammatory program reflects a reparative or protective response to other primary injurious processes. Later on, regardless of the underlying etiology, heart failure is always associated with both local and systemic activation of inflammatory signaling cascades. Cardiac macrophages are nodal regulators of inflammation. Resident macrophages mostly attenuate cardiac injury by secreting cytoprotective factors (cytokines, chemokines, and growth factors), scavenging damaged cells or mitochondrial debris, and regulating cardiac conduction, angiogenesis, lymphangiogenesis, and fibrosis. In contrast, excessive recruitment of monocyte-derived inflammatory macrophages largely contributes to the transition to heart failure. The current review examines the ambivalent role of inflammation (mainly TNFα-related) and cardiac macrophages (Mφ) in pathophysiologies from non-infarction origin, focusing on the protective signaling processes. Our objective is to illustrate how harnessing this knowledge could pave the way for innovative therapeutics in patients with heart failure.
Collapse
Affiliation(s)
| | | | | | - Catherine Pavoine
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (S.B.); (S.N.); (E.B.)
| |
Collapse
|
10
|
Ji H, Kwan AC, Chen M, Ouyang D, Ebinger JE, Bell SP, Niiranen T, Bello NA, Cheng S. Sex Differences in Myocardial and Vascular Aging. Circ Res 2022; 130:566-577. [PMID: 35175845 PMCID: PMC8863105 DOI: 10.1161/circresaha.121.319902] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is well known that cardiovascular disease manifests differently in women and men. The underlying causes of these differences during the aging lifespan are less well understood. Sex differences in cardiac and vascular phenotypes are seen in childhood and tend to track along distinct trajectories related to dimorphism in genetic factors as well as response to risk exposures and hormonal changes during the life course. These differences underlie sex-specific variation in cardiovascular events later in life, including myocardial infarction, heart failure, ischemic stroke, and peripheral vascular disease. With respect to cardiac phenotypes, females have intrinsically smaller body size-adjusted cardiac volumes and they tend to experience greater age-related wall thickening and myocardial stiffening with aging. With respect to vascular phenotypes, sexual dimorphism in both physiology and pathophysiology are also seen, including overt differences in blood pressure trajectories. The majority of sex differences in myocardial and vascular alterations that manifest with aging seem to follow relatively consistent trajectories from the very early to the very later stages of life. This review aims to synthesize recent cardiovascular aging-related research to highlight clinically relevant studies in diverse female and male populations that can inform approaches to improving the diagnosis, management, and prognosis of cardiovascular disease risks in the aging population at large.
Collapse
Affiliation(s)
- Hongwei Ji
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Alan C. Kwan
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Melanie Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David Ouyang
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joseph E. Ebinger
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susan P. Bell
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Teemu Niiranen
- Department of Internal Medicine, University of Turku, Turku, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Turku, Finland
| | - Natalie A. Bello
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW With cardiovascular disease (CVD) being the top cause of deaths worldwide, it is important to ensure healthy cardiovascular aging through enhanced understanding and prevention of adverse health effects exerted by external factors. This review aims to provide an updated understanding of environmental influences on cardiovascular aging, by summarizing epidemiological and mechanistic evidence for the cardiovascular health impact of major environmental stressors, including air pollution, endocrine-disrupting chemicals (EDCs), metals, and climate change. RECENT FINDINGS Recent studies generally support positive associations of exposure to multiple chemical environmental stressors (air pollution, EDCs, toxic metals) and extreme temperatures with increased risks of cardiovascular mortality and morbidity in the population. Environmental stressors have also been associated with a number of cardiovascular aging-related subclinical changes including biomarkers in the population, which are supported by evidence from relevant experimental studies. The elderly and patients are the most vulnerable demographic groups to majority environmental stressors. Future studies should account for the totality of individuals' exposome in addition to single chemical pollutants or environmental factors. Specific factors most responsible for the observed health effects related to cardiovascular aging remain to be elucidated.
Collapse
Affiliation(s)
- Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China.
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Ding P, Ouyang W, Luo J, Kwoh CK. Heterogeneous information network and its application to human health and disease. Brief Bioinform 2021; 21:1327-1346. [PMID: 31566212 DOI: 10.1093/bib/bbz091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 12/11/2022] Open
Abstract
The molecular components with the functional interdependencies in human cell form complicated biological network. Diseases are mostly caused by the perturbations of the composite of the interaction multi-biomolecules, rather than an abnormality of a single biomolecule. Furthermore, new biological functions and processes could be revealed by discovering novel biological entity relationships. Hence, more and more biologists focus on studying the complex biological system instead of the individual biological components. The emergence of heterogeneous information network (HIN) offers a promising way to systematically explore complicated and heterogeneous relationships between various molecules for apparently distinct phenotypes. In this review, we first present the basic definition of HIN and the biological system considered as a complex HIN. Then, we discuss the topological properties of HIN and how these can be applied to detect network motif and functional module. Afterwards, methodologies of discovering relationships between disease and biomolecule are presented. Useful insights on how HIN aids in drug development and explores human interactome are provided. Finally, we analyze the challenges and opportunities for uncovering combinatorial patterns among pharmacogenomics and cell-type detection based on single-cell genomic data.
Collapse
Affiliation(s)
- Pingjian Ding
- School of Computer Science, University of South China, Hengyang, China
| | - Wenjue Ouyang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Chee-Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Zhu QY, Tai S, Tang L, Xiao YC, Tang JJ, Chen YQ, Shen L, He J, Ouyang MQ, Zhou SH. N-acetyl cysteine ameliorates aortic fibrosis by promoting M2 macrophage polarization in aging mice. Redox Rep 2021; 26:170-175. [PMID: 34530696 PMCID: PMC8451627 DOI: 10.1080/13510002.2021.1976568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Vascular fibrosis is a universal phenomenon associated with aging, and oxidative stress plays an important role in the genesis of vascular damage in line with the aging process. However, whether antioxidants can ameliorate vascular fibrosis remains unclear. Objectives: The present study was to determine antioxidant N-acetylcysteine (NAC) could ameliorates aortic fibrosis in aging wild-type C57BL/6 mice. Methods: The aortas were harvested from both 12-week and 60-week wild-type mice. The 60-week mice were treated with and without the NAC for 12 weeks starting at the age of 48 weeks. Hematoxylin and eosin (H&E) staining and Masson's trichrome staining of aortic samples were performed, and the levels of reactive oxygen species (ROS), RNA expression of GAPDH, TNF-α, MCP-1, IL-6, IL-10, IL-4, SIRT-1, SIRT-3, FOXO-1, and macrophage polarization were determined. Results: There is a positive relationship between collagen deposition and the M1/M2 macrophage ratio in the aortic wall of aged wild-type C57BL/6 mice. The higher collagen area percentage in the aortas of 60-week-old mice than in 12-week-old mice was reversed by NAC. NAC could not impact the total number of macrophages, but partly promoted M2 macrophage polarization. By performing qRT-PCR using aortic samples from these mice, we identified that SIRT-1, SIRT-3, FOXO-1 could be somehow responsible for aging-related fibrosis. Conclusions: NAC ameliorates aortic fibrosis in aging wild type mice partly by promoting M2 macrophage polarization.
Collapse
Affiliation(s)
- Qing-Yi Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shi Tai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Liang Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yi-Chao Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jian-Jun Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ya-Qin Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Li Shen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jia He
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ming-Qi Ouyang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Sheng-Hua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
14
|
Ye L, Huang J, Xiang X, Song S, Huang G, Ruan Y, Wu S. 17β-Estradiol alleviates cardiac aging induced by d-galactose by downregulating the methylation of autophagy-related genes. Steroids 2021; 170:108829. [PMID: 33811924 DOI: 10.1016/j.steroids.2021.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Intrinsic cardiac aging increases cardiovascular mortality and morbidity in the elderly. Estrogen helps reduce the risk of cardiovascular disease in women, with 17β-estradiol (17β-E2) activating the autophagy pathway and inhibiting vascular aging, mainly through estrogen receptor alpha (ER α) to prevent atherosclerosis. Abnormal methylation of autophagy-related genes can impact autophagic regulation. We hypothesized that 17β-E2, specifically 17β-E2 α, downregulates the methylation of autophagy factors and delays cardiac aging. Here, we used d-galactose, 17β-E2, and ER α receptor antagonist methyl-piperidino-pyrazole (MPP) to establish different aging models in mice divided into four groups, namely negative control, D.gal, D.gal + 17β-E2, and D.gal + 17β-E2 + MPP groups. Echocardiography showed that compared with the D.gal group group, the D.gal + 17β-E2 showed substantially increased cardiac function. The level of cardiac aging markers in mice in the D.gal + 17β-E2 group was lower than that in mice in the D.gal group. Beclin1, LC3, and Atg5 mRNA and protein expression levels in mice in the D.gal + 17β-E2 group were significantly increased compared with those in the D.gal group. Additionally, Beclin1, LC3, and Atg5 methylation levels were significantly decreased in the D.gal + 17β-E2 group. All the above values of the D.gal + 17β-E2 + MPP group were between those of the D.gal and D.gal + 17β-E2 groups. The expression of Dnmt1, Dnmt2, and Dnmt3A genes was the highest in the D.gal group. In summary, our results suggest that 17β-E2, specifically 17β-E2 α, promotes autophagy by downregulating the methylation of autophagy factors, thereby inhibiting galactose-induced cardiac aging in mice. 17β-E2 may be a potential therapeutic target to mitigate the effects of cardiac aging.
Collapse
Affiliation(s)
- Lili Ye
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Cardiology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Guangzhou, Guangdong 510700, China
| | - Jianming Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuting Xiang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shicong Song
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanshen Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Saizhu Wu
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
15
|
Rosa TDS, Corrêa HL, Barbosa LP, Santos PAD, Leite PLDA, Aguiar SS, Deus LA, Maciel LA, Neves RVP, Simoes HG. Age-related Decline in Renal Function is Attenuated in Master Athletes. Int J Sports Med 2021; 42:889-895. [PMID: 33684951 DOI: 10.1055/a-1332-1594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study analyzed the kidney function and biomarkers of health in lifelong-trained sprinters and endurance runners, and compared them to untrained aged-matched and young controls. Sixty-two men (21-66 yr.) were recruited and allocated as master athletes from sprints (n=25), master athletes from endurance events (n=8), untrained middle-aged (n=14) and young controls (n=15). Participants underwent anamnesis, anthropometric measures and blood sampling for biochemical analyses of klotho, FGF23 and estimated glomerular filtration rate. Master sprinters presented better kidney function in relation to endurance athletes and their untrained peers (P<0.0001). A number of biochemical variables were observed that negatively (i. e., GDF-15, TGF-Beta, IL-18) or positively (i. e., klotho/FGF23 ratio and sestrin-2) correlated with eGFR. Sestrin-2 presented the strongest association with eGFR (r=0.5, P=0.03). Results also revealed that lifelong-trained individuals presented the highest probability of having better values for cystatin C and thus an estimated glomerular filtration rate that was 37-49% higher than untrained peers. Master sprinters presented better kidney function in relation to endurance athletes and middle-aged untrained peers. Sestrin-2 may play a role in exercise-induced kidney function protection.
Collapse
Affiliation(s)
- Thiago Dos Santos Rosa
- Graduate Program on Physical Education and Health, Catholic University of Brasilia, Taguatinga, Brazil
| | - Hugo Luca Corrêa
- Graduate Program on Physical Education and Health, Catholic University of Brasilia, Taguatinga, Brazil
| | - Lucas Pinheiro Barbosa
- Graduate Program on Physical Education and Health, Catholic University of Brasilia, Taguatinga, Brazil
| | | | | | - Samuel Silva Aguiar
- Graduate Program on Physical Education and Health, Catholic University of Brasilia, Taguatinga, Brazil
| | - Lysleine Alves Deus
- Graduate Program on Physical Education and Health, Catholic University of Brasilia, Taguatinga, Brazil
| | - Larissa Alves Maciel
- Graduate Program on Physical Education and Health, Catholic University of Brasilia, Taguatinga, Brazil
| | | | - Herbert Gustavo Simoes
- Graduate Program on Physical Education and Health, Catholic University of Brasilia, Taguatinga, Brazil
| |
Collapse
|
16
|
Moudgil R, Samra G, Ko KA, Vu HT, Thomas TN, Luo W, Chang J, Reddy AK, Fujiwara K, Abe JI. Topoisomerase 2B Decrease Results in Diastolic Dysfunction via p53 and Akt: A Novel Pathway. Front Cardiovasc Med 2020; 7:594123. [PMID: 33330654 PMCID: PMC7709875 DOI: 10.3389/fcvm.2020.594123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023] Open
Abstract
Diastolic dysfunction is condition of a stiff ventricle and a function of aging. It causes significant cardiovascular mortality and morbidity, and in fact, three million Americans are currently suffering from this condition. To date, all the pharmacological clinical trials have been negative. The lack of success in attenuating/ameliorating diastolic dysfunction stems from lack of duplication of myriads of clinical manifestation in pre-clinical settings. Here we report, a novel genetically engineered mice which may represents a preclinical model of human diastolic dysfunction to some extent. Topoisomerase 2 beta (Top2b) is an important enzyme in transcriptional activation of some inducible genes through transient double-stranded DNA breakage events around promoter regions. We created a conditional, tissue-specific, inducible Top2b knockout mice in the heart. Serendipitously, echocardiographic parameters and more invasive analysis of left ventricular function with pressure–volume loops show features of diastolic dysfunction. This was also confirmed histologically. At the cellular level, the Top2b knockdown showed morphological changes and molecular signaling akin to human diastolic dysfunction. Reverse phase protein analysis showed activation of p53 and inhibition of, Akt, as the possible mediators of diastolic dysfunction. Finally, activation of p53 and inhibition of Akt were confirmed in myocardial biopsy samples obtained from human diastolic dysfunctional hearts. Thus, we report for the first time, a Top2b downregulated preclinical mice model for diastolic dysfunction which demonstrates that Akt and p53 are the possible mediators of the pathology, hence representing novel and viable targets for future therapeutic interventions in diastolic dysfunction.
Collapse
Affiliation(s)
- Rohit Moudgil
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH, United States.,Department of Cardiology, Division of Internal Medicine MD Anderson Cancer Center, Houston, TX, United States
| | - Gursharan Samra
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Kyung Ae Ko
- Department of Cardiology, Division of Internal Medicine MD Anderson Cancer Center, Houston, TX, United States
| | - Hang Thi Vu
- Department of Cardiology, Division of Internal Medicine MD Anderson Cancer Center, Houston, TX, United States
| | - Tamlyn N Thomas
- Department of Cardiology, Division of Internal Medicine MD Anderson Cancer Center, Houston, TX, United States
| | - Weijia Luo
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, United States
| | - Jiang Chang
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, United States
| | - Anilkumar K Reddy
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Keigi Fujiwara
- Department of Cardiology, Division of Internal Medicine MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, Division of Internal Medicine MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
17
|
Crosstalk between cardiomyocytes and noncardiomyocytes is essential to prevent cardiomyocyte apoptosis induced by proteasome inhibition. Cell Death Dis 2020; 11:783. [PMID: 32951004 PMCID: PMC7502079 DOI: 10.1038/s41419-020-03005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Heart is a multi-cellular organ made up of various cell types interacting with each other. Cardiomyocytes may benefit or suffer from crosstalk with noncardiomyocytes in response to diverse kinds of cardiac stresses. Proteasome dysfunction is a common cardiac stress which causes cardiac proteotoxicity and contributes to cardiac diseases such as heart failure and myocardial infarction. The role of crosstalk between cardiomyocytes and noncardiomyocytes in defense of cardiac proteotoxicity remains unknown. Here, we report a cardiomyocyte-specific survival upon proteasome inhibition in a heterogeneous culture consisting of cardiomyocytes and other three major cardiac cell types. Conversely, cardiomyocyte apoptosis is remarkably induced by proteasome inhibition in a homogeneous culture consisting of a majority of cardiomyocytes, demonstrating an indispensable role of noncardiomyocytes in the prevention of cardiomyocyte apoptosis resulting from proteasome inhibition. We further show that cardiomyocytes express brain natriuretic peptide (BNP) as an extracellular molecule in response to proteasome inhibition. Blockade of BNP receptor on noncardiomyocytes significantly exacerbated the cardiomyocyte apoptosis, indicating a paracrine function of cardiomyocyte-released extracellular BNP in activation of a protective feedback from noncardiomyocytes. Finally, we demonstrate that proteasome inhibition-activated transcriptional up-regulation of BNP in cardiomyocytes was associated with the dissociation of repressor element 1 silencing transcription factor (REST)/ histone deacetylase 1 (HDAC1) repressor complex from BNP gene promoter. Consistently, the induction of BNP could be further augmented by the treatment of HDAC inhibitors. We conclude that the crosstalk between cardiomyocytes and noncardiomyocytes plays a crucial role in the protection of cardiomyocytes from proteotoxicity stress, and identify cardiomyocyte-released BNP as a novel paracrine signaling molecule mediating this crosstalk. These findings provide new insights into the key regulators and cardioprotective mechanism in proteasome dysfunction-related cardiac diseases.
Collapse
|
18
|
Ruiz-Meana M, Bou-Teen D, Ferdinandy P, Gyongyosi M, Pesce M, Perrino C, Schulz R, Sluijter JPG, Tocchetti CG, Thum T, Madonna R. Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovasc Res 2020; 116:1835-1849. [DOI: 10.1093/cvr/cvaa132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/25/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Advanced age is a major predisposing risk factor for the incidence of coronary syndromes and comorbid conditions which impact the heart response to cardioprotective interventions. Advanced age also significantly increases the risk of developing post-ischaemic adverse remodelling and heart failure after ischaemia/reperfusion (IR) injury. Some of the signalling pathways become defective or attenuated during ageing, whereas others with well-known detrimental consequences, such as glycoxidation or proinflammatory pathways, are exacerbated. The causative mechanisms responsible for all these changes are yet to be elucidated and are a matter of active research. Here, we review the current knowledge about the pathophysiology of cardiac ageing that eventually impacts on the increased susceptibility of cells to IR injury and can affect the efficiency of cardioprotective strategies.
Collapse
Affiliation(s)
- Marisol Ruiz-Meana
- Department of Cardiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red-CV, CIBER-CV, Madrid, Spain
| | - Diana Bou-Teen
- Department of Cardiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red-CV, CIBER-CV, Madrid, Spain
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mariann Gyongyosi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| |
Collapse
|
19
|
Protein and Mitochondria Quality Control Mechanisms and Cardiac Aging. Cells 2020; 9:cells9040933. [PMID: 32290135 PMCID: PMC7226975 DOI: 10.3390/cells9040933] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) is the number one cause of death in the United States. Advancing age is a primary risk factor for developing CVD. Estimates indicate that 20% of the US population will be ≥65 years old by 2030. Direct expenditures for treating CVD in the older population combined with indirect costs, secondary to lost wages, are predicted to reach $1.1 trillion by 2035. Therefore, there is an eminent need to discover novel therapeutic targets and identify new interventions to delay, lessen the severity, or prevent cardiovascular complications associated with advanced age. Protein and organelle quality control pathways including autophagy/lysosomal and the ubiquitin-proteasome systems, are emerging contributors of age-associated myocardial dysfunction. In general, two findings have sparked this interest. First, strong evidence indicates that cardiac protein degradation pathways are altered in the heart with aging. Second, it is well accepted that damaged and misfolded protein aggregates and dysfunctional mitochondria accumulate in the heart with age. In this review, we will: (i) define the different protein and mitochondria quality control mechanisms in the heart; (ii) provide evidence that each quality control pathway becomes dysfunctional during cardiac aging; and (iii) discuss current advances in targeting these pathways to maintain cardiac function with age.
Collapse
|
20
|
Abstract
Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.
Collapse
|
21
|
Wang S, Kandadi MR, Ren J. Double knockout of Akt2 and AMPK predisposes cardiac aging without affecting lifespan: Role of autophagy and mitophagy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1865-1875. [PMID: 31109453 PMCID: PMC6530587 DOI: 10.1016/j.bbadis.2018.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Increased age often leads to a gradual deterioration in cardiac geometry and contractile function although the precise mechanism remains elusive. Both Akt and AMPK play an essential role in the maintenance of cardiac homeostasis. This study examined the impact of ablation of Akt2 (the main cardiac isoform of Akt) and AMPKα2 on development of cardiac aging and the potential mechanisms involved with a focus on autophagy. Cardiac geometry, contractile, and intracellular Ca2+ properties were evaluated in young (4-month-old) and old (12-month-old) wild-type (WT) and Akt2-AMPK double knockout mice using echocardiography, IonOptix® edge-detection and fura-2 techniques. Levels of autophagy and mitophagy were evaluated using western blot. Our results revealed that increased age (12 months) did not elicit any notable effects on cardiac geometry, contractile function, morphology, ultrastructure, autophagy and mitophagy, although Akt2-AMPK double knockout predisposed aging-related unfavorable changes in geometry (heart weight, LVESD, LVEDD, cross-sectional area and interstitial fibrosis), TEM ultrastructure, and function (fractional shortening, peak shortening, maximal velocity of shortening/relengthening, time-to-90% relengthening, intracellular Ca2+ release and clearance rate). Double knockout of Akt2 and AMPK unmasked age-induced cardiac autophagy loss including decreased Atg5, Atg7, Beclin1, LC3BII-to-LC3BI ratio and increased p62. Double knockout of Akt2 and AMPK also unmasked age-related loss in mitophagy markers PTEN-induced putative kinase 1 (Pink1), Parkin, Bnip3, and FundC1, the mitochondrial biogenesis cofactor PGC-1α, and lysosomal biogenesis factor TFEB. In conclusion, our data indicate that Akt2-AMPK double ablation predisposes cardiac aging possibly related to compromised autophagy and mitophagy. This article is part of a Special Issue entitled: Genetic and epigenetic regulation of aging and longevity edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Shuyi Wang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA; Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai 200032, China
| | - Machender R Kandadi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA; Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai 200032, China.
| |
Collapse
|
22
|
Aldehyde Dehydrogenase 2 (ALDH2) and Aging: Is There a Sensible Link? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:237-253. [DOI: 10.1007/978-981-13-6260-6_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Conditional deletion of Rcan1 predisposes to hypertension-mediated intramural hematoma and subsequent aneurysm and aortic rupture. Nat Commun 2018; 9:4795. [PMID: 30442942 PMCID: PMC6237779 DOI: 10.1038/s41467-018-07071-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Aortic intramural hematoma (IMH) can evolve toward reabsorption, dissection or aneurysm. Hypertension is the most common predisposing factor in IMH and aneurysm patients, and the hypertensive mediator angiotensin-II induces both in mice. We have previously shown that constitutive deletion of Rcan1 isoforms prevents Angiotensin II-induced aneurysm in mice. Here we generate mice conditionally lacking each isoform or all isoforms in vascular smooth muscle cells, endothelial cells, or ubiquitously, to determine the contribution to aneurysm development of Rcan1 isoforms in vascular cells. Surprisingly, conditional Rcan1 deletion in either vascular cell-type induces a hypercontractile phenotype and aortic medial layer disorganization, predisposing to hypertension-mediated aortic rupture, IMH, and aneurysm. These processes are blocked by ROCK inhibition. We find that Rcan1 associates with GSK-3β, whose inhibition decreases myosin activation. Our results identify potential therapeutic targets for intervention in IMH and aneurysm and call for caution when interpreting phenotypes of constitutively and inducibly deficient mice.
Collapse
|
24
|
Lim KH, Kim GR. Inhibitory effect of naringenin on LPS-induced skin senescence by SIRT1 regulation in HDFs. BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-018-0035-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Shrestha A, Pun NT, Park PH. ZFP36L1 and AUF1 Induction Contribute to the Suppression of Inflammatory Mediators Expression by Globular Adiponectin via Autophagy Induction in Macrophages. Biomol Ther (Seoul) 2018; 26:446-457. [PMID: 30001609 PMCID: PMC6131013 DOI: 10.4062/biomolther.2018.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 01/07/2023] Open
Abstract
Adiponectin, a hormone predominantly originated from adipose tissue, has exhibited potent anti-inflammatory properties. Accumulating evidence suggests that autophagy induction plays a crucial role in anti-inflammatory responses by adiponectin. However, underlying molecular mechanisms are still largely unknown. Association of Bcl-2 with Beclin-1, an autophagy activating protein, prevents autophagy induction. We have previously shown that adiponectin-induced autophagy activation is mediated through inhibition of interaction between Bcl-2 and Beclin-1. In the present study, we examined the molecular mechanisms by which adiponectin modulates association of Bcl-2 and Beclin-1 in macrophages. Herein, we demonstrated that globular adiponectin (gAcrp) induced increase in the expression of AUF1 and ZFP36L1, which act as mRNA destabilizing proteins, both in RAW 264.7 macrophages and primary peritoneal macrophages. In addition, gene silencing of AUF1 and ZFP36L1 caused restoration of decrease in Bcl-2 expression and Bcl-2 mRNA half-life by gAcrp, indicating crucial roles of AUF1 and ZFP36L1 induction in Bcl-2 mRNA destabilization by gAcrp. Moreover, knock-down of AUF1 and ZFP36L1 enhanced interaction of Bcl-2 with Beclin-1, and subsequently prevented gAcrp-induced autophagy activation, suggesting that AUF1 and ZFP36L1 induction mediates gAcrp-induced autophagy activation via Bcl-2 mRNA destabilization. Furthermore, suppressive effects of gAcrp on LPS-stimulated inflammatory mediators expression were prevented by gene silencing of AUF1 and ZFP36L1 in macrophages. Taken together, these results suggest that AUF1 and ZFP36L1 induction critically contributes to autophagy induction by gAcrp and are promising targets for anti-inflammatory responses by gAcrp.
Collapse
Affiliation(s)
| | | | - Pil-Hoon Park
- Corresponding Author: E-mail: , Tel: +82-53-810-2826, Fax: +82-53-810-4654
| |
Collapse
|
26
|
Corey SJ, Jha J, McCart EA, Rittase WB, George J, Mattapallil JJ, Mehta H, Ognoon M, Bylicky MA, Summers TA, Day RM. Captopril mitigates splenomegaly and myelofibrosis in the Gata1 low murine model of myelofibrosis. J Cell Mol Med 2018; 22:4274-4282. [PMID: 29971909 PMCID: PMC6111823 DOI: 10.1111/jcmm.13710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/05/2018] [Indexed: 01/06/2023] Open
Abstract
Allogeneic stem cell transplantation is currently the only curative therapy for primary myelofibrosis (MF), while the JAK2 inhibitor, ruxolitinib. Has been approved only for palliation. Other therapies are desperately needed to reverse life-threatening MF. However, the cell(s) and cytokine(s) that promote MF remain unclear. Several reports have demonstrated that captopril, an inhibitor of angiotensin-converting enzyme that blocks the production of angiotensin II (Ang II), mitigates fibrosis in heart, lung, skin and kidney. Here, we show that captopril can mitigate the development of MF in the Gata1low mouse model of primary MF. Gata1low mice were treated with 79 mg/kg/d captopril in the drinking water from 10 to 12 months of age. At 13 months of age, bone marrows were examined for fibrosis, megakaryocytosis and collagen expression; spleens were examined for megakaryocytosis, splenomegaly and collagen expression. Treatment of Gata1low mice with captopril in the drinking water was associated with normalization of the bone marrow cellularity; reduced reticulin fibres, splenomegaly and megakaryocytosis; and decreased collagen expression. Our findings suggest that treating with the ACE inhibitors captopril has a significant benefit in overcoming pathological changes associated with MF.
Collapse
Affiliation(s)
- Seth J. Corey
- Division of Pediatric Hematology, Oncology & Stem Cell TransplantationThe Massey Cancer Center at Virginia Commonwealth UniversityRichmondVAUSA
| | - Jyoti Jha
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Elizabeth A. McCart
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - William B. Rittase
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Jeffy George
- Department of MicrobiologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Joseph J. Mattapallil
- Department of MicrobiologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Hrishikesh Mehta
- Division of Pediatric Hematology, Oncology & Stem Cell TransplantationThe Massey Cancer Center at Virginia Commonwealth UniversityRichmondVAUSA
| | - Mungunsukh Ognoon
- Department of AnesthesiologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Michelle A. Bylicky
- Neuroscience Graduate ProgramUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Thomas A. Summers
- Department of PathologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Regina M. Day
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| |
Collapse
|
27
|
Attenhofer Jost C, Müller P, Bertel O, Naegeli B, Scharf C, Wenaweser P, Amann FW. [The Old-Age Heart]. PRAXIS 2018; 107:894-901. [PMID: 30086692 DOI: 10.1024/1661-8157/a003039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Old-Age Heart Abstract. Knowledge of cardiovascular changes in old age and their therapeutic options is important. Old age can lead to hypertrophy of the left ventricle, diastolic dysfunction, heart valve changes and pulmonary hypertension. Patients often develop arterial hypertension. Valvular changes are common in people over 100 years of age (aortic stenosis and mitral insufficiency). The risk of coronary heart disease is 35 % for men and 24 % for women. In old age, sinus node dysfunction and atrial fibrillation are common. 25 % of all strokes are cardiac embolisms in atrial fibrillation. Cardiac interventions in the elderly are increasingly frequent and include coronary catheter revascularization or valve interventions (percutaneous aortic valve replacement or MitraClip). Optimal therapy in old age includes not only cardiovascular interventions also include drugs and a lifestyle modification and mainly serves to improve the quality of life.
Collapse
|
28
|
The aging heart. Clin Sci (Lond) 2018; 132:1367-1382. [PMID: 29986877 DOI: 10.1042/cs20171156] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
As the elderly segment of the world population increases, it is critical to understand the changes in cardiac structure and function during the normal aging process. In this review, we outline the key molecular pathways and cellular processes that underlie the phenotypic changes in the heart and vasculature that accompany aging. Reduced autophagy, increased mitochondrial oxidative stress, telomere attrition, altered signaling in insulin-like growth factor, growth differentiation factor 11, and 5'- AMP-activated protein kinase pathways are among the key molecular mechanisms underlying cardiac aging. Aging promotes structural and functional changes in the atria, ventricles, valves, myocardium, pericardium, the cardiac conduction system, and the vasculature. We highlight the factors known to accelerate and attenuate the intrinsic aging of the heart and vessels in addition to potential preventive and therapeutic avenues. A greater understanding of the processes involved in cardiac aging may facilitate our ability to mitigate the escalating burden of CVD in older individuals and promote healthy cardiac aging.
Collapse
|
29
|
Wang S, Ge W, Harns C, Meng X, Zhang Y, Ren J. Ablation of toll-like receptor 4 attenuates aging-induced myocardial remodeling and contractile dysfunction through NCoRI-HDAC1-mediated regulation of autophagy. J Mol Cell Cardiol 2018; 119:40-50. [PMID: 29660306 DOI: 10.1016/j.yjmcc.2018.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/31/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023]
Abstract
Aging is usually accompanied with overt structural and functional changes as well as suppressed autophagy in the heart although the precise regulatory mechanisms are somewhat unknown. Here we evaluated the role of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in cardiac aging and the underlying mechanism with a focus on autophagy. Cardiac geometry and function were monitored in young or old wild-type (WT) and TLR4 knockout (TLR4-/-) mice using echocardiography, IonOptix® edge-detection and fura-2 techniques. Levels of autophagy and mitophagy, nuclear receptor corepressor 1 (NCoR1) and histone deacetylase I (HDAC1) were examined using western blot. Transmission electronic microscopy (TEM) was employed to monitor myocardial ultrastructure. Our results revealed that TLR4 ablation alleviated advanced aging (24 months)-induced changes in myocardial remodeling (increased heart weight, chamber size, cardiomyocyte cross-sectional area), contractile function and intracellular Ca2+ handling as well as autophagy and mitophagy [Beclin-1, Atg5, LC3B, PTEN-induced putative kinase 1 (PINK1), Parkin and p62]. Aging downregulated levels of NCoR1 and HDAC1 as well as their interaction, the effects were significantly attenuated or negated by TLR4 ablation. Advanced aging disturbed myocardial ultrastructure as evidenced by loss of myofilament alignment and swollen mitochondria, which was obliterated by TLR4 ablation. Moreover, aging suppressed autophagy (GFP-LC3B puncta) in neonatal mouse cardiomyocytes, the effect of which was negated by the TLR4 inhibitor CLI-095. Inhibition of HDCA1 using apicidin cancelled off CLI095-induced beneficial response of GFP-LC3B puncta against aging. Our data collectively indicate a role for TLR4-mediated autophagy in cardiac remodeling and contractile dysfunction in aging through a HDAC1-NCoR1-dependent mechanism.
Collapse
Affiliation(s)
- Shuyi Wang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Ge
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA; Department of Geriatrics, Xijing Hospital Air Force University, Xi'an 710032, China
| | - Carrie Harns
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Yingmei Zhang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
30
|
Song H, Feng X, Zhang M, Jin X, Xu X, Wang L, Ding X, Luo Y, Lin F, Wu Q, Liang G, Yu T, Liu Q, Zhang Z. Crosstalk between lysine methylation and phosphorylation of ATG16L1 dictates the apoptosis of hypoxia/reoxygenation-induced cardiomyocytes. Autophagy 2018; 14:825-844. [PMID: 29634390 DOI: 10.1080/15548627.2017.1389357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Post-translational modifications of autophagy-related (ATG) genes are necessary to modulate their functions. However, ATG protein methylation and its physiological role have not yet been elucidated. The methylation of non-histone proteins by SETD7, a SET domain-containing lysine methyltransferase, is a novel regulatory mechanism to control cell protein function in response to various cellular stresses. Here we present evidence that the precise activity of ATG16L1 protein in hypoxia/reoxygenation (H/R)-treated cardiomyocytes is regulated by a balanced methylation and phosphorylation switch. We first show that H/R promotes autophagy and decreases SETD7 expression, whereas autophagy inhibition by 3-MA increases SETD7 level in cardiomyocytes, implying a tight correlation between autophagy and SETD7. Then we demonstrate that SETD7 methylates ATG16L1 at lysine 151 while KDM1A/LSD1 (lysine demethylase 1A) removes this methyl mark. Furthermore, we validate that this methylation at lysine 151 impairs the binding of ATG16L1 to the ATG12-ATG5 conjugate, leading to inhibition of autophagy and increased apoptosis in H/R-treated cardiomyocytes. However, the cardiomyocytes with shRNA-knocked down SETD7 or inhibition of SETD7 activity by a small molecule chemical, display increased autophagy and decreased apoptosis following H/R treatment. Additionally, methylation at lysine 151 inhibits phosphorylation of ATG16L1 at S139 by CSNK2 which was previously shown to be critical for autophagy maintenance, and vice versa. Together, our findings define a novel modification of ATG16L1 and highlight the importance of an ATG16L1 phosphorylation-methylation switch in determining the fate of H/R-treated cardiomyocytes.
Collapse
Affiliation(s)
- Huiwen Song
- a Department of Cardiology , Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences ; Shanghai , China.,b Longju Medical Research Center ; Key Laboratory of Basic Pharmacology of Ministry of Education ; Zunyi Medical University ; Zunyi , China
| | - Xing Feng
- b Longju Medical Research Center ; Key Laboratory of Basic Pharmacology of Ministry of Education ; Zunyi Medical University ; Zunyi , China.,c Rutgers Cancer Institute of New Jersey ; Rutgers University ; New Brunswick , NJ USA
| | - Min Zhang
- d Laboratory of Cardiovascular Immunology; Key Laboratory of Biological Targeted Therapy of the Ministry of Education; Institute of Cardiology; Union Hospital; Tongji Medical College of Huazhong University of Science and Technology ; Wuhan , China
| | - Xian Jin
- e Department of Cardiology ; Minhang Hospital ; Fudan University ; Shanghai , China
| | - Xiangdong Xu
- a Department of Cardiology , Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences ; Shanghai , China
| | - Lin Wang
- f Department of Cardiology ; Tongji Hospital ; Tongji Medical College ; Huazhong University of Science and Technology ; Wuhan , China
| | - Xue Ding
- g Department of Cardiology ; the First Affiliated Hospital ; Harbin Medical University ; Harbin , China
| | - Yunmei Luo
- b Longju Medical Research Center ; Key Laboratory of Basic Pharmacology of Ministry of Education ; Zunyi Medical University ; Zunyi , China
| | - Fengqin Lin
- b Longju Medical Research Center ; Key Laboratory of Basic Pharmacology of Ministry of Education ; Zunyi Medical University ; Zunyi , China
| | - Qin Wu
- h Key Laboratory of Basic Pharmacology of Ministry of Education ; Zunyi Medical University ; Zunyi , China
| | - Guiyou Liang
- i Department of Cardiovascular Surgery ; Affiliated Hospital of Zunyi Medical University ; Zunyi , China
| | - Tian Yu
- j Department of Anesthesia ; Affiliated Hospital of Zunyi Medical University ; Zunyi , China
| | - Qigong Liu
- f Department of Cardiology ; Tongji Hospital ; Tongji Medical College ; Huazhong University of Science and Technology ; Wuhan , China
| | - Zhiyong Zhang
- b Longju Medical Research Center ; Key Laboratory of Basic Pharmacology of Ministry of Education ; Zunyi Medical University ; Zunyi , China.,k Department of Surgery ; Robert-Wood-Johnson Medical School University Hospital ; Rutgers University ; State University of New Jersey ; New Brunswick , NJ USA
| |
Collapse
|
31
|
An Intervention Target for Myocardial Fibrosis: Autophagy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6215916. [PMID: 29850542 PMCID: PMC5911341 DOI: 10.1155/2018/6215916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
Myocardial fibrosis (MF) is the result of metabolic imbalance of collagen synthesis and metabolism, which is widespread in various cardiovascular diseases. Autophagy is a lysosomal degradation pathway which is highly conserved. In recent years, research on autophagy has been increasing and the researchers have also become cumulatively aware of the specified association between autophagy and MF. This review highlights the role of autophagy in MF and the potential effects through the administration of medicine.
Collapse
|
32
|
Xu Q, Fan SB, Wan YL, Liu XL, Wang L. The potential long-term neurological improvement of early hyperbaric oxygen therapy on hemorrhagic stroke in the diabetics. Diabetes Res Clin Pract 2018; 138:75-80. [PMID: 29408705 DOI: 10.1016/j.diabres.2018.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/29/2017] [Accepted: 01/23/2018] [Indexed: 12/09/2022]
Abstract
AIMS Although Hyperbaric oxygen therapy (HyperBOT) attract our attention successfully these days, it is still full of controversy on the treatment of acute stroke. The aim of this study is to assess the potential long-term neurological consequences and safety of using HyperBOT on intracerebral hemorrhage (ICH) in the diabetics. METHODS In this prospective, randomized controlled trial, 79 diabetes patients suffering from acute ICH were randomized to treat for 60 min in a monoplace hyperbaric chamber pressurized with pure oxygen to 2.5-atm absolute (ATA) in the HyperBOT group or 1.5 ATA in the normobaric oxygen therapy (NormBOT) group, which was performed as control. Both short-term and long-term neurological consequences were studied and compared in each group on National Institutes of Health Stroke Scale [NIHSS], Barthel Index, modified Rankin Scale [mRS] and Glasgow Outcome Scale [GOS]. The related complications or side-events of all patients were recorded as well at the final follow-up of six months after onset. RESULTS No distinct difference was observed between each group at one month follow-up. However, in the long-term follow-up of six months, a higher frequency of patients in the HyperBOT group resulted into good outcome with a relative high neurological consequence compared with the NormBOT group (Barthel Index: 85.1% versus 65.6%, P = 0.080; mRS: 89.4% versus 68.8%, P = 0.045; GOS: 83.0% versus 62.5%, P = 0.073; NIHSS: 80.9% versus 56.2%, P = 0.035). CONCLUSIONS Early HyperBOT was found to be safe and effective with regards to the long-term neurological outcome of diabetic patients suffering from ICH.
Collapse
Affiliation(s)
- Qian Xu
- Department of Brain Surgery, Ningbo Zhenhai People Hospital (Ningbo Seventh Hospital), Zhejiang 315202, China.
| | - Shuang-Bo Fan
- Department of Brain Surgery, Ningbo Zhenhai People Hospital (Ningbo Seventh Hospital), Zhejiang 315202, China.
| | - Yu-Lin Wan
- Department of Brain Surgery, Ningbo Zhenhai People Hospital (Ningbo Seventh Hospital), Zhejiang 315202, China.
| | - Xian-Lan Liu
- Department of Brain Surgery, Ningbo Zhenhai People Hospital (Ningbo Seventh Hospital), Zhejiang 315202, China.
| | - Liang Wang
- Department of Brain Surgery, Ningbo Zhenhai People Hospital (Ningbo Seventh Hospital), Zhejiang 315202, China.
| |
Collapse
|
33
|
Freire IV, Casotti CA, Ribeiro ÍJS, Silva JRD, Barbosa AAL, Pereira R. Daily sodium intake influences the relationship between angiotensin-converting enzyme gene insertion/deletion polymorphism and hypertension in older adults. J Clin Hypertens (Greenwich) 2018; 20:541-550. [PMID: 29521003 PMCID: PMC8031090 DOI: 10.1111/jch.13224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 01/02/2023]
Abstract
The angiotensin-converting enzyme insertion/deletion (I/D) gene polymorphism has been widely reported as being associated with hypertension; however, most studies do not consider environmental/behavioral factors. This study aimed to investigate the relationship among angiotensin-converting enzyme insertion/deletion gene polymorphism, environmental/behavioral factors, and hypertension in community-dwelling elderly individuals. All community-dwelling older adults from Aiquara, Bahia, Brazil, were invited to take part in this study. After exclusions, 234 elderly participants were submitted to a data collection, which included sociodemographics, lifestyle and health status questionnaires, clinical assessment, and blood withdrawal. From the blood samples, the gene polymorphism was identified through polymerase chain reaction and patients grouped as II or D allele carriers (ID and DD genotypes). Hypertension was defined by self-report of the condition and confirmed by antihypertensive drug treatment. Chi-square test was used to identify differences in the proportions distributed between groups of each dependent variable (ie, genotype, diagnosis of hypertension, and blood pressure state from medicated patients with hypertension). The prevalence of hypertension was 59.3% and was associated with diabetes mellitus and obesity, but not with angiotensin-converting enzyme insertion/deletion gene polymorphism. However, carriers of the II genotype, a salt-sensitivity genotype, exhibited a significantly greater estimated sodium intake. In addition, among medicated elderly patients with hypertension, II genotype carriers exhibited poor blood pressure control, despite similar antihypertensive drug treatment in D allele carriers, while exhibiting a greater estimated sodium intake. Our results provide new evidence regarding the interaction of genetic and environmental/behavioral factors in the genesis of hypertension among elderly patients, as well as in blood pressure control in medicated elderly patients with hypertension.
Collapse
Affiliation(s)
- Ivna V. Freire
- Postgraduate Program in Nursing & HealthState University of Southwest Bahia (UESB)JequieBABrazil
- Department of Biological SciencesIntegrative Physiology Research CenterState University of Southwest Bahia (UESB)JequieBABrazil
- Human Genetics LaboratoryDepartment of Biological SciencesState University of Southwest Bahia (UESB)JequieBABrazil
| | - Cezar A. Casotti
- Postgraduate Program in Nursing & HealthState University of Southwest Bahia (UESB)JequieBABrazil
| | - Ícaro J. S. Ribeiro
- Postgraduate Program in Nursing & HealthState University of Southwest Bahia (UESB)JequieBABrazil
- Department of Biological SciencesIntegrative Physiology Research CenterState University of Southwest Bahia (UESB)JequieBABrazil
| | - Jonas R. D. Silva
- Department of Biological SciencesIntegrative Physiology Research CenterState University of Southwest Bahia (UESB)JequieBABrazil
| | - Ana A. L. Barbosa
- Human Genetics LaboratoryDepartment of Biological SciencesState University of Southwest Bahia (UESB)JequieBABrazil
| | - Rafael Pereira
- Postgraduate Program in Nursing & HealthState University of Southwest Bahia (UESB)JequieBABrazil
- Department of Biological SciencesIntegrative Physiology Research CenterState University of Southwest Bahia (UESB)JequieBABrazil
- Human Genetics LaboratoryDepartment of Biological SciencesState University of Southwest Bahia (UESB)JequieBABrazil
| |
Collapse
|
34
|
Lu L, Guo J, Hua Y, Huang K, Magaye R, Cornell J, Kelly DJ, Reid C, Liew D, Zhou Y, Chen A, Xiao W, Fu Q, Wang BH. Cardiac fibrosis in the ageing heart: Contributors and mechanisms. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:55-63. [PMID: 28316086 DOI: 10.1111/1440-1681.12753] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/09/2017] [Accepted: 03/12/2017] [Indexed: 01/30/2023]
Abstract
Cardiac fibrosis refers to an excessive deposition of extracellular matrix (ECM) in cardiac tissue. Fibrotic tissue is stiffer and less compliant, resulting in subsequent cardiac dysfunction and heart failure. Cardiac fibrosis in the ageing heart may involve activation of fibrogenic signalling and inhibition of anti-fibrotic signalling, leading to an imbalance of ECM turnover. Excessive accumulation of ECM such as collagen in older patients contributes to progressive ventricular dysfunction. Overexpression of collagen is derived from various sources, including higher levels of fibrogenic growth factors, proliferation of fibroblasts and cellular transdifferentiation. These may be triggered by factors, such as oxidative stress, inflammation, hypertension, cellular senescence and cell death, contributing to age-related fibrotic cardiac remodelling. In this review, we will discuss the fibrogenic contributors in age-related cardiac fibrosis, and the potential mechanisms by which fibrogenic processes can be interrupted for therapeutic intent.
Collapse
Affiliation(s)
- Lu Lu
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingbin Guo
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Hua
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kevin Huang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Ruth Magaye
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Jake Cornell
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Vic., Australia
| | - Christopher Reid
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,NHMRC Cardiovascular Centre of Research Excellence, School of Public Health, Curtin University, Perth, WA, Australia
| | - Danny Liew
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Xiao
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Qiang Fu
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bing Hui Wang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
35
|
Sachdev U, Lotze MT. Perpetual change: autophagy, the endothelium, and response to vascular injury. J Leukoc Biol 2017; 102:221-235. [PMID: 28626046 PMCID: PMC6608075 DOI: 10.1189/jlb.3ru1116-484rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Current studies of vascular health, aging, and autophagy emphasize how the endothelium adapts to stress and contributes to disease. The endothelium is far from an inert barrier to blood-borne cells, pathogens, and chemical signals; rather, it actively translates circulating mediators into tissue responses, changing rapidly in response to physiologic stressors. Macroautophagy-the cellular ingestion of effete organelles and protein aggregates to provide anabolic substrates to fuel bioenergetics in times of stress-plays an important role in endothelial cell homeostasis, vascular remodeling, and disease. These roles include regulating vascular tone, sustaining or limiting cell survival, and contributing to the development of atherosclerosis secondary to infection, inflammation, and angiogenesis. Autophagy modulates these critical functions of the endothelium in a dynamic and perpetual response to tissue and intravascular cues.
Collapse
Affiliation(s)
- Ulka Sachdev
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
36
|
Leitner LM, Wilson RJ, Yan Z, Gödecke A. Reactive Oxygen Species/Nitric Oxide Mediated Inter-Organ Communication in Skeletal Muscle Wasting Diseases. Antioxid Redox Signal 2017; 26:700-717. [PMID: 27835923 PMCID: PMC5421600 DOI: 10.1089/ars.2016.6942] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cachexia is defined as a complex metabolic syndrome that is associated with underlying illness and a loss of muscle with or without loss of fat mass. This disease is associated with a high incidence with chronic diseases such as heart failure, cancer, chronic obstructive pulmonary disease (COPD), and acquired immunodeficiency syndrome (AIDS), among others. Since there is currently no effective treatment available, cachectic patients have a poor prognosis. Elucidation of the underlying mechanisms is, therefore, an important medical task. Recent Advances: There is accumulating evidence that the diseased organs such as heart, lung, kidney, or cancer tissue secrete soluble factors, including Angiotensin II, myostatin (growth differentiation factor 8 [GDF8]), GDF11, tumor growth factor beta (TGFβ), which act on skeletal muscle. There, they induce a set of genes called atrogenes, which, among others, induce the ubiquitin-proteasome system, leading to protein degradation. Moreover, elevated reactive oxygen species (ROS) levels due to modulation of NADPH oxidases (Nox) and mitochondrial function contribute to disease progression, which is characterized by loss of muscle mass, exercise resistance, and frailty. CRITICAL ISSUES Although substantial progress was achieved to elucidate the pathophysiology of cachexia, effectice therapeutic strategies are urgently needed. FUTURE DIRECTIONS With the identification of key components of the aberrant inter-organ communication leading to cachexia, studies in mice and men to inhibit ROS formation, induction of anti-oxidative superoxide dismutases, and upregulation of muscular nitric oxide (NO) formation either by pharmacological tools or by exercise are promising approaches to reduce the extent of skeletal muscle wasting. Antioxid. Redox Signal. 26, 700-717.
Collapse
Affiliation(s)
- Lucia M Leitner
- 1 Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsklinikum , Düsseldorf, Germany
| | - Rebecca J Wilson
- 2 Department of Medicine-Cardiovascular Medicine, University of Virginia , Charlottesville, Virginia
| | - Zhen Yan
- 2 Department of Medicine-Cardiovascular Medicine, University of Virginia , Charlottesville, Virginia.,3 Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Axel Gödecke
- 1 Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsklinikum , Düsseldorf, Germany
| |
Collapse
|
37
|
Abstract
In most patients with chronic heart failure (HF), levels of circulating cytokines are elevated and the elevated cytokine levels correlate with the severity of HF and prognosis. Various stresses induce subcellular component abnormalities, such as mitochondrial damage. Damaged mitochondria induce accumulation of reactive oxygen species and apoptogenic proteins, and subcellular inflammation. The vicious cycle of subcellular component abnormalities, inflammatory cell infiltration and neurohumoral activation induces cardiomyocyte injury and death, and cardiac fibrosis, resulting in cardiac dysfunction and HF. Quality control mechanisms at both the protein and organelle levels, such as elimination of apoptogenic proteins and damaged mitochondria, maintain cellular homeostasis. An imbalance between protein synthesis and degradation is likely to result in cellular dysfunction and disease. Three major protein degradation systems have been identified, namely the cysteine protease system, autophagy, and the ubiquitin proteasome system. Autophagy was initially believed to be a non-selective process. However, recent studies have described the process of selective mitochondrial autophagy, known as mitophagy. Elimination of damaged mitochondria by autophagy is important for maintenance of cellular homeostasis. DNA and RNA degradation systems also play a critical role in regulating inflammation and maintaining cellular homeostasis mediated by damaged DNA clearance and post-transcriptional regulation, respectively. This review discusses some recent advances in understanding the role of sterile inflammation and degradation systems in HF.
Collapse
Affiliation(s)
- Kazuhiko Nishida
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence
| | - Kinya Otsu
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence
| |
Collapse
|
38
|
Xu Q, Wei YT, Fan SB, Wang L, Zhou XP. RETRACTED: Early hyperbaric oxygen therapy may improve the long term neurological consequences of diabetic patients suffering from hemorrhagic stroke. Neurosci Lett 2017; 644:83-86. [PMID: 28237802 DOI: 10.1016/j.neulet.2017.02.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of Neuroscience Letters has learned that text throughout this paper duplicates, or nearly duplicates, text in an earlier paper by others (Rusyniak DE, Kirk MA, May JD, Kao LW, Brizendine EJ, Welch JL, Cordell WH, Alonso RJ; Hyperbaric Oxygen in Acute Ischemic Stroke Trial Pilot Study, Stroke. 2003 Feb;34(2):571-4).
Collapse
Affiliation(s)
- Qian Xu
- Department of Brain Surgery, Ningbo Zhenhai Longsai Hospital, Zhejiang, 315200, China
| | - Yi-Ting Wei
- Department of Brain Surgery, Ningbo Zhenhai Longsai Hospital, Zhejiang, 315200, China.
| | - Shuang-Bo Fan
- Department of Brain Surgery, Ningbo Zhenhai Longsai Hospital, Zhejiang, 315200, China
| | - Liang Wang
- Department of Brain Surgery, Ningbo Zhenhai Longsai Hospital, Zhejiang, 315200, China
| | - Xiao-Ping Zhou
- Department of Brain Surgery, Ningbo Zhenhai Longsai Hospital, Zhejiang, 315200, China
| |
Collapse
|
39
|
Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and 'Garb-aging'. Trends Endocrinol Metab 2017; 28:199-212. [PMID: 27789101 DOI: 10.1016/j.tem.2016.09.005] [Citation(s) in RCA: 625] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Abstract
'Inflammaging' refers to the chronic, low-grade inflammation that characterizes aging. Inflammaging is macrophage centered, involves several tissues and organs, including the gut microbiota, and is characterized by a complex balance between pro- and anti-inflammatory responses. Based on literature data, we argue that the major source of inflammatory stimuli is represented by endogenous/self, misplaced, or altered molecules resulting from damaged and/or dead cells and organelles (cell debris), recognized by receptors of the innate immune system. While their production is physiological and increases with age, their disposal by the proteasome via autophagy and/or mitophagy progressively declines. This 'autoreactive/autoimmune' process fuels the onset or progression of chronic diseases that can accelerate and propagate the aging process locally and systemically. Consequently, inflammaging can be considered a major target for antiaging strategies.
Collapse
Affiliation(s)
- Claudio Franceschi
- Institute of Neurological Sciences of Bologna IRCCS, 40139 Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, 40126 Bologna, Italy
| | - Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy; Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18 - 20095 Cusano Milanino (MI), Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, 40126 Bologna, Italy.
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
40
|
Cannatà A, Marcon G, Cimmino G, Camparini L, Ciucci G, Sinagra G, Loffredo FS. Role of circulating factors in cardiac aging. J Thorac Dis 2017; 9:S17-S29. [PMID: 28446965 PMCID: PMC5383555 DOI: 10.21037/jtd.2017.03.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Worldwide increase in life expectancy is a major contributor to the epidemic of chronic degenerative diseases. Aging, indeed, simultaneously affects multiple organ systems, and it has been hypothesized that systemic alterations in regulators of tissue physiology may regulate this process. Cardiac aging itself is a major risk factor for cardiovascular diseases and, because of the intimate relationship with the brain, may contribute to increase the risk of neurodegenerative disorders. Blood-borne factors may play a major role in this complex and still elusive process. A number of studies, mainly based on the revival of parabiosis, a surgical technique very popular during the 70s of the 20th century to study the effect of a shared circulation in two animals, have indeed shown the potential that humoral factors can control the aging process in different tissues. In this article we review the role of circulating factors in cardiovascular aging. A better understanding of these mechanisms may provide new insights in the aging process and provide novel therapeutic opportunities for chronic age-related disorders.
Collapse
Affiliation(s)
- Antonio Cannatà
- Molecular Cardiology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata and University of Trieste, Trieste, Italy
| | - Gabriella Marcon
- DAMA- University of Udine, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | - Giovanni Cimmino
- Department of Cardio-Thoracic and Respiratory Sciences, Section of Cardiology, Second University of Naples, Naples, Italy
| | - Luca Camparini
- Molecular Cardiology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giulio Ciucci
- Molecular Cardiology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata and University of Trieste, Trieste, Italy
| | - Francesco S. Loffredo
- Molecular Cardiology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata and University of Trieste, Trieste, Italy
| |
Collapse
|